2005

DATOM: A Proposal for an Alternative
Storage System API

Calicrates Policroniades and lan Pratt
Computer Laboratory, SRG

FTE| UNIVERSITY OF

L]

&% CAMBRIDGE University of Cambridge

http://www.cl.cam.ac.uk
{cbp25, iapl0}@cl.cam.ac.uk

Outline

4 Introduction
— The research problem and motivation: manipulation of structure and type.

4 The Storage System API
— Persistent Data Abstractions.

¥ Model of Persistence

% Implementation

— High-level architecture and underlying
mechanisms.

4 Evaluation

4 Future Work and
Conclusions

Introduction

The Research Problem

Do current storage technologies provide adequate support to
manipulate data rich in structure and type?

~

4 File Systems (FS): Flat storage space and an API to operate on arrays of bytes
[Daley and Neumann, 1965; Sandberg, 1986; Nagar, 1997].

N4

4 Relational Databases: Tabular data representation, query capabilities, ACID
transactional support [Codd, 1970]. ~L

4 Object Oriented DB: Well-known relational databases capabilities (query and
transactions) + object oriented data model [Atkinson et al., 1989; Stonebraker et al., 1990].

N4

4 Persistent Programming Languages (PPLsS): Merge the programming
language and the data store into one system at runtime [Dearle, 1989; Atkinson, 1995].

v Programmers benefit with higher levels of abstraction: File Systems vs. PPLs.

S
Introduction

What’'s the problem with current storage systems APIs?
4 Unbalanced trade-off between I/O efficiency and programmability in FS
[Gribble et al., 2000; MacCormick et al., 2004; OLE]:

=» Considerable amount of data rich in type and structure (MPEG, PDF, HTML, XML
JAR, TAR, soffice, etc.) or amenable to structural decomposition.

=>»Lack of ability to manipulate any abstraction: tedious and prone to errors!

4 If applications are migrated to other storage technologies:

X Addition of overheads: Intermediate language to access data (SQL, OQL, XQuery),
transactional frameworks (ACID and long transactions), or complex data models.

X Loss of interoperability: Orthogonal persistence confines type support to a specific
language compiler and adoption of a programming model.

4 Mismatch with applications’ functional requirements: Data-centric approach,
well-defined access patterns with varying recoverability and consistency requirements.

S
Introduction

Our Proposal

4 Depart from the flat file paradigm =» more abstract data representation.

4 Creation of an efficient yet general storage system API for application data
rich in structure and type.

=>» Retain a reasonable amount of structure and expose persistent data type.
=» Based on semantically rich and general abstractions.

= Common use in applications code: Map, List, Matrix, Queue, and Stack.

4 Potential for impact:

v’ Less effort to develop persistence code: augment the level of abstraction and
software quality.

v Advanced data access strategies: data prefetching, concurrency, and data sharing.

v’ Assertive hints to persistent data access patterns.

The Storage System API

Persistent Data Abstractions

4 Composite Entities: Aggregation of application-specific data Elements.
=» Choose the right interface according to data access requirements.
=» Popular programming abstractions: expressive power, predefined semantics,
potential to be implemented efficiently.

+ Map: Store elements associated with a key.

List: Collection of items in which certain order has to be preserved.

Matrix: Bidirectional access to collections of items.

Queue: Collection of items with FIFO access semantics.

+
+
+
+

Stack: Collection of items with LIFO access semantics.

4 Elements: Information-hiding items [Keedy and Richards, 1982].
= Defined using Datom Data Language (DDL).
= Application-specific semantics and types.
= Final data containers: they do not reference to other data items.

Data Model

Example: Breaking File Data into Discernible Items
Composite Entity: Map

Interface Element: UserAddress {

setStreet(String street
o T 1. S T

83{%@9&0 = Aggregation of CEs.
key I setLocationOnMap(URL url) = Navigability.

setZipCode(String zc) .
key —1 = References in CE only.

} » Elements for typed access.

key —t
key —t
key >

Element —+—| Element —+—| Element]
Interface Map { 1

get(key) i itv: Li B
set§<ey, Element) Composite Entity: List
del(key) Interface List
length ?\/I . add(Element
merge(Map, override) add(index, Element)
haskey() get(index)
remove(index)
} size()

ISEmpty()
¥

Map

Matrix

T List

index — (X,y) -

Data Model

Stack

<

= Queue = Element

High Level Architecture
Zpplication
DATOM &APT . . .
> Presents data abstractions and system functionality.
[} Lists | | Maps || Elements | Jueus | | Stack r]
PERSISTENCE SUBSYSTEM
r) » Creates, destroys, and moves persistent data:
Storage Manager
Camagement Manager enegen » [tems identity: lifelong logical IDs (PIDs).
» Memory management: Lazy loading and surrogates.
S eems = Cache of persistent items.
Persistent Data Composer | | Concurrency Control
Manager Translator Binders » Transform to/from physical storage format to run-time
data representation.
. w

Bytes

FHYSCAL STORAGE

] —> Atomically stores and fetches data as requested by the

[Berkeley DB Store Storage Manager.

'

Tvpe
Dictionary

S
Model of Persistence

4 Reachability AND Type: Smooth and complete control on data transferred to disk.
=>» Any CE can be used as a root of persistence.
=>» The system restricts by type the addition of Elements into the graph of persistence.

4 Updates are invoked from the roots of persistence: CE.update();

=» Traversal of persistence graph: promotion of new items, and update of mutated items.
= Persistent items exist in apps’ memory space until promoted to persistence.

Application DATOM API Persistence Subsystem

O —
+ List

Cache

Persistent
Ttems

Srack
' Queve : Surrogate
| |
Transient Data Element E : I

Ttems <:::>

]

|

L
YYy
e ——

[D —

Persistent Data Life Cycle

Updates
New Persistent
Ttem
Bpplication volatile
memory space
Fromoted to
Fersistence
L Updates
1 f
Cached, <lean, and Cached, dirty, and
with a copy on disk with old copy on disk
Sawe Inwvoked
Ttem
Request
Item Ewiction
L

on disk

Results

4 Porting applications on top of the Datom API: Bibkeeper.
Application recovered file data to a graph of persistent objects.

Remove parsing and serialization libraries.

Made the code self-explaining.

Potential avoidance of redundant data transmission to disk.

Application size reduced.

PP PP

// Connecting to the store
StoreConn myStore = new StoreConn(cfgObj);

// Getting a root map
RootDatomMap myRefs = myStore.open(“bibtexRefs™);

// Getting an application data Element
Reference ref = (Reference) myRefs.get(‘‘gray:19987);

// In-memory updates

ref.setTitle(*“Transaction Processing: Concepts and Techniques™);
ref.setYear(1998);

// Pushing changes to stable storage as an atomic operation
myRefs.save();

S
Results

4 Bibkeeper: The graph of persistence.
1) Map, List, and different types of Elements.
2) Changes in the morphology of the application.

™| BibtexString
— BibtexString

DatomMapRoot DatomList

signature BibtexString || -+ || BibtexString /| 4 || BibtexString *1

preamble —

f

strings DatomMap

comment = BibtexString Entryld BibtexEntry

entries »1 Entryld BibtexEntry
meta Entryld BibtexEntry

DatomMap DatomL.ist

e | ; !
Mo |]~

1

Results

4 Bibkeeper: Source code measurements.
4 PCMT tool [Gri97].
4 |t collects metrics related with lines of code and classes that contain persistent
code.
4 Parsing and tracking lines of code as productions rather than textual text.

Version LoCs PLoCs # Classes | # Persistent Classes
File-based 6002 208 81 15
Datom-based 5570 469 76 40

¢ Key findings.
4 Reduction in size: code (432) and classes (5).
4 PLoCs and # of persistent classes increased: Explicit tracking of persistent objects.
4 Breakdown per class shows: programs either modify persistent abstractions all over
source files; or show high locality => directly related to density of PLoCs.

Results — CDC Framework

% Cognitive Dimensions Framework.

=>» Usability aspects of the API contrasted with cognitive demands of different
programming styles: Opportunistic, Pragmatic, and Systematic.

=>»12 dimensions evaluated through:
=>» Task analysis: Typical use scenarios.
=>» Code snippets for each main task.

Recover a root of persistence.

Setup a graph of persistence

Add an Element to the graph of persistence.
Update an Element.

Read data from an Element.

Delete an Element.

Remove a Composite Entity.

Apply atomic updates.

Modify the morphology of the graph of persistence.
Query the graph of persistence.

Navigate and update the graph of persistence.

OO N | R W N

=
©

[EN
=

S
Results — CDC Framework

M Analysed Results B Analvsed Result
O Systematic Developer na yse. esults
OPragmatic Developer

LEAR

WORK

STEP
STEP

PROG
PROG

PENE ABST
PENE

STEP

PROG

PREM

PENE W Analysed Results
O Opportunistic Developer

|
Results — Performance

£ Datasets: 36,000 Elements of type Data (int, int, int, double, String, Data).

4 Read barrier: Persistent item faulting.
4 Selective retrieval: Map, List, and Matrix.
4 Run: 25 iterations, 9000 Elements per iteration. Simple read procedure.
Measures cache warming.
4 One-way retrieval: Stack, and Queue.
4 Run: 8 iterations, 1000(n) Elements per iteration, Simple read procedure.

4 Write barrier: Detecting and logging updates.
4 Similar access strategies but and update procedure is applied on fetched Elements.

Results — Read barrier

10
1 — © - Volatile DatomMap 8r +
9r -+ - Persistent DatomMap :
8 K T — © - Volatile DatomQueue B
-+ - Persistent DatomQueue I +
70 6r +
+
g +
@ ° °
) .
e > . D 4 .
= : = .
H L = ‘
4 + = 3l o+
o +
3 + L
2 [
1 |-
oS S & S © €& S 9)
1 2 3 4 5 6 7 8
Iteration Iteration

4 Read barrier: Persistent item faulting.
4 Selective retrieval: Warming of caches.
4 One-way retrieval: Constant increase of time.

Results — Write barrier

201 9
Ll |~ © ~Cold __---"
S+ Warm /,/O’” 8r - © —Cold J.©
16 —&4— Hot - Co - Warm 2
_ o o —4— Hot o
- - 7
14 — S
//O 6 ‘.‘)/
~ 12+ O// o] /.'/®/
& ®/ \({)/5 PR
O 10”7 Q PR
E £ al o
— - -
= gl (o o
3r //
6 e s E
- o+
2F e '
ar <}
e
s .
2 1r - g
Z
1 1 1 1 J O&J 1 1 1 1 J
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Write probability Write probability

® Write barrier: Detecting and logging updates. Selective retrieval.
4 Caches warming effects.
4 Checkpoint independent of cache state.

18-
16+ — © — 1000 objects
-+ - 5000 objects
14+ - —0O—- 7000 objects v/_m
—2A— 8000 objects s
®
12 R
x
%

10+ >

/ -

8' - - -0 .

. R
nd T)
ot
+
4_
O o-—-——-—-——-——--- ©

B P~ -0 77

0 L 1 |) ‘

0 0.2 0.4 0.6 0.8 1

Write probability

Results — Write barrier

— © — 1000 objects
-+ - 5000 objects
- —B— - 7000 objects
—4A— 8000 objects ke

012 014 0‘.6 018 i
Write probability

4 Write barrier: Detecting and logging updates. One way retrieval.
4 Constant times according with the density of updates.

S
Future Work and Conclusions

4+ Work to be done:
=>»Developers’ feedback. http://www.cl.cam.ac.uk/~cbp25/datom/apidocs/
=>»Porting more applications.
= Ad-hoc storage layer to exploit abstractions.
=>» Partial checkpoints??

% Conclusions:

= DATOM: A storage system whose API captures a judicious degree of structure
and data type.

=>» Applications’ persistent code can be simplified and developers’ job eased.

» Management of persistent data layouts and provision of data integrity services.
» Sophisticated data access strategies based on applications’ persistent data
semantics: key, position, type, or content.

» Fine-grained data manipulation to enable data sharing and concurrency.

http://www.cl.cam.ac.uk/~cbp25/datom/apidocs/

The End

Questions?

Removing complexity

4 ACID transaction for applications that need them and use more relaxed
access semantics.

4 Reachability of a set of well-known elements.

4 Read and update barriers related to granularity of the objects, Elements as
collections of small data items.

4 Learning curve for programmers vs. DB models.
4 A model to reason about.

S
Introduction

S
Introduction

