
How to boot up a Morello Board with CheriBSD

Carlos Molina-Jiménez1

Department of Computer Science and
Technology, University of Cambridge

carlos.molina@cl.cam.ac.uk, www.cl.cam.ac.uk/~cm770/
25 Jan 2023

Resumen This document explains how to boot a brand new Morello
Board with the cheriBSD operating system. The first version (version 26
Aug 2022) of this document was originally written for the deployment of
the cheribsd-memstick-arm64-aarch64c-22.05p1.img cheriBSD version. I
have upgraded my morello boards to the latest cheriBSD version, that
is, cheribsd-memstick-arm64-aarch64c-22.12.img and can tell that the
procedure remains the same. So the document remains mainly the same,
except for small improvements such as the inclusion of figures in Section 6
that explain minicom configuration.

Keywords:

1. Introduction

ARM has sent me two Morello Boards to carry out the implementation work
involved in the CAMB project. See photo in Fig. 1.

The Morello Boards are brand new, in the sense that they come with no
pre–installed software. For instance, they have no operating systems on their
internal 250 GB SATA disks. My research work is based on CHERI capabilities,
therefore, I need to install CheriBSD operating system on their local disks.

In the following sections I will explain the procedure that I have followed to
set up one of the Morello Boards. I followed the same procedure to set up the
second Morello Board.

The general setup procedure is explained in ARM [3] and in a video (Morello:
Getting Started Guide) [2]. The setup with CheriBSD is explained in [8].

In this document I am sharing my personal experience and discussing some
details that [3,2,8] omit.

2. Equipment

I have the Morello Board with all the cables as normally shipped by ARM [3]
and in addition, following ARM recommendations, I have:

Host PC: an x8664 PC running Ubunto Linux 18.04, 16GB of memory,
250GB of free disk space and monitor with HDMI input support for at least
1920x1080 at 60Hz.



Figura 1. My two brand new Morello Boards.



SamDisk 64GB 3.0 memory stick. ARM recommends old memory sticks of
least 4GB, but new ones worked fine.

3. The main two steps

In general, the procedure involves two related but independent steps.

1. Creation of a bootable USB memory stick with a CheriBSD boot image.
2. Upgrade of the internal SDcard of the Morello Board with the latest version

of the Morello Board firmware.

The order of the steps is irrelevant, that it, one can first upgrade the SDcard
and then create the bootable USB memory stick or the other way around. I will
start with the creation of the bootable memory stick because this step does not
involve the Morello Board, it only involves the host PC.

4. Creation of a bootable USB memory stick

ARM recommends a USB memory stick of at least 4GB. I used a conven-
tional SamDisk 64GB 3.0 memory stick and experimented with others including
Phillips and Verbatim. I remark on this point because it seems that some people
have experienced problems to boot Morello Boards with some memory sticks. I
used several brands and all of them worked fine for me.

To create my bootable memory stick, I executed the following steps.

1. I downloaded an installable CheriBSD cheribsd-memstick-arm64-aarch64c-
22.05p1.img.xz image for the Morello Board from [5] 1.

Another alternative is to create an image as explained in [8]. However,
to start with a ready to use image is a better approach, the creation of
an image might take between 2 and 3 hours of compilation which invol-
ves downloads of hundreds of dependencies. This is a time consuming
procedure that might crash several times.

2. I uncompressed the downloaded image.

$ ls -l
-rw-r--r--@ 1 carlosmolina staff 426130916 27 Aug 13:26
cheribsd-memstick-arm64-aarch64c-22.05p1.img.xz

bash-3.2$ gunzip cheribsd-memstick-arm64-aarch64c-22.05p1.img.xz

bash-3.2$ ls -l
-rw-r--r-- 1 carlosmolina staff 814955008 27 Aug 13:26
cheribsd-memstick-arm64-aarch64c-22.05p1.img

1 Currently only the latest image (cheribsd-memstick-arm64-aarch64c-22.12.img.xz) is
available online [4].



3. I plugged a 64GB USB memory stick to a USB port of my Ubunto PC and
run the Linux lsblk command to identify the device driver that Ubunto used
to attach the USB memory stick.

$ lsblk
...

sdb 8:16 0 465.8G 0 disk
sdb1 8:17 0 465.8G 0 part /camb

sdc 8:32 1 58.2G 0 disk
sr0 11:0 1 1024M 0 rom

The lsblk output shows that there is a storage device of 58.2G connected
to sdc. That is the USB memory stick. If not sure, what device is the USB
memory stick, you can unplug it and run lsblk again, the sdc device will not
be shown in the output. Plug it and run lsblk again and it will be shown in
the output again. Make sure you do not specify the wrong device to the dd
command output (of = /dev/...) because dd will write on top of the original
content.

4. I copied the uncompressed image to the memory stick using the standard dd
Linux command

$ sudo dd if=cheribsd-memstick-arm64-aarch64c-22.05p1.img
of=/dev/sdc bs=1048576

[sudo] password for cm770:
777+1 records in
777+1 records out
814955008 bytes (815 MB, 777 MiB) copied, 46.1821 s, 17.6 MB/s

In this example, I used a Verbatim USB 3.2 Gen 1, V3 Drive, 64GB. I
experimented also with several USBs (SanDisk USB 3.0, 64GB, Philips USB
2.0, 32GB and Kingston USB 3.2, 64GB) —all worked fine for me. The only
difference is the time it takes the dd command to copy the image to the USB
memory stick which is always less than a minute.

5. The USB bootable memory stick is now ready to boot the Morello Board
up.

5. Upgrade of internal SDcard of the Morello Board with
the latest firmware

Morello boards are shipped with SDcards flashed with an old firmware. ARM
strongly recommends to delete it and replace it with the latest version of Morello
Board firmware.

1. I downloaded the latest version of the Morello Board from [1].



Alternatively, as explained in [3] one can compile locally version of the
firmware from the sources which are available from Git. However, to start
with, it is sensible to download a ready to use firmware.

2. I plugged one end of the HDMI cable into the HDMI port on the Morello
Board and the other end into the monitor of the Ubunto PC.

3. I plugged one end of the USB–B cable into the debug (DBG) port on the
Morello Board and the other end to a USB port of the Ubunto PC. This
cable is used to open two logical connections: one to the Motherboard Confi-
guration Controller (MCC) and another to the Application Processor (AP).
See Section 6.

4. I turned on the Morello Board.
The internal SDcard of the Morello Board is taken as a conventional
storage divice by the Ubunto PC. Therefore it is accessible through the
Ubunto graphical interface. I clicked on its icon to open it. It contains
some files and folders.
bash-3.2$ ls -la
total 48
drwxr-xr-x 10 carlosmolina staff 320 9 Jun 00:03 ./
drwxr-xr-x 5 carlosmolina staff 160 28 Jul 20:32 ../
-rw-r--r--@ 1 carlosmolina staff 8196 24 Jul 23:06 .DS_Store
drwxr-xr-x 4 carlosmolina staff 128 8 Jun 23:39 .Trash-3319/
drwxr-xr-x 6 carlosmolina staff 192 17 Jul 02:02 LICENSES/
-rw-r--r--@ 1 carlosmolina staff 935 1 Jan 2016 LOG.TXT
drwxr-xr-x 4 carlosmolina staff 128 17 Jul 02:01 MB/
drwxr-xr-x 5 carlosmolina staff 160 14 Feb 2022 SOFTWARE/
-rw-r--r--@ 1 carlosmolina staff 1203 2 Feb 2022 config.txt
-rw-r--r--@ 1 carlosmolina staff 215 2 Feb 2022 ee0364b.txt

These files and folders are the Morello Board firmware that ARM loa-
ded at manufacturing time. This firmware is very likely to be outdated,
therefore, ARM strictly recommend to delete them and flash the SDcard
with the latest version.
In principle, I could have used Ubunto’s graphical interface to treat the
SDcard as a conventional memory stick: open it, move all the files and
folder to the bin and copy the new ones into the SDcard. However, I
opted to follow the directions from the ARM documents, therefore, I
used Linux online commands, including, mount and umount.

5. I used the lsblk Linux command to identify the device that Ubunto uses to
interact with the SDcard.

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 47M 1 loop /snap/snapd/16292
...
loop5 7:5 0 47M 1 loop /snap/snapd/16010
sda 8:0 0 223.6G 0 disk



sda1 8:1 0 37.3G 0 part
sda2 8:2 0 37.3G 0 part /
sda3 8:3 0 149.1G 0 part /local/scratch

sdb 8:16 0 465.8G 0 disk
sdb1 8:17 0 465.8G 0 part /camb

sdc 8:32 1 1.9G 0 disk
sdc1 8:33 1 1.9G 0 part /media/cm770/M1SDP

sr0 11:0 1 1024M 0 rom

The SDcard corresponds to the sdc1 Ubunto device. I could identify it by
its size. The Morello Boards that ARM shipped to me come with SDcards
of 2GB. Therefore, /dev/sdc1 corresponds to the SDcard.

6. I mounted the SDcard into a folder of the Ubunto file system, for example,
into /mnt (any empty folder can be used) and deleted all the files and folders:

$ sudo mount /dev/sdc1 /mnt
[sudo] password for cm770:
cm770@pursuit2:~$ cd /mnt

$ ls -l
total 224
-rwxr-xr-x 1 root root 1199 Aug 2 20:49 config.txt
-rwxr-xr-x 1 root root 215 Aug 2 20:49 ee0364b.txt
drwxr-xr-x 2 root root 32768 Aug 2 20:49 LIB
drwxr-xr-x 5 root root 32768 Aug 2 20:49 LICENSES
-rwxr-xr-x 1 root root 1104 Jan 1 2016 LOG.TXT
drwxr-xr-x 3 root root 32768 Aug 2 20:49 MB
drwxr-xr-x 2 root root 32768 Aug 2 20:49 SOFTWARE

7. I deleted the old version of the firmware from the SDcard.

$ rm -R * /* delete all files and folders */

8. I copied the version of the firmware downloaded from [1] to the SDcard.

$ pwd
/camb/board-firmware-morello-mainline

$ ls -l
total 24
-rw-r--r-- 1 cm770 cm770 1199 May 20 09:35 config.txt
-rw-r--r-- 1 cm770 cm770 215 May 20 09:35 ee0364b.txt
drwxr-xr-x 2 cm770 cm770 4096 Jul 30 01:29 LIB
drwxr-xr-x 5 cm770 cm770 4096 Jul 30 01:29 LICENSES
drwxr-xr-x 3 cm770 cm770 4096 Jul 30 01:29 MB
drwxr-xr-x 2 cm770 cm770 4096 Jul 30 01:29 SOFTWARE



$

$ cp -R board-firmware-morello-mainline/* /mnt/

$ ls -l /mnt
total 192
-rw-r--r-- 1 cm770 cm770 1199 Jul 25 00:55 config.txt
-rw-r--r-- 1 cm770 cm770 215 Jul 25 00:55 ee0364b.txt
drwxr-xr-x 2 cm770 cm770 32768 Jul 25 00:55 LIB
drwxr-xr-x 5 cm770 cm770 32768 Jul 25 00:55 LICENSES
drwxr-xr-x 3 cm770 cm770 32768 Jul 25 00:56 MB
drwxr-xr-x 2 cm770 cm770 32768 Jul 25 00:56 SOFTWARE

$ sync /* advisable to make sure that the copy
/* command is completed

9. I umounted the SDcard from the Ubunto file system

$ sudo umount /dev/sdc1

10. I have the SDcard ready now to be used as firmware to boot up the Mo-
rello Board, for example, with the USB bootable memory stick created in
Section 4.

6. Booting up with the USB memory stick

The actual booting up process assumes that I have successfully:

Upgraded the internal SDcard of the Morello board as detailed in Section 5.
Created a bootable USB memory stick as detailed in Section 4.

1. I turned off the Morello Board.
2. I turned on the Morello Board.
3. I opened two serial connections between the Ubunto PC (my host PC) and

the Morello Board. Each from an x-term running a bash shell.
I used minicom to setup (through the debug cable) the two logical se-
rial connections needed: one to connect the ubunto PC to Mother Board
Controller (MCC) and another one to connect to the Application Pro-
cessor (AP). Minicom configuration is explained [6]. The directions to
configure minicom within the context of the Morello Boards are provided
in page 17 of [3].
Correct configuration of the logical ports is crucial. Fig. 2 to 11 show
the correct configuration parameters for the AP (also called the Morello
System Console or MSC) logical connection. The parameter for the AP
logical connections are the same. I am showing the configuration of the
AP logical connection because this more sensitive that the other. For
example, if the Hardware flow control is set to yes, the connection will
fails to accept input from the xterminal to the AP.
To start, I typed:



cm770@pursuit2-$ sudo minicom -s
[sudo] password for cm770: cm770password

Fig. 2 to Fig. 5 show how to input the configuration parameters and how
to save the configuration.
Fig. 2 shows minicom menu.

Figura 2. sudo minicom -s takes to a setup menu.

Fig. 3 shows minicom menu for port configuration.
Fig. 4 shows correct configuration parameters for Morello System Con-
sole.
Fig. 5 shows how to save the configuration parameters under the ttyUSB
name. The name is any string.
Fig. 6 shows that the configuration parameters for Morello System Con-
sole have been saved under the mane ttyUSB2.
Exit from the menu takes to the screen shown in Fig.7. The logical
connection between the Ubunto computer and Morello System Console
of the Morello Board is ready.
Notice that, in response to the save instruction, of Fig. 5, minicom creates
the minirc.ttyUSB2 file shown in Fig. 8.
To exit minicom at the end of the session one can press Ctrl+A, release
the keywords and then press Z. This takes to the screen shown in Fig. 9.
Press X to eXit and reset.



Figura 3. Set up menu for a serial port.

Figura 4. Correct configuration parameters for Morello System Console.



Figura 5. Save configuration parameters under the ttyUSB2 name, to re-use them.

Figura 6. Configuration parameters successfully saved.



Figura 7. Communication line to Morello System Console is ready.

Figura 8. Minicom creates the /etc/minirc.ttyUSB2 file.



Figura 9. To exit from minicom select eXit and reset.

In the screen of Fig. 10 press yes.
Since we saved the configuration parameters under the ttyUSB2 name,
one can repetitively open communication session at any time between
the Ubunto computer and the Morello System Console of the Morello
Board in the following manner:
cm770@pursuit2-$ sudo minicom ttyUSB2
For example, Fig. 11 shows a connection to the Morello System Console
after the installation of the cheriBSD operating system. The informa-
tion shown on the screen will become clear after the installation of the
cheriBSD operating system (completion of this Section).
I used an x–term to open the connections to match the terminal type
specified to FreeBDS later at installation time. I have observed that a
terminal type mismatch causes blurred output lines (nearly unreadable)
from the configuration of the FreeBSD.
Welcome to FreeBSD!

Please choose the appropriate
terminal type for your system.
Common console types are:

ansi Standard ANSI terminal
vt100 VT100 or compatible terminal
xterm xterm terminal emulator (or compatible)

...



Figura 10. Exit from minicom: press Yes.

Figura 11. Connection to the Morello System Console through /dev/ttyUSB2 is ready.



Console type [xterm]:

4. I plugged the bootable USB memory stick into one of the four USB ports
located on the back of the Morello Board. Any of the four USB ports will
work.

5. I turned the Morello Board on.
Some output were displayed on the MCC console.

6. I typed reboot from the MCC console.
7. I followed and responded to the outputs from the AP console, precisely, to

the questions posed by the installation process of the FreeBSD.
The installation process asks for the network parameters to logically
connect the Morello Board to the local network, such as IP host na-
me, address, netmask, gateway and DNS servers. Get them from your
network administrator and have them ready.
Several time during the installation process, one is presented with menus
to select and type configuration parameters located in two adjacent boxes
(top and bottom) like the one shown in Fig. 12. Use the keyboard arrows
(←, →, ↑, ↓) to move the cursor within a field. To move between boxes,
us the tan key.

Figura 12. Example of an installation menu.



7. Conclusion and recommendation

The task is challenging if you have not configure a Morello Board before.
This is an experimental hardware and therefore, the documentation is not well
organised or complete. Fortunately, the ARM community forum is very keen to
help [7].

Acknowledgements Carlos Molina has been supported by CAMB UKRI pro-
ject (G115169)2.

Referencias

1. ARM: Morello board-firmware. https://git.morello-project.org/morello/
board-firmware (2022), visited on 13 Aug 2022

2. ARMlimited: Arm morello program. https://www.arm.com/architecture/cpu/
morello (2022)

3. ARMlimited: Morello development platform and software version 1.0 getting started
guide. https://developer.arm.com/documentation/den0132/latest/ (2022), visi-
ted on 6 Jun 2022

4. Cheri team: Downloading image files. https://ctsrd-cheri.github.io/cheribsd-
getting-started/downloading/index.html (2023), visited on 14 Jan 2023

5. CherriBSD: Cheribsd. https://www.cheribsd.org (2022), visited on 13 Aug 2022
6. EMAC: Getting started with minicom. https://wiki.emacinc.com/wiki/

Getting_Started_With_Minicom (2022), visited on 26 Aug 2022
7. Support Forum: Arm community forum. https://community.arm.com/support-

forums/f/morello-forum (2022), visited on 8 Oct 2022
8. Watson, R.N.M., Davis, B.: Getting started with cheribsd. https://ctsrd-

cheri.github.io/cheribsd-getting-started/ (2022), visited on 24 Jul 2022

2 For the purpose of open access, the author has applied a Creative Commons Attri-
bution (CC BY) licence to any Author Accepted Manuscript version arising from
this submission.


