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Abstract 
Event-driven and messaging infrastructures are emerging as the most flexible and feasible 
solution to enable rapid and dynamic integration of  legacy and monolithic software 
applications into distributed systems. They also support deployment and enhancement of  
traditionally difficult-to-build active systems such as large-scale collaborative environments 
and mobility aware architectures. However, complex systems issues like mobility, scalability, 
federation and persistence indicate a requirement for more advanced services within these 
infrastructures. The event notification paradigm is also applicable in emerging research areas 
such as modelling of  business information flow within organisations, as well as workplace-
empowering through enhanced awareness of  work practices relating to communication and 
interaction between individuals. In these areas, further developments require complex 
interpretation and correlation of  event information, highlighting the need for an event 
storage and retrieval service that provides the required groundwork. 

It is the thesis of  this dissertation that the lack of  a generic model for event 
representation and notification has restricted evolution within event-driven applications. 
Furthermore, in order to empower existing applications and enable novel solutions, a crucial, 
and so-far-missing, service within event-driven systems is capture, persistent storage, and 
meaningful retrieval of  the messaging information driving these systems. 

In order to address these issues, this dissertation defines a generic event model and presents 
a powerful event notification infrastructure that, amongst other structural contributions, embeds 
event storage functionality. An event repository architecture will then be presented that can 
capture and store events, as well as inject them back into distributed application components 
to simulate replay of  sequences of  activity. The general-purpose architecture presented is 
designed on the thesis that events are temporal indexing points for computing activities. 
Changes in the state of  a distributed system can be captured as events, and replayed or 
reviewed at a later stage, supporting fault-tolerance, systems management, disconnected 
operation and mobility. The architecture delivers powerful querying of  event histories, 
enabling extraction of  simple and composite event patterns. This addresses the business 
requirement in several industries (such as finance, travel, news, retail and manufacturing) to 
locate temporal patterns of  activity, as well as support applications like memory prosthesis 
tools and capture of  collaboration. The repository offers a selective store-and-forward 
functionality that enables messaging environments to scale and provide enhanced brokering 
and federation services.  

In addition to enabling novel applications, the general-purpose infrastructure presented 
provides a more flexible approach to event notification, storage and retrieval, in areas where 
bespoke solutions had to be provided previously. The theoretical concepts illustrated in this 
dissertation are demonstrated through a working distributed implementation and deployment 
in several application scenarios. 
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Chapter 1 

Introduction 
In recent years, the communications paradigm of  event notification has developed from 
a bespoke communications model in applications like graphical user interfaces to a 
comprehensive and feasible solution for dynamic software integration.  

Event-driven and messaging infrastructures are emerging as the most flexible and 
feasible solution that enables rapid and dynamic integration of  legacy and monolithic 
software applications into distributed systems. This is of  major significance since 
more demanding customer service requirements are bringing about rigorous needs 
for comprehensive networked services. Event infrastructures also support 
deployment and evolution of  traditionally difficult-to-build active systems such as 
large-scale collaborative environments and mobility aware architectures. However, 
unresolved issues like mobility, scalability, federation and persistence within these 
infrastructures hint at a requirement for more advanced services. The event 
notification paradigm is also applicable in emerging research areas like modelling of  
business information flow within organisations, as well as workplace empowering 
through identification and enhanced awareness of  work practices relating to 
communication and interaction between individuals. In these areas, further 
developments require complex interpretation and correlation of  event information, 
highlighting the need for an event storage and retrieval infrastructure that provides 
the required groundwork. 

It is the thesis of  this dissertation that the lack of  a generic model for event 
representation and notification has restrained evolution within these event-driven 
applications. Furthermore, in order to empower existing applications and enable 
novel solutions, a crucial, and so-far-missing, service within event-driven systems is 
capture, persistent storage, and meaningful retrieval of  the messaging information 
driving these environments. This claim is partly motivated by the wealth of  
information that can be gleaned through perusal of  an event history. In addition, 
events represent indexing points into application sessions, and therefore an event 
history corresponds to a history of  interaction. 

This first chapter introduces the paradigm of  event notification as a 
communications model, introduces the traditional and emerging areas of  application 
of  the paradigm, and examines the potential in retaining and reviewing event 
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histories. After outlining the issues involved in designing a comprehensive event 
storage service, it then documents how this dissertation tackles these issues. 

The chapter is organised as follows. Section 1.1 introduces the knowledge-
gathering model behind the paradigm of  event notification, while Section 1.2 lists the 
application domains where the paradigm is applicable in one of  its many flavours. 
Section 1.3 introduces the notion that past activity in an event-driven system is 
portrayed in its event history, and hints at how this could be employed by an 
application to enable and enhance functionality. Section 1.4 then outlines an event 
repository service that addresses these issues. Section 1.5 describes the research 
issues involved in identifying the requirements relating to the storage and retrieval 
functionality required, and leading to the defining of  an appropriate architectural 
design for an event repository. Section 1.6 concludes this introductory chapter by 
outlining the structure of  the rest of  this document. 

1.1 Event notification 

The concept of  event notification is straightforward to introduce. Event notification is 
concerned with propagation of  information. In a very simplified view of  an 
information space, there are two distinct categories of  entities. Some entities possess 
useful knowledge, either because they brought it about in the first instance (like a 
change in their internal state), or else because they found out about it somehow (by 
interacting with other entities, devices, or people). Other entities do not have this 
useful knowledge, and need to be aware of  it in order to carry out their working tasks 
and obligations. The term ‘useful knowledge’ does not denote that information is 
universally useful. Knowledge that is very useful to an entity can be of  no 
consequence whatsoever to another. These knowledge-requiring entities therefore 
need to obtain it from the knowledgeable entities. There are two ways for them to 
proceed: 
• periodically, or even all the time, they have to communicate with the 

knowledgeable entities to see if  they have any useful material, and obtain it from 
them when the latter have any, or 

• they communicate to the knowledgeable entities some information about the 
knowledge that they are interested in, and the latter send it to them when they 
have it, or when that event occurs. 

A useful analogy of  these choices can be found in any modern email application. 
Consider a computer that is connected permanently to a network, and can receive 
email at all times. How can one tell when email has arrived? There are two ways to 
achieve this; you either look at the email application’s inbox regularly (as in, for 
example, every few minutes), or else you can set up a notification action (like playing 
a sound) whenever email arrives. 

This is analogous to an entity asking to be notified whenever an event of  interest 
to it takes place. However, one often needs more information than that. An event is 
likely to have distinguishing properties or attributes. For example, receiving an email is a 
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valid and useful event, but some attributes of  that event are who is the email from, 
and what is it about. If  one returns to the email notification example, one might wish 
to extend the notification mechanism to play a different sound according to who is 
the sender of  the email, so that users can better tell when it is worth their stopping 
work to read email. 

Event Notification is the embodiment of  the second strategy, where an event is 
that occurrence of  some useful knowledge. In an office environment, an event can 
be a door shutting, a telephone ringing, a user walking from one room to another, or 
the temperature in the meeting room becoming too hot. It can also be the act of  
someone logging onto a computer system, opening a software application, or editing 
a document (both real and digital). In a different world, a gaming world, it can reflect 
firing one’s weapon in a first-person three-dimensional shooting game, whereas in a 
collaborative space it can denote a virtual user’s interaction with a virtual object. 
Other representative examples are a change of  state of  a variable within a distributed 
program as it is debugged, or web server’s load reaching a particular threshold. These 
few but varied examples give an indication of  the vast nature of  activity that occurs 
in the real and virtual (computer-based) worlds that can be of  interest to someone, 
something, somewhere.  

A crucial aspect of  these event occurrences is that they can occur at a time outside 
the control of  the interested parties. The entities interested in knowing when some relevant 
event occurs have no control over when it can happen. On the other hand, the 
producers or sources of  events cannot know what, or how many, entities might be 
interested in the events they know about, and for how long. This latter point is 
brought about because one might only be interested in information for a length of  
time, as the interest might be brought about, or extinguished, by other incoming 
information. These two aspects clearly define event notification as a model of  
asynchronous communication, where entities communicate in order to exchange 
information, but do not directly control each other. Figure 1.1 illustrates this notion 
of  asynchronous notification. 

InformationInformation

Tell me about interesting information when Tell me about interesting information when 
it happens or you discover about itit happens or you discover about it

This has just This has just 
happenedhappened

Provider ofProvider of
InformationInformation

Consumer ofConsumer of
InformationInformation

 
Figure 1.1 

Asynchronous notification of  information 
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1.2 Applications of  event notification 

The concepts behind event notification have found extensive application in several 
areas of  computing. While its asynchronous model of  communication can be very 
empowering, it is not universally applicable. In general, an event-driven system is 
composed of  a number of  independent (i.e. can exist and run independently of  each 
other) and reactive components. This latter aspect is of  major importance. In an 
event-driven system, execution of  actions is carried out in a reactive manner; that is 
in response to external triggers. This differs considerably from other models of  
execution and composition that require entities to directly control and be aware of  
each other, and be tightly coupled. Through the independent reactive execution of  its 
constituent components, the system needs to be able to achieve its design end-goals 
of  service and aggregate functionality. These differ according to the application area. 

There are also a number of  variations of  the event-based style. These variations 
impact on the structure, the behaviour and the performance of  applications. A 
number of  systems based around the event style have evolved as tailored solutions 
for particular problem domains, while others were designed from scratch as general-
purpose infrastructures. While the terminology used in these systems varies, and the 
level of  functionality provided in each differs greatly, the primary concepts 
underlying each system are similar. In each of  these paradigms events, messages, 
announcements, notifications, actions, or traces, are used as the glue to integrate programs, 
modules, tools, applications, processes, process groups, clients, objects, information objects, 
components, tasks, senders/recipients, agents, actors, or function hosts. It is due to this breadth 
of  jargon available that the above discussion employed conceptual terms like entities 
and knowledge. 

Event-driven notification is particularly suitable:  
• as an architectural style for building and rapidly composing large scalable 

distributed systems that can evolve as required by modern Internet-based 
dynamic environments. 

• for enterprise application integration, where distinct (and sometimes legacy) 
applications, under common or different political and technical management, 
need to be integrated into a larger distributed system. 

• within programming language environments, as a means of  decoupling 
communications between concurrent objects and modules.  

• for representing and enabling business information flow within an organisation. 
Knowledge and business events flow within a company and between companies. 
It makes sense to model this macro-level flow of  information directly onto the 
supporting software system in terms of  event notification. 

• in describing micro-level work practices that often exhibit notification properties. 
In a physical workplace, individuals keep themselves up-to-date through 
interaction with other workers in a variety of  ways. They then react to the 
information gained. By collecting data from the real and digital worlds, and 
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digitally representing this information, it is possible to enhance workplace 
awareness and optimise inter-worker communication and collaboration. 

• for building distributed collaborative shared platforms, where multiple users 
interact upon a shared virtual space. This includes multi-user distributed games, 
virtual worlds, and computer-supported collaborative work (CSCW) 
environments.  

• for monitoring and measurement-taking applications. The breadth of  these is 
vast and diverse, from monitoring of  distributed systems, centralised and 
distributed application debugging, to usability studies. 

• for real-time environments that are mostly sensor-driven. In addition to the 
previous point, this covers control and management of  physical environments 
like home-area networks, engine management systems, and telemetry data 
acquisition and management from vehicles and aircraft. 

• within Active Databases. An active database monitors its storage operations and 
can carry out specific actions upon the occurrence of  certain conditions 
pertaining to the state of  the data it contains. 

• for windowing systems that are usually composed of  multiple control elements 
representing the various visible and virtual layers making up a graphical user 
interface. These generate miscellaneous events pertaining to mouse and keyboard 
activity within their scope, and these have to be passed around to other 
windowing or control elements that are interested in them. 

The above list is not exclusive, and various applications overlap across the above 
loosely defined categories.  

While this section has introduced the main areas where the event-based paradigm 
is relevant, Chapter 2 reviews these application domains in further detail. 

1.3 The past, the present and the future 

The paradigm of  event notification is concerned with finding out about information 
when it occurs and as it occurs. It reflects an act on the future. An event-consuming 
entity is informed about changes or events pertaining to some knowledge that is 
deemed interesting to it (maybe because it registered an interest with the source of  
that information). By its very nature, this is restrictive, as it implies that there is no 
access to the history of  evolution of  that knowledge. In order to get to its current state, 
the item of  interest will have gone through several permutations and changes over its 
lifetime. Its nature will have changed in various ways, which may itself  be meaningful 
and interesting. Reviewing the history of  occurrence of  events and the evolution of  
their attributes over time can uncover particular patterns of  behaviour that one can 
take advantage of. 

Storage of  event information, coupled with meaningful access to it, implies 
detailed knowledge of  event history, much as event notification provides for 
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knowledge of  current information. As well as having auditing value, a history of  
events can enable reconstruction of  state.  

Event notification history ranging over a whole system can identify the flow of  
event information throughout a system, and recognize the causal relationships 
between generation of  events at different locations. The distinct patterns in a 
workflow can be identified, bottlenecks and failure points located and acted upon. 
Past events earmark crucial checkpoints in the execution of  a system. Furthermore, 
by analysing the consumption patterns of  event clients one can take steps to optimise 
the delivery of  future events to those clients so that the information is better 
‘contextualised’ for them. Future service can be improved.  

Past event information can be queried, browsed, analysed, and even replayed. In 
short, knowledge of  past events can be as useful as knowledge of  live events. 

1.4 Storage and retrieval of  event information 

In order to enhance the existing functionality of  event-driven systems and enable the 
creation of  novel applications, this dissertation identifies a new requirement. The 
events used to glue together these application entities can be represented through a 
generic model, stored, used for querying and replay, and as a basis for higher-level 
services. The motivation for storing events is that events represent indexing points 
into application sessions and correspond to a history of  interaction.  

In order to achieve this, this dissertation presents an event notification and storage 
infrastructure that can capture and store events, enable querying on event histories, as 
well as enable injection of  events back into distributed application components to 
simulate replay of  sequences of  activity. Changes in the state of  a distributed system 
can be captured as events, and replayed or reviewed at a later stage, supporting fault-
tolerance, systems management, disconnected operation and mobility. Using a 
generic object-oriented model for events, events are notified around a distributed 
system and retained within event repositories. The architecture of  an event repository 
delivers powerful search and retrieval facilities, enabling extraction of  behaviour 
patterns, searching for simple and composite occurrences, and replay of  intervals of  
stored sequences. This addresses business requirements in several industries (e.g. 
finance, travel, news, retail and manufacturing) to locate temporal patterns of  activity, 
as well as provide a viable alternative to past system-specific solutions in areas like 
logging of  collaboration and ‘human memory prosthesis’-based tools. In the latter, 
information is gathered about the events that occur in the physical and virtual 
(digital) working environment of  users. While past implementations [LN93, 
LBC+94] have provided automated diaries that could be browsed to assist 
recollection of  activity, coupling with an event repository enables thorough querying 
and analysis capabilities. Event storage also enables novel applications such as 
visualisation and analysis of  user mobility. In an example of  this, the information 
pertaining to a history of  physical movement of  people in some environment, like an 
airport or an oilrig, can be employed to generate three-dimensional animated replays 
of  movement. This can be applied to improving security and safety in buildings. 
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The repository offers a selective store-and-forward functionality that enables 
messaging environments to scale and provide enhanced brokering and federation 
services. The architecture presented co-exists with and enhances event-based systems 
while providing a cheaper, more flexible solution in areas where previously custom 
monolithic designs had to be provided. In addition, bespoke niche queries can be 
defined in support of  specialised legacy and novel applications. 

Other application areas identified as beneficiaries of  this architecture are systems 
monitoring for distributed debugging, tracking of  phone data for 
telecommunications fraud detection, and acquisition of  marketing information for 
Internet commerce. Within some scenarios, it is desirable to be able to use 
information from all these different sources together, hence creating a better and 
more fine-grained virtual picture of  the human and computer activities monitored.  

Chapter 2 will review a wide range of  application areas where an event repository 
service can be deployed. In these areas, it either serves as a viable alternative to 
bespoke solutions, or acts as a novel enhancement, or provides the necessary 
groundwork for emerging requirements. 

It could be argued that a conventional database (relational, object-oriented or 
temporal) would be suitable for carrying out the same function as the event 
repository being proposed. However, a properly designed event repository is 
significantly more powerful than its conventional database counterparts because: 
• an event repository can efficiently perform functions that in conventional 

database systems must be encoded in applications, e.g. temporal indexing, cross-type 
event session organisation, event schema evolution, template matching, and querying by 
sequential instance comparison 

• an event repository suggests and facilitates applications beyond the scope of  a 
conventional database, e.g. replay of  event sessions 

• an event repository can perform tasks that require special purpose subsystems in 
a conventional database, e.g. temporal indexing, retrieval and replay, archiving 

• the highly specialised storage and retrieval required of  event information justifies 
a tailored storage engine and does away with the requirement for most 
heavyweight database functionality, e.g. read-only historical access, very high-performance 
write append, small event records, temporal indices, searching and retrieval by sequential 
correlation 

This issue will be discussed at further length in Chapters 5 and 6. 

1.5 Research issues 

The main issues investigated by this research, and discussed within this dissertation 
are: 
• A model for representing generic event instances. 

An event storage service can be used in a plethora of  application domains where 
the nature of  the event or messaging information varies. A suitable event model 
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is one that is simple enough to deploy generically, but can be easily extended if  
required to accommodate the requirements of  specific applications. It has to 
enable the definition of  events that can represent the wide variety of  activities 
and occurrences that tie together event-driven systems, while supporting 
adequate granularity of  searching for, and filtering of, interesting data. A generic 
model of  event representation is therefore defined. 

• An architecture for seamless integration of  the functionality and services of  an event storage 
repository with different environments. 
Event capture in distributed environments is more complicated than in a 
centralised system. A distributed system will consist of  a number of  processes 
executing on different machines and communicating via message passing. 
Centralised detection of  event instances is not feasible in medium to large scale 
distributed systems, because of  the possible volume of  event instances to be 
monitored, delays introduced by the network transmission, and unsynchronised 
system clocks across different machines. The differing distribution details of  
various applications, as well as emerging requirements for loosely coupled 
distributed systems, were investigated and taken into consideration while 
designing a scalable solution for dynamic event propagation, capture and storage.  

• A flexible storage service that embeds a high-performance storage paradigm tailored for the 
particular nature of  event data. 
An event repository must be flexible in its design, so that it can be customised for 
environments with constraints on memory, storage and processor availability. In 
addition, a range of  interfacing issues needs to be considered. Although event 
instances could be mapped to relational records or tuples, or object instances, and 
a relational or object-oriented relational database be used for storage, there are 
several reasons to tailor the underlying storage engine. Event instances tend to be 
relatively small structures, and since they constitute a history, are temporally 
ordered and immutable. The storage engine can thus be greatly optimised to 
address heavy volumes of  incoming event streams and avoid the unnecessary 
overhead of  conventional general-purpose databases. Databases can have very 
high costs associated with operations like insertion, deletion, as well as services 
like transaction management and data rollback support, facilities that are not as 
relevant for event storage. The data as stored must be representative of  the causal 
and temporal separation of  the events as they were received in order to support 
the deployment of  a temporal retrieval interface over it. 

• A powerful interface for retrieval and replay of  information from event stores. 
Although general-purpose query languages like SQL [ITI98] or OQL [CB97] 
could be employed to retrieve information, there is much to be gained by 
designing a query interface optimised for the temporal nature of  the information 
stored. Queries over temporal data and relating to time-intervals, as are event 
instances, involve references to time which benefit from purposely-defined 
temporal operators. The querying interface must permit expressing queries over 
sets of  different event objects or their aggregate types (composite events). This 
dissertation presents a query interface that offers a superset of  OQL 
functionality. Therefore, while providing a standard database interface for 
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applications, a repository can also support client applications that require analysis 
and interpretation of  event histories. This interface must integrate smoothly with 
the event-driven environment, allowing seamless access to past event data and its 
feeding back into the system. 

1.6 Dissertation outline 

This dissertation is organised as follows. 
Chapter 2 addresses the motivating factors behind the thesis of  this dissertation. 

It starts by describes the primary application domains where the concept of  ‘event’ 
persistence has been applied or is applicable. It then describes how the application of  
event storage can enhance the functionality of  these applications as well as lay the 
architectural groundwork for more complex features. In doing so, it also reviews 
research from an application perspective that is directly relevant to or has influenced 
this dissertation.  

Chapter 3 focuses on related existing event-driven and messaging frameworks. It 
reviews several research and commercial event-based approaches and describes their 
main features. Usage of  event persistence within these systems is highlighted.  

Chapter 4 introduces HERALD, a new event-notification communications 
infrastructure that provides novel services for federation and dynamic application 
construction and evolution. This chapter also introduces a general-purpose event 
model. HERALD embeds and actively employs event storage, thus demonstrating how 
event storage can be integrated within an event system to provide a comprehensive 
event-driven framework. 

Based on the motivating factors identified in Chapters 2 and 3, Chapter 5 then 
identifies the information retrieval and replay facilities required of  an event 
repository. It addresses these requirements by introducing an event query language, 
TEQL, designed to offer the retrieval power of  an industry-standard language while 
supporting a comprehensive temporal formalism for events. 

The architecture of  a general-purpose event repository is presented in Chapter 6. 
This chapter describes a flexible design that can be customised to address the specific 
requirements of  the variety of  application domains event storage is applicable within, 
and discusses the issues involved in designing a storage sub-system tailored for the 
particular nature of  the data being handled. 

Chapter 7 outlines a prototype implementation of  the technologies discussed in 
this dissertation and discusses deployment issues for event repositories. It then 
describes a number of  applications built around, or employing, the capability of  an 
event notification and storage infrastructure. The diversity in application domains 
and environments these applications are representative of  highlights the flexibility of  
the design presented. 
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Chapter 8 discusses the solutions presented in this dissertation. It gives a 
summary of  the research, reviews insights gained in the course of  this investigation, 
and suggests directions for future research.  

Chapter 9 concludes this dissertation, and highlights the main contributions. 
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Chapter 2 

Applications and 
Motivations 
This chapter motivates the premise of  this dissertation, that a crucial service within 
event-driven environments, is capture, storage and retrieval of  the event information 
driving these environments. A major motivation of  this work is that it has been 
illustrated by application-specific implementations in a number of  research areas that 
event histories are required for providing advanced functionality. However, in these 
implementations, the lack of  generic models for event representation, notification 
and storage has severely constrained the extent of  the functionality that could be 
supported. 

Section 2.1 introduces the application domains where event notification has 
found application, or is emerging as an applicable solution. It also comments on the 
origins of  the event-driven paradigm. The following sections then address the most 
representative applications in the categories identified in Section 2.1, where, within 
each domain, event storage is applicable to enhance functionality, or otherwise is required 
groundwork for envisaged future services. Realistic developments that can be envisaged as 
resulting from building over an event storage service are highlighted. 

Section 2.2 introduces the use of  event notification in application integration and 
construction of  distributed systems. Specific event solutions are not examined in this 
section, as this is done in greater depth in the related work overview given by 
Chapter 3. After examining the potential of  event storage, it considers the area of  
fault-tolerant computing and distributed debugging, where capture of  event histories 
has been applied. 

In Section 2.3 the emerging area of  workplace awareness is described. Future 
research directions in this area are explored, and it is argued that these developments 
need a comprehensive event storage service as a crucial starting point. 

Event notification and storage in computer-supported cooperative work are 
examined in Section 2.4, while Section 2.5 looks at a number of  other interesting 
application areas, like visualisation of  mobility, the networked home, and graphical 
user interface evaluation.  
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In order to avoid confusion this document uses the phrase event storage 
predominantly to imply event logging, event tracing and event capture; terms that are often 
employed in the related literature. Except where specified otherwise, the phrase is 
also taken to denote not only the act of  event detection and storage, but also an 
aggregate feature-set consisting also of  event interpretation, transformation, retrieval 
and replay. 

2.1 Applications of  event notification 

As introduced in Chapter 1, there are several areas of  computer science where the 
event notification paradigm has either found application, or has emerged as an 
applicable solution to address evolving requirements.  

In an active environment, an application is composed of  a number of  software 
entities that react to each other’s activities rather than directly control each other. An 
entity therefore triggers activity in another one by sending it a message in some 
structured format known to both that details the event. Such an entity is known in 
this document as a source of  events, i.e. an entity that, further to some user input or 
device monitoring, can generate these event triggers. In other literature, such entities 
are sometimes called servers, but this association with the client/server paradigm (see 
Section 3.1.1) can be misleading. Sources either maintain information about the other 
entities that are interested in their events (the clients) and dispatch them directly to 
them, or in a variation on the model (employed by several event-based systems), pass 
them on to a centralised or local notification service. This module is then where the 
data pertaining to interested third parties is retained and from where the event 
messages are dispatched. 

This model of  communication is based around the premise that the client would 
first have expressed its interest, with either the notification server or directly with the 
source, through a registration or subscription of  some sort. However, in several 
applications where the clients and sources are static in number and nature, the target 
of  notification can be hard-coded into the application logic. In this case, 
communication can be said to have reverted to the messaging model. This more-
general method of  communication is widely used in application integration (see 
Sections 2.2 and 3.4). 

The discussion above and in Chapter 1 has used the conceptual and vague term 
entities on purpose, for two reasons: firstly, because there is no consistent vocabulary 
for discussing event systems; secondly, because their actual embodiment depends on 
the application domain under consideration. From a software perspective, an entity 
can be a module within a process, a process within a multi-threaded application, an 
independent component within a distributed system, or even a whole system that is 
communicating with another system over a wide-area network.  
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As listed in Section 1.2, event-driven notification is at the heart of  countless 
software applications. These fall into one or more of  the categories below: 
• Composing and building large scalable distributed systems; Enterprise application 

integration; Concurrent/parallel programming languages; Modelling of  
information flow; Distributed debugging and fault-tolerant distributed systems 
(see Section 2.2) 

• Modelling and supporting work practices relating to communication in between 
individuals (see Section 2.3) 

• Building computer supported cooperative applications and collaborative shared 
platforms (see Section 2.4) 

• Applications based on monitoring and measurement-taking; Real-time 
applications, i.e. applications that have to constantly act on data received from 
physical or virtual sensors; Active databases; Windowing systems and graphical 
user interfaces (see Section 2.5). 

The above grouping reflects the organisation of  the discussion in the remainder of  
this chapter.  

Often, the major applications representative of  the above categories evolved into 
using such a reactive model of  inter-component interaction independently and in 
response to emerging requirements. That is, this was not due to the application of  
any formal software engineering architectural style. In fact, the notion of  an event-
driven style has been formalised (see [BCTW96] for one such formal model) 
primarily as the result of  examining the concepts in common amongst reactive 
applications. The implication of  this is that there is a plethora of  bespoke and 
incompatible designs and implementations of  event-driven systems. However, their 
common basis makes it possible to reason about an event-driven system in a generic 
sense. Likewise, this allows one to reason about the knowledge that can be gleaned 
through study of  event histories. Based on this premise, this dissertation proposes a 
generic event storage architecture that can be deployed and employed in different 
instantiations of  the event-driven paradigm. 

The following sections will now describe in further detail some applications that 
are representative of  the above categories. The discussion will look at the potential 
for retaining event histories in each application, and describe functionality enabled by 
event storage.  

2.2 Application integration and building of  
distributed systems 

A major motivation of  this work is to provide a generic and scalable way for 
integration of  distributed components. Currently this is needed in important business 
applications such as determining business information flow. Current techniques for 
integrating components lack interoperability and thus hamper scalability. 
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The deployment of  distributed systems is a major area of  application of  event-
driven systems at present on a commercial basis. It is also an umbrella category, in 
that conceptually it encompasses most of  the other categories. While this section 
discusses the issues involved in application integration, actual event-driven solutions 
and the messaging systems they are often built from (Message-Oriented Middleware) 
are reviewed in Chapter 3. Most of  the solutions applicable to application integration 
and construction of  distributed systems are general-purpose in nature and are 
therefore representative of  the bespoke solutions that are deployed in other areas, 
like those discussed in Sections 2.3 – 2.5. 

2.2.1 Background requirements 

The Internet’s acceptance by the commercial world has created a global and standard 
communication infrastructure never available before. Distribution of  one’s software 
architecture across multiple networked platforms and systems is often a necessity 
dictated by requirements of  customer service, management resources, or simply 
utilisation of  the best existing, and rapidly evolving, technology. In most cases, re-
design and re-implementation of  the components required to form part of  the new 
integrated system are not viable, if  only because time-to-market periods have become 
so short. Alternatively, due to their distinct administration and management, it may 
be technologically impossible, or politically unacceptable, to modify existing systems 
extensively in order to make them work together. 

The other primary issue with application integration is the dynamic nature of  
software systems. Few, if  any, systems are not altered or adapted to changing market 
requirements during their lifetime. In some markets, like finance and the travel 
industry, the electronic information being traded and presented has its origin from 
multiple sources managed by independent companies. These are often faced with 
dynamically evolving diverse client and market requirements requiring continuous 
updating of  their software systems. However, as such modifications may break the 
information chains of  other companies, much duplication and complexity often 
needs to be introduced.  

2.2.2 Event-based integration 

Approaches to distributed integration have ranged from loose, in which the 
components have little or no knowledge of  one another, to tight, in which modules 
require comprehensive information about each other. The latter requires knowledge 
of  interfaces, communication protocols and data structures rarely available other 
than within a co-ordinated design and implementation project, or within 
environments where strict industry standards are available and adhered to (see 
Section 3.1.2 for further detail). Loose integration is therefore more suited to the varied 
and dynamic nature of  a typical distributed system’s components, as it helps reduce 
the impact on a system when modules are added or changed.  



2.2 Application integration and building of distributed systems 

 15

Event-based integration, in which distributed modules interact by announcing and 
responding to event occurrences (or messages), is perhaps the most prevalent loose 
integration approach. In what is also termed publish-subscribe, the modules and 
components to be integrated are turned into sources and consumers of  events 
through their interfacing with an appropriate messaging or event-driven middleware. 
In most scenarios, event information can map directly to the main activities of  a 
business. Examples of  important events, depending on the industry, are movement 
of  parcels, the ordering, purchase and sale of  goods and services, changes in prices 
or conditions. Enterprises need to be responsive to these events, often in real-time. 
Figure 2.1 illustrates how asynchronous events can be used to integrate modules 
within a book-selling operation, as well as link it to external entities like publishers 
and independent financial assessors. 

Chapter 3 analyses the issues involved in building distributed systems in some 
detail, and addresses the advantages and shortcomings of  alternative distributed 
middleware solutions. It also describes the highlights of  some key event systems and 
commercial messaging products, amongst which general-purpose solutions like the 
Cambridge Event Model [BBHM95, BBMS98], ECO [SCT95], Yeast [KR95], 
FIELD [Rei90], Polylith [Pur94], the CORBA Event Service and Notification 
Service specifications [OMG97, OMG98a], as well as commercial systems from IBM 
[IBM99], Oracle [Ora99], and Talarian [Tal98] amongst others. 
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Event flow in an e-commerce based book-retailing operation 
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2.2.3 Programming environments 

Event notification has also found application in concurrent programming language 
environments, both in pure parallel languages, and in languages that support multi-
threading. Several languages allow execution to be split along several concurrent 
threads or processes. Synchronisation and communication between these concurrent 
paths is then carried out through protected shared data or through message passing. 
Some [Reu80, Sha89, SCT95] extend the intra-process messaging model into a fully-
fledged event model, where events are delivered by the language’s runtime system in 
an asynchronous fashion from process to process according to the requests of  the 
processes. These systems are akin in functionality to a subset of  distributed event 
models, and will therefore not be addressed explicitly any further in this chapter. 

2.2.4 Applying event storage to distributed systems 

In distributed systems, the events propagated in between the distributed components 
are the systems glue that ties together the otherwise distinct components. As events 
propagate throughout a distributed system, they trigger actions in components, some 
of  which generate other events of  interest to other components. This flow of  events 
and actions often corresponds to the flow of  business information in an organisation 
or in between organisations. Capturing details of  the event streams, whether at their 
source, or at distributed nodes, or even at a centralised location, can enable one to 
identify the main paths of  execution throughout a system, and locate inefficiencies 
and possible failure points. At present, this interpretative functionality is available 
using workflow systems [AAEM97, CHRW98, GHS95]. However, the information that 
a workflow system allows analysis of  needs to be entered by a user, and is not 
obtained in an automated fashion directly from the system. Since event flows often 
map directly to business flows, it is envisaged that event histories could be used to 
feed a workflow application with little or no user intervention. Such an analysis 
would be very useful in a loosely coupled and dynamically evolving distributed 
system. Event histories can be used to modify the service provided and the business 
flow itself.  

The following scenarios illustrate functionality that can be enabled by building on 
top of  an event repository service in the context of  systems integration:  
• Auditing of  event generation at event sources, event transformation and delivery, 

as well as event consumption at clients. 
• Identification of  periodically repeating events and attribute evolution for event 

instances of  the same type. 
• Analysis of  event registration, notification and consumption at client components. 

This can yield information on how different event notifications influence a 
client’s execution with respect to their sequence and over time. This can allow 
one to determine when information is most useful for a client and modify the 
delivery or contents of  future information to contextualise it better. 
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• Tracking of  repeating patterns of  activity covering one or more event types over a 
number of  event sources and clients. 

• Checkpointing of  execution. The history of  event interaction between event 
components is analogous to a history of  evolution of  state in the system. 
Supporting the capture and retrieval of  events is analogous to recording 
checkpoints (for rollback purposes) in a database system. The main points of  
interest in an activity can be reconstructed later using these temporal indices. 
Among other uses, this can support the construction of  fault-tolerant distributed 
systems. See the next section for further discussion of  this point. 

2.2.5 Debugging distributed systems 
The last bullet point of  Section 2.2.4 introduces two research areas; fault-tolerant 
distributed systems and distributed debugging. These research areas are interesting because 
of  the problem of  non-determinism that arises in them. The independent execution of  
multiple processes communicating with asynchronous protocols introduces a large 
degree of  non-determinism in a distributed application. This makes it difficult to 
implement debugging functions such as distributed breakpoints in an efficient 
manner. Several treatments of  these aspects of  distributed debugging have appeared 
in the literature (see [PN93] for an overview). The most widely acknowledged way of  
addressing this is to wrap event monitors around the distributed modules of  the 
application being monitored or debugged, and then employ an event propagation 
mechanism to propagate the event information to where it can be stored. LeBlanc et 
al. [LR85] and Bates [Bat95] illustrate how heterogeneous distributed systems can be 
debugged using event-based models of  behaviour. 

Several authors [For91, HS92, LIT91] have examined event detection and capture 
in the context of  fault-tolerant computing and distributed debugging. Logs are 
maintained of  event ‘traces’, where these traces represent low-level system activities 
like processor communication. In particular, [HS92] examines how events generated 
to reflect activity in a system can be coalesced into a smaller number to reduce the 
size of  event logs, as well as avoid redundant events. The relationships between event 
log entries, system workload and system configuration have received attention by 
several researchers, amongst which [Han88, Tsa83, IYS86, LS90]. These provide 
techniques as to how event logs can be examined for determining trends in 
application execution. 

By capturing all events pertaining to remote-procedure calls (RPC) and other 
communication primitives going into a process, and retaining them in an event 
repository, during a debugging session one can feed back the event data (or use it to 
reconstruct the primitives) into one or more of  the distributed modules. This enables 
selective replay of  the application where the user has control over the data being 
input into the module and can test it in isolation.  

Methods to reproduce the execution behaviour of  programs comprised of  
loosely coupled processes that communicate using messages typically require that the 
contents of  each message be recorded in an event log as it is received [CW82,  
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Smi84, TA87, Wit88]. The programmer can either review the events in the log in an 
attempt to isolate errors, or the events can used as input to replay the execution of  a 
process in isolation. In order to address variations in scheduling and message latency 
during multiple executions, the order in which messages are delivered can also be 
traced. Since parallel programs are long-running, providing fast response to 
debugging queries requires incremental replay, where re-execution is started from 
intermediate states instead of  from the beginning. To support incremental replay, 
processes must be checkpointed periodically and the contents of  some messages 
captured. Adaptive event-message logging can be employed in order to reduce the volume 
of  messages that need to be retained [NX93]. 

Checkpointing and message logging has also been studied in the context of  fault-
tolerant computing [JZ88, SY85, WF92]. In [LIT91], statistical techniques are applied 
to automatically generated event logs from fault-tolerant systems in order to measure 
dependability. 

All these systems employ proprietary mechanisms for event propagation that are 
very specific to the particular application, and provide highly focused retrieval 
interfaces to the logs of  event traces retained. More than lack of  functionality, this 
has contributed to their lack of  uptake in the commercial world. The generic model 
for event representation and the event storage service proposed address these issues, 
and allow wider scope in event trace analysis. 

2.3 Awareness of  working practices 

An event storage architecture is required in order to provide much needed 
homogeneity and to support development of  the novel analysis and interpretation 
needed within this emerging research area. 

The study of  work practices in organisations has only recently gained research 
attention. Ethnographic workplace studies carried out by the Xerox Research Centre 
Europe [BRS+94] and others [Tan91, KFRC93, WFD94, Fro95] in businesses of  
various kinds as well as of  institutions like hospitals, have revealed that the way in 
which individuals run their day-to-day duties is often reactive and exhibits 
notification properties analogous to an event-driven model. Apart from organised 
venues of  interactive sharing of  information, like organised formal discussion 
meetings, most work activities are in fact coordinated through informal interaction 
between users, unscheduled notification, or discovery of  relevant information. 

For example, a business manager may want to keep himself  up-to-date by 
requesting that specific intelligence is sent his way immediately by his staff. He does 
not wish to be informed of  everything, but does want to know when certain events 
take place, or when certain sequences of  activities happen. From his perspective, this 
information can be passed to him at any time, as seen fit by his staff. When he does 
find out about matters of  interest he takes some action or starts some work process 
in response. This is analogous to carrying out a subscription of  interest in the 
occurrences of  a primitive or composite event in an event notification environment, 



2.3 Awareness of working practices 

 19

and then taking some meaningful action on notifications of  the event. In most 
routine organisational work, it is discovery of  information that is the trigger for most 
work activity. Information can be received at any time through various means, e.g. 
receiving email, phone calls, people visiting, incoming paper correspondence, or the 
publication of  a relevant article in a magazine, newspaper or web site.  

Likewise, knowing about a colleague’s status and being aware of  their current 
activities is very useful for coordinating activity. This information, on the other hand, 
is rarely notified to users in the real world. One does not know that a file has 
changed, a colleague has arrived, a new directory created, and so on, unless one 
explicitly thinks to check. In short, few office jobs can be carried out in an isolated 
information space, i.e. one with no means of  interacting with colleagues and external 
news sources [Whi96, WSKS97]. These sources of  information are like event 
sources, and their occurrence is in itself  an event, much as their contents are 
analogous to the attributes of  an event. 

The challenge for these studies is to achieve the explication of  work practices in 
terms of  the structure of  the activities and interactions involved in work. These can 
be embodied in technology intended to support work practices. Systems like 
Khronika [Lov91], and the TickerTape built on the Elvin notification service 
[FMK+99], attempt to provide users with awareness of  the activities or status of  
others through a continuous stream of  events that describe user activities. They 
collect information pertaining to the real world in a variety of  ways, by monitoring 
physical location, email notification and filtering, schedule and booking of  resource 
monitoring (like booking a room for a meeting), and through file-watching and web-
watching. These latter event generators monitor changes to the network file stores 
and to internal and external web pages, and dispatch or broadcast notifications. While 
not directly attempting to support awareness, TeleNotes [WSKS97] creates a shared 
context for communication where users can follow conversations through ‘sticky’ 
piles that characterize the temporal progression of  the conversation. 

A wealth of  information can be collected from a working environment and used 
to deduce the nature and context of  a user’s activities. In addition to the events listed 
above, other noteworthy examples are; monitoring of  workstation logging in and off, 
monitoring of  execution of  applications or opening of  documents for reading and 
editing, creation of  documents, browsing of  web pages, composing and sending 
email, access to newsgroups, engaging in shared online collaboration, making phone 
calls and sending faxes, printing documents, etc. Even interaction with devices like 
the communal coffee machine can be interesting, and actually feature as an 
application in experiments [ATT99]. In themselves, these isolated events are of  little 
consequence, but in aggregate, and in the context provided by their causal and 
temporal relationships to each other, they define a picture of  activity and interaction.  

The above point can be summarized as follows: acquiring awareness of  individuals’ 
activities and making that awareness widely available. If  retained and interpreted properly, 
this awareness can help in identifying individual knowledge and expertise, and at the 
same time assist in its distribution throughout the organisation. Duplication of  work, 
particularly as concerns seeking of  solutions to problems, can be avoided. When 
associated with appropriate privacy policies, this can dramatically increase efficiency 
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in an organisation. Some attempts to identify and make use of  expertise have been 
carried out in controlled closed environments. Building on the newsgroup concept, 
Beehive [Abu99] is a commercial service that, through email and the Web, enables 
users to locate, contact and interact with others who have similar professional 
interests and want to share their individual knowledge and experience with one 
another. It monitors and scans discussion forums on a number of  web sites to 
determine potential experts in any area by studying their replies to other users’ 
questions. As its knowledge base grows and evolves, it attempts to pass on questions 
to the ‘experts’ most likely to have the expertise required to answer them. 

2.3.1 Enabling functionality through event histories 

It is clear that while live notification is very useful in this domain, major benefits can 
only be achieved through logging and analysis of  the event information collected. A 
history of  activity is the starting point that may be used: 
• for providing a memory recollection tool or diary of  events, 

In [LN93, LBC+94], Lamming et al. define the concept of  a human memory 
prosthesis, a tool for assisting memory recollection. It is well known that human 
memory relies heavily on context for recollection. One might forget the details 
of  a particular activity they undertook, but they are likely to remember details 
about its temporal relationship to other activities that were being undertaken at 
the same time, or occurred earlier or later. Events pertaining to an individual can 
be captured and used by that individual in a diary-like manner (see Section 7.3). 
Applying the underlying concepts of  memory prosthesis over a generic event 
model and transport like HERALD (see Chapter 4) would provide knowledge 
acquisition of  a finer granularity, due to the increased variety of  events pertaining 
to the real and virtual worlds that users work with. When coupled with the event-
storage and query service described in this dissertation, the resulting application 
would enable users to have expressive querying lacking in previous solutions. 

• for determination of  work coordination and work flow,  
Events pertaining to news distribution and users’ actions can be retained and 
studied in order to determine how work is being coordinated in between 
individuals. This can yield very useful information on what are the most 
important incoming events that trigger activity, their sources, and the sequences 
of  activities and other events that they cause to be generated. Insight can 
therefore be gleaned on the flow of  work in a reactive environment, which by its 
seemingly unpredictable nature is hard to model. There exists some 
understanding on how to generate social process models from event traces 
[RN96]. 

• for modelling an individual’s role and execution of  duties. 
High turnover of  staff  in the computing industry (where individuals tend to have 
unique expertise and experience) is of  major detriment to successful conclusion 
of  research or development projects. When an individual leaves, the person 
taking on their role often ends up starting with a considerable set of  documents 
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pertaining to the project the departing person was working on. The time required 
to browse, get acquainted with, and identify crucial data, through what may be 
mostly useless and irrelevant documentation, is both extensive and expensive. 
Furthermore, the new person has to determine how the documentation was 
arrived at and the best use it can be put to. They also have to figure out how the 
departing person executed their role with regards to their colleagues and 
recognize upon what information input or feedback did they carry out and 
develop their work, and produce deliverables. By acquiring and retaining detailed 
information on an individual’s activities, and introducing the concept of  a history 
of  use of  all documents by different individuals, it is envisaged that it may be 
possible, through automated and manual study of  the history of  activity created, 
to create some meaningful model of  the departing individual’s working duties. 
This belief  is reinforced by the observation that 53% of  workplace interaction 
involves a document [WFD94]. Indexing, cross-relating and retrieving email 
threads that relate to documents would also provide a temporal and personal 
context for the evolution of  work surrounding those documents [WS96]. By 
manipulating and appropriately presenting this information, a new person can be 
assisted in getting up to speed quickly, since they can more easily determine the 
major characteristics of  the role. This scenario as envisaged is illustrated in Figure 
2.2. Research on the issues involved in carrying out such an analysis is currently 
ongoing at Xerox Research Centre Europe [Ben99]. 

2.3.2 Uses of  event logging in the literature 

Some aspects of  the above have been attempted in various bespoke (and often 
limited in scope) experimental environments.  

In their investigation, Lamming et al. [LN93, LBC+94] collected information 
pertaining to users’ activities, like details of  their location together with extensive 
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video footage of  various activities they undertook. After the records captured were 
textually annotated (through user intervention or through limited automated 
deduction), users could carry out limited searches on the diary of  activity thus created, 
as well as locate the video footage relevant to the episode they wanted to recollect or 
retrieve information on. The non-extendible event model employed to model 
activities, and the restricted querying capabilities available, constrained the usability 
of  the tool created.  

In the Where-Were-We [MH93] project, workgroups were allowed to carry out 
playback of  the video record as it is being taken, thus aiding recollection in case of  
distractions or the need to clarify or review previously discussed points. Building on 
this research, the Coral suite of  tools [MHJ+95] supports real-time capture and 
subsequent access to informal collaborative activities. Manual annotation in real-time 
during the activity is required, this then being associated with automatically logged 
events like drawing on the shared whiteboard tool. The meeting can then be replayed 
from any instant.  

Automated annotation of  video (as mentioned above) would greatly assist the 
above indexing techniques. [GGR94] segments continuous audio and video into 
natural units and relates these to discrete events from the multimedia application, 
such as user interaction, control events, and data content. The latter are obtained by 
keeping a record of  the most significant events sent to the X Windows server 
windowing software running on the participant’s machines. 

Another approach is employed by CECED [CLFS93]. This tool is intended to 
aid collaborative work in engineering design by capturing the history of  the informal 
phase of  the specification and design process. In this case, audio records are stored 
together with a log of  the design traces, and system-level data like X events. This 
allows subsequent replay of  design traces. Similarly, Bellcore’s STREAMS project 
[CH94] focuses on making and accessing recordings of  technical presentations. 

In the above representative investigations, event logging is used to capture 
activity, but the logging capabilities are tailored to the application, and limited in 
functionality. No classification of  events is carried out, and this makes the use of  
events specific to the application domain in question. The lack of  a comprehensive 
event model implies that the system cannot evolve to take on new event types 
without requiring modification of  the distributed components. It is not possible to 
abstract event types of  similar semantic meaning into a collective type, and events 
cannot be composed into higher-level constructs. Retrieval is limited by the lack of  a 
dedicated storage sub-system and is often constrained to SQL-like searches. Users 
are only able to browse through the activities undertaken, as annotated or recognised 
by the system. In order to address the storage scenarios outlined above, an 
appropriate query interface is required that has the capability of  exploiting the 
temporal and causal relationships between event instances. 
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2.4 Computer-supported cooperative work 

Some of  the tools derived from studies of  working practices between individuals 
(Section 2.3) can be termed Computer Supported Cooperative Work (CSCW) tools. It is 
proposed herein that by using events to communicate between and drive interaction 
within such tools, interoperability, flexibility and extensibility is enhanced massively. 
Communication mechanisms within current tools are often hard-wired (e.g. 2 
distributed whiteboards communicating using a specific whiteboard protocol) thus 
hampering flexibility and extensibility. In addition, a new requirement outlined herein 
is the capture of  the history of  collaboration.  

CSCW technologies enable multiple users to collaborate on some task. They 
often achieve this by applying the notion of  a shared space where multiple users may 
interact on some common state. This may range from a simple common drawing 
surface, to a shared document that may be edited by several users concurrently, to 
complex three-dimensional virtual worlds [IKG92, GRWB92].  

A crucial feature of  collaborative interfaces is feedthrough, that is the ability of  one 
person to see the effects of  another’s actions. Technically, there are two requirements 
that need to be addressed, firstly to access and update shared data, and secondly to 
know when that data has been updated. The latter requires notification mechanisms. 
Even if  data is stored and accessed rapidly from a central location, it is of  no use 
unless client programs know that it has changed and users’ screens are updated 
accordingly. A notification mechanism fulfils this role, telling programs and users that 
changes have taken place. Without notification, users may eventually see that changes 
have occurred but at a timescale and pace that often are not acceptable for the task at 
hand.  

Event propagation is a good model for describing instantaneous input in user 
interfaces and collaborative systems (like key-strokes, mouse clicks and network 
messages). However, collaborative systems emphasise the notion of  shared data, 
where the event-based model fits less well. Shared data persists – it does not happen 
at a particular moment. To address this, a collection of  semi-formal and formal 
techniques known as status-event analysis can be employed to define a shared 
conceptual framework that includes aspects of  both events and data state [DFAB98]. 
This has been employed to model the complex behaviour of  shared windowing 
elements in collaborative applications [DA96a], and has brought about an 
understanding of  the delays in user interfaces and collaborative systems [DA96b]. 
[RDR98] investigates the design space for notification servers in CSCW applications 
and documents status-event analysis; i.e. the various ways in which event notification 
can be coupled with other communication mechanisms to bring together both event 
propagation and shared data. 

Capturing the history of  collaboration 

In addition to the scenarios enabled by storage of  events outlined in Section 2.3, 
there is another aspect to CSCW tools that is empowered through use of  event 
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histories. Because the majority of  input events in a cooperative tool are sourced from 
an entity external to the system, the user, most events are not directly causally related. 
For example, when a user draws a line on a shared white-board, that event is 
propagated to all the other shared whiteboards, where its interpretation involves 
drawing a corresponding line. Therefore, the action that triggered the event came 
from outside the system, and is not itself  the result of  some automated computation 
in response to some other event. This implies that capturing all the triggered events, 
and replaying them is analogous to regenerating the external triggers, thus enabling 
replay of  the whole interaction. Replay is not always possible otherwise because of  
the feedback problem (see Section 7.2). 

Consider a typical CSCW application; a cooperative shared meeting with multiple 
users taking part. Providing the new feature of  capture and storage of  the event 
messages that are propagated amongst the distributed components can allow: 
• replay of  sequences of  interaction and collaboration for post-meeting review. 

A participant, or a person that was unable to take part in the original meeting, can 
(as allowed by any security policies in use) replay, browse through, and review the 
whole and/or part of  the meeting.  

• locating of  the sequences to replay or browse.  
It is useful for one to be able to search on event type, event attribute, or activity 
composed of  multiple events; with the ability to further qualify each in terms of  
other events and/or activities that have occurred before or after. This allows 
users to locate sequences of  interest through imprecise qualification based on the 
knowledge they can recollect regarding when the sequence occurred (as in a 
memory prosthesis). 

• automated generation of  a summary of  the meeting.  
In addition to automated minute taking based on real-time monitoring of  activity, 
it is also possible to extract a limited summary of  a meeting from the history of  
the events that occurred within it. This, however, requires analysis of  any video 
and audio streams used – either through software, by detecting specific images 
and using speech recognition to pick keywords; or through manual annotation. 

• More elaborate options for coping with mobility and network partitioning.  
When components become mobile, their ability to receive events is suspended 
until they reconnect. If  the mobile user is involved in a computer-based 
collaboration, important aspects of  the meeting can be lost. For example, when 
the user’s components complete a move to a new workstation, the components 
can once again communicate with the other users’ conference components and 
network services. At this point, to build their state to a level consistent with that 
of  other users, the components require all the events missed from the period of  
disconnection. The situation is complicated by the fact that while one user was 
disconnected, other users may also have been disconnected and thus no user has 
a consistent view of  the application. One approach to address this problem is for 
each user to retain events from the session so that each has a consistent view of  
the events generated locally. After re-connection, a user can request that the other 
users send him/her the events generated by themselves locally.  
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A similar problem can result if  the network fails temporarily, resulting in a 
conference being partitioned into two or more segments. One way of  addressing 
this without resorting to complex conflict resolution is to show a user what 
happened whilst he or she was disconnected. This can be carried out by creating 
a copy of  all local objects, initialise them up to the point of  partitioning, and to 
replay within them the collaboration pertaining to the remote conference. Users 
can discuss what happened within the separated groups during the conference’s 
partitioning, and decide which of  the sequences of  activity they wish added to 
the new global session. 

While the above points utilise the example of  a cooperative meeting, event capture is 
also applicable in most shared collaboration applications like shared document 
editing, media spaces [GAV92, BHI93], and virtual-reality multi-user worlds 
[FBSC93]. 

2.5 Other application areas 

This section reviews some further application areas that would benefit from the 
application of  a comprehensive event model and event storage architecture. 

2.5.1 Visualisation of  mobility 
Another application enabled by event storage and replay is that of  visualisation of  
user mobility. Several technologies enable people to be tracked and followed as they 
walk around a building. Examples in deployment include the infra-red-based Active 
Badge [HH94], its ultrasonic equivalent the Active Bat [WJH97], and technologies 
employing image recognition techniques through widely deployed video cameras 
[Lop99, SKB+98]. The hardware detection technology is then interfaced to 
monitoring software that exports some bespoke application interface. By interfacing 
these proprietary technologies to a generic event infrastructure, they can be used 
together in aggregate for a more thorough view of  the physical world.  

By retaining a history of  movement for some period, several applications become 
possible. One is, as documented in Section 2.3.1, to enhance the context information 
within a user’s automated diary. Another application is enabling visualisation of  
mobility for security reasons, or for carrying out safety evaluations of  a building. The 
movements of  individuals can be fed into a virtual reality model of  the building (see 
Section 7.6) and reviewed from any three-dimensional viewpoint while, for example, 
people leave a building during an evacuation drill. This can be used to identify and 
rectify potentially dangerous bottleneck zones in the layout of  the building. Similarly, 
by replaying people’s movements into a knowledge base, it might be possible to 
deduce the identity of  the possible perpetrators of  a crime (the classic who-dunnit 
scenario!). 
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2.5.2 The Active Home 

An area that is inciting major research and commercial interest is that of  the 
networked home, where ubiquitous computing devices and networked consumer 
devices are widely deployed. It is proposed here that event notification is the only 
feasible approach towards internetworking the appliance space. Additionally, event 
storage can enhance the services that could be made available. 

There have been various proposals for enabling the integration of  the plethora 
of  devices that one can envisage being available in such an environment (a survey of  
which is given in [Dut99]), with most exporting a proprietary interface language or 
adhering to conflicting industry standards. Suitable candidates for networking and 
digital interfacing in a home are systems like lighting, entertainment (audio and 
video), security, communications (telephones, video-phones, and door intercoms), 
climate-control, fridges, ovens, toasters, and even the cat flap! It is unlikely that a 
tightly coupled communications model can ever be used in this scenario, where 
devices will be supplied by manufacturers with widely conflicting and competing 
commercial objectives and backgrounds. The computing capabilities embedded in 
such devices are also likely to vary considerably in their extent and heterogeneity (see 
Figure 2.3). With these constraints, a loosely coupled model of  communication and 
interaction is appropriate.  

The above, and the fact that most household device programming is reactive in 
nature (“do A in response to B”), makes the event-driven style particularly appropriate. 
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Lightweight wrapper programs can be written around the proprietary interfaces to 
make devices active (i.e. event sources and/or consumers). Other software modules 
can then be written to control and monitor the various devices according to some 
declarative logic. Novel examples of  such expressive configurations are “If  I am home, 
turn on the heating in the kitchen at 6am and activate the hot water boiler” or “if  I am watching 
television and someone rings the doorbell, re-route the outside camera image onto the TV”, as well 
as “move the music around the house to follow me as I walk around”.  

Configuring such rules can be complex, and possessing information on 
behaviour patterns can be very useful. By building a model of  behaviour of  the 
residents, as well as monitoring patterns of  variation in the physical environment (like 
temperature), the control software can be made to fine-tune its programming or 
devise entirely new flexible rules for driving the home’s hardware.  In short, the Active 
Home can be made to adapt itself  to suit its owners’ preferences. 

2.5.3 Graphical user interfaces and usability studies 

Although windowing systems and graphical user interfaces (GUIs) are, for the most 
part, single-address-space applications, event notification and messaging have long 
been employed within them. The chief  concern with the current approaches 
undertaken by these systems is their reliance on proprietary and largely application-
specific centralised event infrastructures. In this area, event storage and trace 
interpretation has also found some application, however the query interfaces 
provided are bespoke, based on the application-specific interpretation that is applied. 
It is therefore not possible to deploy these systems within other environments. The 
pitfalls encountered by these approaches further motivate this thesis.  

Graphical user interfaces of  complex applications are usually composed of  
hundreds of  windowing components like scroll-bars, menus and menu entries, push 
buttons, text-fields, dialog boxes, status bars, drop lists, etc. Constructing a graphical 
application with multiple layers of  windowing containers and elements, and 
configuring communication between them is complex. For this reason, most GUI 
development packages model windowing elements as stand-alone objects, and the 
user interface is then assembled by encapsulating multiple elements within each other 
as in a structural hierarchy. For example, the menu entries are embedded within a 
menu option, and the menu options within the menu bar, which in turn is 
encapsulated within the window header component. Input events pertaining to input 
devices like the mouse, keyboard or touch pen are passed on upwards along this 
hierarchy if  the components ‘register’ that they can process, or ‘listen to’, such events. 
However, these events often also need to be propagated across the hierarchy, since, 
for example, moving the mouse over a menu entry could be made to display an 
explanatory message within a status bar at the bottom of  the application window. 
This can be handled by each windowing element exporting a list of  events it can 
supply, and other components can then designate themselves as listeners for these 
events. This is analogous to event notification, and a good example of  it is Java 
2™[Sun99c]’s internal event model within the AWT [Sun97b] and SWING [Sun99a] 
user-interface construction class packages.  
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Retaining and storing some or all of  these internal events has been applied in a 
number of  contexts. Most notably, in studies of  application usability, event traces 
(usually coupled with captured video) pertaining to users’ interaction with an 
application are employed to appraise its user-interface [BHS93, HHH92]. Keystroke, 
mouse clicks, mouse trajectories and other low level events are logged and 
interpreted based on some semantic knowledge of  the state of  the application and 
interface. Evaluation parameters are the interface’s intuitiveness (how easy it is to 
figure out how to carry out some operation) and expressive power (how many steps 
are required to complete a task).  

Of  particular interest is Microsoft’s Lumiere [HBH+98] technology that seeks 
to not only study user interaction but also assist the user in real-time. At the heart of  
Lumiere are Bayesian models that capture the uncertain relationships between the 
goals and needs of  a user and observations about program state, sequences of  
actions over time, and words in a user’s query (based upon when the query was 
made). Lumiere monitors events with an event system that combines atomic actions 
into higher-level modelled events. The modelled events are variables in a Bayesian 
model. An event language was developed for building modelled event filters. As a 
user works, a probability distribution is generated over areas that the user may need 
assistance with. A probability that the user would not mind being bothered with 
assistance is also computed. Lumiere is deployed in all of  Microsoft’s Office 
97/2000 products [Mic99b] as the Office Assistant. In its production version, an 
animated avatar is used to suggest context-sensitive tips to users on how to facilitate 
their work by using features they may not be aware of. The system also attempts to 
infer questions that users might be about to ask before they have even brought up 
the help system. In Office 2000, the applications monitor users’ use of  menu entries 
over time and modify the menu selections available to more closely reflect the 
feature-set that each individual deems useful. Similarly, the forthcoming Windows 
2000™ operating system [Mic99c] contains a related module that studies several ways 
in which a user interacts with its windowing environment and dynamically alters its 
structure to prominently reflect applications and tools that are used frequently. 

2.6 Conclusion 

This chapter has not exhaustively detailed all the possible applications of  event 
notification and storage of  event information. Instead, it has introduced the most 
relevant application categories. Within these broad categories, it has discussed novel 
and enhanced functionality that can be enabled through the provision of  a powerful 
event storage paradigm, and highlighted related work. Much of  the envisaged 
functionality requires complex application logic that is beyond the scope of  this 
document. Rather, its illustration motivates the requirement for an event storage 
service that can provide a sufficiently powerful storage and retrieval paradigm that 
supports tackling the major research issues in these areas. 
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By examining the core requirements of  the functionality described, one can draw 
up a set of  criteria that need to be satisfied by a comprehensive event storage 
solution. These are: 
• a generic and flexible model for representing event types, 

Proprietary event-driven solutions sometimes have an event type-system, while at 
other times rely on unstructured string-based messages. This model is often not 
extensible, therefore restricting evolution of  the application. Invariably, this also 
implies that the system will be a closed world of  related components. A generic 
event type model, on the other hand, encourages dynamic adaptation of  an 
application, and enables it to be constructed from independent components. 

• a non-intrusive architecture for notification and capture of  events at various conceptual locations 
within an application, 
Event information can be collected at various locations, for example, at event 
sources, at centralised application-driven locations, and at gateways between 
domains. Event storage also needs to be employed within the event notification 
mechanism as well as outside it, interacting directly with applications. Issues like 
lack of  global time, network latencies and scalability need to be addressed. 

• an event storage architecture, 
An event repository must be flexible in its design, so that it can be customised for 
environments with constraints on memory, storage and processor availability. It 
must also embed a storage engine that can process and keep up with streams of  
incoming events, while at the same time provide facilities that enable a temporal 
retrieval interface to be deployed over it. 

• a core subset of  temporal retrieval and replay functionality that can be built-upon by 
applications to enable higher-level application-specific interpretation of  event histories. 
In order to enable interpretation and analysis of  event histories, a retrieval 
interface is required that goes beyond traditional database query languages and 
supports primitives that reflect the temporal sequencing of  events. 

These requirements and the issues they raise are addressed in depth in Chapters 4, 5 
and 6. 
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Chapter 3 

Related Event Middleware 
This chapter reviews related general-purpose event-driven and messaging 
infrastructures.  

It starts by briefly introducing distributed middleware and the important role it 
plays in building distributed systems. It then focuses on asynchronous messaging 
technologies that implement event notification. While Chapter 2 dealt with event 
notification at application level by describing its usage in various domains, this 
chapter looks more closely at specific messaging and event-driven systems, and their 
infrastructures. 

Section 3.1 lists the technologies available in distributed application middleware 
and describes coupling models of  integration. Section 3.2 then shifts the focus onto 
event notification by describing variations on the event-based messaging model.  

Two primary categories of  event transports are then distinguished; event-driven 
systems are reviewed in Section 3.3 while message-oriented middleware products are 
treated in Section 3.4. Although the functionality of  either overlaps considerably, 
their distinct origins and different (although converging) philosophies merit separate 
discussion. The most representative solutions and products in both fields are 
reviewed with a view to their application, or lack, of  event storage and retrieval. 

3.1 Distributed application middleware 

In general, building any distributed system implies satisfying a number of  basic 
requirements; application processes are distributed across several machines, those 
processes need to be located, and they need to communicate amongst themselves. In 
addition one needs to maintain security of  the data, work with heterogeneous 
platforms involving different networks, operating systems and data formats, and cope 
with limiting constraints like unreliable, low bandwidth or high latency network 
connections. Addressing all these issues within each application is a major task, and 
therefore it is practical to resort to general-purpose middleware that tackles the 
problems transparently and abstracts away all the nitty-gritty details of  distribution. 
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In this discussion, therefore, the term distributed middleware is taken to denote 
software components, running between the application and operating system layers, 
that address the above issues and enable communication complexity to be abstracted 
away from the application writer. This is usually carried out by providing the 
application developer with an Application-Programming-Interface (API) that 
abstracts away most aspects of  distribution.  

3.1.1 The categories of  middleware 

Distributed middleware can be grouped into three loosely defined categories:  
• Client/Server 

This involves connection-based communications using a procedure-oriented 
invocation model. Examples of  this category are remote database access 
middleware, remote stored procedures and remote procedure calls (RPC). In this 
well-established method of  distributing application processing, an application 
uses RPC’s to execute remote procedures that are located in another program, 
where the latter can be located on a different computer and/or platform. 
Client/Server uses the call procedure construct from structured procedural 
coding techniques. The client calls a procedure to perform an operation, which is 
then carried out by the server on behalf  of  the client. Execution at the server is 
thus controlled by the client. RPC communications are inherently synchronous, 
with control being passed from the local procedure to the remote one, and local 
execution being blocked until a result (and control) is returned. Asynchronous 
communications can be supported but require explicit support from the 
application through multi-threading.  

RPC systems emphasise strong data-typing of  the result data transferred. 
This is due to their frequent integration with a programming language 
environment that is common to both client and server. The server’s interface is 
mirrored in a stub or skeleton, that is then linked with the client code to enforce 
type matching at compile time. This is illustrated in Figure 3.1. 
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There are a large number of  proprietary RPC systems, with the most widely 
used being DCE’s RPC service [OG97], ONC [Sun98], and Java™ RMI 
[Sun97a] (whose features make it overlap onto the next category below). 

• Distributed object frameworks 
These provide connection-based communications using an object-oriented 
invocation model to distributed computing, which increases the flexibility and 
reusability of  application systems. In the same way as client/server, the client 
controls the operation of  the server. The user performs operations through a 
local object on an object created by the distributed object system, by invoking its 
methods. In general, this interaction is also synchronous. The distributed 
components, here being objects, usually interact through an object request 
broker, or ORB. The ORB handles the requests that an object makes of  another 
object, and provides the mechanism for locating and interacting with objects 
across the network. The structure of  the OMG’s CORBA ORB [OMG99] is 
illustrated in Figure 3.2. 

Distributed object frameworks enforce strong data-typing but are designed to 
integrate heterogeneous components with different environment type systems. In 
order to address this, they provide a standard type system that language-specific 
type systems map to. An interface definition language, like the Object 
Management Group (OMG)’s IDL [OMG99], is used to describe the object 
interfaces, from which programming-language dependent stubs can be compiled. 
These then allow compile-time type checking. 

The main distributed object technologies in widespread use at present are the 
OMG’s CORBA standard, and Microsoft’s DCOM/COM+ [EE99]. 

• Event-driven systems and Message-Oriented Middleware (MOM) 
Message-oriented middleware usually involves connectionless communications 
using a message transport, sometimes called an event bus architecture or message 
pipeline, to send event messages between applications. An asynchronous peer-to-
peer invocation model is employed, where an application sends a message by 
passing it to the local middleware at its end. This step is functionally separate and 
decoupled from the act of  transferring the message to its destination, where the 
receiving end of  the messaging middleware delivers it to the receiving 
application. No acknowledgement of  delivery is sent to the sending application 
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The structure of  a CORBA Object Request Broker 
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unless it explicitly asks for one. Building on the basic communications channel 
thus provided, important value-added services include message-queuing middleware, 
where guarantees can be provided on message transfer even if  the applications 
cannot communicate at all times. Another important service is that provided by 
message brokers, which amongst other things, provide for publish/subscribe services, 
message transformation, and limited composition. Several MOM systems do not 
have a type system for structuring message data. There are several industrial 
products providing MOM, and Section 3.4 illustrates the functionality of  some 
of  the major products in the market.  

Pure event-driven systems have evolved separately from message-oriented 
middleware; whereas MOM originated from the need to reliably connect 
application programs to a centralised database server, the concepts behind event 
notification systems derive from internal system tasks like graphical windowing 
and active database triggers. In this area, the emphasis is on a source of  event 
messages advertising what events it has available, and clients then registering their 
interest in being notified on when those events, with some qualifying constrains, 
occur. The constraints can reflect content, frequency, and composition. In its 
most lightweight form, this corresponds to the publish/subscribe service provided 
by most MOM vendors. However, several research systems go far beyond this by 
supporting type systems, comprehensive registration, event brokering, federation, 
and composite event sequence specification. Section 3.3 describes some examples 
of  this functionality in more detail.  

Although the above categories might appear exclusive, in practice several middleware 
solutions in use today provide functionality overlapping across all three areas. No 
technology is more exemplary of  this that the ever-evolving Object Management 
Group’s CORBA specification, which now provides services to tie it into RPC-based 
systems, messaging, and supports event propagation through the CORBA Event 
Service [OMG97] and the CORBA Notification Service [OMG98a] specifications. 

3.1.2 Distributed models of  coupling 

Client/Server and distributed object frameworks are based on a tight coupling between 
the object that requests a service (the client) and the object that satisfies such 
requests (the server). Before invoking a service, the client has to know the existence 
of  a server capable of  satisfying its request and has to obtain a reference to the 
server. These client and server need to be: 
• aware of  each other’s API. Changes to any one side need to be applied or 

reflected within the other application, 
• online at the same time, 
• able to communicate synchronously over a network. 

These constraints are difficult to address in dynamic environments, where the clients 
and servers making up a distributed system have different lifetimes and may be under 
different technical or organisational management. In many situations, a de-coupled, 
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or loosely coupled, communication model is preferable. Under such a model, 
communicating distributed modules (not necessarily identified as clients and servers): 
• need have little or no knowledge about one another, 
• can be modified independently of  each other without requiring modification or 

recompilation of  one another, 
• need not run at the same time, 
• communicate asynchronously, in that they can proceed with their computation 

independent of  each other’s state of  execution and need not block awaiting 
replies to messages. 

Message-oriented middleware and event-driven systems meet these criteria by 
decoupling the delivery of  data from the distributed components. This enables 
dynamic system configuration. The remainder of  this chapter will now focus on 
these systems and illustrate them in further detail. 

3.2 Event-based messaging models 

There are several variations on the event-based messaging model (as defined in 
Chapters 1 and 2), most relating to the level of  distribution of  the services making 
up the event-based style and their location. There are three notional entities in the 
event-based model: (1) a source of  messages or events, (2) a consumer (or client) of  
events, and (3) a message transfer service that delivers messages from the former to the 
latter. The services of  event-registration (or subscription), filtering, action injection, 
fault-tolerance/error handling, and message transformation that may be available can 
be positioned at various locations at or in between these three entities. Different 
systems distribute or centralise these services differently. For example, filtering can be 
carried out either at the source, at the message bus through a notification server or a 
message broker, or at the client. There are advantages and disadvantages to each 
approach.  

From amongst these distinctive approaches, one can identify two opposing styles: 
• Direct (Client/Source) – the event clients and event sources are aware of  each other 

during communications, that is, a source sends a message directly to a client it 
knows about, and clients carry out registrations directly with the source of  
information. This does not imply a static system, as the components can discover 
information about each other dynamically at runtime. This is the pure distributed 
event notification model where there is no centralised messaging entity (except 
maybe for a directory service or other specialised components). The core 
messaging technology is therefore available at each component, and therefore, 
the functional focus of  the system is in its components.  

• Indirect (Client/Channel/Source) – in this model all functionality is contained in the 
delivery entity, the event/message channel (also called a message bus or a message 
transport). This can be distributed, centralised, or consist of  a mixture of  
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distributed and centralised modules. Therefore, the source passes on its messages 
to the channel, and clients register with the channel. Clients and Sources know 
only about the message channel and do not know about each other. The message 
channel is therefore a complete go-between. 

These two approaches to event notification are shown in Figure 3.3. In practice, 
many event systems have elements of  both styles, and the same functionality can be 
provided by both. While in the indirect model, messaging functionality is embodied 
in the transport, and duplication of  functionality can be removed through 
centralisation, the direct approach requires that all functionality be replicated at each 
component. Although this may require that platforms at the component level be 
more powerful, it makes integration of  components under different management 
more straightforward and renders the system immune to failures of  crucial modules.  

Another important qualification is how general purpose an event notification 
system is. Most of  the event notification systems deployed in the areas outlined in 
Sections 2.2 - 2.5 are designs tailored for the application domain they are deployed in. 
An indication of  a design’s generic nature is whether it applies any semantic meaning 
to the event messages it delivers. A general-purpose event solution should not make 
any assumptions as to the meaning of  the event data it is delivering and should not 
attempt any non-application-driven interpretation of  it.  

Early event systems did not provide type-support, and messages consisted of  
strings or packets of  unstructured bytes. Since then varying degrees of  type system 
support have been provided. Some transports only allow message typing, in that an 
event message can be of  a defined type. At the other end are comprehensive type 
systems that allow structured typed events with typed parameters. In the latter, event 
schema can be propagated amongst components statically through stub linking at 
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compilation time, as in CEA [BBHM95], or dynamically at run-time, as in HERALD 
(see Chapter 4). 

3.3 Event-driven systems 

There are several systems that qualify as general purpose event-based communication 
mechanisms, with some having evolved into such from more bespoke origins in 
specific application areas (see Chapter 2).  

Several early software integration systems, such as FIELD [Rei90] and 
SoftBench [Ger90], provide message routing services to deliver messages and enable 
modules to react to events generated elsewhere. Event-based general-purpose 
communication mechanisms for loosely coupled integration are suggested in [GN91, 
SN92, OPSS93, MDL93].  

The concepts of  event notification have found application within programming 
environments. An event-based language for parallel programming called EBL is 
described by Reuveni [Reu80]. In this language, events are the only control 
mechanism and cause the activation of  event handlers. Some languages have event 
announcement primitives built in to facilitate intra-program interaction, e.g. 
Smalltalk [Sha89]. ECO [SCT95] defines language extensions for C++ and Java™ 
to enable event-driven method invocation in objects. 

Similar in concept is the idea of  tuple spaces. Tuple space systems define a shared 
space, like a whiteboard, where tuples (a list of  typed data fields) of  information are 
placed. Multiple concurrent client processes then have available a small set of  
operations through which they can interact with the tuple space, and read and write 
data in it. A sender places a tuple in the tuple space, and receivers can inspect or 
remove tuples from this space by specifying a template tuple. Reception occurs when 
a match for the template tuple is found. Linda [Gel85] first illustrated the concept of  
a tuple space, and since then, several other systems [MW88, DFWB98, WMLF98] 
have been proposed that enhance the basic functionality by providing services like 
persistence and distribution. 

Event notification concepts have a long history in the AI community, such as 
actors [HI91] and blackboard systems [JDB89]. Some rule-based systems, such as those 
found in certain process-centred environments like Darwin [MR90], Marvel/Oz 
[BK95], Oikos [MA94], and Adele [BEM94], are based in part on event-based 
substrates, in that updates to data may trigger particular actions. Generally, these 
systems have a broader focus than application integration, encompassing 
configuration management, software process and other domains.  

This section introduces some general-purpose distributed event systems and 
illustrates their main features. Where applicable it describes their use and support of  
event storage.  
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The Cambridge Event Architecture (CEA) 
The Cambridge Event Architecture (CEA) [BBHM95] is a direct notification model 
(as defined in Section 3.2) and was one of  the first architectures to embrace the 
publish-register-notify programming paradigm. CEA has been used in building of  large 
scalable distributed systems in various fields, amongst which were multimedia 
cooperative applications, telecom monitoring systems [Ma97], network management 
and location-oriented applications [BHB96, BSHB98]. 

Just as CORBA objects are defined using the OMG’s Interface Definition 
Language (IDL) [OMG99], which allows other objects that want to interface with 
them to encapsulate pre-written stubs at compilation time, active objects in CEA use 
an extended version of  IDL to declare and publish the events they will notify to 
clients if  asked. Event stubs are automatically generated and linked in with client 
code. Such objects have a register method in their interface and interested parties may 
register interest in any event class, specifying parameters or wildcards in their 
registration template. Event occurrences are created as objects of  specified type. Events 
may be named and parameterised, where the parameters can be of  any IDL 
supported type. When an event occurs, the service matches it against a stored 
template associated with each registration; subject to access restrictions, each client 
whose template is matched will be notified of  the event that has occurred. Figure 3.4 

shows the approach. 
In addition to direct, source to client, notification of  events, intermediate services 

known as event mediators can be defined. An event mediation service might be set up 
to notify any number of  clients, and might register interest with any number of  event 
sources. One use for a mediator is to remove the filtering function from a primitive 
event source by providing an indirection between it and its potential clients. Any 
source that cannot afford the overhead of  template matching can notify all its 
detected events to such a mediator. A mediator can be used to prevent a mobile user 
from missing events of  interest while disconnected from the networked systems for 
periods of  time. It registers interest with the required event sources on behalf  of  the 
mobile client and buffers the events notified to it by these sources. It also registers 
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interest in the location of  the mobile client, and notification of  an attach event 
(detecting the mobile user) triggers the delivery of  the accumulated events to the user 
at the new location. CEA therefore employs source-side filtering in order to reduce 
the volume of  events sent over a network and in order to ensure that clients need 
only receive information that is relevant to them. This also reduces performance 
requirements at the clients. 

CEA also introduced the notion of  composite events being generated from 
temporal combination of  primitive events. Complex scenarios can then be defined 
and specified, and composite event services can be built that will, on their clients’ 
behalf, register interest with appropriate event sources and notify clients when a 
composite event is detected. A composite event server is an example of  an event mediator 
that can carry out filtering across events of  different types from different sources. 

The CEA architecture has been designed to inter-work with a comprehensive 
role-based access control scheme called OASIS [Hay96]. 

In [BBMS98], the CEA event model is enhanced to support hierarchical event 
type specification and inheritance, and the concept of  an event federator is introduced. 
This module can detect composite event sequences and inject actions into application 
components in response. Event brokers also retain information pertaining to the 
event sources and can act as gateways between different event systems, providing 
event transformation and mapping services. The HERALD event transport (see 
Chapter 4) builds on this extended framework. 

Due to its reliance on IDL and static stub linking, CEA cannot be termed a 
loosely-coupled infrastructure as defined in Section 3.1.2. This is because event client 
objects that want to interact with event sources need to know about each other’s 
interface methods at compilation time. Its primary contribution is in demonstrating 
how asynchronous operation and comprehensive event services can be added to 
inherently synchronous industry standard platforms. CEA implementations have 
been demonstrated on top of  RPC-based mechanisms like MSRPC3 and Java™ 
RMI [Sun97a]), as well as on top of  CORBA; the COBEA implementation [MB98].  

The Events-Constraints-Objects (ECO) model 
In the ECO (Events-Constraints-Objects) [SCT95] programming model from Trinity 
College, Dublin, the basic abstractions are objects, classes, events and constraints. ECO is a 
programming model rather than a middleware service, as it defines event extensions 
to object-oriented programming languages like C++ and Java. Its treatment of  
events as triggers for method invocation is reminiscent of  Smalltalk [Sha89].  

In ECO, objects are instances of  a class, and have instance variables and 
methods that operate on those variables. A class specifies the interface to its 
instances together with the events and constraints used by the instances. A property 
of  the class is therefore its capability to consume and to generate specified events. 
Objects communicate by announcing events and by processing those events that 
have been announced. A method can be bound to one or more events and several 
methods of  an object can be bound to the same event. A bound method therefore 
behaves as an event handler in that it is invoked automatically when the 
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corresponding event is announced. The programming language runtime system is 
responsible for gathering the events generated and for notifying events to the 
interested objects. This effectively decouples objects, in that they do not have to be 
aware of  each other and can execute asynchronously with respect to each other. 

A constraint specifies a condition that controls the propagation of  events. There 
are different kinds of  constraints, categorised by the data that they can access, by 
their evaluation points, and by the actions that they are allowed to perform. Notify 
constraints are set by destination objects at subscribe time, and place conditions on 
notification. Such conditions are priority and the number of  recipients. Pre- and 
Post- constraints are attached to the event/method bindings and can be employed to 
force synchronisation in an otherwise fully concurrent programming environment. 

Other event systems 
FIELD [Rei90] was probably the first event-based integration system. FIELD has a 
client-server architecture. Client programs, called tools, broadcast messages 
anonymously by sending them to a central message server, Msg. Tools specify the 
classes of  messages that they want to receive by registering message patterns with the 
server. Msg then delivers to each tool only the messages that match the tool’s 
message patterns. FIELD also provides an optional tool, called the Policy Tool, 
which can intercept messages and perform user-specified actions on receipt of  those 
messages (reroute messages, replace them with other messages, etc). These user-
specified actions, called policies, are external to tools, so no tool modification is 
necessary to enforce policies. 

Polylith [Pur94] employs a software bus architecture. Individual programs, also called 
tools, connect their input and output ports to an abstract bus, and send and receive 
messages on named bus channels. A module interconnection language (MIL) is used 
to encapsulate external programs as tools and then bind the output ports of  tools to 
the input ports of  other tools. Messages may be of  simple, structured, or pointer 
types. 

In Elvin [FMKAPS99], notifications are sets of  named and typed data elements. 
A subscription is a declarative Boolean expression over the contents of  event 
notifications. By issuing a subscription, a component can declare its interest in a 
number of  notifications characterised by some common property.  

A similar mechanism is provided in JEDI [CDF98]. In JEDI, a notification is 
defined by a name and by a number of  parameters as in CEA. Event receivers 
subscribe for event patterns, which are expressions over the name and parameters of  
a notification. This is more expressive than the template matching mechanism of  
CEA in that subscriptions can also apply wildcard match on the event type itself  as 
well as on the number of  parameters. 

Yeast [KR95] is a client-server system in which distributed clients submit event-
action specifications with a centralised server, which performs event detection and 
specification management. Each specification submitted by a client defines a pattern 
of  events that is of  interest to the client’s application plus an action that is to be 
executed in response to an occurrence of  the event pattern. Therefore, this is not an 
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event-based infrastructure per se, since its event service triggers actions rather then 
notifications. By default, any output produced by the commands of  the action is sent 
by electronic mail to the user who submitted the specification. Most of  these 
specifications and events relate to platform and operating system properties like 
filing, disk storage, memory usage, processor load, user activity etc. READY 
[GKP98] elaborates on Yeast’s specification language to allow compound matching 
and aggregation (similarly to CEA). 

3.3.1 Event standardisation efforts 

There are a number of  mainstream event-related standardisation efforts. The main 
ones are the OMG’s CORBA Event Service [OMG97] and Notification Service 
[OMG98a] specifications, the TINA consortium’s Notification Service [TIN96], 
and the IETF’s Internet-Scale Event Notification Service effort that is still at the 
drafting stage. 

CORBA Event Service 
The CORBA Event Service specification defines an indirect channel-based event 
transport for deployment within distributed object frameworks. It defines an 
EventChannel interface that decouples event suppliers and consumers. Suppliers cause 
events to be generated and placed onto the channel, and consumers obtain events 
from the channel. Channels are typed, in that a channel only has the means to signal 
events of  its own type to its consumers and will ignore all other types of  events. In 
the Event Service, as in ECO, and in contrast to CEA, events are not objects or 
entities onto themselves. They are merely triggers that cause methods to be executed, 
albeit untyped parameters can be passed into those methods. The specification allows 
for different styles of  interaction with an event channel, specifically push and pull. 

Push interaction is supplier-driven. In this style of  interaction a consumer object 
must have its interface conforming to the PushConsumer interface. After it registers 
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interest in an event type with the channel, whenever an event of  that type is 
generated at a supplier, the consumer’s push method is invoked with the event’s data 
as input parameter. 

On the other hand, pull interaction is a polling consumer-driven style. In this style 
the supplier buffers events of  the type that a consumer has registered interest in, and 
it is up to the consumer to invoke a pull method each time it is ready to receive an 
event. This blocks the client until such an event is available, upon which the method 
is executed with some or no event data. An alternative non-blocking interface that 
returns a boolean value reflecting whether an event was available or not can also be 
employed. Event buffering is initiated at the supplier once the pull-style client-
channel-supplier connection is made. 

These two styles of  event propagation are illustrated in Figure 3.5. A channel can 
support multiple suppliers and consumers concurrently.  

The CORBA Event Service specification does not directly support events 
having  structure and typed parameters, and therefore restricts the extent to which a 
consumer can define what events it wants to receive. Its decoupling of  supplier and 
consumer identity is also not always desirable. 

CORBA Notification Service 
The Notification Service specification is currently at the draft stage, but is close 
enough to being finalised to warrant discussion. This specification is important as it 
addresses the shortcomings of  the Event Service specification and extends it to 
provide features from research-based event systems. Its main developments in this 
regard are in supporting structured events, content-based filtering, and a quality-of-
service (QoS) interface. 

In the Notification Service, an event is similar to an object in that it is 
structured into a number of  compulsory and user-specified parameters. It has a type 
defined as a domain/type/name triple, and within a secondary header defines a 
number of  optional constructs that define its priority, reliability and timestamp. The 
user-specified body is divided in two sections, each of  which can contain any number 
of  fields. The first lists filterable fields that may be used by a consumer to specify 
filtering, while the second contains additional message parameter data as desired by 
the user. 

Channels support the filtering interface, which allows a filter object to be 
attached to them. Such an object, usually located before a consumer, only forwards 
through it events that match the filtering expressions it is configured with. Mapping 
filters may also be used that take action on events according to their optional headers. 

QoS constrains may be imposed on a per-channel, per-proxy and per-event basis. 
The specification demands that the following default set are recognised (although not 
implemented): Connection Reliability, Priority, Event Reliability, Maximum 
Batch Size, Ordering Policy, Discard Policy, Expiry Time and Pacing Interval. 

Finally, the specification goes some way to support dynamic evolution of  events 
and dynamic adaptation of  consumers by providing for an Event Type Repository. 
This facility lists the names of  event types with their associated structure. 
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3.3.2 Storage in event systems 

To the best knowledge of  the author, none of  the above general-purpose event 
systems or service specifications have defined an event storage service. The need was 
perceived in the context of  the CEA research project at Cambridge, and this 
dissertation is a result of  that research. However, an analysis of  the underlying 
concepts behind most of  the above event-driven systems reveals scope for not only 
the provision of  an event storage and retrieval service within event-based systems, 
but also for integration of  such a service within the core infrastructure of  the 
systems. This is highlighted in the discussion of  HERALD (see Chapter 4). 

3.4 Message-oriented-middleware 

This section describes Message-Oriented-Middleware (MOM), the mainstream 
commercial equivalents of  event-based systems. Early MOM products originated 
from the need for remote applications to communicate asynchronously with 
centralised database systems, but rapidly evolved into middleware for enabling 
systems integration (particularly in terms of  legacy applications). The term 
‘messaging’ is popularly used to refer to electronic mail systems, and this comparison 
is appropriate since messaging middleware is analogous to a general-purpose high-
speed e-mail system with guaranteed delivery. 

3.4.1 Core features of  MOM 

MOM provides an asynchronous communication channel (or message bus) between 
applications or components. There is no explicit client/server relationship at the 
middleware level, as the communicating applications are viewed as equals. One 
application sends a message to another. Its primary acknowledgement of  delivery is 
that it has submitted its message to the messaging middleware at its side. The 
messaging transport then guarantees that at some time, in some way and through 
some route, the message will be delivered to the intended recipient. On top of  this, 
some products/systems do provide temporal guarantees on delivery, and the ability 
to request acknowledgement of  receipt from the receiving application. This structure 
is shown in Figure 3.6. 

Message-Queuing Middleware (MQM) is a type of  MOM that combines a message 
transport and a queuing service. Although, conceptually, message queuing is a service 
provided on top of  the core messaging transport, it is required for guaranteed 
delivery and has become an intrinsic feature of  messaging. Message queuing is 
provided by all major MOM products. Messages are pushed into the local 
transmission queue for delivery, delivered between queues asynchronously, and 
placed into the receiving queue at the receiving end. The receiving application can 
then retrieve them when it can. Transactions can be applied to the act of  placing and 
retrieving a message into a queue, transmission between queues, or over all three 
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stages. Queues can be persistent on disk storage, and can be reinstated after a system 
failure or restart. Other key functionality includes load balancing, multi-casting, 
guaranteed delivery, and several levels of  fault tolerance. The various MOM products 
available provide some subset of  this functionality, and most add several high-level 
value added services like message brokering and publish/subscribe. 

A message usually consists of  a structured collection of  fields making up an 
object or data structure, mapped to a human- and/or machine-readable string. The 
nature of  the mapping employed and extent of  the typing supported varies according 
to the messaging system, and can be language or platform dependent. At present, 
there is a drive to employ XML [BPS99] tagging as a standard representative format, 
due to XML data being self-describing. Although messaging is particularly suited for 
application integration over heterogeneous platforms and environments, it can be 
applied over homogenous domains, and as a communications pipeline for other 
middleware technologies. For example, two applications built using the same 
programming languages (like Java™ or C++) can transmit flattened (or serialised) 
objects over MOM. Similarly, the marshalled parameters of  a CORBA remote 
invocation may be sent over a messaging transport. In fact, the CORBA Messaging 
specification [OMG98b] lays down a standard framework for carrying this out. 

Products from different vendors have different APIs and do not easily 
interoperate with one another. Each vendor’s products employ proprietary location 
(directory and naming) and security services. Sometimes there are, however, gateways 
that make it possible for competing products to communicate with one another, 
particularly with regards to the major market players.  

3.4.2 Publish/Subscribe 

At its core, message-oriented-middleware is concerned with delivering messages from 
one application to another. Through a publish/subscribe service, the system can then 
enable message delivery to be tailored for recipients that it knows have expressed 
some interest in a category of  messages. Publish/subscribe is therefore analogous to 
publish-register-notify as discussed in Section 3.3. Information is published, or advertised 
as being available, and clients can then register interest in being notified of  when 
messages matching their subscriptions occur. The propagation of  messages is 
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therefore dependent on subscriptions that may be defined and revoked by client 
applications at any time. The implication of  this is substantial, as client applications 
can specify information they want to be told about, rather than receive everything 
that a sending application transmits.  

The subscriptions that define what information an application is interested in 
vary in form according to the particular product or solution, but are usually topic 
and/or content-based. Messages can be tagged as belonging to some category (which 
can be part of  a hierarchical information structure) through textual keywords. A 
subscription then defines some filtering criteria to select from the messages available. 
Figure 3.7 illustrates how subscriptions are defined in MQSeries™. 

Some message-oriented middleware solutions provide publish/subscribe services, 
usually through the provision of  a message broker. The broker conceptually acts as a 
proxy around the sending application, by accepting its messages, and placing them 
within some structural category based on their topic/content. Client applications can 
carry out subscriptions with the broker for specific information, which then 
dispatches the messages, using the underlying MOM transport, to those applications 
when the relevant information becomes available. 

3.4.3 Representative solutions 

The market for MOM is substantial and there are a large number of  products in wide 
deployment. Leading products include IBM’s MQSeries™ suite of  middleware 
solutions [IBM99], Microsoft MSMQ [Mic99a], Talarian SmartSockets™ [Tal98], 
4Tier Systems’s OpenMOM™ [4Ti99], Oracle’s Oracle8i AQ™ [Ora99] and 
Tibco’s TIB™ product family [Tib99]. There are no pervasive standards for MOM, 
although the CORBA Messaging [OMG98b] specification is attempting to 
standardise the integration of  MOM with distributed object technology. Some 
products embrace multiple middleware paradigms and enable wider enterprise level 
integration. For example, Inprise’s Entera/QX™ [Inp99] provides a platform for 
integrating MOM and Client/Server, while TIB™ provides both real-time messaging 
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and message queuing for guaranteed delivery as well as a tightly integrated ORB, 
which is CORBA 2.0 [OMG99] compliant.  

While the above discussion has highlighted the main features common to most 
products, it is informative to review the feature-set of  some of  the main solutions. 
MQSeries™, MSMQ, Oracle8i AQ™ and SmartSockets™ will now be outlined 
in further detail. The MQSeries™ suite dominates the marketplace, and while acting 
as the benchmark product range, its feature-set is largely representative of  the most 
comprehensive solutions available. MSMQ is the main competitor to MQSeries™ 
on the important Microsoft Windows™ platform. Oracle8i AQ™ has been picked 
out because of  its distinctive integration with a database management system, while 
the SmartSockets™ product is particularly relevant to this discussion as it actually 
attempts to provide an event storage service. 

IBM MQSeries™ and Integrator 
IBM’s MQSeries™ suite of  middleware software represents some of  the earliest 
available commercial messaging solutions, and today still dominates the market. 
MQSeries™ is the MOM transport and, partly due to its availability on 40+ 
platforms as well as its technical feature-set, controls in excess of  50% percent of  the 
market. 

MQSeries™ applications (local or remote) communicate by putting messages on 
queues and by taking messages out from queues by using the Message Queue Interface 
(MQI) and MQSeries™’s API. A message from a sending application is placed on a 
queue, where it then waits for a signal that the receiving queue is ready to accept it. 
Maintaining the messages queues, the relationships between programs and queues, 
handling network restarts and moving messages around the network, is the 
responsibility of  MQSeries™. MQSeries™ provides various transaction guarantees, 
which can be controlled by its own built-in transaction processing (TP) monitor or by 
an external X/Open compliant TP monitor. 

A queue can be predefined or created dynamically. A local queue belongs to the 
same queue manager as the application that is connected to it. A remote queue is owned 
by a different queue manager. A transmission queue is a special queue used by the queue 
manager and transmission programs to temporarily store messages destined for a 
remote queue manager. An alias queue provides an alternate name for a queue. A model 
queue is not used directly as a queue, but is used as an example when assigning 
characteristics to a dynamic queue. Each message queue belongs to a queue manager. 
The Message Queue Manager is the most important and central object in the 
MQSeries™ environment. Queue managers are the system providers of  message 
queuing facilities used by applications. Additionally, queue managers process system 
commands and manage all message queuing related objects. There must be at least 
one queue manager on a system.  

Applications local to one queue manager can put messages on remote queues 
owned by another queue manager through distributed queue management. Current 
versions of  MQSeries™ simplify distributed queue management by allowing 
applications to read only local queues, while allowing them to write to both local and 
remote queues. Queue managers on different computing platforms communicate 
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with each other through programs, called message channels. They are made up of  
two Message Channel Agents (MCAs or movers), consisting of  a sender and a receiver, 
and a communication link. MCAs communicate with each other using the 
MQSeries™ Message Channel Protocol.  

MQSeries™ provides assured message delivery by moving messages to remote 
queue managers in groups. Messages that are defined as persistent are never deleted 
at the transmitting queue manager until their confirmation of  receipt at the 
destination queue manager. Messages in MQSeries™ can have a priority field that 
can override their submission order with regards to their delivery. 

IBM’s Message Broker builds on top of  MQSeries™ ’ reliable asynchronous 
messaging graph to provide publish/subscribe. The broker is an integral part of  a 
queue manager, and keeps track of  both published information and subscriptions to it. 
The broker can send information to other brokers when required. Subscriptions are 
topic-based and are defined using character strings. Structure can be implied by the 
use of  delimiters (like ‘/’). For example “Stock/*” matches published ‘stock prices’ 
for ‘all’ companies, while “News/IBM” would refer to published ‘news’ relating to 
‘IBM’. Figure 3.7 illustrated this functionality. 

MQSeries™ Integrator employs MQSeries™ as the messaging transport and 
adds; Formatter, which provides message parsing and reformatting capabilities, 
Rules, which provides content-based decision making capabilities, and the 
MQSeries™ Integrator daemon, which combines the messaging, Rules and 
Formatter components to process messages. This enables limited monitoring for 
composite events. 

MQSeries™ does not provide a dedicated event storage service other than 
making events persistent for some time, until they are acknowledged as having been 
delivered. There is no distinctive query interface to these persistent queues. 

Microsoft MSMQ 
Windows™ NT 4.0 Server and Windows™ 2000 contain Microsoft Message 
Queue Server (MSMQ) as a built-in service. The aim of  this MOM product is to 
become the middleware of  choice for integrating applications running on the widely-
used Windows™ platform. While its MOM feature-set is fairly mainstream, its 
attraction derives from its ease of  deployment and administration. It benefits from 
close integration with other operating system services like transaction support, 
directory service, security and clustering. Obviously, this tight integration with the 
comprehensive services available in the NT domain make it a strong contender in 
the Windows™ platform, but also prevent it from being of  major relevance in other 
platforms or in heterogeneous application integration. 

Oracle8i AQ™ 
Oracle’s Oracle8i Advanced Queuing™ (AQ) is interesting because of  its 
distinctive architecture. Given that most of  the architectural and storage 
requirements of  persistent message queues are easily available in a relational database, 
and given Oracle’s in-house expertise in relational database management systems, 
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Advanced Queuing is implemented as an integral part of  the Oracle database 
management system. Advanced Queues are represented as regular relational 
database tables that have been enhanced to support queuing operations like enqueue 
and dequeue. Messages in queues correspond to rows in a table. The database is then 
accessed by multiple applications to transfer messages between them, or multiple 
databases communicate to move messages between their queues (as shown in Figure 
3.8). 

AQ focuses on message management. It can track messages through their entire 
life-cycle by keeping track of  the state of  a message at all times (waiting, ready, 
consumed or expired), and making each message carry its history with it (all the 
nodes that it has visited and which of  the recipients have actually received it). As 
messages move, they can split, merge and clone, and the causal relationships between 
them are automatically tracked. 

Due to their being regular database tables, Advanced Queuing queues can be 
queried using standard SQL. This contrasts with the restricted logging functionality 
of  other MOM products. In addition, applications can optionally retain messages in 
queues after they have been consumed or propagated to a remote queue. This implies 
that the local application can carry out queries on its own message history for 
auditing purposes.  

The storage capability provided by AQ is, however, insufficient to address the 
requirements motivated by the discussion of  Chapter 2. This is because SQL on its 
own has insufficient expressive power to interpret event histories (see Chapter 5). 

Talarian SmartSockets™ 
Talarian’s SmartSockets™ publish-subscribe middleware product [Tal98] is a 
comprehensive message transport that, in addition to all the MOM ‘common’ 
feature-set listed earlier, also provides some novel services. SmartSockets™ 
provides the application not only with a control API, from where it can send and 
receive messages, but also a monitoring API, that may be interfaced with either 
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synchronously or asynchronously. In this way, a client application can set itself  to 
receive events pertaining to the state of  various internal SmartSockets™ variables. 
The product allows dynamic message routing with weighted node connections, where 
developers can allocate different priority weights to each node that their application 
can deliver messages to, so that messages are delivered in order of  the weights. 

Of  particular interest are the add-on SmartModules™ that can be added to the 
product. One is the RTie (Real-Time Inference Engine), instances of  which can be 
placed at various nodes. This allows a developer to specify high-level rules upon 
which actions are undertaken. The rules allow limited composite event detection and 
event qualification based on attribute value. Incoming event streams are monitored 
for the event patterns and one or more rules can be triggered. 

Of  direct relevance to this discussion are the RTarchive and RTplayback 
modules. These provide event/message storage and retrieval for SmartSockets™ 
applications. 
• RTarchive is used to archive or record messages via SmartSockets™. All 

archive messages are saved to a set of  files, some of  which are indexed by time, 
message type, or subject. Filters can be set up to archive the data and messages 
desired. Archiving can be turned on and off  by any process in a SmartSockets 
application. 

• RTplayback is used to retrieve or playback messages that have been recorded by 
RTarchive. Upon receipt of  a request for retrieving messages, RTplayback 
searches for, retrieves, and distributes the selected messages to the terminal, file, 
or one or more client processes that are part of  the same SmartSockets™ 
application. RTplayback can be used to handle multiple playback requests. 
There are a number of  tasks for which RTplayback can be used, including the 
replay of  data faster or slower than real time, the retrieval of  historical data for 
SmartSockets modules, and the analysis of  data by exporting it into a file for 
further examination. 

Although the lack of  availability of  technical documentation on the above modules 
prevents appraisal of  their functionality, marketing literature indicates that these 
modules attempt to address a subset of  the feature-set of  the service proposed by 
this dissertation. The modules can only be thought of  as an added local service for a 
SmartSockets™ node. They can only be accessed locally, and the retrieval interface 
is mostly restricted to interactive browsing and manual selection through a graphical 
user interface. 

3.5 Conclusion 

In summary, this chapter has reviewed existing event messaging solutions. After 
giving an overview of  distributed middleware, it has described the variations in the 
event model, and then reviewed the most important examples of  event-driven 
systems and message-oriented middleware. Where applicable it highlighted these 
examples’ treatment of  event storage. 
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The above discussion and the preceding one in Chapter 2 demonstrate that 
existing approaches to event storage are either solely applicable to highly specific 
application domains, or else are just very limited in scope. To the best knowledge of  
the author, the storage service outlined in this dissertation goes beyond any existing 
solution in terms of  generic applicability and functionality, and in marked contrast, 
actually promotes interoperability in between different systems. 
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Chapter 4 

A Storage-Enabled Event 
Infrastructure 
This chapter presents a comprehensive event infrastructure called HERALD. This 
provides event notification, storage and retrieval. The chapter starts by describing a 
generic and extensible event model, and proceeds to discuss the main features of  the 
HERALD infrastructure. Apart from its novel architectural and technical features 
based on registration policies, HERALD demonstrates how event storage and retrieval 
capabilities can be embedded within a messaging or event-driven framework to 
provide enhanced functionality and performance.  

Section 4.1 presents an event model where events are typed, have structure and 
can form part of  inheritance-based event taxonomies. This generic event model 
supports schema evolution and is supported both within the HERALD infrastructure 
and within the event repository architecture (see Chapters 5,6). 

Section 4.2 gives an overview of  the HERALD infrastructure. It defines the 
conceptual entities within the HERALD event model, describes its concept of  
registration policies, and illustrates its flexible loosely-coupled approach to dynamic 
environments.  

Event storage and retrieval within HERALD are discussed in Section 4.3. This 
section describes how event repositories, i.e. event storage facilities, can be embedded 
within HERALD components and gives an insight into how these may be used. This 
section concludes with a brief  look at how an event repository could be employed 
within message-oriented-middleware solutions. 

4.1 A generic event model 

It is important to first define an event model for use within the event notification and 
storage infrastructure. This model will be applied within the event-based transport of  
HERALD as well as internally within the event repository.  
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4.1.1 Event type system 

An event is a message that denotes the occurrence of  an activity of  interest, and 
belongs to an event type. An event type is analogous to an object class, and it 
encapsulates a number of  parameters or attributes. While an event instance itself  usually 
reflects the occurrence of  some activity, its attributes uniquely identify that activity by 
representing its parameters.  

An event occurs at a precisely determined point in time, a time-point, and has no 
duration. In this model, time is assumed to consist of  an infinite number of  discrete 
time-points, each of  infinitesimally small duration. In practice, however, time-points  
that are extremely close to each other (within microseconds on modern machines), 
cannot be distinguished accurately, so events that occur this close to each other need 
to be distinguished using means alternative to their timestamp.  

Each type has associated with it an event scheme. This defines and names the 
parameters associated with the event type, which distinguish each event occurrence. 
The parameters of  an event can be defined in any of  the Object Data Management 
Group (ODMG)’s Object Model primitive types [CB97]. It is convenient to adopt 
this widely used industry standard specification as the base type system, since it also 
provides a binding from its type-set to the most commonly used language-specific 
types, including those of  C/C++, Java™ and Smalltalk. In addition, this makes 
interfacing with CORBA environments and most current commercial databases 
straightforward. There are only minor differences between the Object Management 
Group (OMG)’s type system and the ODMG’s. 

Like classes in an object-oriented environment, event types can inherit from a base 
type event. The base type represents the basic properties of  an abstract event, in 
essence defining the header that is attached to each event instance. These basic 
properties are the event’s creation timestamp as entered at its source, a scalar counter 
set by the source, and the identity of  the source where it originated. Other fields are 
provided in order to support provision of  security. Events are tagged as being of  live, 
past, or replay type. In addition, past and replay events have a retrieval and replay timestamp 
respectively. Furthermore, all events can be regular or compound composite.  

At this point the following definitions must be made: 
• A primitive event is any event that is generated at some event source in response to 

some device’s activity, and cannot be broken down into any finer-granularity 
constituent activity. All primitive events are regular events. 

• A composite event is any event that is generated to denote the presence of  a 
particular sequence of  events. It is defined as having occurred when the whole 
event sequence that defined it occurred, this being equivalent to the time of  
occurrence of  the event that concluded the sequence. A composite event still 
occurs at a particular instant and has no duration. Within HERALD there are two 
ways of  supporting composite events: (1) regular events that are associated with a 
type and have attributes, or (2) compound composite events, which are events that 
encapsulate the constituent regular events within them in addition to their own 
parameters. 
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Figure 4.1 illustrates the difference between a regular event and a compound 
composite event. In the example portrayed, the compound composite event embeds 
the three regular events (that might have been primitive) that defined the matching 
pattern. In this case, they are shown as being of  three distinct different types. 

4.1.2 Event inheritance 

All application-defined event types add parameters to the base event type definition 
to define instantiable events. Event types with a common semantic meaning can be 
grouped into an inheritance tree. For example (as illustrated in Figure 4.2), a service 
that provides information about the location of  users can offer the following event 
type; LocationEvent(Domain, Name, Type, Location). The event type LocationEvent 
might identify that an entity has changed physical location within a specific 
application-defined domain. The entity can be, for example, a person or some 
equipment. There are several technologies enabling tracking of  physical movement 
of  people and other entities, with representative examples being the Active Badge 
[HH94] and the Active Bat [WJH97] systems, where electronic tags are worn by or 
attached to the entity being tracked. LocationEvent can then have sub-types inheriting 
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from it that reflect the actual tracking technology being employed, with parameters 
specific to that technology. These could be ActiveBadge-Sighting, ActiveBat-Sighting, 
GPS-Sighting, ImageRecognition-Sighting, and TerminalAccess-Sighting. The advantage 
of  being able to specify such an inheritance grouping around the base type 
LocationEvent is that it becomes possible to carry out operations and queries on the 
base type that implicitly encompass event instances from all the sub-types. Therefore, 
while the model supported is analogous to an object-oriented model in an object-
oriented environment, it differs in that event types (analogous to object classes) have 
no behaviour.  

4.1.3 Event schema 

Event type schema themselves have associated meta-data. A scheme is tagged with 
the name of  the event type it represents, a version number in order to support 
schema evolution, a numeric identifier, the originating component’s identifier, and 
two strings describing the activity denoted by the event.  

The first string is a textual description of  the activity the event represents, while 
the second is a structured string with classification information. The keywords 
defined within the classification information are inherited by any sub-types of  the 
event type being described and may be appended to. The string fields can be 
employed by event clients while searching for interesting events and their respective 
sources at event brokers. Both the version number and numeric identifier are unique 
with respect to the context of  the event component where the scheme was defined, 
whose identifier is the third number. 

 A scheme is owned by this event component, details of  which are also provided 
within the scheme meta-data. Although in HERALD any event source can define a new 
event type and advertise it, it is usually the case that event types are defined at an event 
broker, from where their identification details can be obtained by multiple sources for 
adoption (see Section 4.2.6).  

The rest of  the scheme structure defines the event type’s parameters and 
inheritance details. Each parameter definition also has attached to it a textual 
description of  the attribute represented by the parameter. 

When an event is dispatched to an event client, its scheme’s compound identifier 
is attached to the event instance’s parameters. 

4.1.4 Event evolution 

In a dynamic and reactive environment like a messaging infrastructure, where the 
event repository is an important component, application components can be 
expected to change and evolve independently of  each other. Therefore, the event 
model supports schema evolution through schema versioning. A new evolution of  a 
event type’s scheme need not re-define the whole inheritance tree from the base type 
event downwards. It need only re-define the tree from the first node altered onwards. 
This is illustrated in Figure 4.3. In this example, one can see the effect of  defining 
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four new versions of  existing event types. The new type definitions do not overwrite 
the previous versions. Rather, they are attached to the existing tree, adding an 
alternative dimension to it. Each entry is identified through the version number given 
to it by the component that defined it, and needs to be fully qualified with respect to 
its position within the evolving schema tree. Therefore, LocationEvent$A1 refers to 
the definition version 1 of  LocationEvent made at component A. 
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4.2 Overview of  HERALD 

The HERALD event system is based on the revised version of  the Cambridge Event 
Architecture (CEA) [BBHM95] described by Bates et al. in [BBMS98], and endorses 
the publish-register-notify programming paradigm.  

HERALD differs from CEA in that it does not employ any interface definition 
language to describe the event types supported at sources. CEA uses these 
definitions to construct event stubs that are linked in at compile time with the event 
client components. This model imposes statically defining and publishing an event 
source’s events at compilation time, implying that if  an event source is subsequently 
modified, the clients that were communicating with it need to be recompiled. Instead, 
in order to support loose-coupling, HERALD endorses a purely reflective interactive 
model, where components discover and learn about each other’s capabilities and 
events at run-time as required. This is not entirely novel in concept, as the CORBA 
2.0 [OMG99] specification provides for both a static and a dynamic invocation 
interface. However, few ORB implementations support the dynamic interface, thus 
restricting the developer to build a closed system. 

In a distributed system built using HERALD, each event-aware application unit is 
known as an event component. There are two primary types of  conceptual 
components, event source and event client components. Conceptually, events are 
structured objects, and flow from event sources to consuming event clients. Sources 
can be wrappers around an application or device, and based upon the monitoring of  
some property or activity within that application/device, generate events pertaining 
to it. Event clients register interest in events directly with event sources and are sent event 
notifications when events matching their registrations occur at that source. This structure 
is shown in Figure 4.4.  

In practice, the functionality represented by either component type is provided 
through a package of  class libraries (see Section 7.1.1), of  which EventClient and 
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EventSource embody the functionality of  a HERALD event client and a HERALD 
event source respectively. These libraries abstract away most of  the detail pertaining 
to event registration, filtering, event queuing, communication, fault tolerance, event 
persistence, reliability and security. Application writers can wrap event functionality 
around their application units or legacy interfaces very rapidly without concerning 
themselves with the underlying middleware intricacies. A hardware monitor can 
therefore have an event source written around it that internally communicates with 
the proprietary device interface, but only ‘exports’ events to the outside world. 

The above discussion used the work ‘conceptually’ because a component, or any 
independent software entity, need not necessarily map to a source or a client. In fact, it 
can be both a source and client of  events concurrently with respect to different 
components. By integrating both source and client functionality, it is possible to built 
specialised transforming components like federators, gateways, storage modules, and event 
brokers. These are analogous to the concept of  mediator components within the CEA 
framework. More detail on these services will be given shortly. 

In HERALD, communication between event components is asynchronous, with 
event propagation being decoupled from the execution at the source and the client. 
When one or more events are received at a client, the HERALD Event Client module 
passes them into the application through an application-specified object handler. 
Different object handlers can be invoked according to the type of  the notification 
received. Likewise, although they do not have to, an application developer can tap 
into and monitor inter-component control messages. Examples of  the latter are 
event registrations and enquiries as to what capabilities are available at an event 
source. 

Components are denoted by a component identifier, which is a structure that 
contains a unique identifier, the component’s network and communication details, 
and, if  applicable, the component’s identifying digital public key. 

4.2.1 Registration templates and policies 

HERALD clients register interest in event types with one or more event sources. In 
order to carry out such a registration, the client must first locate the event source it 
wants to receive notifications from. It can do this either by knowing the location of  
the source on the network in advance (i.e. the location being hard-coded in the 
application code). A more likely scenario in a dynamic environment is that a client 
queries an event broker in order to search for appropriate event sources. It can carry 
out this search by providing the broker with details of  the event types it is interested 
in, upon which the broker will provide it with the location and naming details of  
relevant event sources. The client can then enquire of  each source its capabilities and 
if  required request the schema of  the events that source can supply. It then submits 
an event registration to the source. 

In the CEA model, a registration consists of  an event template. This is an event 
instance with fields for exact match filled in and those for wild card match expressed 
as variables. Filtering is therefore carried out at source, and the client is notified only 
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of  those events that are of  interest to it, in that they are not only of  the type that it 
wanted to monitor for, but also match one or more parameter values. This implies 
additional complexity at the source, as it must now keep track of  all the registrations 
pertaining to its clients (and effectively track all those clients) and carry out template 
matching for each event that is generated. However, this approach reduces network 
bandwidth, allows for simpler clients, and enables better control and management on 
service provision, in line with current Internet trends. Registration of  interest in a 
super-type event, as defined within the event taxonomy of  that source, can be 
extended to cover all the sub-types of  that super-type. 

HERALD enhances this registration model by extending it with registration policies. In 
HERALD a registration consists of  two segments, the first being the event template as 
described above, while the second part being a list of  one or more registration 
policies. Policies qualify the registration, in that they alter the way in which the 
registration is to be carried out or its scope. There are several policies defined in 
HERALD, and the model is flexible enough to support additional ones being attached 
at a later stage. It is possible for a client to carry out two registrations for the same 
event type with different parameters and different qualifying policies. The main 
categories of  registration policies are: 
• Priority – A source can support multiple delivery queues with different priorities. 

If  this feature is enabled, a client can differentiate its registrations based on how 
important it deems having those events delivered to it rapidly. The number of  
priority levels and the default priority is customisable at the source, and can be 
enquired about by clients. For example, a event client component that monitors 
network components can ask to have emergency ‘high load’ events sent to it with 
very high priority, while regular service-level data is dispatched at lower priority. 

• Frequency – Frequency policies represent constraints on the volume of  event 
notifications that a client wants to receive with respect to its registrations. For 
example, a client can request that it not be sent more than one identical 
notification within a specified amount of  time. This is particularly suitable for 
recurrent error notifications such as those generated by the file system filling up. 
Two hundred identical error events are unlikely to be very useful. 

• Expiry – A client can attach a policy to its registration setting an explicit expiry 
condition on the lifespan of  the registration. Examples of  such conditions are 
that the registration is only to last for a specified number of  event notifications 
or for a length of  time from its acceptance at the source. 

• Storage – Storage policies are of  importance in this context as they are available 
only if  the event source encapsulates an event repository and provides event 
storage and retrieval capabilities. Apart from conventional message queuing store-
and-forward capabilities, clients can demand that their notifications be dispatched 
in batch every specified amount of  time, or that notifications be retained for 
them until they send a trigger requesting dispatch to a specific location. The latter 
policy addresses the issue of  mobile clients, or disconnected clients on dynamic 
IP addresses (like users on dial-up networking connections). Other policies 
enable retrieval and dispatch of  past events matching the template submitted, or 
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even fully fledged temporal queries on the events that the source has generated in 
the past. How far back in time the source retains events is a property set by the 
application writer responsible for implementing the source. Persistence 
capabilities are described in greater depth in Section 4.3. 

• Reliability and fault-tolerance – In analogy to how in key message-oriented-
middleware products one can request guarantees on delivery, event clients can 
attach reliability policies to their registrations. Fault-tolerance policies then specify 
how the source should behave in error situations. If  a connection-based 
transport like TCP/IP is used for event dispatch, the source can tell when 
delivery fails. In this case, one option is to assume that the client is dead and to 
purge all its registrations, while another policy guarantees delivery by retrying 
delivery at regular intervals until an acknowledgement is received from the client. 
Event clients implement a session protocol where they attach a session identifier 
(reflecting an execution run) to communications with sources. This allows a 
source to recognize when a client has crashed and been restarted. A heartbeat 
protocol service can be requested, where the source sends a regular heartbeat 
event to a client to signal its continued uptime and verify communications. 
Alternatively, the source can provide a regular heartbeat signal on a multicast 
group address that clients can listen on. 

• Security – There are two aspects relevant to this area; authentication of  
clients/sources, and security of  transmission. HERALD supports the concept of  
clients attaching a public key as a policy parameter, which is then used by the 
source to transmit encrypted events. If  the key is issued by a trusted third party, 
then it also serves to authenticate the client. It is envisaged that a more elaborate 
and comprehensive event security model, like OASIS [Hay96], could also be 
applied. 

In contrast to earlier event-driven environments, which compromise between 
functionality and performance, HERALD allows each source component writer 
complete freedom to enable as many or as few policy modules as wished. The core 
source functionality consists of  the basic CEA registration-notification capability, 
which is ideal for a lightweight but functional event notification service. On top of  
this, one can then enable the modules that provide multiple priority queues, security, 
reliability, and persistence (which launches an event repository within the source), and 
choose the individual policies to support. The compromise lies in a degradation of  
performance and an increase in storage requirements, against additional functional 
service to event clients. A further enhancement on this model would be 
differentiation of  service by client, undoubtedly a requirement in an open 
commercial environment. In this case, while some clients would see a core 
lightweight event source, other more favoured clients (qualified as such through their 
presentation of  an appropriate identifying certificate) will be able to enjoy greater 
functionality. 

Furthermore, a source component can be written to monitor its own load and 
gracefully reduce its service by selectively disabling its feature-set dynamically. As this 
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affects the registration policies supported, clients can then be notified that the 
policies they attached to their registrations can no longer be supported. 

Activation of  each module effectively enables a number of  policies, and these are 
advertised in much the same way as the event types the source can supply, i.e. 
through brokers or directly to clients.  

An event client can also be customised along similar lines. It can also embed an 
event repository, a federator module (see Section 4.2.5) and use a sliding event 
observation window to enforce global ordering of  events (see also Sections 4.2.4, 
5.2.6, 6.3.1). 

4.2.2 Component communication 

Communication between HERALD components is decoupled from the application 
execution at either side, and is connection-less. Messages are placed on a queue at 
one side, and then dispatched and placed in a queue on the receiving side. They are 
then processed, and if  necessary, an acknowledgement is sent back in the same 
asynchronous manner. Control messages sent by the client to the source are always 
acknowledged, so that the client knows that its request has been received. In addition, 
the source can return information pertinent to the nature of  the control message 
within the acknowledgement. An example of  this is a client request to be sent the 
scheme of  an event type, or to carry out a registration. Clients label their control 
requests according to their own individual labelling criteria, and the label is returned 
by the source within the acknowledgement. 

The event and message data is sent over the network in a language and platform 
independent format, allowing easy portability of  HERALD across heterogeneous 
environments. 

Given the individual settings pertaining to event notification (e.g. event types, 
parameter templates, registration policies) that HERALD allows clients to define, most 
communications within the HERALD model are unicast-based. There are inherent 
problems with employing multicast for event dispatch. Due to the potential of  a 
client receiving thousands of  unwanted events per second, in multicast scenarios 
clients have to carry out local filtering and in general run on a more powerful 
platform. In addition, multicast across wide-area networks is not always possible due 
to technical restrictions, and there are a limited number of  multicast-addresses. 
Therefore, conflicts need to be managed. Reliability and security become difficult to 
address and require complex solutions (often requiring resorting back to unicast). 

4.2.3 Dynamic nature 

HERALD was designed for deployment in loosely coupled dynamic environments like the 
Internet. It is assumed that application components are developed independently of  
each other, and are likely to be under different management. An implication of  this is 
that components can be created and destroyed without notice, and will evolve over 
time. Component evolution spans basic core technologies like the event transport 
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itself  and the nature of  the event data available. Just as any software technology 
evolves and matures over time through new versions, likewise, one can assume that 
newer components may deploy newer versions of  HERALD. These may make 
available new functionality and support a different instruction-set in component 
communication.  

In a separate issue, the event types available at a source may evolve over time as 
the underlying triggering conditions change. For example, an event type 
CashWithdrawn(ATM, Customer), reflecting a bank’s Automated Teller Machine 
network, may evolve to CashWithdrawn(ATM, ATM_Owner, Customer) when the bank 
sets up an agreement with other banks to allow its customers to use their ATM 
networks. Alternatively, a LineDrawn event in a shared whiteboard application may be 
changed in a newer version to a different set of  parameters to reflect whether the 
drawing of  the line was via a mouse or a handheld pen.  

In a dynamic environment, it is not possible to recompile or even restart remote 
components when these changes occur, or otherwise assume that they will be 
modified to cope with the changes. HERALD addresses these issues through the 
provision of  a core set of  immutable inter-component messages providing reflection 
and versioning services. A component can therefore enquire as to the capabilities of  
any other component, the event data it provides, and the version of  the event 
interface it supports. Ideally, newer interfaces should support older versions but do 
not have to do so. For this reason, the schema defining the parameters attached to an 
event type are versioned, and the version identifier is constructed in relation to the 
source that defined each scheme in the first instance.  

Similarly, functional services that may be available at an event source and are 
represented by policies are also versioned. Likewise, all constructs that are 
transmitted in between components, like events, control messages, 
acknowledgements and schema, are tagged with the version number of  the HERALD 
event transport libraries that they were created by. 

An event client may ask for the scheme of  an event type from a source, and it 
may request a list of  the policies (be they related to registration, security, reliability, 
etc.) supported by that source. It may also enquire as to whether any particular policy 
is supported by that event source, and the reply from the source will list the versions 
of  the policy functionality supported if  applicable. 

4.2.4 Causality, distributed time, and timestamps 

In any distributed event-based system, there are two concerns related to time: 
• Lack of  global time – Each machine has its own clock, which may drift at varying 

rates. 
• Network delay – Events sent between machines will incur a delay dependent on 

machine and network loads. 

The theoretical problems of  timestamping events and synchronizing clocks across 
distributed systems are well known. Lamport first examined the problem of  
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distributed clocks and imposing global ordering of  events in [Lam78]. However, the 
full ramifications associated with wide-area scaling are not yet fully understood. 

Amongst the distinguishing characteristics of  a loosely coupled system is the 
variable and potentially vast number of  components in it. Because of  this, it is 
infeasible to employ several mechanisms that could be used to support event 
notification in a tightly coupled application. Vector clocks [Fid91, Mat88] or the more 
complex matrix clocks [FM82], which piggyback on each message exchanged between 
the event components a vector timestamp that aids identification of  causally related 
events, cannot be used because the timestamp’s size is linear in the total number of  
components in the system. 

Applications therefore have to accommodate approximate representations of  
time, such as assuming the existence of  a global clock even though such an 
assumption may result in inconsistent observations in different frames of  reference. 
A number of  approaches can reduce the negative implications of  this assumption, 
and are surveyed comprehensively in Dietz [Die96]. Commonly, clocks are 
synchronised within a local area network using the Network Time Protocol (NTP) 
[Mil91] that achieves an accuracy of  below 100ms even in wide-area networks. This 
can be coupled with data from the Global Positioning System (GPS) [AL95], 
which transmits Universal Time Code (UTC) signals that have an accuracy of  
between 0.1 – 10ms. By employing the notion of  an approximated time base [Kop92], 
this implies that all events that occur outside of  20ms from each other can be 
ordered.   

Because of  these issues, all HERALD timestamps are tagged with the identity of  
the component that placed them as well as an event sequence number attached by that 
component. The timestamps themselves reflect real time, and consist of  two long 
values that denote the number of  microseconds since 1st January 1970. 

These issues are discussed further in Section 5.2.6. 

4.2.5 Federators, action-injection and composition 

In [BBMS98], Bates et al. describe how event-based components can have an 
interface for action injection. This allows a client of  a component to invoke methods 
that inject actions into the component. By authoring a glue component, known as a 
federator, the actions to take upon event receipt can be specified through a set of  
declarative rules. 

HERALD enhances this through a flexible ‘building block’ model. There are three 
ways how this functionality can be achieved in HERALD: 

• In the basic HERALD model, an event client is effectively a wrapper around a non-
active component that exports a control interface. An event handler object is 
then written by the application writer, and this, upon being passed event 
notifications pertaining to a specific registration at a source, calls the appropriate 
methods on the underlying component (thus injecting actions into it). 
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• Alternatively, the application writer can use a pre-defined federator handler, and 
pass all the event notifications to it. Rule-based action rules, which determine 
what actions it should undertake, i.e. what component methods it can invoke, can 
then be issued to the federator. The federator applies its rule-based logic to 
whatever new events are received, and encapsulates a composite-event engine 
(see below). 

• In the third and most powerful variant, the event-client/federator and the target 
component can be disjoint software entities, running on the same or on different 
platforms. It is also possible to have one federator triggering actions in multiple 
components. Communication is carried out through a conventional RPC-based 
interface between the federator and a lightweight HERALD injection interface 
wrapper around the target component.  

Figure 4.5 illustrates the configuration applied by the second variant. The third would 
be represented similarly. As described in [BBMS98], rules take the following format: 

rule <name> <Event Expression>{Actions} 

where the event expression can consist of  a composite sequence of  events. Actions 
can therefore be triggered after the detection of  a complex pattern of  events. Figure 
4.6 illustrates how a federator can be used to compose a shared whiteboard 
cooperative application. Chapter 5 discusses the grammar of  composite event 
specification in detail. 

Federator rules call upon developer-supplied methods. By writing a method that 
triggers new events and using it to drive a HERALD event source interface, an event 
mediator can be built.  

It is therefore possible to compose components that register interest in events 
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from remote sources, apply some rule-based logic upon receipt of  notification, and 
generate new events of  their own. In HERALD, as in CEA, these are called mediators. A 
mediator has both an event client and an event source interface. It registers interest in 
events from remote sources, applies some computation relating to the events that is 
notified of, and generates events of  its own. A composite mediator issues new events 
that are triggered upon detection of  a sequence of  events, and whose parameters 
reflect the parameters of  the original constituent events. Composition of  events from 
primitive events into composite events is discussed at length in Chapter 5. A transforming 
mediator can apply some logic to augment or translate event data. A gateway service 
mediator works in similar fashion to map events from one event taxonomy to another, 
and act as a gateway between event domains. These components can all embed event 
repositories (see Section 4.3.3). 

4.2.6 Event brokers 

An event broker is analogous to a trader. Event sources publish details of  the events 
they have available with it, and clients can interrogate it to locate appropriate event 
sources. Note that this differs from a Message Broker as frequently defined in MOM 
middleware, where publishers pass their messages on to the broker, and the broker 
then forwards the events to the subscribers. As shown in Figure 4.7, in HERALD, the 
broker acts as a repository for the event taxonomies available at its local event 
sources, and its use is in bringing event clients and sources together, rather than 
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transparently decoupling their identities and acting as a go between for event 
dispatch.  

As described in Section 4.1.3, event types in HERALD are defined by schema 
which themselves have associated meta-data. Although in HERALD any event source 
can define a new event type (with its scheme) and advertise it, it is usually the case 
that event types are defined at an event broker, from where their identification details 
can be obtained by sources for adoption. Adoption means that an event source 
downloads the scheme for an event type from an event broker, and generates its 
events according to the scheme. Should it be asked to provide the scheme for its 
events to an event client, the source will forward the scheme it had obtained in the 
first instance from the broker. If  the scheme subsequently evolves at the broker (for 
example to contain additional parameters), the event source does not have to know 
or update its events. It can continue serving events under the old scheme, as both will 
be distinguishable by their version identifiers. 

Brokers can communicate and federate their taxonomy information. [BBMS98] 
describes a number of  ways in which event brokers can be federated.  

4.3 Applying event storage and retrieval  

This section describes how event storage and retrieval fits in within the infrastructure 
described. 

Current event-driven and message-oriented-middleware frameworks restrict 
event-clients to acquire only live information. An event client will only receive events 
that occur after it has established its connection to the event source or notification 
service and submitted some sort of  registration of  interest. 

As described in Chapter 3, persistence in most of  these systems is limited to 
having persistent message queues that can survive system failure, so that upon restart, 
the queue can be reinstated. The system can then proceed with dispatching those 
messages that were outstanding on the dispatch queue before failure. What an event 
repository enables, however, is storage of  part or all of  the message history 
generated at the message source. This enables several novel applications not 
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previously possible in messaging applications, some of  which were illustrated in 
Chapter 2.  

The advantages of  storage are more clearly outlined in some applications than in 
others. These advantages are more obvious in an environment where the messages or 
events are not intended for a specific target but are available for general 
consumption. Retaining highly specific peer-to-peer application messages in a tightly 
coupled environment is not as useful as retaining events in loosely-coupled 
distributed systems where event consuming-clients can come and go dynamically, and 
sources make no implicit assumptions about their clients. 

Event storage can be employed in two ways within an event infrastructure: 
• within event components where its use is implicit,  

By embedding an event repository within them for their interval use, some core 
components can provide enhanced services like buffering, store-and-forward, 
state querying, and history retrieval. 

• at dedicated storage nodes where it provides an explicit service. 
In the same way as there can be a mapping mediator that modifies messages, or a 
composite-event mediator that collect fine-granularity events and generates composite 
events, there can be a storage mediator. This component is a dedicated storage node 
whose sole purpose is to capture and store events. Other components can then 
query it to retrieve or replay event streams. 

A comprehensive description of  the feature-set of  an event repository and its 
interface are not given here, as that is the subject matter of  Chapters 5 and 6. 

4.3.1 Embedding of  storage capability within core 
modules 

The HERALD core modules that provide the functionality of  an event source and of  an 
event client can both embed an event repository. Both modules allow an application 
developer to activate retaining of  event histories and specify parameters that specify 
for how long, and how many, events are to be retained. Chapter 5 describes a 
comprehensive query and control interface that allows extensive interaction with a 
repository, and the HERALD modules use this interactive capability internally while 
exporting an API-based interface to the application developer.  

Event client module 
In the case of  a HERALD client module (see Figure 4.8), the events retained will be 
events that have been generated elsewhere and received by the client because of  
registrations it has carried out with remote HERALD event sources. The application 
can specify which of  the incoming event streams must be retained. Therefore, the 
events stored can be of  different types and originate from different event sources.  

By default, these events will be stored and time-stamped with their storage time, 
although their creation time, applied by their sources before notification, is retained, 
and can be utilised for querying. The former may not always be consistent with 
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global ordering across the different 
remote sources. As reflected in 
Section 4.2.4, apart from the 
problem of  remote HERALD 
sources having system clocks that 
are not in perfect synchronisation 
with each other causing shifted 
relative ordering, network delays in 
transmission can reflect a different 
temporal separation. While the 
latter can usually be ignored (except 
where high-precision replay is 
required), the former can be 
troublesome. Nevertheless, if  the 
application wants to retain a history 
of  the events as it received them, 
then the storage timestamp represents an accurate reflection of  that view.  

The incoming events can also be grouped in event sessions when stored. Sessions 
are described in Section 5.2.5, and are a means of  associating event instances of  the 
same and of  different types into meaningful groupings. An event instance may 
belong to one or more sessions, and retrieval and replay queries can be carried out by 
session rather than by event type. 

Event source module 
On the other hand, only locally sourced events are captured within a HERALD event 
source when this embeds an event repository (Figure 4.9). This enables the source to 
retain its own history of  the events that it has generated over time. Time-stamping 
and ordering in the event repository is not an issue here, as the events are being 
captured locally. In this case, as well, since the source may be able to generate several 

event types, the application 
determines which are stored and 
notified, and which are not 
retained beyond notification to 
interested HERALD clients. As 
with HERALD client module 
storage, the outgoing events to 
be retained can be associated 
through event sessions. As 
described in Section 4.2.1, event 
storage and retrieval within 
event sources is an implicit 
requirement for a number of  
HERALD’s more powerful 
features. A number of  policies 
can only be made available if  a 
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source contains an embedded event repository service. By requesting these policies, 
the client components cause the source module to interact with its event repository. 

4.3.2 Applications of  event histories 

This section discusses some of  the capabilities enabled by event storage within 
HERALD. Section 4.3.2 then illustrates where these capabilities are applicable. 

Retrieval and replay of  past events 
A HERALD event source equipped with an event repository can allow clients to be 
more selective in their queries as regards its history of  the events it has generated. An 
event repository goes beyond being a data store or buffer of  events, and supports a 
dedicated retrieval interface (see Chapter 5 for a discussion of  TEQL).  

HERALD clients can demand that they be forwarded event notifications, matching 
their registrations, which occurred in the past. Policy parameters determine whether 
this is done in batch or sequentially. These events are tagged as past events, and have 
both a transmission timestamp and the original creation timestamp.  

A HERALD event client can also request replay of  events from a storage-enabled 
HERALD source. In order to do this, the client can provide two time values to demark 
the interval of  activity to replay from. Alternatively, it can attach a TEQL query to its 
‘replay’ request. This enables a client to detail the past events it wants to know about 
in terms not only of  their content, as in their parameters, but also in terms of  when 
they occurred with respect to time, or with respect to occurrences of  other events. 
This ‘single shot’ registration, in that it is processed, handled and then deleted, 
processes the event history to locate the events that satisfy the query, and then 
initiates a replay at the same temporal separation as the original events occurred. The 
client receives the relevant event streams as if  they were live data. Replayed events, 
however, are tagged as such, and have both transmission and creation timestamps. 

Initialisation and reconstruction of  state 
Event information often reflects a change of  state of  some kind. In a location 
monitoring application, this could be a PersonMovement event, which occurs 
whenever an individual walks from one location to another. Alternatively, consider an 
event reflecting the share price of  a company reaching a certain threshold. These 
events were triggered by a change, and therefore any client application that starts up 
and registers interest in the change will have no idea of  the current value of  the state 
being monitored until a change in it takes place (unless it can obtain the information 
through some bespoke communication).  

If  the event denotes a change to a new value, being able to retrieve the last 
instance of  the event that occurred before the registration was affected, enables the 
client to initialise its data until it is notified of  a further change. This does not merely 
require the event source retaining the last occurring event instance of  any event type, 
since a HERALD client would require the last notification that matches its registration 
template. Therefore, different clients would require different past instances. 
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In other cases, re-initialisation of  state requires more than just one past instance. 
For example, an application might require all events since a particular time-point. If  
the application logic is based around processing external events, obtaining all the 
events again can enable it to re-instantiate its state following failure. Alternatively, the 
event client embedded within the application could have captured and retained all the 
input event streams, whereupon the application could re-apply them to itself  in the 
same sequence as it received them in the first instance. Obviously, this requires 
dedicated fault-tolerant logic within the application. 

In another scenario, individuals that join a cooperative work session late can have 
their cooperative application’s event client request all past events from the event 
sources attached to their colleagues’ applications. Their application would then be 
able to initialise itself  to a state consistent with their colleagues’. 

Encapsulation of  functionality 
When an event source is interrogated about the policies it supports, it can advertise 
that it can provide information on past events of  a particular type. Taking this 
further, an application-writer can decide to advertise that a source can provide past 
events that in fact it does not even provide live instances of. This can be achieved 
because the source can be made to search its local event history and locate composite 
events that consist of  patterns of  the events stored. Composite events are typed and 
structured just like primitive events, and can therefore be forwarded to clients as 
either normal event messages (also known as regular composite events), or as compound 
composite events, which also encapsulate the constituent regular events that made 
them up. 

Enhanced support for mobile and disconnected clients 
Conventional store-and-forward capability can be optimised by the source not having 
to retain and buffer separately event streams for each of  its clients. Instead, if  the 
data is to be forwarded upon a trigger or at a time value, it can be retrieved from the 
local event store encapsulated within the event source, just prior to its being 
dispatched.  

In this regard, HERALD allows clients to set up buffering policies where either all 
their notifications are dispatched periodically in batch (e.g. every fifteen minutes), or 
else their notifications are dispatched upon receipt of  a trigger message by the client. 
When a client first carries out such a policy-qualified registration, it is issued with an 
authorising certificate contained in the acknowledgement returned to it by the source. 
The trigger it then sends to obtain its data must contain this certificate in order to 
identify itself, and not only indicates that it is appropriate for the source to dispatch 
the events, but also specifies where to dispatch them to. This feature addresses the 
problem of  disconnected and mobile clients. These occur in three scenarios: 
• The first is that of  event clients that are in effect mobile agents or mobile 

applications, which retain state and carry on execution as they relocate from 
location to location.  
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• The second category is that of  applications on physically mobile platforms – 
such as applications running on handheld devices, embedded ubiquitous 
computers, or notebook and laptop computers. When these reconnect to a fixed 
network, they often do so at different endpoints and therefore obtain a different 
location identifier (e.g. IP address). Unless low-level transports transparently 
address this issue of  mobility, as proposed in the Mobile IP [IET99] draft, it 
needs to be addressed at middleware or application level.  

• The third category is conceptually similar, in that it consists of  all those millions 
of  home users that connect to the Internet on a non-permanent basis through a 
telephone line to an Internet Service Provider (ISP), and are issued with a 
different IP address each time. 

4.3.3 Storage-enabled event components 

Using the storage capabilities inbuilt within HERALD’s event source and event client 
modules, a number of  storage-enabled event components can be built. 

Monitoring Event Source 
A monitoring event source is an event source that monitors some hardware or software, 
both here termed a device, and generates events to reflect activity within the device. 
This is the most common component in any event infrastructure. Often, the event 
source is structured like a wrapper around the entity being monitored, and acts like a 
bridge between its proprietary interface and the rest of  the event-driven system. An 
example is the HERALD-based Active Badge Event Source that is illustrated in 
Section 7.3. This is attached to the software driver that interacts with the networking 
hardware of  the Active Badge sensor network. While other applications that wish to 
receive badge sightings have to implement the complex interface of  this software 
driver, HERALD client components need only connect to the Active Badge Event 
Source and register interest in sighting or movement events. Another example is an 
email reader event source that monitors the receiving and sending of  email, and 
generates informative events that reflect information about the emails sent.  

By embedding an event repository within the source module, the event source 
can retain, for some time at least, a history of  the activity that has taken place in the 
application it is monitoring. This has three primary purposes: 
• Initialisation of  state. As described in Section 4.3.2, remote clients can request to 

receive details of  past device activity that they may require in order to initialise 
their data structures, in anticipation of  future notifications. 

• Analysis of  device performance and activity. An application attached to the event 
source, or alternatively a remote client, can use the embedded history to analyse 
activity within the device being monitored. It can review the frequency with 
which events have been generated, locate recurring sequences of  events, and 
summaries of  activity that may be browsed by a user can be generated. The data 
may be used by service management software to modify the functionality of  the 
device, or to start alternative instances of  it. 
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• Enhanced service provision. Remote clients can specify that they only want updates 
on the device’s activity at periodic intervals, or that they do not want to be 
notified of  repetitive events.  

Mediator components 
HERALD mediators have both an event client as well as an event source interface. 
They are notified of  events, process them, and generate new events. For this reason, 
they can store either the incoming events on the client side, the generated events on 
the source side, or both. If  both their client and source modules activate event 
storage, they share the same event repository. This is illustrated in Figure 4.10. 

Gateway mediators are like proxy event sources, in that they register interest in 
events from external domains, and then forward them to interested parties within 
their local domain. By retaining events within an embedded event repository, they 
provide their local clients with the same storage service as they would have if  they 
communicated directly with the remote event sources. 

Composite and transforming mediators consume events and generate new events of  
different types. Composite mediators parse the incoming event streams to look for 
predefined event sequences. When they detect such a sequence they then generate a 
composite event, which to all intents and purposes can be identical to a normal 
primitive event. Transforming mediators apply some application specific logic to 
translate events from an event taxonomy to another. Both types of  mediator can 
embed an event repository, and utilise their event histories to fine-tune their 
behaviour as well as enable historic event retrieval services. 

Storage mediators 
A storage mediator is a dedicated storage component. The aim of  a storage mediator 
is to collect and store events. It registers interest in events and retains them once they 
are notified to it. It can be dedicated to one application, in which case it is likely to be 
attached to such an application. The application then uses TEQL to access the stored 
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events. Otherwise, it can serve a number of  remote applications. These can either 
interface with it through some proprietary interface or through an event source 
interface. See Section 7.2 for more information on this topic. 

4.3.4 Additional applications within message-oriented-
middleware 

Although this discussion has focused on providing an event-based infrastructure that 
embeds event storage, an event repository could also be embedded within a MOM 
product. 

Most benefit can be derived from embedding an event repository within a 
Message Broker that provides publish/subscribe and message transformation 
services. Subscribers can then ask to retrieve past information, and could carry out 
queries on messages generated up to some threshold in the past. The Broker itself  
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could use the history at its disposal to generate message digests, which can 
themselves become a service that clients could subscribe to. Periodically, the broker 
would analyse the messages generated within a recent window of  time and produce a 
meaningful summary. This could then be made into a message itself  and propagated 
to interested subscribers. Since these messages could be retained themselves, future 
subscribers could request copies of  past ones that they are interested in. 

By attaching an event repository to the MOM transport itself, the transport could 
retain a history of  the messages that are propagated by it. If  the MOM is not 
structured around a centralised message delivery service, event storage could be 
embedded at the MOM modules at the sending and receiving sides. 

These two scenarios are illustrated in Figure 4.11. 
A MOM product can use an event repository to store events that reflect meta- 

data on its activities. Specifically, it can store events that track the flow of  transactions 
within the message transport. 

4.4 Summary 

HERALD is a general-purpose event-based infrastructure that embeds event storage 
and retrieval. It endorses an event model where events are of  a defined type and have 
typed parameters. Event types can belong to type inheritance trees, and their schema 
are versioned in order to support schema evolution. HERALD assumes deployment in 
a dynamic environment where components can come and go, and can be modified 
independently of  each other.  

Event storage can be embedded at various locations within HERALD modules. It 
supports retrieval and replay of  past events, regeneration of  application state, 
support for mobile and disconnected clients, as well as specific services within 
specialised mediator components.  

The main components of  the infrastructure presented were built and deployed in 
a number of  application scenarios. Some of  these are illustrated in Chapter 7. 
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Chapter 5 

Querying Event 
Information 
As discussed in Chapter 2, a generic event-storage service is applicable within various 
application domains. The event information deposited into an event repository needs 
to be accessed, reviewed, and retrieved in different ways. These are specific to the 
application, and depend on the activities represented by its event information. This 
chapter discusses the interfacing capability required in order to address these diverse 
requirements. 

In order to achieve this, the event repository proposed supports an interface that 
supports: (1) customisation, configuration and specific event operations, and (2) the 
execution of  queries in an event query language called TEQL that explicitly supports 
the temporal nature of  events and defines a temporal formalism. This passing of  a 
TEQL query though a programming interface is analogous to Microsoft’s ODBC 
[Mic99d] and Sun’s JDBC™ [Sun99b] database interfaces. Since several important 
research issues are addressed in the language proposed, this discussion focuses on the 
query language, while Chapter 6 describes the remainder of  the interface. 

Section 5.1 introduces the temporal model endorsed by this discussion and 
reviews the temporal entities recognised and their relationships to one another. 

Section 5.2 then identifies the querying requirements of  an event query language 
by examining the peculiar nature of  event data and suggesting typical queries that 
one needs to address. The properties and temporal characteristics of  the language are 
discussed. 

Since there have been numerous research initiatives to develop languages that 
emphasise the notion of  time, Section 5.3 surveys the main contributions from a 
number of  research domains that are relevant to this discussion. 

Section 5.4 then presents TEQL and describes its primary constructs. This 
language is designed to satisfy the query requirements of  an event repository, and 
allows the representation and treatment of  qualitative temporal relations between 
events, composite events and temporal intervals. It can also be used for powerful and 
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generic data access, as it is a superset of  OQL [CB97], which is itself  a superset of  
SQL-2 [ITI98].  

In conclusion, Section 5.5 evaluates TEQL by demonstrating its expressive power 
through a number of  examples. 

5.1 The temporal model 

It is useful to start this chapter by defining the temporal model and entities that will 
be used in the remainder of  the discussion. 

Reviewing the definitions given in Section 4.1, an event is a message that denotes 
the occurrence of  an activity of  interest, and belongs to an event type. An event type is 
analogous to an object class, and it encapsulates a number of  parameters or attributes. 
While an event instance itself  usually reflects the occurrence of  some activity, its 
attributes uniquely identify that activity by representing its parameters.  

Time can be modelled and reasoned about in several ways, with most approaches 
differing on the definition and relationship of  time points to time intervals. Allen 
describes the main models in [All83] and [All91]. In this document, an event is taken 
to occur at a precisely determined point in time, a time-point, and has no duration. 
Time is assumed to consist of  an infinite number of  linearly-ordered discrete time-
points, each of  infinitesimally small and negligible duration. This is in contrast to 
other formalisms where events can span a determined amount of  time. Because of  
this, every two events can be either temporally ordered, or else deemed to have 
occurred simultaneously. The latter can be applied if  the events fall within some 
minimum time separation from each other over which clock inaccuracy becomes a 
factor. 

A time interval I is a set of  time-points between a starting and an ending time-
point, where the start-point and all points between the start and the end belong to I.  
It is realised that this can be counterintuitive. For example, consider the situation 
where a person moves from a room to another. To describe a change of  location one 
can have an interval of  time during which the person was in the first room, followed 
by an interval where they have moved to another room. The question arises as to 
whether these intervals are open or closed; that is what is the nature of  the time 
point between the two. If  the intervals are open, the state at this point would be 
undefined, while if  they were closed, it would belong to both. A pragmatic although 
artificial compromise is to adopt a convention where an interval is closed in its lower 
end and open on its upper end. 

A primitive event is an event that is generated at some event source in response to 
some device’s activity, and cannot be broken down into any finer-granularity 
constituent activity. 

A composite event is an event that is generated to denote the presence of  a 
particular sequence of  events. It is defined as having occurred when the whole event 
sequence that defines it occurs, this being equivalent to the timestamp of  the event 
that concludes the sequence. Recall that composite events can be either regular or 
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compound composite. A composite event still occurs at a particular instant and has no 
duration, however, a compound composite event can be transformed into a time interval to 
apply queries over the duration of  the sequence that it matches. 

Primitive and composite events can be related between themselves or to each other, 
and both can be related to fully defined, or vaguely specified, time intervals. The latter 
can be user-defined or be calendar definitions. 

An event A can occur before an event B, whereupon B is said to be after A or to 
follow A. Both terms, after and follow, are used to distinguish different query semantics 
within Section 5.4. Events cannot overlap as they have no duration. 

Because intervals have duration, relationships between them are more elaborate. 
There are thirteen relationships possible between an ordered pair of  intervals, and 
Table 5.1 shows the main ones (not including the inverses). 

Finally, a timeline is the range of  timepoints over which a query or operation is 
considered. In the case of  event histories, this can range from -∞ to the present, 
NOW. In practice, this is restricted by the fact that the history will have a specific 
beginning, and NOW is more likely to be a few seconds behind the current time due 
to the indexing and storage requirements of  the event repository’s storage subsystem. 
In this discussion, it is assumed that there is a notion of  global time in the system 
through reasonable clock synchronisation with Universal Time Code (UTC). 
Section 5.2.6 discusses the implications of  this assumption. Therefore, the values of  
timepoints on any timeline correspond to values of  real time. This is desirable since 
query operations in several application domains would be made by users in terms of  
real time. 

5.2 Querying requirements 

This section first recalls the application classes where the repository is applicable and 
then reflects on the nature of  queries that one needs to be able to support. It then 

Relation Pictorial Example 
A before B AAA BBB

A equal B AAA
BBB

A meets B AAABBB

A overlaps B AAA
BBB

A during B AAA
BBBBBB

A starts B AAA
BBBBB

A finishes B AAA
BBBBB

Table 5.1 
The relationships possible between ordered intervals, less their inverses. 
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defines the properties and characteristics of  an interface language for an event 
repository.  

5.2.1 Applications 

As described in Chapter 2, an event repository can be used in a large variety of  
application domains. It is useful to categorise these as: 
• Loosely-coupled applications employing general-purpose event-driven infrastructures  

Event-driven applications are constructed of  active components that act, or 
execute code, in response to being notified of  relevant events. These components 
do not need to be aware of  each other and of  the general structure of  the 
application, as it is event notifications that drive computation within the 
environment. Events histories can be used at event sources, event brokers and 
gateways, both implicitly and explicitly. Chapter 4 described the role of  event 
storage within these environments in detail. Access to stored event information 
tends to be dynamic and varied, with flexibility required in defining queries over 
multiple types, event instances, and composite event sequences. 

• Applications that employ bespoke message-propagation mechanisms for communication 
These are applications that adopt a bespoke messaging system in order to drive 
their execution. It is likely that their components are aware of  the general 
structure of  the application and are dependent on each other. Centralised control 
structures are more predominant. Access to stored event information tends to be 
statically defined and of  a bespoke nature within the application itself, unless the 
event trace is being analysed by an external application. Examples are simulation 
software, windowing systems, collaborative environments, and usability capture 
software. 

Some applications demand straightforward conventional access to persistent event 
information, as they would with a conventional relational or object-oriented database 
system. In this context, the primary benefit to them of  using an event repository lies 
in the high-speed event deposit performance provided by the store.  

Others can benefit by being able to replay or retrieve stored event sequences (and 
have these injected back into their components), in order to review activity, analyse 
past computation, or rebuild lost state. The more powerful the granularity with which 
they can define and construct the sequences to be replayed, the greater the advantage 
they can extract from using an event repository service over a conventional database.  

5.2.2 The nature of  queries on event histories 

The dynamic nature of  execution within asynchronous event-driven environments 
implies a lack of  predictability in the stored event data. It becomes harder (and is 
very limiting) to only be able to qualify the stored event information through 
relations on its content (as in languages like SQL or OQL). Event information 
differs from other data in having a temporal aspect. This tagging of  an event with a 
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creation or deposit timestamp, as well as its occurrence in time relative to other events or 
temporal entities, allows a completely different type of  query reasoning to be applied 
to event data. An event can be qualified not only by its content but also based on 
when it occurred, and how that temporal position relates to other events’ or to a 
calendar. 

While an event repository should be accessible like any conventional database for 
typical queries like: 
Ex.1  “find the event of type ServerCrash where the server was the ActiveBadgeServer.” 

it also ought to be possible to search on the basis of  the temporal sequencing of  the 
events. The following natural language sentences indicate the wide scope of  temporal 
expression that one can come across in queries relating to event occurrences: 
Ex.2  “find all occurrences of Alarm A being followed by Alarm B, and the web server 

crashing, within 5 minutes, and without Alarm C having occurred in between” 

Ex.3  “Replay all sightings of John from when John was present in the Meeting Room, 
and then sometime within 30 minutes John was seen in the corridor with Giles, 
until …”  

Ex.4 “Locate the text that was displayed on the whiteboard by Jean during the 
collaborative session on Monday, given that it occurred while a video on 
Presentation Skills was being played.” 

Ex.5  “Replay all the display events (mouse movements and clicks, key-presses) which 
occurred within the interval when both Netscape Navigator and Microsoft Internet 
Explorer were being used concurrently, and the latter was displaying Tim’s 
homepage.” 

Example 2 involves a search for a sequence (or pattern) of  events, where these would 
be alarm and warning events probably generated by one or more fault monitoring 
components in a distributed system. 

Example 3 illustrates the problem that one can encounter when trying to map 
real-world activities to computer activities. It is possible to define this query solely in 
terms of  primitive events, but such a definition would be complex and unwieldy. 
Being able to define temporal intervals, and then reason with regards to them, makes 
it much easier to write. One thus first wants to locate the interval during which John 
was in the Meeting Room. An easy way to do this with Active Badge location 
technology (although not entirely accurate), is to look for the first sighting of  John in 
the Meeting Room (the start of  the interval), and then denote the first subsequent 
sighting of  John outside that room as the end of  the interval. One then wants to 
make sure that this interval is the correct one by searching for John being seen in the 
corridor with Giles within 30 minutes from any part of  the first interval. This second 
occurrence can be defined as the start of  the intersection of  the intervals during 
when John and Giles were in the Corridor respectively. Alternatively it can simply be 
defined as the sequence of  a “John in corridor” sighting followed by a “Giles in 
corridor” sighting without John being seen anywhere else in between.  

Example 4 is similar to the previous example, although it illustrates the use of  
events relating to drawing and presentation activities within a collaborative shared-
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space environment. The playing of  the video can be mapped to an interval. There is 
also a relation to a pre-defined calendar entity (e.g. ‘Monday’). 

Likewise, Example 5 deals with an application-based scenario, and represents a 
query typical of  someone working with a usability monitoring tool or a thin-client 
session recording utility as described in Section 7.4. Three intervals are being related 
to each other: the running timeframes of  the two web browsers and the interval 
during which the homepage was displayed, from which a new interval is defined. 
This is then used to initiate a replay. 

5.2.3 Language properties 

No repository query language can match the above natural language sentences for 
expressive power. However, the above expressions serve to demonstrate that a 
language that allows interfacing with stored event data within an event repository 
must address the following issues: 
• Flexibility – It must be possible to define queries rapidly and in a flexible fashion, 

e.g. interactively as well as through embedding within application components. 
• Intuitive – One should use language keywords and operators that offer the right 

compromise between the clarity of  natural language constructs without being 
excessively verbose. Words with an already accepted meaning, e.g. an informal 
meaning, should not be given an additional meaning. 

• Conventional constructs – It is desirable to support conventional querying capabilities 
as available in standard database query languages (like SQL and OQL). If  
excessive specialisation comes at the expense of  generic data access, the language 
is unlikely to be suitable as the interface to a general-purpose store. 

• Type-independence – Most database query languages allow retrieval of  data of  a 
single type in any query operation. Support for operations that span several event 
types in any one query is desirable. 

• Composition of  events and derivation of  new views – As defined within the temporal 
model, one needs to allow composition of  multiple-type event instances into 
composite events. These could be saved to generate a new derived event data-set 
that reflects a coarser-granularity view of  the original event data. Query operators 
that range over both primitive and composite events are required. 

• Temporal context – Type-independent specification of  temporal relations between 
event instances should be supported, and a consistent formalism for time and 
temporal entities (calendar, or otherwise) must be available. 

• Standard type system – New and novel query languages require time, investment, 
and dedication on behalf  of  organisations in order to train personnel. Software 
modification is expensive and undesirable. Due to these pragmatic constraints, a 
language that is close to an industry standard and supports a standard data model 
(like the OMG or the ODMG’s data models) is more desirable.  
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5.2.4 Main temporal characteristics  

While Section 5.1 has given the temporal formalism underlying this discussion, the 
examples in sub-section 5.2.2 have hinted at the temporal queries that may be carried 
out on event instances. With this information, one can now outline the main 
temporal characteristics required of  an event query language: 
Temporal relativity between events – Relative comparisons between event instances based 

on the events’ temporal position along a common timeline should be supported, 
e.g. “A occurs before B”, or “B was deposited before A”. 

Temporal relativity between events and calendar entities – It is useful to support relative 
comparisons based on an event’s temporal position to user-defined or system 
defined calendar entities along a common timeline. E.g. “A occurs on Monday” 
and “B occurs during term-time”. 

Imprecise Sequencing – The representation should allow significant imprecision. Most 
temporal knowledge is strictly relative (e.g. “A is before B”) and has little relation 
to precise time values or dates. 

Event composition – By identifying a pattern of  events that are temporally related, one 
can define a composite event, which is taken to have occurred when the last 
element making up the pattern occured. 

Variable temporal granularity – The representation should allow one to vary the grain of  
temporal specification, i.e. when relating events to real time, one may need to 
consider their occurrence with regards to (e.g.) hours, minutes, seconds, or less.  

Intervals – Elaborate temporal comparisons are not possible without a definition of  
temporal intervals. The representation should define an interval with respect to 
the temporal model adopted, and support relating of  intervals to themselves, to 
primitive and composite events, and to calendar entities. 

It is important to note that throughout this dissertation events have been considered 
as a “point in time” occurrence, where each event instance is inherently different 
from any earlier or subsequent instance of  the same type. This is an important 
distinction as it implies that there is no implicit notion of  a state for an event. This 
would otherwise evolve over time as event notifications of  the same type occur. It is 
possible to model the notion of  state evolution but in this context this ought to be 
specific to applications. This should therefore be supported at an application-level, 
and it is not beneficial that there be implicit support for it in the query interface.  

5.2.5 Event sessions 

At this point it is useful to introduce the notion of  event sessions.  
An event session provides a context with which to associate related event 

instances, and is particularly useful for limiting the scope of  retrieval and replay. This 
grouping of  related event instances can consist of  events of  the same or different 
types from one or more event sources. Any type of  event can be associated with, or 
belong to, a session, and the same instance can belong to multiple sessions.  
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A session is set up by an application (or that application’s representative repository 
client, as described in Chapter 6). A session therefore enables an application to define 
a context or relation between events it deposits in a repository, so that it can then 
retrieve them at a later stage based on that context. 

An example is a person’s diary containing all events pertinent to their activities, or 
a chronicle of  every individual’s movements while exiting the building in an 
emergency drill. Another example would be associating the line drawing activities of  
an individual user within a whiteboard application through a session, as illustrated by 
Figure 5.1. A replay on the session context would then enable only those events to be 
replayed back and injected into the whiteboard. However, at the same time, those 
events could also be associated with another session that also encompasses events 
relating to drawing activity by other remote users.  

5.2.6 Event timestamps 

HERALD event instances deposited into the event repository have two timestamps: 
• Creation timestamp 
• Deposit timestamp 
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The creation timestamp is applied at the source where the event was created, while the 
deposit timestamp is attached automatically to an event instance while it is being queued 
for deposit into the event repository. When the event repository is attached to an 
application that is generating the events that are being stored, or when it is embedded 
within an event source, there is no need to distinguish between the two timestamps. 
In fact, in this case the creation timestamp can be set to a null value. 

When, however, the event repository resides in an application component that is 
a remote observer of  events generated elsewhere, the situation is different. In an 
ideal world, these values would be identical, or at least the difference between them 
would be constant. In practice, however, several factors can contribute to prevent this 
from being so. As discussed in Section 4.2.4, in a distributed system there is no built-
in notion of  a global clock, and each machine has its own clock that may be out of  
synchronisation with the other machines’ clocks, and drifts unpredictably. 
Furthermore, once an event is generated and timestamped, the event is queued at 
that source, dispatched, queued again at the recipient, and finally passed into the 
repository for storage. The time spent in being transferred over the network is not 
constant as the network latency varies according to the network load and, in case of  
an IP-based network, the route taken. 

One can ensure that events from a particular source are correctly ordered with 
respect to each other at the event repository’s location by providing a sliding time 
window for observation, into which incoming events are insertion-sorted. This can 
be achieved either by relying on their creation timestamp or on a scalar counter 
attached to them by their source.  

The same cannot be guaranteed of  events from different sources, since their 
creation timestamps are insufficient for ordering due to their having been produced 
at potentially unsynchronised clocks. In a distributed application where processes 
communicate using messages, vector [Fid91, Mat88] or matrix [FM82] logical clocks 
could be used to enforce global ordering of  messages. In a general-purpose event-
based system, however, these are not easily applicable because communication is 
mostly asymmetric and the number of  interacting components is variable. 

What is definite is that the deposit timestamp reflects the order and temporal 
separation of  the events as received, or else accepted, by the client or observer where 
the events are to be stored. This therefore reflects the viewpoint of  the application 
interaction as seen by the event observer. In most cases, NTP [Mil91] coupled with 
modern computing hardware, provides for clocks to be within 10ms of  each other 
and of  UTC anyway. This, in conjunction with a sliding time window of  application-
specific length for event observation in order to counteract network delays, is enough 
for most observations. For this reason, all query operations within TEQL are carried 
out with respect to the deposit timestamp and its implied ordering. 

If  the observer is concerned about guaranteed ‘global-time’ event ordering, and 
NTP is too imprecise to enable ordering the events being received (maybe because 
too many events are within 20ms of  each other [Kop92]), two approaches are 
possible: 
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• the application can provide a virtual time mechanism [Mat88], on top of  the 
event propagation protocol,  

• rather than locate an event repository at a centralised location where it acts as a 
remote observer of  events, multiple event repositories can be located in close 
proximity to the event sources, and their traces subsequently merged through the 
repository federation facility described in Section 6.5. 

This second approach is recommended by Dietz from her comprehensive study of  
gathering and using time measurements in distributed systems [Die96].  

As already qualified by Section 4.2.4 for HERALD, all timestamps in the event 
repository consist of  two parts. One is the component identifier of  the event 
component where the timestamp was attached, while the other consists of  two long 
integers that denote the number of  microseconds since 1st January 1970. This 
associates the system’s notion of  global time with real time, which is desirable given that 
most user-specified queries are envisaged as being with respect to real time. 

5.3 Related work  

The literature on languages that emphasise the notion of  time is rich and growing. 
There have been numerous research initiatives to develop and implement 
temporal/historical query languages. The main areas where such query languages have 
been investigated are: 
• Event languages within event-driven environments 
• Event languages within Active Databases 
• Temporal/Historical Databases 
• Artificial Intelligence 
• Natural Language Processing 
It is only recently that middleware infrastructures, such as those described in Chapter 
3, have proposed and deployed general-purpose event notification services [OPSS93, 
GKP98, OMG97, OMG98a, SCT95]. However, most of  these can notify primitive 
events only, and as such do not support specification of  composition of  events. 

Researchers at Cambridge were amongst the first to propose the publish-register-
notify paradigm [BBHM95]. The Cambridge Event Architecture (CEA) (Section 
3.3) enables distributed applications to be composed of  heterogeneous software 
components through registration in primitive or composite events, and supports 
mobility, multimedia, and group interaction in collaborative environments [BHB96, 
BBMS98]. Mediators provide the means to compose events. Within this context, 
Hayton proposed a language for expressing composite event semantics [Hay96]. 
CEA has recently been enhanced through the COBEA implementation [MB98], 
which extends the CORBA Event Service [OMG97] with the publish-register-notify 
paradigm, and provides an implementation of  an evolution of  Hayton’s language.  
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Bates and Nelson have presented a composite event specification language 
[Nel98] that not only supports the basic happened-before relation in defining a temporal 
ordering of  events but also supports multiple consumption models (see discussion in 
Section 5.4.6). An implementation of  this language was deployed in the context of  
location- and context-aware computing. Use of  this language is also demonstrated in 
[BBMS98], where it is employed to trigger actions within event federators (see Section 
4.2.5) according to the CEA paradigm. This is in analogy to Event-Condition-Action 
rule use within active databases, but applied to a distributed dynamic general-purpose 
context. As documented in Chapter 4, HERALD is an evolution on the framework 
presented in [BBMS98] and encompasses the Bates composite event engine for 
detecting and manipulating composite events. In addition, HERALD enhances the core 
CEA paradigm by providing persistence related registration policies, possible due to 
its source components embedding an event repository. 

EVE [TGD97, GT98] models a workflow enactment system as an event-based 
middleware layer. The workflow is mapped to services and brokers. Distributed 
events are composed into composite events and drive the actions to be taken by 
event brokers. EVE uses the chronicle consumption model (or parameter context) to 
interpret workflow notifications. Yeast [KS95] provides temporal connectives in 
order to enable monitoring of  compound event patterns in the context of  server 
monitoring. Other notable examples of  event composition languages are GEM 
[MS97], which evolved into a general-purpose event composition language from a 
distributed systems monitoring background. Trinity College Dublin’s ECO model 
[SCT95] does not support composite events, but it enables post- and pre- constraints 
to be attached to the notification of  events. 

 Composition of  events was first investigated within active database systems 
[DBM98, GJS92, CM93, WC96]. This took place within the context of  Event-
Condition-Action (ECA) rules. These rules enable a database action to be triggered by 
the occurrence of  an event or a specified sequence of  events. The events supported 
and monitored for internally by an active database can be: (1) events that denote 
specific database activity, 2) timing/temporal events, and (3) user-defined events, 
which usually reflect some change in state of  the database’s data. From the work 
illustrating architectures for composite event recognition within active databases, 
representative examples are [GJS92, GD93, CKAK94]. HiPAC [Day88] focused on 
general-purpose ECA rules and provided basic mechanisms for composite event 
specification. Four consumption models and a formal definition of  event 
composition were introduced within Snoop [CKAK94]. Compose [GJS92] and Ode 
[JS94] both provide complex event composition.  

Some researchers have attempted to extract this functionality from within the 
internal architectures of  active databases and make it available in a more general-
purpose form [GKBF98, KK97]. This is analogous to what event-driven systems like 
CEA have achieved by addressing distributed systems composition and interaction 
directly. 

Most of  the languages discussed above are aimed at real-time detection of  events, 
and are thus not optimised for operating on a full event history such as that provided 
by an event repository. Queries cannot be constrained by periods of  time or calendar 
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entities, and cannot be applied to event streams that have occurred in the past. In 
addition, there is no support for expressions based on the end-points of  composite 
events, and on notions of  temporal interval relations, as proposed in Allen [All83]. 
These are required for expressiveness in real-world complex queries. 

In temporal and historical databases, whenever a data element is updated, its previous 
value is retained, and the state of  the element evolves. Looking back in time though 
the database, it is possible to review and reason on the value of  any element at any 
time. Temporal and historical database query languages support only very limited 
forms of  temporal reasoning, as the emphasis in these languages is to enable 
reasoning based on previous values of  the state of  a data element, and on 
determining the overlap in time between states of  different elements. There is thus 
no support for the notion of  sequencing between different data elements. 
Nevertheless, aspects of  these languages are of  relevance to this research. Some of  
these languages, in particular SQL-based approaches like TSQL2 [Sno95], support 
Allen’s like qualitative relations in queries [Sno93, TCG+93]. 

Of  interest is Jagadish et al. [JMS95]’s Chronicle Data Model. This model 
addresses the requirement of  transaction recording systems to store transaction 
records in temporal sequences. A Summarised Chronicle Algebra (SCA) is 
presented that can be used to define persistent views over the sequences. 

Approaches in artificial intelligence (AI) and natural language processing focus on high-
level user-friendly formalisms for representing and reasoning on time. Many AI 
treatments pay most attention to the treatment of  temporal quantifiers (like once and 
every) and e-Time (during some activity, etc). Examples are [Lad86a, Lad86b, Lig91, 
MKL95]. The aim behind these treatments is to develop a form of  temporal 
reasoning for checking the consistency of  a knowledge base of  temporal facts, and 
for deriving new temporal constraints from it. Following Allen’s proposals [All83], 
most of  these provide algebraic approaches in which a specialised formalism is 
introduced to represent temporal information. These languages tend to be very 
expressive and are closest to natural language expressions. However, they are ill suited 
for application in information retrieval and querying because the high-level nature of  
their constructs is not easily mapped to fine-granularity information sources like 
events. Nevertheless, an exciting future research area will consist of  investigating the 
mapping of  these AI-derived languages onto a query language such as that proposed 
in the next section. 

5.4 The TEQL language 

This section proposes the basic elements of  a language called TEQL that addresses 
the requirements identified earlier. TEQL encapsulates OQL [CB97] within it, but is 
more than just a superset of  OQL. TEQL allows queries on content to be defined in 
terms of  OQL constructs like the select-from-where statement. However, such 
reasoning is unwieldy when it comes to comparing event instances to one another, 
like with respect to those events that precede or follow them. In order to address this 
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lack of  ease in specification within OQL, TEQL allows specification of  content 
templates.  

This section emphasises the constructs and operators of  TEQL rather than OQL. 
As the data model within TEQL is compatible with OQL’s, OQL constructs and the 
new TEQL constructs can be seamlessly used together. For a complete definition and 
discussion of  OQL, the reader is referred to Chapter 4 of  [CB97]. OQL was chosen 
as the basis of  a query interface to the event repository because: 
• it is a powerful database query language that can satisfy “conventional” access 

requirements relating to content queries: 
• it is an industry-defined standard for interfacing to object-oriented databases, and 

its object-oriented extensions can be applied to the inheritance-based event 
model presented in Section 4.1, 

• it is largely a superset of  SQL-2 (or SQL-92), which is the most widely deployed 
database query language, 

• it simplifies interfacing legacy and conventional non-messaging applications to 
the event repository, 

• there is extensive experience and investment by companies in OQL and SQL, 
and this consideration needs to be applied against the case for defining a 
completely new query language. 

The only important feature of  OQL that is not applicable here is object method 
invocation. This is because the event ‘objects’ stored do not define any methods.  

The temporal functionality of  TEQL takes as its basis the query capabilities 
described in [Nel98]. This composite event language is restricted in its power because 
it does not have access to a complete history and can only carry out real-time 
monitoring. TEQL is able to take the expressiveness further because it can look 
forwards and backwards across a complete timeline.  

5.4.1 Creating events 

There are two ways of  depositing events into the event repository. Both require the 
scheme of  the event type to have been defined in advance.  

In the first case, an event stream for each type can be opened to the repository, 
and event instances passed in (as they are received) through the repository server’s 
command interface (see description in Chapter 6). 

The alternative is to explicitly specify event instances for depositing as follows: 
deposit <event type> (<creation timestamp>, <source component id>, 

[<parameters>]); 

All HERALD event instances encapsulate a creation timestamp and a source component 
identifier. These refer to when and where the event instance was created, respectively. 
If  the event is being created by the component at the interface itself, then the first 
two parameters may be omitted. In any case, the primary deposit timestamp of  an event 
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is implicitly set by the event repository upon insertion of  the event instance. An 
example of  this would be: 

deposit PersonMovement(“Mark”, “Room4”); (1) 

and if  the event instance is also being attached to one or more sessions, like for 
example, to two sessions called MarkDiary and PersonnelLocation: 

deposit inSession MarkDiary, PersonnelLocation PersonMovement(“Mark”, 
“Room4”); (2) 

The unqualified event type name PersonMovement can be used only if  it is clear in the 
current context, i.e. if  there is only one definition for it in both the inheritance and 
evolution trees (see Section 4.1). If  the former case applies, then it can be specified 
as: 

deposit Event.LocationEvent.GPS_Sighting (…) (3) 

while in the latter case, the following is required: 
deposit Event.LocationEvent$<component><version> 

.GPS_Sighting$<component><version> (…) (4) 

This fully qualifies the scheme of  an event type by specifying the components that 
defined it, and the version of  its definition within the context of  that component. 
The <component> and <version> identifiers can be obtained through the repository’s 
API. 

5.4.2 Temporal primitives 

The following three sub-sections introduce the four temporal entities supported by 
TEQL. They are primitive events, composite events, intervals, and timepoints. 

Event templates 
Whereas OQL relies on specifications such as: 

select A 
from PersonMovement A 
where A.personName = “Mark” (5) 

in order to locate events of  the type PersonMovement(“Mark”, ?), TEQL also allows the 
specification of  event templates (as in Nel98). Templates are more straightforward to 
define, are analogous to registration templates (as in HERALD), and enable multiple 
compositions to be drawn up more easily. This will be demonstrated in the following 
sections. A template specification equivalent to the above would be: 

match PersonMovement(“Mark”, ?) as A; 
retrieve A; (6) 

where the first parameter’s value must be equal to the literal “Mark”, the second 
parameter can have any value, and the variable A is used to denote the resulting event 
template. As used in example (6), the retrieve clause searches for instances matching 
the template over all the repository data. More information on this clause is given in 
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Section 5.4.7. Each parameter needs to be either a literal value, an expression or 
function that computes to a literal, or the symbol ?. 

The power of  template matching starts to become evident when temporal 
sequencing is introduced into a query. One can deduce when a computer terminal 
has been logged out from by its user for the evening by: 

match TerminalLogout(“Mark”, “Room4”, ?) as A; 
match PersonMovement (“Mark”, “Lift”) as B; 
match (A before B within 15min) as … (7) 

where in this context the qualifier before is syntactically analogous to which occurs before. 
The final template will match all instances of  A that occur before an instance of  a B 
within five minutes. If  variables are not used, the above can be written as: 

match TerminalLogout(“Mark”, “Room4”, ?) before 
PersonMovement (“Mark”, “Lift”) within 15min … (8) 

match always denotes a template of  the same type as its first parameter. While in (7) 
and (8) these were event templates, they could also be composite event templates or 
interval templates (see below). 

Composite Event templates 
In order to specify a composite pattern of  events and implicitly generate a new 
composite event, one can specify a composite event template in terms of  other event 
templates as follows: 

match (A follow B past 5min) as C; 
retrieve C; (9) 

where A and B are event or interval templates. The retrieve clause will now return an 
ordered set of  composite events, with each event having occurred when the pattern 
denoting it finally occurred. In the above example, for each composite event 
returned, this would correspond to the time at when the B within it occurred. 

In this case, however, these composite events are virtual structures that are 
untyped and do not have user-defined parameters. What they encapsulate is an 
internal list that points to the events that make up the pattern they represent. In 
order to create new compound composite typed events that can be retrieved and 
propagated through the event infrastructure a scheme must be defined within the 
query as follows: 

match (A follow B past 5min) into NewEvent(A.parameter2, B.parameter1)  
  as C; 
retrieve C; (10) 

This actually types the compound composite events matched as being of  type 
NewEvent having two parameters, whose types are automatically extracted from the 
values passed. In this case, both type and value are taken from the parameters of  the 
matched A and B events. It is important to write the query such that A and B’s type 
can be determined. 
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Therefore, whereas A before B is analogous to “the A that occurs before a B” and is a 
qualifier on its first parameter; follow is an operator which returns “the sequence of  A 
followed by B”. 

The primitive events making up the sequence within a composite event can be 
retrieved through 

componentOf(C, n) 

which returns the n’th plus one event that makes up the composite event C. As in 
OQL, lists and set elements are counted starting from 0. 

Intervals 
The final temporal construct in TEQL’s temporal formalism is the interval. As 
described in Section 5.1, an interval is defined as a period of  time bounded by a start 
and an end time-point. The start-point is taken to belong to the interval while the 
endpoint does not. An interval can be created as follows: 

interval A, B  

where A and B denote time values. If  A and B are event (primitive or composite) 
templates, then their storage timestamps are extracted and used to denote the interval 
endpoints. A is said to belong to the interval, while B meets it. The only assumption on 
the relationship of  A and B made by the interval clause is that B must always occur 
after A, and which A and B are selected depend on the parameter context (see Section 
5.4.6). Other examples of  interval definition are: 

interval 08/01/1975-22:10:30.15, 10:30 as I; (11) 

interval PersonEnters, PersonLeaves as Stay; (12) 

interval 15:00, 30min as Siesta; 
retrieve Siesta; (13) 

Example (11) illustrates the simultaneous use of  an absolute timepoint and a query-time-
related timepoint (see next sub-section). Example (12) illustrates how two event 
templates can be used to define an interval.  

(13) then demonstrates a different way of  defining an interval; by its length. This 
mode is invoked by supplying a quantitative time value as the second parameter, e.g. 
30 minutes. In example (13), the interval Siesta is defined as being the time from 3pm 
to 3:30pm. If  the second parameter had been negative, it would have meant 2:30pm 
– 3:00pm. The retrieve clause returns a set of  intervals matching the interval template 
Siesta. 

An interval’s boundary point can be denoted by another interval. 
interval A, Siesta (14) 

denotes an interval from the event A to the beginning of  the interval Siesta, while 
interval Siesta, A (15) 

denotes the interval from the end of  the interval Siesta to the event A. Interval 
templates may be used within match constructs in a way similar to primitive and 
composite event templates: 
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match Siesta before PersonEnters within 15min as Return; (16) 

match Stay follow Siesta within 1hr as AfternoonLull; (17) 
(16) defines the interval template Return, which consists of  all Siesta intervals that are 
followed by a PersonEnters event within 15 minutes. In (17) a template denoting the 
occurrence of  a new composite event AfternoonLull is defined. This consists of  the 
sequence of  an interval matching Stay being followed by an interval matching Siesta 
within an hour. 

Timepoints 
As a language that emphasises the concept of  time, TEQL supports several ways of  
specifying time in queries.  

A fully qualified or absolute timepoint is defined as  
<year>/<month>/<day>-<hours>:<minutes>:<seconds>  

For example: 
1998/08/01-22:10:30.15 

The qualification moves from left to right over the definition, with only the first value 
required. Therefore 1975/08 is acceptable and is syntactically equivalent to 
1975/08/01-00:00:00. Inversely a time point can be defined from right to left, in 
which case it is called query-time-related timepoint and is evaluated with reference to 
the time when the query is executed. Therefore: 

15:30 

01/15-20:30 

stand for 3:30pm on the current day, and 8:30pm on the 15th of  last January, 
respectively. Resolving a definition of  this kind may fail and cause a run-time error if  
the query is run before the time represented. 

5.4.3 Amounts of  time and calendar entities 

Timepoint-denoted intervals 
An absolute time value may be used to denote an interval by preceding it with ‘*’. 

The interval will be as long as the highest defined granularity within the time value. 
For example: 

*15:30  

*1999/01 

represent from 15:30 to 15:31, and all of  January 1999. 
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Time amounts 
Amounts of  time can be specified in any number of  seconds (sec), minutes (min), 
hours (hr), days (dy), weeks (wk), months (mth), and years (yr) by attaching the 
respective qualifier to the quantity. Examples are 

30sec, 5.6min, 10yr 

Calendar entities 
Calendar entities are like pre-defined interval templates relating to calendar periods. 
There are two predefined sets of  calendar entities, the days of  the week, and the 
months. 

match A during Monday 

defines a template that matches on those A’s that occur on any Monday within the 
period of  time during which the query is applicable (the current temporal scope). 

TEQL could be further enhanced to allow users to define their own calendar with 
its calendar entities (I-Times). This would require a formalism for specifying I-Times 
such as that proposed by [Ter97]. 

5.4.4 Basic operators 
The basic temporal operators on the temporal entities are now more fully described. 

Qualification, occurs-before  
The full definition of  a before qualifier is 

A before B [without C] [past T1] [within T2] 

This matches “the A that occurs before a B within T2 amount of  time but there is at 
least T1 time between A and B, and no C occurs between A and B”. All A’s that match 
the above would be matched. 

past introduces a minimum amount of  time that must pass between the two 
events, while within restricts the maximum amount of  time that can pass. In the 
above example A and B can either be primitive events, composite events,  intervals, or 
timepoints. If  both operands of  a before are interval templates, the endpoint of  the 
first interval has to be larger than the starting point of  the second interval. If  a within 
clause is not defined, the definition is taken to be open, i.e. valid until the end of  the 
current timeline. The temporal entities matched are always of  the same type as the 
type denoted by the A template, that is one of  a primitive event, composite event, 
interval or a timepoint. 

A before B within T (18) 

(A before B before C) within T (19) 

(A before B within S) before C within T (20) 

A before B without C within X (21) 
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(A before B before C) without C within X (22) 

The scope of  the optional within and without qualifiers covers the last before qualifier, 
unless braces extend their range over multiple before qualifiers, as in examples (19) 
and (22). Example (19) illustrates nested use of  before, where one wants to match an 
A that occurs before a B, but the B occurred before a C, and no more than T time 
must have elapsed between A and C. 

Qualification, occurs-after 
The “occurs after” qualifier after is semantically the inverse of  the before qualifier.  

A after B [without C] [past T1] [within T2] 

The only difference from the before qualifier is that this matches “the A that is 
preceded by a B in T amount of  time, and no Z occurs between A and B”.  

Composite sequence, followed-by 
The full definition of  a follow clause is 

A follow B [without C] [past T1] [within T2] 

This means “the sequence of  an A that is followed by a B within T2 amount of  time, 
no C occurs between A and B, there is at least T1 time between A and B”. 

follow is an operator rather than a qualifier, in that it returns a new composite 
event template, with the timestamp of  the composite event being the time when the 
whole sequence was matched (or occurred).  

Otherwise, the same discussion applies to its qualifiers without, past, and within as 
for the before qualifier. 

Disjunction and conjunction 
These operators are defined as in [Nel98]. Disjunction (or) is notionally exclusive or. 

match (A or B) follow C as Y (23) 

means that the composite event template Y will match the sequence of  either A 
followed by C, or B followed by C. Care must be taken when or is employed in entity 
qualification, as in: 

match (A or B) before C as Y (24) 

as this will match the A that occurred before C, or the B that occurred before C, where 
A and B could be templates denoting different event types, or even different temporal 
entities. 

On the otherhand conjunction is available through the and operator and may 
only be used alongside sequence constructs. In: 

match (A and B) follow C as Y (25) 

Y will match when both events A and B have occurred but the order is unspecified. (A 
and B) is analogous to (A follow B or B follow A). and can be qualified with within and 
without clauses. 
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Interval operators 
TEQL defines a number of  additional operators specific to intervals. Of  the thirteen 
possible relations between temporal intervals defined by Allen [All83] (see Section 
5.1), seven are explicitly supported by TEQL. 

In addition to before and after, there are also the following qualifiers: 

A isIn I – A occurs during interval I  

A isOut I – A occurs outside interval I 

I1 intersects I2 – interval I1 intersects with interval I2 

I1 contains I2 – interval I1 contains interval I2 

I1 notContain I2 – interval I1 does not contain interval I2 

where A can be either a primitive event, a composite event, a timepoint, or an 
interval-template itself.  

An interval can also be defined as the: 
intersectionOf(I1, I2) 

which returns a template denoting the interval defined by the intersection of  
intervals I1 and I2. This operation may return NULL.  

The events occurring within an interval can be accessed through the function: 
elementOf(I, n) 

This returns the n’th plus one event that occurs within the interval I in the current 
scope, or through: 

elements(I) 

which returns an ordered (by time) set of  events. On the other hand, start(I) and 
end(I) return the endpoints of  the interval. 

5.4.5 Variable matching 
All the earlier examples have illustrated how variables can be used within a query to 
denote a template. However, variables can also be used within template specifications 
to tie together parameter values. One can re-write (8) as follows: 

match TerminalLogout(User, “Room4”, ?) before 
PersonMovement (User, “Lift”) within 15min … (26) 

which will identify all conclusive terminal logouts in Room 4 (assuming one sole user 
per terminal, and that users take the lift on their way out of  the building!). Any term 
that is not a keyword and not a literal is interpreted as a variable, whose type is 
defined by its first appearance. Subsequent uses need to be on parameters of  the 
same type. A literal can be used to initialise a variable, which can be useful in 
comparing values across events: 
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match TerminalLogout(“Mark” as User, Room, ?) follow 
TerminalLogin(!User, Room, ?) … (27) 

This stipulates that the first parameter of  TerminalLogin must not be the same as the 
first one of  TerminalLogout, i.e. not “Mark”, while the second parameter, Room, is 
unspecified but must be identical over both events. In addition to this implicit request 
for equality, and the explicit non-equality denoted by ! preceding the second use of  
the variable, other qualifiers are >, <, >=, <=. These may be used on those types that 
support comparative relations. 

5.4.6 Parameter contexts 
Any discussion of  composition of  events needs to consider parameter contexts, also 
known as consumption models. The concept of  parameter contexts was first described in 
[CM93] and then refined in [CKAK94]. The best way to illustrate the concepts 
behind the term is through an example. Consider:  

match A follow B … (28) 

where A and B are templates. Now consider that the query evaluator is going to look 
for this sequence within the event stream: 

A1, A2, B1, A3, B2, A4, A5, B3, B4 

Where the An’s match the template A and the Bn’s match B. The issue at point is 
which sequences of  A’s and B’s will trigger the sequence in (28). In the most general 
case, termed by [CKAK94] as the unrestricted context, and also known as the cross-
product, the possible sequences are fifteen in all, and are: 

(A1, B1), (A1, B2), (A1,B3), (A1,B4), (A2, B1), (A2, B2), (A2,B3), (A2,B4), (A3, 
B2), (A3,B3), (A3,B4), (A4,B3), (A4,B4), (A5, B3), (A5, B4) 

It is expensive and often unnecessary to evaluate sequences in the unrestricted 
context. The context that TEQL defaults to is known as the chronicle context, which 
uses the first event seen of  each class. Within this context TEQL matches: 

(A1, B1), (A3, B2), (A4, B3) 

for the event sequence of  example (28). Although this may be suitable for the 
majority of  retrieval applications, it is appreciated that imposition of  an arbitrary 
context is restricting. In order to address this, TEQL, like Nelson’s CE system [Nel98], 
supports two variations on the consumption model. 

By preceding follow with the > modifier as follows: 
 A >follow B … (29) 

multiple evaluations of  the expression are allowed to take place at any one time. 
When an A-matching entity (such as A1) is encountered, the query evaluator searches 
forwards for a B, but if  it encounters another A in the meantime (such as A2), it 
launches a separate second search for a sequence starting with that entity. The 
resulting matches are then: 

(A1, B1), (A2, B1), (A3, B2), (A4, B3) (A5, B3) 
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On the otherhand: 
A follow< B … (30) 

causes the evaluator to first match, and then replicate and continue searching, on the 
second parameter. In this case the result is: 

(A1, B1), (A1, B2), (A1, B3), (A1, B4) 

Placing both modifiers together as in 
A >follow< B … (31) 

matches on the unrestricted context. Parameter contexts are also applicable to 
qualification on events (as with before and after), and to interval definitions. 

5.4.7 retrieve and replay 

The main constructs introduced by TEQL over OQL’s are the replay and retrieve 
constructs. 

retrieve 
The format of  the retrieve construct is: 

retrieve <template_expression> [fromSession <session>] [in <interval>] 
[<ordered set of events>] [fromRef <result reference>] 

The constraints define the scope over which the retrieve operation is to run. If  no 
constraint is specified the scope of  the retrieve is taken to be the entire repository, 
from the beginning of  time (this being the first event deposited) until NOW. The 
constraints can be: 
• fromSession <session> - look for matches for the template only through events 

belonging to the session specified. 
• in <interval> - look for matches for the template only within the interval 

specified. This has to be an instantiation of  an interval rather than an interval 
template. 

• <ordered set of events> - look for matches for the template within the stream of  
events denoted by the set of  events provided. This set could be the result of  a 
nested retrieve operation, or of  an OQL select-from-where construct on the 
repository. 

• fromRef <result reference> - look for matches for the template only through 
events belonging to the set of  events identified by the reference. A reference is 
returned programmatically with each result set and its associated events are 
cached for some time. 

retrieve always returns an ordered set of  temporal entities of  the same type as the 
template expression passed to it as parameter. 
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Since retrieve returns sets of  entities, it is worthwhile mentioning how collections, 
such as sets, can be manipulated in TEQL. Just as in OQL: 

list(a,b,c,d)[1] 

returns b. And: 
list(a,b,c,d)[1:3] 

returns list(b,c,d). 

replay 
replay is probably the operation most identifiable with the notion of  an event 
repository. The replay query in TEQL is very straightforward: 

replay <interval> 

replay <ordered set of events> 

replay fromSession <session> 

where the first variant will replay all the events which have occurred within the 
interval specified. The interval supplied needs to be a defined instance. In the second 
case, the events to be replayed will be the events within the set supplied. In both 
cases, it is likely that the operand would have been obtained through a retrieve query. 
The third variant is equivalent to the second but where the set of  events is taken to 
be the entire session from its start to the last event deposited. 

By using together replay, retrieve and select (see Section 5.4.9) it is possible to 
accurately specify a sub-set of  events to be replayed. 

Once the interval, or set of  events, to be replayed are evaluated, the event 
repository starts sending out the stored events as they occurred, with the temporal 
separation reflected by the difference of  their creation or deposit timestamps. This can be 
modified with the by clause to force faster or slower replay. 

replay <ordered set of events> by 2 

will replay the events at twice the original speed. If  a fraction is used, the replay will 
be slower than the original deposit. 

A replay can also be invoked directly through a repository-supported method. In 
this case, a reference to a result set must be passed as parameter of  the method. This 
reference must qualify an ordered set of  events or an interval, and can be obtained 
within a programming environment from earlier retrieve queries. 

5.4.8 Derived sessions 

As described in various applications in Chapter 2, it is often desirable to generate a 
derived view of  an event history in order to assist interpretation of  the data. This 
view frequently has to contain selected primitive events and/or composite events 
extracted from the original event history. In order to support this, one can create a 
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derived session, which differs from a regular session in that it can be inserted into and 
modified.  

create derivedSession <sessionName> 

create derivedSession <sessionName> <ordered set of events> 

allow the creation of  the derived session, with the second instantiating it with the set 
of  events provided, this usually being the result of  a nested retrieve operation or of  
an OQL select-from-where construct. Composite and primitive events can then be 
inserted into the derived session as follows: 

insert intoSession <sessionName> <ordered set of events> 

A derived session is therefore analogous to a derived relation in SQL. It is equivalent 
to a regular session for all other purposes, and can be used in all constructs where a 
session can be used. Multiple ordered sets of  events can be inserted into a derived 
session during different queries, thus gradually constructing a temporally ordered 
view that represents some high-level interpretation of  the original event data. Since 
retrieve operations can be restricted to sessions of  all types, a derived session can be 
used to derive another derived session of  coarser granularity. 

5.4.9 TEQL and OQL 

The TEQL constructs fit in alongside OQL and can be used together as long as there 
are no type conflicts. Consider: 

match A before B within T as X; 
define theXEvents() as  
 retrieve X fromSession S; 
select e.parameter1  
 from theXEvents() e 
 where e.parameter2 = literal and e.ofType(anEventType); (32) 

Example (32) illustrates how this can be achieved. First one finds all events matching 
A that are followed by a B within time T, and belong to session S. Then from all these 
matching A’s only those whose second parameter has a specific value, and are of  the 
event type anEventType are selected. From this selection, the select clause then 
returns the first parameter, or more accurately, a set of  elements of  the same type as 
the first parameter. Of  course, it would have been simpler to specify the fixed value 
of  parameter2 within the template statement defining A.  

ofType() is a pre-defined method that can be invoked on all event types to check 
their type. It returns a Boolean value reflecting whether the event type it is invoked 
within the context of  is equivalent to the type name passed as parameter. 

OQL allows objects, their data and their methods, to be qualified according to 
their position within the inheritance tree. Event types are mapped to the same object-
like inheritance model so that such qualification can be employed within OQL 
constructs.  
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5.5 Evaluating TEQL  

This section demonstrates how TEQL can be used to express queries on event 
information. 

A straightforward way of  doing this is to return to the natural language 
expressions used as examples in Section 5.2.2. It is often the case that there are 
multiple ways of  expressing a query in terms of  the temporal entities supported. 
Some may be more intuitive to write or follow, while others will be more concise. 
Consider first: 
Ex.2  “find all occurrences of Alarm A being followed by Alarm B, and the web server 

crashing, all within 5 minutes, and without Alarm C having occurred in between” 

This suggests searching for all occurrences of  the composite event defined by the 
sequence of  the first alarm and the second alarm. TEQL syntax for it is: 

match (Alarm(“A”) follow Alarm(“B”) follow ServerCrash(“web”)) within 5min 
without Alarm(“C”) as theSequence; 

retrieve theSequence; 

Example 3 is more complex, and while it might not necessarily be indicative of  a 
frequently carried out query, it is useful to consider it for demonstrating TEQL’s 
expressive power. 
Ex.3  “Replay all sightings of John from when John was present in the Meeting Room, 

and then sometime within 30 minutes John was seen in the corridor with Giles, 
until John logged in on workstation Norton.”  

The wording of  the example can be mapped to three intervals reflecting John’s stay 
in the Meeting Room, and both his and Giles’ time in the corridor. From the latter 
two one needs to locate the time when both were together, and then relate that to the 
first by checking whether it occurred within 30 minutes. In order to define the 
intervals themselves one can locate the events representing the state of  presence in a 
room. This is applicable only within the default chronicle context. Figure 5.2 illustrates 
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the events and intervals involved in mapping the natural language query of  Example 
3 to a query in TEQL. 

A suitable full expressing of  the example in TEQL is: 
interval BadgeSighting(“John” as John, “MeetingRoom” as MeetR), 

BadgeSighting(John, !MeetR) as iJohnMR; [1] 
interval BadgeSighting(John, “Corridor” as Corrd), BadgeSighting(John, !Corrd) as 

iJohnCorr; [2] 
interval BadgeSighting(“Giles” as Giles, Corrd), BadgeSighting(Giles, !Corrd) as 

iGilesCorr; [3] 
match iJohnMR before intersectionOf(iJohnCorr, iGilesCorr) within 30min as 

iJohnMR_OK; 
interval start(iJohnMR_OK), TerminalLogin(John, ?, “Norton”)  

as iReplayInterval;  [4] 
define firstMatchingInterval() as 

(retrieve iReplayInterval)[0]; 
replay (select events 

from elements(firstMatchingInterval()) as events 
where events.ofType(BadgeSighting) and events.user = John); [5] 

Parts [1], [2], [3] and [4] define templates for the primary intervals of  the query.  
[1] locates intervals when John was in the meeting room, [2] locates intervals 

when John was in the corridor, while [3] locates intervals when Giles was in the 
corridor. [4] then defines the interval during which both John and Giles were 
together in the corridor, and uses it to cut down the set of  all intervals of  when John 
was in the meeting room, to those that occurred within 30 minutes before the 
John/Giles encounter. A new interval is then defined from the beginning of  John’s 
time in the meeting room until the first subsequent time he logged on-to Norton. 
This defines suitable intervals for replay. 

One should point out that [1], [2] and [3] are employing the property that: 
interval A, B as I;  

is equivalent to  
match A follow B as AB; 
interval componentOf(AB, 0), componentOf(AB, 1) as I; 

While the maximum cut off  time of  30 minutes was from the end of  John’s stay in 
the meeting room, the example requires replay from the beginning of  that stay. It 
also requires replay of  only Active Badge events, so rather than replay the satisfying 
interval, the query extracts the events within the interval and then filters them on 
type and content (see [5]). Since theoretically there may be multiple intervals that will 
match the above specification, only the first interval is being considered from the list 
of  results returned by the retrieve construct. 

Note that the above example could also have been evaluated solely in terms of  
composite sequences by replacing [1], [2], [3] and [4] with: 

match BadgeSighting(“John”, “MeetingRoom”) follow BadgeSighting(“John”, 
!“MeetingRoom”) as cA; 
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match BadgeSighting(John, “Corridor”) follow BadgeSighting(“Giles”, “Corridor”) 
without BadgeSighting(“John”, !“Corridor”) as cB; 

match cA before cB within 30 mins as cAA; 
match componentOf(cAA,0) follow TerminalLogin(“John”, ?, “Norton”) as cT; 
interval componentOf(cT, 0), componentOf(cT, 1) as iReplayInterval; 

Space constraints dictate that further examples cannot be given here, but the above 
examples are sufficient to indicate that by joining the expressive power of  OQL with 
the temporal constructs of  TEQL, the combined language has sufficient expressive 
power to enable a large collection of  powerful queries to be carried out. 

5.6 Summary 

The event information deposited into an event repository needs to be accessed, 
reviewed, and retrieved in different ways that depend on the application and the 
activities represented by its event information. This chapter has reviewed the issues 
involved in providing the interfacing capability required of  an event repository for it 
to service the diverse application domains where it can be deployed. 

The temporal formalism adopted by the treatment was defined. Subsequently, the 
properties and temporal characteristics of  a suitable event query language were 
determined. After reviewing related work on temporal languages, the remainder of  
the chapter presented a query language called TEQL. 

This language is designed to satisfy the query requirements of  an event 
repository, and allows the representation and treatment of  qualitative temporal 
relations between events, composite events and temporal intervals. It also supports 
the creation of  derived views of  the original event history in order to aid 
interpretation, analysis and review.  
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Chapter 6 

The Repository 
Architecture 
This chapter presents a design for the architecture of  a general-purpose event 
repository service that addresses the requirements of  the application domains 
identified in Chapter 2. It also integrates seamlessly with the HERALD event 
notification infrastructure described in Chapter 4. 

Section 6.1 starts by identifying the functional requirements of  an event 
repository and Section 6.2 then introduces a specific design for an event repository 
that meets these requirements. In order to offer the flexibility required of  a general-
purpose event repository, the architecture proposed is functionally divided into what 
are termed the repository server component and the repository client component. 

Section 6.3 looks at the role and structure of  repository clients, and discusses 
their exclusive view of  events, their interfacing with a repository server, and how they 
can be written. 

Designing the generic aspect of  the storage architecture, i.e. the repository server, 
is addressed in Section 6.4. Approaches to providing the required functionality are 
discussed and the modules that support client interfacing and query handling are 
introduced. In particular, Section 6.4.4 identifies the characteristics required of  a 
storage sub-system for event data, and then proposes a custom log-based hybrid 
design. 

In Section 6.5, the issue of  propagation of  event histories in between event 
repositories is considered. 

In this chapter, the term conventional database is taken to refer to an industrial 
relational or object-oriented database system. 
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6.1 Functional requirements 

Based upon the discussion in the preceding chapters, one can identify a number of  
functional requirements of  an event repository. In particular, one needs to: 
• support storage and retrieval of  event information, where an event is defined as 

being a message denoting the occurrence of  an activity of  interest, of  a defined 
type and structured with typed attributes. 

• support high-speed writing, so that high volumes of  events can be written in 
quickly without data loss. 

• enforce the fact that event information has a historical value, so it may not be 
modified once deposited (entered) into storage. 

• support the temporal retrieval and replay query interface TEQL as described in 
Chapter 5. Since this is a superset of  OQL, legacy applications can also query 
event data as if  the repository were a conventional database.  

• support the Object Data Management Group (ODMG)’s data model for 
primitive types [CB97] for attribute typing within events. This supports the 
operation of  mirroring the contents of  an event repository into an ODMG 
compliant conventional database management system should this operation be 
required. 

• provide a repository that can be integrated seamlessly within an event-driven 
infrastructure like HERALD, where event components can interact with it: either 
implicitly (transparently) through registration policies, or explicitly for carrying 
out specific queries on past activities. 

• support application-driven contextualisation of  events of  different types through 
the notion of  sessions. 

• support derivation of  new higher-level views of  the event data. 
• provide for interaction between event repositories for the purpose of  replication 

or merging of  event histories. 
• support evolving event types through schema versioning. Allow operations to be 

carried out on events with schema that are no longer current, i.e. have evolved to 
a different specification. 

• allow multiple applications to access it simultaneously, and preserve the view of  
each individual application by distinguishing between the event information each 
is aware of  and can carry out operations on. Ensure that such a view is consistent 
to each application – i.e. it only sees coming out of  the repository what it 
deposited in the first instance. 

It is difficult to satisfy these conflicting requirements with a single monolithic 
architecture. Any general-purpose solution must be flexible and dynamic in its 
composition, so that it can be adapted to the specific requirements of  any one 
application. 
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6.2 Architecture overview 

This section proposes a specific design for an event repository that addresses the 
functional requirements listed in Section 6.1. In order to offer the flexibility required 
of  a general-purpose event repository, the architecture proposed is functionally 
divided into what are termed the repository server component and the repository client 
component. 

In essence, every instance of  an event repository consists of  several distributed 
components working concurrently and co-operatively, primarily a number of  
repository clients and a repository server. While the server component of  the architecture 
is kept as generic as possible to be of  use in different scenarios with diverging 
requirements, a repository client can be tailored to be highly specific to an 
application. The actual storage and retrieval functionality of  the event repository is 
supplied by the repository server. 

The aim behind the design of  this architecture is to provide a core set of  generic 
services coupled with highly and easily tailored components, so that the whole can 
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The structure of  an event repository 
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provide the required facilities without compromising on performance. Figure 6.1 
illustrates this functional arrangement. The functional modules identified within this 
figure are described in Sections 6.3 and 6.4. 

The distinction between a repository client and a repository server is conceptual, 
and within some applications, it is possible to integrate the two components into one 
software entity. One such case is the embedding of  an event repository within an 
HERALD event source or event client, as described in Chapter 4. 

Figure 6.2 suggests some application domains that can be interfaced to the event 
repository through the defining of  a custom repository client. These are distributed 
applications built with HERALD or some other similar general-purpose event 
notification infrastructure, conventional databases through an ODBC or JDBC™ 
bridge, and wide-area message-driven systems. 

Section 6.3 will now describe the functionality encompassed within the repository 
client, while Section 6.4 then discusses the internal structure of  the repository’s 
server component and the issues relating to event storage and retrieval within its 
modules. 

6.3 Repository clients 

A repository client component acts as the application writer’s interface to the event 
repository. While the repository server component is generic for all applications and 
event types, the repository client can be highly specialised and tailored for the 
particular application being serviced. The client interfaces with the server through an 
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Application-Programming-Interface driven through remote-method-invocation. 
Through this interface, it can instruct the repository server to create a new event 
view for it, pass it event schema, deposit event streams, configure storage and archive 
parameters, and pass TEQL queries that return events to or initiate event replays into 
it. 

6.3.1 The nature of  repository clients 

When an event repository is embedded into a HERALD event client, the event client 
implements the client-side of  the repository. The client registers interest with one or 
more event sources in order to obtain the particular events to be stored. The events 
notified and stored can be of  different types with differing schema, and will reflect 
the specific registration templates the client will have made with those event sources. 
Figure 6.3 shows some examples of  this usage within a HERALD environment. 

The repository server requires an event type’s scheme before it can accept any 
instances of  that event. A HERALD client can obtain event instances’ schema from 
their respective sources and pass them on to the server. A client that is interfacing 
with another messaging infrastructure, however, might need to obtain the scheme in 
a different manner. In particular, if  event messages within that infrastructure are self-
describing (for example, using XML), the client has to extract and generate an event 
scheme from the messages, and define a range of  types against which messages can 
be identified. 

As schema versioning is supported, the scheme supplied must also be qualified 
with the version identifier of  that event type. This structured version identifier is 
particular to the repository’s server and client components, and is consistent with the 
schema versioning model used in the rest of  HERALD. When the repository client is 
interacting with alternative infrastructures, it needs to configure the schema itself. 

Since the repository endorses the ODMG data model, it may therefore be 
necessary for the client to carry out type mapping if  the type space of  the messaging 
environment being used is different. This would have to be a bi-directional mapping. 

For applications that are not part of  an event notification infrastructure, the 
repository client acts as an interface wrapper to the repository’s functionality. Since 
such applications tend to be more tightly coupled than the more dynamic 
applications within event-driven infrastructures, it is likely that a client could be 
written that ‘knows’ the structure of  the application being supported. This means it 
would be aware of  the format of  any internal messaging information it uses and of  
the whereabouts of  the sources and sinks of  such information. The repository client 
would therefore be able to define the schema of  the data to be captured, and supply 
it to the repository’s server component; as well as carry out any bi-directional 
mapping required to format the data. The client would then interact with the 
application’s centralised or distributed components in whatever proprietary manner is 
required, be it through remote method invocation, messaging, or through an object 
request broker. Examples of  such applications tend to be specialised environments 
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like fault-tolerant infrastructures, thin-client applications (see the case-study in 
Section 7.4), and federated and distributed databases. 

In this latter case, given that the number of  processes are known and there is 
more symmetric interaction, the repository client would also be able to implement 
mechanisms that enforce global causal ordering of  events. Using vector clocks the 
application could implement a global logical time, which the repository could map to 
real time once it has ordered the events being received. The best way to carry this out 
is to provide a sliding temporal window of  observation at the client, into which 
incoming events are placed until delayed messages can be received, then deposited 
into the event store in the right order. With logical ordering, however, events’ 
temporal separation is lost. 

In case of  a HERALD application, event timestamps correspond to real time at the 
originating source, since the linear increase in size of  a logical timestamp with the 
number of  event components makes vector clocks unacceptable, and given the lack 
of  global application structure, probably simply not possible. Therefore, the 
application has to assume the presence of  an external clock synchronisation protocol 
like NTP. Nevertheless, if  the application is sufficiently dispersed over a wide-area, 
network delays might need to be taken into account. In this case, the HERALD client 
might also have to insert a sliding temporal window of  observation between its 
receiving events and depositing them, setting the length of  the window to be such 
that network delays can be accommodated. Since HERALD timestamps reflect real time, 
once event exit the observation window correctly ordered, they can be deposited into 
the repository with the original relative separation as they occurred. 
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The issues highlighted in this discussion: event schemes; type mapping; 
countering unsynchronised clocks and network delays; are representative of  a host of  
application specific issues that do not apply globally and are thus addressed within 
the repository clients provided by applications.  

6.3.2 Event handling 

Each repository client sees a segregated view of  the event information stored within 
the repository server. When a repository client first communicates with a repository 
server, it is allocated a special client identifier and an authentication key, which it 
must then present whenever it re-establishes communication with the server. This 
ensures that only the client that has stored specific event information, or a specific 
view of  that event information, can retrieve it. Once the client starts getting event 
notifications from the event sources it had previously interacted with, it then opens a 
stream connection to the server and deposits those event instances.  

The client defines sessions with which to tag the event instances being deposited. 
As discussed in Section 5.2.5, an event instance may belong to one or more 
conceptual sessions, and a session can contain within it events of  all types. The 
advantage of  defining sessions is primarily evident when it comes to retrieval or 
replay of  events, as the client may then restrict its retrieval expressions and queries to 
the context of  a session. Therefore, a session is essentially an index whose semantics 
are determined by the application. 

When querying the event data, the client can request the creation of  new sessions 
that present some higher-level interpreted view of  the event history. These sessions 
are known as derived sessions. They differ from regular sessions in that they can be 
modified and built up gradually. Derived sessions are persistent until the client asks 
for them to be deleted. 

6.3.3 Interfacing with the repository server 

A client can have multiple simultaneous connections to the repository server, 
enabling it to pass in multiple event types concurrently. It can also be depositing and 
retrieving event information from the server simultaneously, although the concept of  
present time, i.e. “now”, would be continuously changing as more events are 
deposited by it into the repository. This is of  relevance in open-ended correct-time 
replay operations, where the term correct-time denotes an event replay at the same 
temporal speed as the original event depositing. The client therefore acts as both the 
input and output interface of  the event information stored in the repository and 
belonging to an application, a user, or their agent. 

A repository’s client and server components can be co-located within one 
execution space, or can be located on different machines, in which case they interact 
through a remote-method invocation interface. 

As already mentioned, when a repository client first opens a connection to a 
repository server, the server creates a repository view for that client. All the operations 
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invoked on the server by the client will apply only to that segregated view of  the 
event information stored in the event repository.  The client packages TEQL queries 
and replay requests within method invocations and passes these on to the repository 
server, which then responds according to the query. In case of  a replay request the 
server will establish a stream connection with the client and start passing it the event 
instances forming part of  that replay. The direction in time and relative speed of  the 
event replay depends on the parameters passed within the TEQL query. It is possible 
for a client to terminate such a replay at any moment. 

Outside of  a messaging environment, an application might need to extract the 
event information stored in the repository in a more conventional way. A client can 
interact with the repository server through standard OQL. Through this interface, 
the repository appears as a read-only database where events are represented as 
records in the relational sense. This technique is particularly suitable for extracting 
events from the event repository and transferring them to a conventional database 
for further archiving or analysis. 

6.3.3 Creating clients 

Writing a new client to support the event storage and retrieval requirements of  an 
application or event infrastructure has to be straightforward. In the prototype 
implementation of  the event repository, the essential repository client’s functionality 
is provided through a package of  C++ or Java™ classes. These enable a client to be 
written very rapidly and the application writer can then focus on tailoring the client 
to the requirements of  the application. The remainder of  the functionality of  the 
client within the event/messaging infrastructure depends on the application.  

Within a HERALD infrastructure, the client can present itself  to the application’s 
distributed active components as an event source by integrating within it the event 
source libraries (as shown in Figure 6.4). If  desired, this configuration can be used to 
abstract away the whole event repository functionality in the guise of  an event source 
that initiates event instance notifications from its event store based on some 
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An application that carries out analysis on event histories can interface with a 
HERALD infrastructure by exporting an event source interface 
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application criteria. Likewise, the client can be a HERALD federator by implementing an 
event client interface, an action injection interface, and a rules module; an event 
gateway by supporting both the event source and client interfaces; or even a broker by 
integrating the brokerage processes. Each HERALD interface being like a pluggable 
building block implies that several permutations are available to the application 
writer. One can thus integrate event repository functionality within an application in 
a variety of  ways, both implicitly and explicitly. 

As described in Chapter 4, each HERALD event source can optionally integrate an 
event repository within it, as the source libraries define a repository client within 
them. The purpose of  this client, if  enabled, is to capture each event occurring at 
that source, so that in addition to real-time notification of  that event to registered 
clients, a persistent copy can be retained. The enabling of  this feature allows that 
event source to support a number of  registration policies requiring persistence. This 
is illustrated in Figure 6.5. 

In similar fashion, HERALD event clients can also embed an event store in order 
to retain a history of  the events they consume. 

6.4 Repository server 

The repository server is the generic part of  the repository architecture. While the 
client can be customised according to the interface requirements of  the application 
domain it is addressing, the server remains largely unmodified. It can, however still 
be customised by enabling or disabling a number of  functional modules within it. 

There are three primary conceptual modules within the repository server:  
• the service or interfacing layer, which handles communications with the repository’s 

application clients and allocates resources like spawning handling threads, 
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• the temporal query processing engine, which parses, breaks-up, optimises and 
executes temporal queries in TEQL, 

• and the storage layer or database sub-system. 

Although there are numerous possible architectures for integrating these modules 
within this server side of  an event repository that satisfy the functional requirements 
listed in Section 6.1, two broad approaches can be distinguished: layered, and built-in.  

The next two sub-sections discuss the general architecture of  the repository 
server, while the following sections discuss several specific issues involved in 
implementing the modules making up the repository server. 

6.4.1 Designing a storage architecture  

There are two approaches to providing the service required of  an event repository: 
the layered approach, and the built-in approach. These will now be discussed in turn, 
and a synopsis is then given. Figure 6.6 illustrates these two approaches. 

The layered architecture model 
In a layered architecture, all event aware components reside in a module built on top 
of  a conventional database system. This architecture can also be described as a loosely 
coupled system, since temporal query processing is completely separated from the 
database system. In this approach, temporal operations, such as those proposed in 
Chapter 5, need to be defined in terms of  the query language supported by the 
underlying database, this probably being OQL or SQL92/SQL3. Likewise, all 
storage and retrieval operations are carried out through the database management 
system’s query interface. Events need to be mapped to relational records or objects, 
depending on the nature of  the database management system used. Higher level 
event-oriented functionality like event type inheritance, schema versioning, and event 
sessions, need to be explicitly defined using tables and views. Replay of  event streams 
requires running an appropriate OQL/SQL query to identify the data that will 
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participate in the replay, buffering that retrieved event data in memory, and then 
notifying the event instances with the same temporal separation as defined by their 
timestamps from that buffer. 

The advantages of  a layered architecture are: 
• A conventional database system can be converted into an event repository 

without modifying the database system at all. 
• The conventional database system abstracts away all the underlying storage 

complexity such as transaction management, lock management, indexing, storage 
management, and fault-tolerance (although this may be unnecessary overhead). 

• Organisations often have significant material and human resources invested in 
maintaining and running one or more database management systems. 
Considerable investment, experience in its use, and trust in the database’s 
dependability, can offset performance and functional considerations. 

The disadvantages of  a layered architecture are: 
• There is potential for poor performance, since substantial communication 

overhead may be required between the module that provides temporal querying 
and the database system.  

• Since there is no direct access to the storage subsystems of  the conventional 
database system, all event temporal functionality needs to be mapped to the 
database’s query/command interface. Some operations will therefore require 
substantial temporary memory buffers to execute. 

• Since the event temporal functionality module cannot interact with the 
subsystems of  the conventional database system (such as the transaction 
manager, lock manager, etc.), certain features that require access to these 
subsystems may not be supported (such as concurrency control for simultaneous 
insertion of  event streams). 

• The conventional database might not be able to perform fast enough to cope 
with high-speed writing of  event instances into its storage system. The standard 
overhead of  heavyweight database functionality, like transaction management, 
affects performance even when such capability is not required. 

The built-in architecture model 
In a built-in architecture, all event temporal functionality components become part 
of  the database system itself. This architecture can be achieved by modifying an 
existing conventional database, by using a database system toolkit for conventional 
features while adding temporal event functionality, or by building an entire event 
repository from scratch. A built-in architecture can be termed the tightly coupled 
approach, since temporal event retrieval operations and processing are directly 
integrated into the database system. In this approach, the underlying storage can be 
directly tailored to the structure of  event information. The storage can be optimised 
for the specific nature of  event data. Due to its historical value, such data need not 
be modified once stored (although it may be archived). Indexing of  the event data is 
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carried out based on the timestamps of  the event data and according to the real-
world timeline represented by the stored events. The temporal rule processor 
evaluates rule conditions and locates event sequences by performing operations 
directly on the database. It is possible for the rule processor to exploit the underlying 
storage arrangement of  the data and the database system’s query evaluation facilities. 

The advantages and disadvantages of  a built-in architecture are exactly the 
converse of  those for a layered architecture. The advantages are: 
• The database storage subsystem can be extensively tailored to support the 

specific nature of  event information and the temporal queries that may be carried 
out on it. 

• Event sequence identification, pattern matching, filtering and replay can be 
performed efficiently since they occur directly within the database system. 

• Access to database subsystems allows implementation of  sophisticated features 
for rule evaluation, concurrency control, archiving and error-recovery. 

• Conventional database functionality that is not required and that would incur an 
unnecessary overhead can be disabled or removed completely. 

The disadvantages are: 
• The implementation effort can be substantial and may require modifying existing 

code at best, or writing a complete underlying database system. 
• If  different conventional database systems are converted into an event repository, 

it is likely that differences between the conventional database systems will carry 
over into the event-oriented components. 

Synopsis 
In the layered approach to building an event repository, it is possible to use a 
conventional database management system for the actual low-level storage of  event 
instances. The most significant advantage of  this approach, as illustrated in the 
previous discussion, is the ease of  implementation. This approach, however, ignores 
the specific nature of  the data being stored. 

The ideal design is one that is tailored for capture of  high volumes of  multiple 
streams of  relatively small data objects that need not be modified as they are to 
constitute a historical record. This renders most of  the functionality of  conventional 
database management systems irrelevant, and experiments [Nel98] indicate that even 
high performance commercial databases struggle to cope with the high-volume of  
event deposit required of  an event repository service. Within distributed debugging 
systems, where there is considerable experience in event tracing, simple logs are still 
the preferred means of  storing events persistently.  

Having discussed the possible architectural approaches to providing the 
functionality required by an event repository, it is evident that a tightly coupled 
approach meets the primary performance requirement considerably better than a 
loosely coupled approach based around a conventional database management engine. 
It is possible that with very fast hardware this performance issue may become 



6.4 Repository server 

 115

academic, but computing trends indicate that although the hardware may become 
increasingly more powerful, it is likely that data throughput requirements will 
similarly increase.  

Sections 6.4.2– 6.4.4 illustrate the functionality of  the main conceptual modules 
of  an event repository within the context of  a tightly coupled built-in architectural 
model. 

6.4.2 Service module 

The first modular layer of  the repository server is the Service Module. This module 
receives command queries and event streams from the repository clients. In this 
communication model, instructions and queries are packaged as parameters and 
passed as messages from repository clients to the Service Module. This allows the 
Service Module to prioritise operations and allocate threads. This module carries 
out authentication of  the repository clients, allocates and establishes client identifiers 
for denoting each client’s view of  the repository, and transparently tags each 
command query with this identifier. 

In order to be able to handle multiple repository clients concurrently, the 
prototype implementation of  the Service Module allocates a thread to handle each 
client, and that thread can then spawn further threads to handle simultaneous 
connections with different command queries from that client. This enables multiple 
input and output streams to be handled concurrently. Output operations are given 
lower priority than event input operations. 

6.4.3 Query processing module 

The Query Processing module analyses incoming queries and according to their 
nature, input or output, allocates resources appropriately. Command queries can be 
categorised as follows: 
• Command operations; e.g. establish a client/server relationship and obtain an access 

key, define an event type and specify its scheme, add an updated version of  a 
type’s scheme, set archival and storage thresholds, configure the size of  the result 
cache, make derived sessions persistent, flush all indices and events pertaining to 
the client. 

• Deposit operations, deposit an event instance into the repository or open a typed 
channel for continuous deposit of  multiple event instances. 

• TEQL retrieval queries; e.g. locate composite event patterns, locate event intervals, 
identify temporal spans, locate individual events according to some temporal 
criteria. It is the nature of  TEQL queries that most retrieval operations do not 
return a definite result, but rather a set of  results matching the criteria specified 
in the query. Therefore, TEQL ‘retrieve’ queries return a structure that contains a 
series of  results matching the query. The result sets can contain primitive events, 
composite events, or intervals. A reference identifier is attached to each result set 
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since these are retained in memory for some time, in case the same set of  data is 
to be reused in a subsequent replay or retrieve. 

• TEQL replay queries; e.g. locate some temporal interval whose end-points are 
denoted by some temporal value or event timestamp, and replay the events that 
occurred within its timeframe (or all types, of  some type, or with some more 
specific filtering applied) at the original replay speed or some fraction/multiple 
of  it. These open an output stream that has to be handled by an application-
defined handler method in the repository client. 

• Referenced data replay queries; these are not TEQL invoked queries but rather a 
method-invoked replay where a result reference is passed as parameter. This 
reference identifies a set of  events, or an interval, that were the result of  an 
earlier TEQL retrieve query. 

• OQL-only standard queries, for these operations the event repository appears as a 
read-only conventional database. 

The query layer identifies each query or command, and checks it for correctness. If  it 
is a TEQL query it is parsed and validated. The query is then executed and the results 
sent to the repository client through the Service Module. A result could be a batch 
of  events, or a stream of  events from the Replay Engine.  

The Replay Engine buffers a resulting set of  primitive or composite events, and 
replays them out at the same temporal separation as denoted by their timestamps.  

The Result Cache retains the most recent query results in case further queries 
are to be executed on them, as well as the most recent queries’ syntax. This is most 
useful in applications where a retrieve is first carried out, and then the user is allowed 
to select some sequence of  events for replay from the set of  sequences returned by 
the query. Obtaining the sequence from the Result Cache is more efficient than re-
evaluating the original query. Result sets returned to the repository client are tagged 
with a reference that can be quoted in TEQL queries in order to force retrieval from 
the cache. If  the data has expired, the query syntax is retrieved and re-executed. 

Both the Replay Engine and the Result Cache can be disabled upon creation 
of  an event repository, in which case some functionality will be disabled. This will 
trigger error notifications to the client should their services be requested. 

Whether the query layer implements TEQL queries directly by interfacing with the 
storage sub-system (discussed next), or by mapping TEQL queries to SQL/OQL, 
depends on the choice of  the storage sub-system and on the query interface it 
provides. For the prototype implementation of  the event repository a custom storage 
sub-system was developed. Interacting with this involves interfacing to a log 
management module.  

6.4.4 Storage module 

This section proceeds from the observations made in the synopsis of  Section 6.4.1. 
It further qualifies those observations by identifying in detail the storage 
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requirements of  the storage component of  an event repository, and then presenting 
a custom log-based design to address these requirements. 

Storage requirements 
Based on the discussion in the preceding chapters, the functional requirements of  the 
storage component of  an event repository can be summarised as: 
• High performance writing – The storage system needs to be able to support and 

handle the writing of  several hundred events per second, where the events can be 
of  different types (of  differing and evolving schema).  

• Performance and redundancy vs storage – These have a higher priority than volume of  
storage. Trends over the last ten to fifteen years indicate that while storage 
capacity on magnetic and optical media keeps doubling periodically and 
decreasing in cost simultaneously, access speed and data throughput have 
improved only slightly (in relative terms).  

• Event depositing and archiving – Event instances are always deposited into storage 
and not modified thereafter. As the store cannot grow indefinitely, archiving of  
earlier events needs to be provided. 

• Event retrieval – Access is required to each stored event instance and to stored 
sequences of  events in order of  storage timestamp. The sequence can consist of  
event instances of  the same type or different types. 

• Appropriate fault-tolerance – Should the machine crash, or a disk block failure occur, 
minimal event loss will occur and existing logs are not damaged. 

These requirements differ from those traditionally bounding a relational or object-
oriented database. This fact has been recognised in several projects looking at 
retaining events relating to process behaviour for distributed systems debugging 
[Han88, Tsa83, IYS86, LS90, NX93], where logs of  event traces are the preferred 
approach due to the high-speed of  writing they permit. 

Storage system configuration 
In order to address the requirements listed above, a log-oriented storage system is 
proposed for storing event instances.  

The system consists of  a Log Manager that handles the underlying storage log 
files. Event instances are categorised by their type, and distinct types are stored 
within different logs. This enables keeping all the entries in a log to the same size. 
Logs are duplicated for reasons of  fault-tolerance and consist of  several ‘page’ files, 
each containing an atomic number of  event instance entries. The log duplicates are 
written to alternate disks if  available. Multiple threads handle concurrent writing of  
multiple logs.  

Writing only involves opening one page file from an event type log, and the write 
is duplexed to the mirror of  that page file. An event type log page is buffered in 
memory until it is full, at which point both the primary and secondary log page files 
are closed. All but the last event instance can be read without locking, and the last 
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event instance cannot be read while it is being updated. A lock protects this write 
operation. 

Session indices are stored in a similar fashion, with index entries identifying the 
event instance type, and its relative position within the appropriate log. Session 
indices are generated in real-time during logging of  event instances, and the same 
locking constraints apply to them as to event instance logs. 

A Schema Repository retains all the event schema of  the event types currently 
deposited into the event repository, as well as the schemas of  any derived composite 
events referenced by derived sessions. In addition, a Client Event Reference is 
retained for each repository client. This details the repository view that applies to 
that client, including the event streams and sessions it has access to, and references 
schema of  all its event types. When a repository client establishes a connection with 
the repository server, this data is read into memory. 

Log Manager 
The Log Manager (see Figure 6.7) provides a clean and protected interface to the 
underlying log files. It abstracts the details of  multiple log pages, duplexing, locking, 
and archiving to tertiary storage. It carries out fault tolerance through the use of  
‘careful writes’. 

It keeps track of  the segregated event information space according to the 
repository clients, allocates logs for each event type version within that information 
space, and generates a number of  index files for accessing the event instances within 
that log. The log is partitioned into log pages, and each log page is uniquely 
identified. 

The Log Manager maps the event logs into a growing collection of  sequential 
files provided by the operating system, the file system, and the archive system. As a 
log fills one file, another is allocated. The size of  files represents a compromise 
between performance and fault-tolerance. It is faster to work with larger files, but 
they are more likely to get corrupted. The archive system is needed because event 
logs grow without bound, therefore, in general, and based on the repository client’s 
preferences, only recent events are kept online. 

The Log Manager maintains a storage structure table that details all the log 
tables, their composition into log pages, and mapping to physical operating system 
files. It also reflects their mirrored duplicates. When log pages are archived to slower 
disk devices, it amends its physical location entities to reflect that access of  these 
tables has to be carried out through the Archive Manager. Since events are ordered 
according to their timestamps within the event logs (and log pages), the structure 
table also contains the temporal interval covered within each log page. This 
information is important in assistance of  fast access to an event by its timestamp, or 
by its temporal relationship to other events or event sequences. 

During a query, the Log Manager handles opening of  physical files and the 
granularity of  the locking to be used. By default, the Log Manager reads in event 
instance entries and opens page files optimistically. This is of  most relevance when 
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some of  the events to be retrieved occur in old and currently archived log pages, as 
real-time de-archiving is a slow operation. 

Naming 
An important module within the storage sub-system is the Naming Manager. The 
purpose of  this module is to define the physical mapping of  event log tables and 
their log pages to actual physical files, and define the names of  those files. 

Indexing 
Since the storage architecture is optimised for rapid writing, read performance is 
primarily achieved through indexing. 

All events are stored sequentially in the same order as they are received by the 
event repository. This is termed the deposit timestamp, and is different from the creation 
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timestamp, which is a property of  all event types set by the event source from where 
the event originated. The deposit timestamp is added to the event instance and does 
not replace the entry for the creation timestamp. In addition, a unique event entry 
number (EEN) is attached to the entry. 

Session indices are created in real time while the events are being deposited. Each 
entry in a session index consists of  a reference to the event the entry points to, with 
the reference taking the form of  a reference to the event log, the page within the log, 
and both the relative position of  the event instance relative to the beginning of  the 
log page as well as the timestamp of  the event. 

Access by absolute values of  real time, as well as by intervals of  time, is required 
by a number of  queries that can be run on the event repository. In order to facilitate 
this, the Log Manager’s representative structure contains, apart from physical 
information about each log page (like its filename), its temporal entry point; i.e. the 
timestamp of  the first event instance stored into it. This neatly partitions the event 
log for an event type into ordered chunks of  time, thus enabling fast read access and 
search by timestamp or absolute time value. 

Archiving 
A sub-module within the storage system is the Archive Manager. This picks old 
pages from within event logs and archives them. Two ways of  archiving are suggested 
in this discussion: 
• relocation of  old pages to some form of  slower storage.  

This is likely to involve compression of  the pages and relocating to a slower disk, 
like a network-mounted file-system. 

• moving of  older events to a remote event repository. 
The operation of  archiving is carried out within the Archive Manager by a low 
priority thread based on the storage thresholds set by the repository client for which 
event information was deposited. 

A common type of  failure within an event repository could be running out of  
disk space. The Archive Manager counters this by periodically monitoring the 
amount of  free disk space left on the current media, and increasing the priority of  its 
active archive thread accordingly.  

Since sometimes retrieval query operations need to be carried out on event data 
in archived files, real-time de-archiving is required. For this reason, the Archive 
Manager must reserve an amount of  storage space on the local high-speed medium 
so that it can fetch and decompress log pages from the archive location and place 
them in this ‘buffer’ space.  

6.5 Propagation of  event histories 

There are a number of  reasons for why an event history kept at one event repository 
might need to be moved elsewhere: 
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1. The event repository where the data was captured might be running on a 
platform with limited resources, and therefore the repository has been 
instantiated with important modules disabled. A remote, fully functional 
repository can enable a fully featured analysis of  the event data in a way that is 
not available at the original event repository. In this case, the whole event view of  
the local repository client needs to be propagated to a remote repository server. 

2. There might be insufficient storage space on the local repository so event data 
has to be archived at a remote event repository. In this case, only events that are 
older than an application-defined threshold are propagated. 

3. Merging of  event traces collected at local event repositories can address the 
problem of  lack of  global time and of  excessive network delays. In this scenario, 
separate local event sequences are stored on the same machine where they are 
generated, using stable unsynchronised clocks. By measuring the rate and offset 
of  the individual clocks, the timestamps in the event histories are adjusted at a 
third remote event repository to reflect a consistent, or global time base. The 
adjusted event histories are then merged into an accurate global event history. 

In all cases, the repository client’s access key to the view on the repository server 
must be transferred to the remote server. The local client then has to propagate this 
key to the relevant remote client that intends to access the remote copy of  the event 
data.  

In order to support this, event repository servers provide a History 
Propagation Interface. Through this, event repositories can communicate in both 
directions. 

In cases 1 and 2 above, the propagation is driven by the client at the original 
repository. This makes the event repository server communicate with a remote 
counterpart, and request of  it that it establish a remote event view. It can then 
transfer batches of  events directly into that view. This bypasses the deposit 
timestamping mechanism at the remote server so that the ‘now remote’ history 
retains the original deposit timestamp. The remote event view will be appended on 
subsequent transfer operations. 

In case 3 the propagation is controlled by the client at the third (the remote) 
repository. This first needs to get the access key of  both the repository clients that 
control the local event histories that are to be sent to it. It also needs to determine 
the α and β constants for the clock at each local repository. In effect, β adjusts the 
rate of  the local clock and α corrects for its offset with respect to the clock of  the 
finished global history. Dietz [Die96] surveys and recommends a number of  
algorithms for obtaining these two constants. It then needs to make its event 
repository obtain the two event histories and trigger a merge function passing the α 
and β constants as parameters. After this operation it can commit the new global 
history to a new view of  the event data. 

Figure 6.8 illustrates these two scenarios; cases 1 and 2 are shown in part A., 
while case 3 is shown (with less detail) in part B. 
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6.6 Summary 

This chapter has presented a design for an event repository architecture. This 
addresses the requirements of  the application domains identified in Chapter 2, and 
can be seamlessly integrated with the HERALD event notification infrastructure. 
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The functionality required of  an event repository was identified, and a specific 
design for an event repository that addresses this functionality was illustrated. The 
architecture proposed is functionally divided into what are termed the repository server 
component and the repository client component. The role and function of  these two 
components were then described. In particular, approaches to providing the required 
storage structure within the server component were highlighted, and a storage design 
put forward. 

The section concluded by considering the issue of  propagation of  event histories 
in between event repositories. 

A prototype of  the architecture presented was implemented. This enabled the 
architecture to be deployed in a number of  scenarios. The prototype, although not as 
optimised as could be, easily met the incoming volume of  events in these scenarios. 
Details of  these case studies are given in Chapter 7. 
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Chapter 7 

Experiments 
This chapter introduces a prototype implementation of  the storage architecture 
presented. It discusses some implementation-related issues and then proceeds with 
considering some of  the ways in which an event storage service can be deployed 
within different application domains. It then illustrates four applications that were 
used as experimental case-study deployments of  the event storage architecture. 

These applications were chosen because of  the breadth of  scope they cover, and 
their distinct event storage and retrieval requirements; this being indicative of  the 
wide-ranging applicability of  the event notification and storage solution proposed in 
this dissertation. Some of  these case-study applications were carried out in 
collaboration with other researchers and institutions, and this is indicated in the text 
where appropriate. 

The experiments illustrated are as follows: 
• The automatically generated diary (Section 7.3) illustrates the ease with which 

information can be gleaned from several sources and integrated using the event 
notification approach. The approach taken in this experiment enables locating 
information based on its temporal context, and enable limited analysis of  
working activity.  

• The thin-client session capture tool (Section 7.4), built on VNC remote access 
technology, describes one way of  monitoring user activity on a workstation, in 
particular their interaction with an application. This allows applications to be 
evaluated for the usability of  their interfaces and feature-set, as well as assist in 
teaching within classroom environments.  

• The multi-service network management infrastructure introduced in Section 7.5 
addresses the complex issue of  managing the various servers that a modern 
information provider needs to service scalable customer requirements. The 
solution proposed uses multiple event repositories that collect information on 
servers and then forward those events to more advanced event stores for analysis. 
Therefore, while live events enable service management and administration, 
analysis of  event histories is employed to determine the effectiveness of  
management policies and to guide their evolution. 
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• Finally, Section 7.6 describes CURVE, a virtual mobility visualisation and 
collaboration tool that allows remote users to visit a virtual replica of  a real 
building, and view and interact with embodiments of  the real users working in 
and populating it. As well as enabling review of  the interaction of  these 
real/virtual users, the event capture and storage service deployed also enables 
replay of  movement of  the real users in situations like emergency evacuations. 

While not being comprehensive solutions in their own right, these investigations 
explored the potential of  event storage in various application domains in order to lay 
the technological test-bed for more advanced designs that can address the complex 
research issues identified in Chapter 2. 

7.1 Prototype implementation 

Prototype versions of  the event repository and of  the HERALD messaging 
infrastructure were implemented in the course of  the investigation. These prototypes 
were built as proof-of-concept implementations and support the core functionality 
and features proposed in this document. The next two sections provide a brief  
synopsis of  some implementation related features. 

7.1.1 The HERALD event transport  

HERALD has been implemented as a set of  Java™ class libraries. Java™ was chosen 
for its ability to have the same binary code deployed and executed onto 
heterogeneous platforms. Two high-level classes, EventClient and EventSource, 
embody the functionality of  an event source and an event client. By instantiating one of  
these classes within their application, developers obtain HERALD event client or event 
source capabilities. Various service handlers and multiple threads are launched by the 
instantiated objects, which the application code does not have to interact with unless 
it wants to. Communication with user code is carried out asynchronously by the user 
defining object handlers (that inherit from HERALD interfaces) to be invoked upon 
specific occurrences, examples of  these being registrations, errors, acknowledgments, 
etc. Various modules, such as event storage within the HERALD transport, can be 
activated or disabled according to the initialisation parameters passed to the 
constructor of  the EventSource object. Future revisions of  the transport can 
increase the options available by adding to the set of  policies supported. Since these 
are activated through parameter passing, the API would not be modified and current 
applications would not require rewriting. This approach allows for evolution of  the 
libraries while retaining backwards compatibility. The prototype implementation of  
HERALD does not use Java™ types for event parameters so as not to tie the transport 
and its applications to the Java™ programming language or type system. Instead, the 
user calls methods that allow him to insert or retrieve ODMG types that are only 
then mapped internally into Java™ types. All other message constituent data is 
transferred in between event-components in UTF-standard format. This ensures that 
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the transport libraries can be ported to other programming languages, and that these 
heterogeneous versions would be able to inter-communicate. 

The event transport underlying HERALD makes no implicit assumptions as to the 
nature of  the communications protocol being used, and abstracts the functionality of  
the latter through a defined interface. Events and control messages can therefore be 
propagated over both connection-less (UDP/IP) and connection-based network 
protocols (TCP/IP). Components can choose the transport they wish to employ 
dynamically, and can change it during the course of  their execution if  they so require.  

All HERALD structured messages support and communicate the version number 
of  the libraries that created them, enabling future revisions of  the software to be 
backwards compatible while elaborating on the communications mechanism. 

7.1.2 The event repository 

Due to the importance of  read-write performance for event storage and retrieval, a 
prototype event repository was implemented in the C++ programming language. 
This implementation provides for the core functionality required of  the architecture 
presented in Chapter 6, and the retrieval interface described in Chapter 5. The server 
component of  the repository is provided as a stand-alone implementation, while the 
client-side of  the repository is provided in the form of  a package of  class libraries 
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that an application developer can use to rapidly develop customised repository 
clients. These libraries are available in C++ and Java™.  

Communication with the server is enforced through client-side libraries, rather 
than allowing a programmer to communicate directly with the server, for security 
reasons. When a client establishes communication with the server and creates an 
event storage session, it receives a certificate that it must present whenever it re-
establishes communication with the server for retrieval.  

The server is fully multi-threaded, can handle multiple clients concurrently, and 
can be customised through a command line interface to provide (or disable) non-core 
modules that affect its performance and memory footprints. The client classes then 
determine which of  these modules are available in any server instantiation to 
dynamically reflect the feature-set available to the application programmer. Typed 
and parameterised runtime exceptions are thrown if  the developer’s code is made to 
attempt invocation of  disabled modules. 

Each client session is allocated a time stamping thread that timestamps all events 
as they are received and buffers them for storage. Buffer sizes are monitored by 
another thread and grown dynamically in case the storage thread cannot keep up with 
incoming events. The storage threads create a directory to correspond to each client 
session, and keep separate log files for each event type and for session indices. 
Session indices are maintained in real-time during insertion of  the event data. 

The repository server maintains a Schema Repository containing the definitions 
of  all the versions of  the event types for which events are stored in it. 

TEQL queries can be passed (as string parameters) through to the server 
interactively or may be pre-configured within the application code. This is convenient 
for when the client only carries out specific queries or presents a pre-configured 
graphical user interface with fixed retrieval and replay choices to the user. 

Once a TEQL query is parsed and found to be correct, the composite event 
system starts accessing the event logs to locate composite sequences. This proceeds 
as follows: 
• Locate bounding time interval over which the query applies. This may be the 

whole event history retained in the event repository, but is rarely so. In practice, 
queries are usually bounded within some values of  real-time, or from some point 
in time until the present. 

• Identify the starting event construct of  the query, that is, the starting event for 
any composite match. 

• Locate first starting event within bounding interval and scan from that point 
onwards for composite match. 

• Depending on the consumption model specified in the query, new searches 
branch from the current point in the logs as events matching the composite 
sequence are located. These concurrent active searches are known as evaluations, 
and for each one a state evaluator is instantiated. The structure of  these state 
machines is constructed and initialised upon parsing of  the TEQL query. 
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The evaluation sequence implemented within the prototype is not optimal as it scans 
large numbers of  event instances where it might be possible to optimise the access 
pattern to the data. This aspect is currently being investigated. 

The query evaluator always retrieves all the primitive events requested by a query 
before returning them to the client. Similarly, event replays are evaluated completely 
before replay is initiated to ensure that the replay reflects the correct relative temporal 
separation and is not affected by waiting for any evaluation processing. This means 
that there can be a substantial pause from the client requesting a replay to the replay 
starting. This has been addressed by having the server first return a “query evaluated” 
result, upon which the client can then ask the replay to start proper. 

For performance reasons, tight coupling between the server and client 
components is employed; therefore, by default the client code blocks in anticipation 
of  server response. Asynchronous operation can be implemented by the developer 
by introducing multi-threading in the client-side application. 

7.2 Deployment Configurations 
Within the case study scenarios, several ways of  deploying an event repository 

within a distributed environment were explored. The event storage service was 
provided: 
• as a system wide resource, monitoring all event instances from one or more sources. 

An example is a centralised repository instance that captures all movement 
sightings from all Active Badges in a domain. Application components can then 
interface with it to request a replay or analysis of  these movements. The event 
repository then injects these active components with the movement events as if  
they were happening in real time. In this configuration, the repository can allow 
users to request retrieval of  past sequences or replays from it according to some 
access policy. One such method would be for its interface to impose access lists 
on event types. One example case study (see Section 7.6) that uses this 
configuration is visualisation of  mobility in virtual-reality for review of  
emergency evacuations. In this scenario, a centralised event repository injects 
events into the mobility visualising component.  

• as a user-centred service. A user can instantiate a HERALD storage mediator and 
configure it to monitor all event types of  interest. It is up to the user (or their 
agents) to configure the repository to organise events into sessions of  relevance, 
which are useful for subsequent retrieval. Such a configuration can be used to 
monitor all activities the user or their agents engage in; an example being for 
automated diary generation (see Section 7.3). The repository could monitor all 
workstation activities in the background, receive notifications from system-wide 
services like the user’s movement sightings and use of  library facilities, and 
monitor their engagement in online collaborative activity.  

• as an application-specific service. An active application can instantiate an event 
repository and use it for its own requirements. A debugging application can thus 
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use the repository to monitor system execution, allow analysis and review of  the 
resulting trace and then destroy it once it terminates execution. In cooperative 
work scenarios, it might be desired not to keep a permanent trace of  the 
interaction, but nevertheless use the event repository to support disconnected 
operation. One way of  achieving this is to have the conference management 
objects instantiate their own event repositories, use them to provide replay for 
participants after reconnection following network partitioning, but then destroy 
them and all their event records once the collaboration terminates. 

• as a component-specific service. An event repository can be embedded within a 
distributed component and be used solely by that component to provide 
persistent functionality. As discussed in Chapter 4, embedded event repositories 
can enhance the capabilities of  event sources and event clients, as well as 
federators, brokers and gateways. In this configuration, the conceptual modules 
making up the repository can be tightly integrated with the modules of  the event 
component in order to reduce unnecessary communication overhead. 

These deployment scenarios are not mutually exclusive.  
An important concern that applies in any scenario where replay is envisaged is 

that of  feedback. Although one can capture the event messages that integrate an 
application, it is not always possible to then simply replay these back into the 
application to set its global state the same it has been at some point in the past. The 
reason for this is, of  course, that in many components, the notification of  an event 
will cause input/output to be carried out, as well as bring about generation of  other 
new events that trigger further activity elsewhere. Therefore, replay can only be 
successfully carried out when it is possible to distinguish between externally sourced 
events, and internally generated events that are causally related to them. Only the 
former should be fed back into a replay, and even then, the non-determinism 
inherent within loosely coupled execution implies that the application might behave 
differently in this second replay. This issue has received prominent attention within 
investigations into fault-tolerant distributed systems environments and simulation 
[JZ88, SY85, WF92]. 

7.3 A ‘memory prosthesis’ -like diary 
application 

A human memory prosthesis diary application was designed and deployed. The diary 
application illustrates the ease with which information can be gleaned from several 
sources and integrated using the event notification approach. 

A ‘human memory prosthesis’, as defined by [LBC+94], denotes an application 
that aids memory recollection by supporting searching by temporal context. People 
often forget the details of  a particular event or activity, but will recall the context of  
when that activity took place. Examples of  this context are activities that took place 
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before, during, or after the event in question. An automatically generated diary can 
serve this role in aiding recollection if  it can: 

• capture enough information about a user’s daily activities, and  

• present a meaningful means of  querying the information.  

In order to acquire reasonable granularity of  information on a user’s activities, 
information from both the physical and virtual (digital) dimensions a user works in 
was collected.  

Users’ physical location and movements were tracked through an Active Badge 
system [HH94], where each user wears a personalised infrared badge that transmits a 
signal every few seconds. This is picked up by widely deployed sensors throughout 
the building. The sensor network was interfaced to by an event source module. This 
module retrieved all badge sightings for all members of  the department and kept 
track of  when they changed location. It offered event consumers events pertaining to 
a user’s badge sightings (typically every few seconds), clicking of  the buttons on the 
badge, and movement events, generated only when a user is detected to have changed 
location. The Active-Badge Event Source module also encapsulated event storage 
functionality. Therefore, it could be interrogated as to the history of  movement of  
any user. 

Software sensors monitored a user’s computer-based activities. In each of  the 
cases below, a stand-alone component or a wrapper around some application, was 
deployed to monitor some software activity (see Figure 7.2). This generated HERALD 
events of  one or more specific types when important operations are carried out in 
software. This experiment was carried out on the Microsoft Windows NT platform. 
This illustrated the ease with which HERALD could be used to integrate third-party 
independent modules. The monitoring involved: 
• Terminal logging-on and logging out – users taking part could install a small sensor 

application in their environment that would run when they log in and generate an 
event, and likewise generate a log-off  event when it is terminated upon shell 
closure. 

• Application usage – users use a toolbar to launch applications, and this generates 
events identifying what applications had been launched and when. 

• Document tracking – clicking on a document in the Windows environment 
launches the application that is associated with that document for reading or 
editing. A document-listing application allowed document opening and generated 
events on these operations. 

• Telephony – voice-enabled modems allow telephone calls to be made and received 
through a personal computer. This conveniently allows a wrapper around the 
Windows Telephony API to generate events about telephone activity and the 
numbers dialled. Furthermore, calls dialled or received (using caller-ID) can be 
matched to people or organisations through interaction with a user’s address 
book. 
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• Address-book, Email and Personal Organiser (PO) software – comprehensive PO 
software suites like Microsoft Outlook 98/2000 integrate a user’s calendar, 
task list, contact list, and also double as email interfaces and repositories. 
Outlook provides a very comprehensive programming model through which 
software can interface with most of  its internal modules and monitor their 
activity. These wrappers were then made to integrate within the HERALD 
framework and issue events on email arrival, dispatch, entering of  calendar 
appointments, appointment/meeting starting and ending, task creation and 
clearing. 

• Web browsing. A HERALD aware web proxy was deployed and the user’s web 
browsing software was set to divert all its HTTP retrieval operations to it. This 
proxy then handled web page retrieval transparently for the user’s browser while 
generating events pertaining to the HTML pages being requested. 

In this experiment, privacy was ensured by having all the events generated by a user’s 
monitoring modules used only by other modules belonging to that user. 

The above infrastructure enabled acquisition of  sufficient information to be of  
use as an automated diary. Events from all the monitors were collected by a User 
Monitoring Module, which was also the client segment of  an event repository. For 
one month, the storage required was of  4-8 megabytes for average use and for 
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uncompressed event data. 
The user interface attached to the diary application enabled browsing of  the raw 

data, and then its interpretation at various levels through application of  TEQL queries. 
Upon entering a TEQL query the user would be presented with a refined view of  the 
event data, this being the result of  the query submitted. Output from multiple 
queries could be combined to create new data views, and these could be queried 
against in turn. 

The following are examples of  typical queries one could carry out from the data 
captured: 
• Show me the document that I edited after I had been to the meeting room where I met Jean 

(some day two weeks ago) 
• Locate the details of  a phone call I made 30 minutes after I received an email from George 
• Locate the document I wrote after my appointment at the hairdressers some time last month and 

before I saw the Xerox PARC web page 
• Show me the documents I edited on the 25th of  this month from logging on until 12pm 
Although in this application, there is no notion of  an integrated workflow from one 
component to another in a reactive manner, nevertheless it does demonstrate the 
ease with which independent applications can be turned into event sources. It is 
envisaged that it would be possible to use the event information collected to study 
users’ interactions with each other and with electronic means of  obtaining news (like 
web-sites and email). 

The diary application was found to be useful as a tool for memory recollection, 
in particular for locating of  documents. A future version detailing collaborative 
online sessions integrated with the above event information is being designed. This 
would then aid recollection of  ideas and of  concepts discussed in audio/video 
conferences. At present, this would only be available through keeping of  video and 
audio logs (as in [LN93, LBC+94]) and manual annotation of  the records. 

7.4 Thin-client activity capture and replay 

This thin-client session capture tool illustrated the feasibility of  both temporal 
searching and replay for playback of  computer sessions. This has potential for 
interface customisation and studying of  human learning patterns. 

Thin client platforms are becoming important tools in a number of  
environments like the active home, where ubiquitous terminals of  low computing 
potential can be widely deployed. Likewise, the widespread use of  handheld devices 
like personal organisers, palm computers and smart mobile phones, with severe 
power-consumption constraints (and thus performance restrictions), is bringing 
about a revival of  client/server computing where as much computation and state 
information as possible is moved from the client to the server.  

The Virtual Network Computing (VNC) technology from AT&T Laboratories 
Cambridge [RSWH98] pushes this thin-client computing model to an extreme by 
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moving the execution of  applications completely to the server, leaving the client 
stateless. Without changing any windowing system, VNC can run on any platform 
and breaks it into client/server pieces, namely the VNC server, the VNC client, and 
the VNC protocol that connects the previous two (Figure 7.3). The VNC server 
executes all the applications and generates the frame buffer. The VNC client displays 
the frame buffer and accepts user input.  

The server component of  VNC captures the desktop of  the machine the server 
is hosted on. It then forwards this mirror of  the desktop to the client component 
running elsewhere. The client displays this copy of  the desktop through whatever 
display or windowing technology is available on the client platform, and allows the 
user on the client machine to interact with that desktop as if  they were sitting at the 
console of  that machine. Input devices like the mouse and keyboard can be 
controlled, and should another user use the console of  the server machine, these 
would be shared with the remote user employing VNC. In this way, VNC enables a 
machine’s desktop (or user session) to be used remotely in a way analogous to the X 
windowing protocol. The difference between VNC and X is that whereas the X 
protocol requires heavyweight clients to interpret drawing and display primitives, 
VNC carries out all computation at the server, and sends only frame-buffer updates 
and display segments to its lightweight client component. This has enabled VNC to 
be ported to several platforms and windowing environments, like Windows, 
several UNIX flavours, and some hand-held operating systems. VNC also enables 
several users to simultaneously view the same desktop and is thus useful for 
classroom demonstrations. Inversely, an instructor or a researcher investigating an 
application’s usability characteristics can monitor someone else using that application. 

In this experiment, carried out in collaboration and documented in [LSBH00] by 
Li et al., the event repository developed in the course of  this investigation was 
employed to capture and store the events sent from the VNC client to the server. 
HERALD’s event transport functionality was not employed in this application, as VNC 
already uses a proprietary event protocol. The event repository was interfaced to this 
event mechanism and VNC through the writing of  a VNC proxy module that was 
also the repository client component. This proxy server was seamlessly introduced 
between the VNC client and the server to intercept and manipulate the message 
streams in the VNC session [LSH99] (see illustration in Figure 7.4). Frame buffer 
update messages and various event messages that denote user actions (mouse clicks, 
window focus operations, entering of  text) were retained. In effect, this is equivalent 
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to capturing the user activity input on the VNC desktop, and enables playback of  the 
whole or part of  the session captured. Furthermore, the events serve as indices that 
can be queried to locate specific intervals within the user’s activity. This capture and 
playback is useful for carrying out usability studies, as well as for the users themselves 
to review their activities. The resulting movie allows the reviewing user to view the 
captured activity with VCR-like control. 

The events stored are used as indices into the frame-buffer updates. Firstly, there 
are intentional annotation events, which are indices that users create during a work session 
for marking particular time points or segments of  activities or points of  interest. 
These notes are time-stamped by the event repository and act as a temporal index 
into the recording. Several activities can be marked in this fashion, like text 
highlighting. Other automatically generated indices, termed side-effect events, refer to key 
(keyboard entry), pointer (mouse click) and bell (software generated notification) 
events. Derived events are produced by automated analysis of  detailed multimedia 
records. For example, by analysing the frame buffer update messages, the proxy 
calculates the size of  the frame buffer area that has changed since the last update and 
generates events pertaining to it. 

In this application, the storage proxy presents a graphical user interface to the 
user. There is no requirement for the user to enter queries directly into any query 
language. A graphical menu-driven interface allows selection and customisation of  a 
number of  pre-set search, browse, retrieval and playback modes, and the proxy then 
translates these into TEQL commands transparently. The events retrieved from the 
event repository are then used to look up the appropriate frame buffer updates and 
reconstruct thumbnails for browsing or regenerate a session directly. 
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The retrieval queries available enable the user to locate (1) commands typed in at 
the console, (2) text entered into applications, as well as attempt to locate (3) any of  
the events captured by their type and by specifying templates for their parameters. 
Sequences of  these events can be defined and searched for. When matches are 
located, the query interface locates and re-builds the display frames corresponding to 
when these events took place, and these are displayed in the form of  thumbnails. The 
user can then choose to view a replay from that thumbnail onwards at the full 
original size, and at the same speed of  occurrence, or faster.  

This case study illustrates how the event repository can be employed with a 
proprietary event protocol. In measurements carried out in the context of  this 
experiment to determine the latency of  a retrieval operation, minimal performance 
latency was due to the event repository parsing queries. Most of  the time was spent 
on retrieving the checkpoint image frames and then parsing all the incremental 
updates until a frame could be displayed. Increasing the frequency of  ‘checkpoint full 
frames’ made this value tend towards a minimum figure of  two seconds, a fraction of  
which is due to querying the repository. 

7.5 Active Management of  multi-service 
networks 

This experiment illustrates the use of  multiple event repositories working in 
collaboration. While live events enable service management and administration, 
analysis of  event histories is employed to determine the effectiveness of  
management policies and to guide their evolution. 

The increasing need for rapid introduction of  new services and highly 
customised service offerings poses additional management challenges for today’s 
networks. In order to address this, an investigation into management through event 
notification and storage was carried out in collaboration with BT Laboratories 
(Martlesham Heath, UK). The outcome of  this investigation is described by Marshall 
et al. in [MBS+99]. Catering for modern customer service requirements requires the 
deployment of  several specialised servers: examples being web servers, file servers, 
archive servers, e-commerce servers, mail servers, multimedia servers; working 
together to provide an integrated multi-service infrastructure. However, the reality of  
the marketplace often does not allow tight integration approaches to providing such a 
comprehensive solution. In order to be able to utilise third-party off-the-shelf  
products, loosely integrated event-driven approaches are feasible and practical. One 
powerful technique for providing such a service by a major information service 
provider that requires scalability is to group these services into clusters of  servers, 
each running one or more services. In such a cluster, a number of  machines (capable 
of  being instructed to launch any service required) provide redundant backup in case 
of  failure or overload, and management servers monitor and analyse the 
performance and load factors of  the running servers. Gateway servers then act as 
bridges between these clusters, and not only propagate management information for 
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synchronisation, but also provide auditing and forwarding of  client requests in case 
of  cluster overload. This is shown in Figure 7.5. 

The solution proposed as the outcome of  this research employs Active 
Management (event-driven) based on role-driven policies and Application Layer 
Active Networking (ALAN) [FG98]. Information handling problems are avoided 
by using a lightweight scalable mechanism for information transfer. An Information 
Management System is deployed, which consists of  a number of  Information 
Management Servers (IMS’s), each of  which encapsulates an event repository and 
captures management information. Events are propagated through HERALD’s event 
transport. Thus, each specialised service, like the web server, is attached to an IMS 
(most likely running on the same machine), which can extract events from it as well 
as inject actions into the server according to events received. For example, an event 
generated from the web server indicates its current connection load. The IMS 
attached to the Cluster Manager service registers interest in this at a high delivery 
priority and can therefore monitor its load, starting another web server if  need be. 
Similarly, it can send an event to the web server requesting it to stop handling client 
requests and shut down (as it might not be needed any longer, or another service is 
to be launched on that machine). Auditing servers also register interest in such 
events, but at the lowest priority. 

The management system controls the services running within the cluster through 
an IMS at each network node, each of  which is capable of  autonomous actions. The 
actions to be undertaken at each entity are determined using knowledge that entity 
possesses about itself  and policies (these being supplied by remote managers) that 
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specify responses to system events. Typically, the local knowledge will consist of  
status data on elements controlled by the autonomous entity, and will constrain the 
number of  policies that are applicable to an event instance. Each entity has a policy, 
defined by its administrator, which expresses the local precedence order of  the 
management roles authorised to provide policies. All of  the policies are based on the 
work of  Sloman et. al. [LS97, Slo94] and allow manager rights (authorisations) and 
responsibilities (obligations) to be linked to the managers’ role.  

The actions possible include download and execution of  management utilities 
and other executable programs that may be required but are not already installed. 
There are therefore policies (distributed with the programs) that specify the usage 
and behaviour of  any programs added to the system using the active capability. The 
active capability is provided using the techniques discussed in [MCC+97]. Program 
policies are associated with the strongest role of  the program provider at the entity 
where the program is used. 

All IMS’s encapsulate event repositories that store and then periodically forward 
their data to other more centralised event repositories in the cluster. Therefore, two 
types of  repositories are employed; lightweight partially functional servers which can 
be co-located with any entity, and fully functional servers which will typically be 
located at gateway nodes. This arrangement takes advantage of  the flexible 
architecture employed in the event repository, which enables functional modules to 
be disabled; thus balancing the complexity of  querying required against the 
computational power available at a node. While simple but fast event stores offer a 
load balancing and traffic controlling function, fully featured event repositories allow 
management information analysis. 

Event repositories at most services are therefore cut-down in functionality to 
reduce their requirements footprint, with no temporal querying available. These 
stores retain their contents for a limited amount of  time and space, and forward their 
contents to the primary event stores at the cluster gateway IMS’s when the 
time/space threshold is approached.  

7.6 A ‘mixed-reality’ collaborative environment  

The aim of  this case-study application (named CURVE - Collaborative Unified Real 
and Virtual Environment) was to explore the potential of  collaboration between real 
and virtual remote users in a common environment. As well as enabling review of  
the interaction of  these real/virtual users, the event capture and storage service 
deployed also enabled replay of  movement of  the real users in situations like 
emergency evacuations. This application explored the feasibility of  session playback 
to identify dangerous bottlenecks in buildings that could hamper rapid evacuation in 
case of  an emergency. 

In order to achieve this, a real working space (part of  the Cambridge Computer 
Laboratory) was mirrored in virtual reality (VR), where the VR representation was as 
accurate as possible to the real world. This virtual reality model could be accessed 
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through a web page, so it was available from anywhere. Although any user could 
download and navigate the virtual world, one was required to register and obtain a 
user identifier and password to be able to interact and collaborate with the ‘real 
users’. The virtual reality world downloaded is dynamically modified as the user 
navigates through it to reflect activity in the real working environment. There are two 
aspects to this mirroring of  a real environment into virtual-reality – mirroring the 
building itself, and mirroring the real users that populate it and their activities. 

An accurate virtual reality model of  part of  the Computer Laboratory was built. 
The accuracy is reflected in the representation and dimensions of  the building, floor 
layout, and rooms; right down to the level of  the furnishing and textiles adorning 
each room. This enabled an individual familiar with the real building to immediately 
feel at home while navigating the virtual space, and thus be able to quickly proceed to 
the locations where (s)he wishes to visit or meet people. One of  the problems 
associated with virtual-reality multi-user environments is the artificial nature of  the 
worlds they present to users. In this application, this was not really an issue as the 
virtual world closely models an existing building. To further emphasise this, real-
world movement is enforced, with active constraints like gravity. For example, to 
move up a floor, one has to take the stairs or use the lift. Since the virtual world 
created is so accurate in its representation of  the real building, it has been used to 
visualise replay of  users’ movements in situations like emergency evacuations.  

Real users were mirrored in the virtual world. When remote users visit a virtual 
office they will view avatars representing the real users ‘really’ present in the physical 
analogy of  that office. Since recognizing someone from their avatar is important, 
several avatars are employed to represent people, and in addition, head photographs 
(mug shots) are used to customize each individual’s avatar with their face. Knowledge 
of  a real user’s location and activities is achieved by using information gained from a 
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number of  sources. The Active Badge system [HH94] deployed throughout the real 
building enabled monitoring of  the location of  any individual who wishes it. 
Additional information acquired from software components running within an 
individual’s desktop environment was employed (see Section 7.2). For example, if  a 
user was currently logged in at a workstation with no idle time within that office, the 
system concludes that (s)he is using that machine. The avatar is then displayed seated 
or located next to the VR representation of  that machine. If  users move from one 
location to another, their movement is detected and fed back into the virtual world, 
which dynamically generates and displays their avatars moving in between the 
corresponding locations. 

When virtual users navigated through the virtual world, their movements were 
captured and sent back to the Department, where they were then fed into real users’ 
collaboration software. From the real users’ perspective, they were made aware of  
their ‘virtual visitors’ through a software component running on the workstation 
nearest to their location (in the same room). This informed users whenever a virtual 
user was entering their office, and they could ‘page’ the virtual user. Virtual users can 
see other virtual users navigating through the virtual world, and can undertake 
interaction with them in a similar fashion to real-world users. Figure 7.6 illustrates the 
architecture behind CURVE. 

CURVE is built around HERALD. An applet resident in the CURVE ‘access web 
page’ interacts with the third-party browsing software that displays the virtual reality 
world (defined in VRML97 [ISO97]), and can dynamically modify it and its 
constituent objects. From this viewpoint, the application appears as in Figure 7.7. 
This applet also monitors activities in the virtual world, like users’ movement and 

their interaction with the objects that 
make up the world; mapping these to 
HERALD events. It therefore acts as both 
a HERALD event source and client, and 
communicates with other HERALD 
components residing at the Computer 
Laboratory. The collaboration modules 
that can be launched to carry out audio-
video collaboration between users are 
also active components. Classes of  event 
include user interaction events, such as 
drawing lines, typing text, clicking on 
objects in a video clip, virtual reality 
viewpoint movement, and avatar 
selection.  

CURVE supports the storage and 
retrieval of  activities, enabling past 
sessions to be replayed at a later point, in 
whole or in part. It also allows the review 
of  scenarios involving mobile users, for 
example emergency evacuation Figure 7.7 

The mobility visualiser. 
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procedures. In this experiment, users’ movements during a fire drill were monitored 
and captured by the event repository attached to the Active Badge Event Source. 
The event stream captured was then fed back into CURVE, which used it, just as it 
would with live data, to visualise individuals’ progress through and out of  the 
building. This enabled identifying of  problem spots within the building, such as 
bottlenecks affecting the safe exit of  a large number of  people. This can be a 
valuable tool for an architect to identify design flaws in a building, and assist with 
making modifications or providing alternative exits. In the evacuation scenario, 
CURVE was not employed as a collaborative environment as such, but its ability to 
mirror a real world and its users was used to study that real world during an interval 
of  interesting activity. The advantage of  using a virtual reality mirror over closed-
circuit camera footage is that in the virtual world one can change one’s viewpoint 
continuously as opposed to being restrained to viewing from fixed and specific 
viewpoints. 

In summary, events describing real and virtual users’ movements and activities 
were captured over time and stored in an event repository. A replay could then be 
initiated from the repository, feeding back the event streams denoting people’s 
movements within the building into the virtual reality mirror of  it. This could be 
done at the same speed as the original time scale, or in faster multiples. The replay 
could be made from the beginning of  the capture session, or from any temporal point to 
any other point. TEQL replay queries could be made interactively into the replay module, 
which would then return a set of  replay intervals that match the query provided. The 
user can then select which replay to carry out, this then being fed into the virtual 
reality world. 

7.7 Summary 

The aim of  these case-studies was to explore the potential of  event storage in various 
application domains having different integration, storage, and retrieval requirements.  

The diary application illustrates the ease with which information can be gleaned 
from several sources and integrated using the event notification approach. The 
approach taken in this experiment enabled locating information based on its 
temporal context by applying the principle of  human memory. By cross-examining 
the event histories pertaining to different users and relating them, this tool could be 
the underpinning of  an analysis of  workflow patterns in the workplace. 

The VNC thin-client session capture tool allows applications to be evaluated for 
the usability of  their interfaces and feature-set, as well as assist in teaching within 
classroom environments. This illustrated the feasibility of  both temporal searching 
and replay for playback of  computer sessions. Coupling this with post-session high-
level semantic analysis and a knowledge base (such as that prototyped in Lumiere 
[HBHHR98]) has potential for interface customisation and studying of  human 
learning patterns. 
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The multi-service network management infrastructure introduced in Section 7.5 
addresses the complex issue of  managing the various servers that a modern 
information provider needs to service scalable customer requirements. The solution 
illustrates the use of  multiple event repositories working in collaboration. Therefore, 
while live events enable service management and administration, analysis of  event 
histories is employed to determine the effectiveness of  management policies and to 
guide their evolution. 

Finally, the CURVE tool allows remote users to visit a virtual replica of  a real 
building, and view and interact with the real users working and populating it. As well 
as enabling review of  the interaction of  these real/virtual users, the event capture 
and storage service deployed also enables replay of  movement of  the real users in 
situations like emergency evacuations. This application explored the feasibility of  
session playback to identify dangerous bottlenecks in buildings that could hamper 
rapid evacuation in case of  an emergency. 
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Chapter 8 

Analysis 
In order to evaluate the solutions presented in this dissertation, it is useful to recall 
the original research aims as documented in Chapter 1. The proposed event storage 
solution required provision of: 
• a model for representing generic event instances, 
• an architecture for seamless integration of  the functionality and services of  an event storage 

repository with different environments, 
• a flexible storage service that embeds a high-performance storage paradigm tailored for the 

particular nature of  event data, 
• a powerful interface for retrieval and replay of  information from event stores. 
Chapter 2 then highlighted a number of  application domains where event 
notification is recognised as a feasible and powerful communications model, but 
where further advances require review and analysis of  event histories. These research 
issues were therefore addressed with an emphasis towards generic applicability. This 
approach can be unsafe as it can lead to elegant solutions that in practice cannot 
meet the bespoke requirements of  any particular application. In order to avoid this 
pitfall, flexibility and customisation was built into the designs themselves. The idea 
behind this is that application developers can adopt the above services in order to 
built their application while tailoring them to their particular requirements and 
constraints. 

This chapter provides a synopsis of  the features of  the service presented and 
discusses their merits and shortfalls. Where appropriate, it highlights directions for 
future research. 

8.1 A model for representing generic event 
instances 

The event model presented in this dissertation (Chapter 4) offers a generic way of  
representing and reasoning about events. In past, event notification systems have 
been hampered by providing unstructured event representations that severely limited 
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their application outside a few bespoke applications. The model proposed avoids any 
application-oriented emphasis in order to avoid this fate. Not only is it 
straightforward to map events from all sorts of  hardware and software devices to the 
event model proposed, but it also becomes possible to use the same event data 
generated within one specialised application within another of  completely different 
scope. 

The event model defines a type system for events where event instances belong 
to a structured type, whose attributes are of  any of  the types defined in the Object 
Data Management Group’s data types. These strict definitions on the representation, 
size and range of  types like integers, real values and strings, ensure that the event type 
system is not tied down to any particular programming language data model. At the 
same time, the ODMG data model provides bindings to the type systems of  the 
most popular languages, like Java™, C/C++ and Smalltalk, and is very close to the 
type system defined by the Object Management Group, the other consortium 
relevant for distributed systems design. These factors contribute towards rapid 
integration, processing and usage of  events within applications across heterogeneous 
platforms. 

Since events are typed and structured, services can determine precisely what 
event information they require and specify fine-granularity filtering, providing for 
highly client-focused event notification, with reduced network load and client-side 
computation required. 

The future of  distributed systems lies in dynamic open infrastructures where 
application components can be written by different organisations, and can 
dynamically join or leave a distributed computation. Components can come and go, 
provide services that others can make use of, and scour a system in order to discover 
information that they can consume. This scenario precludes tightly coupled 
approaches, where event schema are statically propagated using compiled skeleton 
files or stubs. 

In this model, event instances only contain a reference to their type and their 
attributes’ values. It is therefore proposed that event schema, i.e. the structures that 
define what is meant by an event type and which collectively make up the event 
taxonomy available to an application, are defined at the event sources where the 
events are generated, or at local event brokers that have knowledge of  the events 
available in their domain. From here, they can then be propagated to entities wishing 
to consume events of  those schema’s types. Self-describing messages in formats like 
XML are useful for when an event consumer is interacting with message-based 
channels delivering events of  different kinds, and is undecided as to what is useful to 
it. This is very expensive in terms of  network bandwidth, due to the large message 
size, and in terms of  the filtering and parsing required at the event consumer. 
Searching for and obtaining a descriptive scheme once seems to be a more practical 
solution, and is particularly effective when coupled with a federated network of  event 
brokers [BBMS98].  

Since event types can inherit properties from other events within an inheritance 
tree, applications can structure services around meaningful organisations of  event 
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types. In this way, registration and querying of  event data can be carried out on base 
types that implicitly encompass event instances from all the sub-types. 

In order to further facilitate discovery of  information, scheme definitions enclose 
textual fields that describe an event type’s purpose, and provide a set of  keywords 
that can be used for classification and indexing. Likewise, within an event type’s 
scheme, each attribute is not only named and typed, but is also tagged with textual 
descriptions of  the nature of  that attribute. Together, these allow for search services 
that locate useful information, and support automatic translation of  event 
taxonomies in between domains. In addition, since schema are versioned, they can 
evolve over time without requiring re-compilation of  components. Event services 
can serve events in the new and old format alongside each other without causing 
confusion. 

Finally both regular, as well as compound, composite events are implicitly supported. 
Registering in a composite event is analogous to registering in a pattern of  
occurrence, and enables applications to determine the granularity of  events they wish 
to see, without losing the ability to see the constituent primitive events if  desired. 

These capabilities go beyond the provisions of  most event and messaging 
models, and lead one to conclude that the event model presented can more than 
meet the requirements of  the application domains listed in Chapter 2. In Chapter 7, 
the diary application, the multi-service network management infrastructure, and the 
CURVE virtual reality system, all endorsed the event model presented. It adequately 
fulfilled their requirements. Furthermore, the model specifies that its structures 
themselves all be versioned, ensuring that the core model itself  can evolve in 
response to emerging requirements.  

8.2 An infrastructure for event notification and 
storage 

The HERALD event notification and storage infrastructure (Chapter 4) provides a 
flexible framework for building distributed systems from independent components. 
HERALD provides the transport within which to implement and propagate structured 
events as defined by the above event model. By not imposing any system-wide 
constraints on data propagation and communication, HERALD embraces the loosely 
coupled model of  interaction that, as argued in Section 8.1, represents the future of  
distributed systems and Internet-based software. 

HERALD’s underlying philosophy is that by wrapping a small layer of  code around 
a device or software component, that component can be turned into an active 
component. This is a component that can: (1) either generate events that are of  
interest to other components, or (2) can register interest and consume events from 
other components, or (3) can have actions injected into it. In the third case, an 
application-specific federator module can be written that employs declarative rules to 
drive injection of  actions (triggering of  activity) inside one or more non-active 
components. This approach enables distributed systems to be rapidly and 
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dynamically composed from several applications that were not intended for such 
integration. Section 7.3 demonstrates how this capability can be deployed.  

The HERALD transport is characterised by its building block approach to 
providing specialised event services within an application. Client modules, Source modules, 
federator modules, event repositories, brokers, composite event engines and action injection interfaces 
can be seamlessly brought together by an application writer to provide a variety of  
specialised mediator components. Throughout, a comprehensive event registration 
service with a variety of  registration policies provides for propagation of  event 
information as defined by the event model described.  

The registration policies supported by HERALD event sources provide clients with 
a means to apply several constraints on how events are notified to them. While this 
feature-set enables an event source to provide a comprehensive service to its clients, 
an application writer can choose to disable several aspects of  it. This allows event 
sources to be used on platforms where memory, disk, and processor cycles are at a 
premium. The reflective nature of  the interface that ties together clients and sources 
ensures that components can accommodate discovery of  service availability and 
dynamic change. 

Since both event sources and clients can embed event stores, event histories can 
be collected at various points within a distributed system. By directly enabling 
components to query each other with regards to their event histories, and to request 
retrieval of  past events and event replays, HERALD provides the same level of  access 
to event histories as to live notification. This is a novel contribution for a generic 
event transport. 

8.3 An interface for retrieval and replay of  
event information 

An event history represents many things in many applications. It can represent a 
history of  interaction between cooperative applications, a trace of  low-level system 
events, a sequence of  stock prices, a listing of  telephone calls from a telephone 
exchange, or a detailed record of  a user’s interaction with other users and with 
his/her digital environment. Chapter 2 gave further examples that indicate the 
breadth of  domains where a history has uses. Each of  these scenarios supports a 
number of  applications, and within each, there are different requirements as to how 
an event history might need to be queried and analysed.  

What underlies these applications’ query requirements, however, is the singular 
nature of  the data they need to process. Event data differs from other datasets in that 
it is ordered primarily by time, and analysis of  it tends to revolve around looking at 
sequences and content over time rather than over relations. 

Designing an interface language that addresses these diverse requirements is a 
challenge that is hard to meet, and this investigation has attempted to provide one 
that makes expressing such querying more straightforward that with conventional 
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query languages. TEQL implicitly supports the notion that an event history is a 
sequence of  data that is ordered by time and is likely to be queried primarily 
according to this property. It also provides the groundwork over which advanced 
event history analysis can be defined. 

The important features of  TEQL are as follows: 
• Programming flexibility, 

Queries can be embedded through command requests that can be programmed 
within applications of  the repository. While a query language provides more 
querying power than can be provided through a fixed application-programming-
interface, the ability to embed queries within program code increases the range 
of  uses of  the interface. 

• Intuitive contructs,  
The new constructs provided have been carefully selected to reflect their 
meaning. Although this does not come close to the clarity of  a natural language, 
it allows one to express queries that would have been cryptic at best if  expressed 
in conventional database query languages.  

• Conventional querying capability,  
Specialised query languages frequently suffer from being very good at addressing 
niche queries but unsuitable at general-purpose conventional querying. By 
defining TEQL as a superset of  OQL, event data can be accessed as with any 
ODMG-compliant database management system. In addition, new users of  the 
language can rapidly learn to use it as it only requires a minor shift of  thinking 
about the data to devise queries. 

• Type-independence and semantic context,  
TEQL allows queries to be defined in temporal entities rather than specific 
relational structures or typed objects. This implicitly abstracts away the type of  an 
event, and allows a user to reason over the entire range of  events within an event 
history. Sessions enable a user to apply a context around related events, and 
derived sessions allow one to selectively generate views of  the event data in terms 
of  their semantics rather than their structure. 

• Composition of  events and derivation of  abstract representation,  
Multiple instances of  patterns of  sequential, although not necessarily contiguous, 
event occurrences can be located, and turned into composite events. This pattern 
recognition function allows one to reduce the granularity of  the event 
information. In order to represent activities that last for an amount of  time, 
intervals can be extracted from these composite events, as well as from primitive 
events and from real time values. The result sets of  several queries, that may 
contain selected primitive events, composite events and intervals, can be joined to 
create a new derived view of  the original event history that reflects some 
application-specific higher-level interpretation. These derived views can be made 
persistent, queried on themselves, and propagated to remote event repositories. 
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• A formalism for temporal entities, 
A temporal formalism is defined that clearly lays out the nature of  events, 
timepoints, intervals, and timelines. It also provides meaningful definitions for 
ordering between all these temporal entities. 

• Temporal relationships between events, real-time, date and calendar entities.  
Finally, TEQL directly endorses the model of  real time as the desirable 
representation of  global time. This controversial approach is required within 
emerging loosely coupled architectures of  dynamic nature, and is justified by a 
number of  studies [Die96]. This is reflected in the fact that TEQL maps 
timestamps to values of  real time, and provides constructs that enable users to 
directly relate events to relative intervals of  real time, and with respect to real 
time absolute values like time, dates, and calendar entities. 
The retrieval performance of  the prototype implementation of  TEQL has not 

been empirically evaluated since a study into algorithms for efficient temporal query 
evaluation and optimisation was beyond the scope of  this document. This is a strong 
line for further research. Several aspects of  the language indicate that there is scope 
for optimisation of  query evaluation, and any thorough treatment might suggest a 
revised storage and indexing structure. It is an open issue how to balance this 
retrieval performance against rapid storage. Using optional off-line generated indices 
or persistent views [JMS95] within certain repositories appears to be a promising 
approach. Seshadri et al. [SLR94] suggest ways of  optimising queries over ordered 
sequences that are similar to temporally ordered event data. Although they assume 
that a full sequence is available at all times, their algorithms are open to modification 
for support segments of  complete event data instead. 

TEQL also allows partial match queries to be carried out through its template 
matching constructs. Partial matches are difficult to optimise in any database, 
particularly because even if  an index were available for each event attribute, access 
would still be far from optimal. Current approaches suggest that multi-dimensional 
index structures, like the R-tree [Gut84] and the more optimal R*-tree [BKSS90], 
yield the best performance for access of  this kind. However, whether creating an R-
tree for each event type is the best approach for optimised template matching within 
the event repository is a research issue. In particular, what might reduce the 
effectiveness of  such an index is the fact that queries in TEQL are usually restricted to 
a sequence of  events rather than across the whole database. Although this supports 
partitioning of  the data into smaller more manageable chunks for query evaluation, it 
can render an expensive global indexing effort redundant. Therefore, an R-tree that 
indexes the whole data set might not be that useful. This suggests that arbitrarily 
diving the event data into temporal segments, and providing an R-tree for each 
segment might be a better compromise. Queries that range over more than one 
temporal segment would then have to access all the R-trees of  the segments involved 
and merge the result-set.  

TEQL could be further enhanced to allow users to define their own calendar with 
its calendar entities (I-Times). This would require a formalism for specifying I-Times 
such as that proposed by [Ter97]. 
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In conclusion, an exciting area for future research consists of  investigating the 
possibility that an AI-derived language could be mapped onto TEQL or a revised 
version of  it. These languages come much closer to natural language expressiveness 
that any database query language available. 

8.4 A storage service 

The structured design proposed for an event repository balances the desire to 
provide a generic storage solution against the unavoidable breadth of  integration 
requirements presented by applications. 

Applications that require the use of  an event store bring with them constraints 
on storage and processing power. They also differ in how they are to interface with 
the event repository, and often require dedicated services that are particular to their 
function and usage of  event histories. For this reason, the repository architecture is 
functionally divided into what are termed into a repository server component and a 
repository client component. While the server component of  the architecture is kept 
as generic as possible to provide a core set of  functionality, repository clients can be 
tailored to be highly specific to an application. The actual storage and retrieval 
functionality of  the event repository is supplied by the repository server. 

A number of  repository clients can interface with a repository server. The latter 
is composed of  a number of  modules that provide storage and retrieval services, and 
some of  them can be disabled if  required to reduce resource requirements. Likewise, 
the client-side component libraries provide for customisable features like timestamp 
mapping, data model translation, and sliding event observation windows that can be 
enabled only if  required. While any customisation of  the server reflects on all its 
applications, client specialisation applies only for its application. 

The custom storage subsystem makes away with unnecessary conventional 
database overhead and applies techniques developed in database transaction log 
keeping and event tracing within distributed debugging systems. The log-based 
solution provides for very fast storage of  incoming event streams, and organises 
event data by its type and temporal order. The only performance compromise made 
is in real-time generation of  session indices and duplexing of  log pages. An index of  
the temporal intervals represented by log pages is also retained by the Log Manager, 
aiding retrieval queries based on temporal separations and values of  real time. 

In order to evaluate the raw writing performance of  the prototype log-based 
storage system a number of  trials were run. The test environment used consisted of  
a repository client and repository server co-located on one machine, with the client 
generating events and depositing them into the store. The machine was an Intel 
Pentium-II 450Mhz machine with 256Mb RAM, 14GB of  EIDE (Mode 4) hard-
drive storage running Redhat Linux 5.2. Events were deposited both through TEQL 
queries and directly through the stream connection. Ten thousand events were 
deposited by the client, and the total time this operation took was used to work out 
the average time required to deposit an event. The result is shown in Table 8.1.  
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For the purpose of  a comparative evaluation, the same data event data was also 
stored into a popular and widely deployed database, Microsoft Access 97. Access 
was running on a Windows NT machine of  identical specification. The event data 
was submitted through the database’s ODBC access interface. These results are 
shown in Table 8.2. 

Packaging a query, passing it over a local socket, parsing it, and returning an 
acknowledgement, adds around 100µs to the deposit of  each event. 

This overhead is reduced when events are streamed in directly, since it need only 
be set up once at the beginning of  the event input streaming. In this case, the above 
results indicate that on this platform the repository could capture around 4000 events 
of  size 20bytes (this being normal size for most events) per second before the 
storage thread starts running out of  bandwidth. It was not possible to isolate the 
effects of  any write-caching that might have been applied by the operating system or 
disk controller, so this result might be artificially good, and might not be applicable 
over very long periods of  time. 

During this measurement, incoming event buffering and queuing were disabled. 
With this enabled as per normal operation, the queue would be increased dynamically 
to buffer events should disk bandwidth starvation occur. This illustrates that the log-
based storage structure delivers the crucial high-speed event deposit performance. 
Furthermore, it is vastly more efficient at this than the Access database. 

Finally, the History Propagation Engine provides an application with several 
options on how to capture and retain its event histories. It can choose to reduce 
network bandwidth by retaining events locally, and only forwarding histories at 
periodic intervals. This also enables one to address the issue of  unsynchronised 
network clocks by merging local event traces at one centralised location in order to 
provide a globally ordered history. Application components can also utilise cut-down 
event repositories on platforms with scarce resources since they can rely on later 
being able to propagate the captured histories to a more potent remote event 
repository. 

In conclusion, the generic repository architecture addresses the main issues of  
flexibility in the face of  different application requirements. The prototype 

Time to parse deposit query 100µs 
Average time to insert 20byte event 264µs 

Average time to insert 1K event 600µs 

Table 8.1  
Performance figures for the Event Repository 

 
Average time to insert 20byte event 35ms 

Average time to insert 1K event 45ms 

Table 8.2  
Performance figures for Microsoft Access 97 
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implementation indicates that the proposed design delivers appropriate event storage 
performance. 
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Chapter 9 

Conclusion 
The future of  distributed systems lies in dynamic open infrastructures where 
applications are composed of  loosely coupled independent components. These 
dynamically join or leave a distributed computation, and dynamically discover 
information about each other and each other’s capabilities. This dissertation has 
argued that the lack of  a generic model for event representation and notification has 
restricted the development of  these systems by restricting interoperability and 
scalability. Furthermore, in order to empower existing applications and enable novel 
solutions, a crucial service within event-driven systems is capture, persistent storage, 
and meaningful retrieval of  the event information driving these systems. 

This dissertation has addressed these issues by contributing: 

• a generic and flexible model for representing event types, that allows reasoning 
on generic events without being restricted to the scope of  the application that 
generated or used the events, 

• an infrastructure that provides event notification and capture of  events at various 
conceptual locations within a distributed application, 

• an event storage architecture, which can be customised to meet the individual 
performance and functional criteria of  different applications, 

• an interface for retrieval and replay of  event information that supports the 
notion that event information is temporally ordered, and provides for query 
constructs that emphasise this property. 

The design proposed was verified through a working implementation and deployed 
in a number of  application scenarios. These novel applications required state-of-the-
art support that cannot be provided by any other middleware infrastructure. 
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