

An Architecture for the
Notification, Storage and Retrieval

of Events

Mark David Spiteri

Darwin College
University of Cambridge

A dissertation submitted for the degree of
Doctor of Philosophy

January 2000

 i

Abstract
Event-driven and messaging infrastructures are emerging as the most flexible and feasible
solution to enable rapid and dynamic integration of legacy and monolithic software
applications into distributed systems. They also support deployment and enhancement of
traditionally difficult-to-build active systems such as large-scale collaborative environments
and mobility aware architectures. However, complex systems issues like mobility, scalability,
federation and persistence indicate a requirement for more advanced services within these
infrastructures. The event notification paradigm is also applicable in emerging research areas
such as modelling of business information flow within organisations, as well as workplace-
empowering through enhanced awareness of work practices relating to communication and
interaction between individuals. In these areas, further developments require complex
interpretation and correlation of event information, highlighting the need for an event
storage and retrieval service that provides the required groundwork.

It is the thesis of this dissertation that the lack of a generic model for event
representation and notification has restricted evolution within event-driven applications.
Furthermore, in order to empower existing applications and enable novel solutions, a crucial,
and so-far-missing, service within event-driven systems is capture, persistent storage, and
meaningful retrieval of the messaging information driving these systems.

In order to address these issues, this dissertation defines a generic event model and presents
a powerful event notification infrastructure that, amongst other structural contributions, embeds
event storage functionality. An event repository architecture will then be presented that can
capture and store events, as well as inject them back into distributed application components
to simulate replay of sequences of activity. The general-purpose architecture presented is
designed on the thesis that events are temporal indexing points for computing activities.
Changes in the state of a distributed system can be captured as events, and replayed or
reviewed at a later stage, supporting fault-tolerance, systems management, disconnected
operation and mobility. The architecture delivers powerful querying of event histories,
enabling extraction of simple and composite event patterns. This addresses the business
requirement in several industries (such as finance, travel, news, retail and manufacturing) to
locate temporal patterns of activity, as well as support applications like memory prosthesis
tools and capture of collaboration. The repository offers a selective store-and-forward
functionality that enables messaging environments to scale and provide enhanced brokering
and federation services.

In addition to enabling novel applications, the general-purpose infrastructure presented
provides a more flexible approach to event notification, storage and retrieval, in areas where
bespoke solutions had to be provided previously. The theoretical concepts illustrated in this
dissertation are demonstrated through a working distributed implementation and deployment
in several application scenarios.

 iii

To my parents, John and Angela,
and to my dearest Stefanja

 v

Preface
Except where otherwise stated in the text, this dissertation is the result of my own
work and is not the outcome of work done in collaboration.

This dissertation is not substantially the same as any I have submitted for a degree or
diploma or any other qualification at any other university.

No part of this dissertation has already been, or is being currently submitted for any
such degree, diploma or other qualification.

This dissertation does not exceed sixty thousand words, including tables, footnotes
and bibliography.

This dissertation is copyright 2000 by Mark D. Spiteri.
All trademarks used in this dissertation are hereby acknowledged.

 vii

Acknowledgements
The assistance and friendship of a number of people has been invaluable during my
time at Cambridge.

First and foremost, my most heartfelt thanks are due to John Bates, for countless
invaluable discussions, ideas, practical support and for being a constant motivating
force that helped me see this research to conclusion.

I wish to thank my thesis supervisor, Jean Bacon, for providing me with the
opportunity to work within the OPERA group, making me welcome, and providing
continued patience and support throughout. Her experience and insight were of
great assistance.

David Halls, Sheng Feng Li, Chrys Mallia, Ian Marshall and Scott Mitchell
collaborated with me on a number of research projects. These collaborations helped
me gain useful insight into a number of research areas that inspired the approach of
this investigation. Giles Nelson and Mohamed Afshar provided much needed
experience, encouragement and helpful suggestions that were to prove spot-on time
and time again.

I wish to acknowledge the very helpful comments and suggestions from my four
reviewers, who dedicated much time and effort to perusing various drafts of this
manuscript; John Bates, Jean Bacon, John Hine, and Giles Nelson.

This work would not have been possible without the support of my parents,

John and Angela Spiteri, who throughout my academic progression, were always a
source of encouragement that made me strive to kept improving and embrace new
challenges. I am deeply indebted to my partner, Stefanja Casha, for her love,
emotional support, and for always being there. I particularly wish to thank her for
never complaining during the long periods when my commitments in Cambridge
kept us apart.

Finally, I am grateful to the Association of Commonwealth Universities and the

Maltese Government for awarding me a Commonwealth Scholarship that supported
me financially for three years.

 ix

Publications
Aspects of the work described in this dissertation feature in the following
publications;

John Bates, Mark D. Spiteri, David Halls and Jean Bacon, “Integrating Real-World

and Computer-Supported Collaboration in the Presence of Mobility”, Proceedings
of IEEE 7th International Workshops in Enabling Technologies: Infrastructure for
Collaborative Enterprises, Stanford, CA USA. June 1998 *†

John Bates, Jean Bacon, Ken Moody and Mark D. Spiteri, “Using Events for the

Scalable Federation of Heterogeneous Components”, Proceedings of 8th ACM
SIGOPS European Workshop, Sintra, Portugal. September 1998

Mark D. Spiteri and John Bates, “An Architecture to support Storage and Retrieval of

Events”, Proceedings of MIDDLEWARE 1998, IFIP International Conference on
Distributed Systems Platforms and Open Distributed Processing, Lancaster, United
Kingdom. September 1998

Ian Marshall, John Bates, Mark D. Spiteri, Chris Mallia and L. Velasco, “Active

Management of Multi-Service Networks”, IEE Electronics and Communications
Colloquium on “Control of next generation networks”, London, United Kingdom.
October 1999

Sheng Feng Li, Mark D. Spiteri, John Bates, and Andy Hopper, “Capturing and

Indexing Computer-based Activities With Virtual Network Computing”, to
appear in Proceedings of the ACM Symposium on Applied Computing, Como, Italy.
March 2000

Jean Bacon, Ken Moody, John Bates, Chaoying Ma, Andrew McNeil, Oliver Seidel

and Mark D. Spiteri, “Generic Support for Asynchronous, Secure Distributed
Applications”, to appear in IEEE Computing.

* Awarded Best Paper of workshop.
† Awarded Best Paper Overall of conference.

 xi

Contents

1. Introduction ... 1
1.1 Event notification... 2
1.2 Applications of event notification ... 4
1.3 The past, the present and the future.. 5
1.4 Storage and retrieval of event information .. 6
1.5 Research issues.. 7
1.6 Dissertation outline .. 9

2. Applications and Motivations.. 11
2.1 Applications of event notification ... 12
2.2 Application integration and building of distributed systems............................... 13

2.2.1 Background requirements .. 14
2.2.2 Event-based integration.. 14
2.2.3 Programming environments .. 16
2.2.4 Applying event storage to distributed systems.. 16
2.2.5 Debugging distributed systems.. 17

2.3 Awareness of working practices... 18
2.3.1 Enabling functionality through event histories ... 20
2.3.2 Uses of event logging in the literature ... 21

2.4 Computer-supported cooperative work .. 23
Capturing the history of collaboration .. 23

2.5 Other application areas.. 25
2.5.1 Visualisation of mobility .. 25
2.5.2 The Active Home .. 26
2.5.3 Graphical user interfaces and usability studies.. 27

2.6 Conclusion... 28

3. Related Event Middleware .. 31
3.1 Distributed application middleware... 31

3.1.1 The categories of middleware ... 32
3.1.2 Distributed models of coupling .. 34

3.2 Event-based messaging models.. 35
3.3 Event-driven systems ... 37

3.3.1 Event standardisation efforts... 41
3.3.2 Storage in event systems... 43

Table of Contents

 xii

3.4 Message-oriented-middleware .. 43
3.4.1 Core features of MOM .. 43
3.4.2 Publish/Subscribe ... 44
3.4.3 Representative solutions ... 45

3.5 Conclusion... 49

4. A Storage-Enabled Event Infrastructure 51
4.1 A generic event model ... 51

4.1.1 Event type system ... 52
4.1.2 Event inheritance... 53
4.1.3 Event schema... 54
4.1.4 Event evolution ... 54

4.2 Overview of HERALD ... 56
4.2.1 Registration templates and policies... 57
4.2.2 Component communication.. 60
4.2.3 Dynamic nature ... 60
4.2.4 Causality, distributed time, and timestamps... 61
4.2.5 Federators, action-injection and composition... 62
4.2.6 Event brokers... 64

4.3 Applying event storage and retrieval ... 65
4.3.1 Embedding of storage capability within core modules 66
4.3.2 Applications of event histories ... 68
4.3.3 Storage-enabled event components.. 70
4.3.4 Additional applications within message-oriented-middleware 72

4.4 Summary.. 73

5. Querying Event Information...75
5.1 The temporal model .. 76
5.2 Querying requirements.. 77

5.2.1 Applications ... 78
5.2.2 The nature of queries on event histories ... 78
5.2.3 Language properties.. 80
5.2.4 Main temporal characteristics .. 81
5.2.5 Event sessions.. 81
5.2.6 Event timestamps.. 82

5.3 Related work.. 84
5.4 The TEQL language... 86

5.4.1 Creating events... 87
5.4.2 Temporal primitives .. 88
5.4.3 Amounts of time and calendar entities.. 91
5.4.4 Basic operators... 92
5.4.5 Variable matching .. 94
5.4.6 Parameter contexts .. 95
5.4.7 retrieve and replay ... 96
5.4.8 Derived sessions .. 97

Table of Contents

 xiii

5.4.9 TEQL and OQL .. 98
5.5 Evaluating TEQL .. 99
5.6 Summary ..101

6. The Repository Architecture ... 103
6.1 Functional requirements..104
6.2 Architecture overview..105
6.3 Repository clients ...106

6.3.1 The nature of repository clients..107
6.3.2 Event handling...109
6.3.3 Interfacing with the repository server ..109
6.3.3 Creating clients...110

6.4 Repository server..111
6.4.1 Designing a storage architecture ...112
6.4.2 Service module...115
6.4.3 Query processing module ..115
6.4.4 Storage module ..116

6.5 Propagation of event histories ...120
6.6 Summary ..122

7. Experiments... 125
7.1 Prototype implementation...126

7.1.1 The HERALD event transport ...126
7.1.2 The event repository ...127

7.2 Deployment Configurations ...129
7.3 A ‘memory prosthesis’ -like diary application ..130
7.4 Thin-client activity capture and replay ..133
7.5 Active Management of multi-service networks ...136
7.6 A ‘mixed-reality’ collaborative environment...138
7.7 Summary ..141

8. Analysis .. 143
8.1 A model for representing generic event instances...143
8.2 An infrastructure for event notification and storage...145
8.3 An interface for retrieval and replay of event information................................146
8.4 A storage service...149

9. Conclusion ... 153

10. Bibliography ... 155

 1

Chapter 1

Introduction
In recent years, the communications paradigm of event notification has developed from
a bespoke communications model in applications like graphical user interfaces to a
comprehensive and feasible solution for dynamic software integration.

Event-driven and messaging infrastructures are emerging as the most flexible and
feasible solution that enables rapid and dynamic integration of legacy and monolithic
software applications into distributed systems. This is of major significance since
more demanding customer service requirements are bringing about rigorous needs
for comprehensive networked services. Event infrastructures also support
deployment and evolution of traditionally difficult-to-build active systems such as
large-scale collaborative environments and mobility aware architectures. However,
unresolved issues like mobility, scalability, federation and persistence within these
infrastructures hint at a requirement for more advanced services. The event
notification paradigm is also applicable in emerging research areas like modelling of
business information flow within organisations, as well as workplace empowering
through identification and enhanced awareness of work practices relating to
communication and interaction between individuals. In these areas, further
developments require complex interpretation and correlation of event information,
highlighting the need for an event storage and retrieval infrastructure that provides
the required groundwork.

It is the thesis of this dissertation that the lack of a generic model for event
representation and notification has restrained evolution within these event-driven
applications. Furthermore, in order to empower existing applications and enable
novel solutions, a crucial, and so-far-missing, service within event-driven systems is
capture, persistent storage, and meaningful retrieval of the messaging information
driving these environments. This claim is partly motivated by the wealth of
information that can be gleaned through perusal of an event history. In addition,
events represent indexing points into application sessions, and therefore an event
history corresponds to a history of interaction.

This first chapter introduces the paradigm of event notification as a
communications model, introduces the traditional and emerging areas of application
of the paradigm, and examines the potential in retaining and reviewing event

Chapter 1 - Introduction

 2

histories. After outlining the issues involved in designing a comprehensive event
storage service, it then documents how this dissertation tackles these issues.

The chapter is organised as follows. Section 1.1 introduces the knowledge-
gathering model behind the paradigm of event notification, while Section 1.2 lists the
application domains where the paradigm is applicable in one of its many flavours.
Section 1.3 introduces the notion that past activity in an event-driven system is
portrayed in its event history, and hints at how this could be employed by an
application to enable and enhance functionality. Section 1.4 then outlines an event
repository service that addresses these issues. Section 1.5 describes the research
issues involved in identifying the requirements relating to the storage and retrieval
functionality required, and leading to the defining of an appropriate architectural
design for an event repository. Section 1.6 concludes this introductory chapter by
outlining the structure of the rest of this document.

1.1 Event notification

The concept of event notification is straightforward to introduce. Event notification is
concerned with propagation of information. In a very simplified view of an
information space, there are two distinct categories of entities. Some entities possess
useful knowledge, either because they brought it about in the first instance (like a
change in their internal state), or else because they found out about it somehow (by
interacting with other entities, devices, or people). Other entities do not have this
useful knowledge, and need to be aware of it in order to carry out their working tasks
and obligations. The term ‘useful knowledge’ does not denote that information is
universally useful. Knowledge that is very useful to an entity can be of no
consequence whatsoever to another. These knowledge-requiring entities therefore
need to obtain it from the knowledgeable entities. There are two ways for them to
proceed:
• periodically, or even all the time, they have to communicate with the

knowledgeable entities to see if they have any useful material, and obtain it from
them when the latter have any, or

• they communicate to the knowledgeable entities some information about the
knowledge that they are interested in, and the latter send it to them when they
have it, or when that event occurs.

A useful analogy of these choices can be found in any modern email application.
Consider a computer that is connected permanently to a network, and can receive
email at all times. How can one tell when email has arrived? There are two ways to
achieve this; you either look at the email application’s inbox regularly (as in, for
example, every few minutes), or else you can set up a notification action (like playing
a sound) whenever email arrives.

This is analogous to an entity asking to be notified whenever an event of interest
to it takes place. However, one often needs more information than that. An event is
likely to have distinguishing properties or attributes. For example, receiving an email is a

1.1 Event notification

 3

valid and useful event, but some attributes of that event are who is the email from,
and what is it about. If one returns to the email notification example, one might wish
to extend the notification mechanism to play a different sound according to who is
the sender of the email, so that users can better tell when it is worth their stopping
work to read email.

Event Notification is the embodiment of the second strategy, where an event is
that occurrence of some useful knowledge. In an office environment, an event can
be a door shutting, a telephone ringing, a user walking from one room to another, or
the temperature in the meeting room becoming too hot. It can also be the act of
someone logging onto a computer system, opening a software application, or editing
a document (both real and digital). In a different world, a gaming world, it can reflect
firing one’s weapon in a first-person three-dimensional shooting game, whereas in a
collaborative space it can denote a virtual user’s interaction with a virtual object.
Other representative examples are a change of state of a variable within a distributed
program as it is debugged, or web server’s load reaching a particular threshold. These
few but varied examples give an indication of the vast nature of activity that occurs
in the real and virtual (computer-based) worlds that can be of interest to someone,
something, somewhere.

A crucial aspect of these event occurrences is that they can occur at a time outside
the control of the interested parties. The entities interested in knowing when some relevant
event occurs have no control over when it can happen. On the other hand, the
producers or sources of events cannot know what, or how many, entities might be
interested in the events they know about, and for how long. This latter point is
brought about because one might only be interested in information for a length of
time, as the interest might be brought about, or extinguished, by other incoming
information. These two aspects clearly define event notification as a model of
asynchronous communication, where entities communicate in order to exchange
information, but do not directly control each other. Figure 1.1 illustrates this notion
of asynchronous notification.

InformationInformation

Tell me about interesting information when Tell me about interesting information when
it happens or you discover about itit happens or you discover about it

This has just This has just
happenedhappened

Provider ofProvider of
InformationInformation

Consumer ofConsumer of
InformationInformation

Figure 1.1

Asynchronous notification of information

Chapter 1 - Introduction

 4

1.2 Applications of event notification

The concepts behind event notification have found extensive application in several
areas of computing. While its asynchronous model of communication can be very
empowering, it is not universally applicable. In general, an event-driven system is
composed of a number of independent (i.e. can exist and run independently of each
other) and reactive components. This latter aspect is of major importance. In an
event-driven system, execution of actions is carried out in a reactive manner; that is
in response to external triggers. This differs considerably from other models of
execution and composition that require entities to directly control and be aware of
each other, and be tightly coupled. Through the independent reactive execution of its
constituent components, the system needs to be able to achieve its design end-goals
of service and aggregate functionality. These differ according to the application area.

There are also a number of variations of the event-based style. These variations
impact on the structure, the behaviour and the performance of applications. A
number of systems based around the event style have evolved as tailored solutions
for particular problem domains, while others were designed from scratch as general-
purpose infrastructures. While the terminology used in these systems varies, and the
level of functionality provided in each differs greatly, the primary concepts
underlying each system are similar. In each of these paradigms events, messages,
announcements, notifications, actions, or traces, are used as the glue to integrate programs,
modules, tools, applications, processes, process groups, clients, objects, information objects,
components, tasks, senders/recipients, agents, actors, or function hosts. It is due to this breadth
of jargon available that the above discussion employed conceptual terms like entities
and knowledge.

Event-driven notification is particularly suitable:
• as an architectural style for building and rapidly composing large scalable

distributed systems that can evolve as required by modern Internet-based
dynamic environments.

• for enterprise application integration, where distinct (and sometimes legacy)
applications, under common or different political and technical management,
need to be integrated into a larger distributed system.

• within programming language environments, as a means of decoupling
communications between concurrent objects and modules.

• for representing and enabling business information flow within an organisation.
Knowledge and business events flow within a company and between companies.
It makes sense to model this macro-level flow of information directly onto the
supporting software system in terms of event notification.

• in describing micro-level work practices that often exhibit notification properties.
In a physical workplace, individuals keep themselves up-to-date through
interaction with other workers in a variety of ways. They then react to the
information gained. By collecting data from the real and digital worlds, and

1.3 The past, the present and the future

 5

digitally representing this information, it is possible to enhance workplace
awareness and optimise inter-worker communication and collaboration.

• for building distributed collaborative shared platforms, where multiple users
interact upon a shared virtual space. This includes multi-user distributed games,
virtual worlds, and computer-supported collaborative work (CSCW)
environments.

• for monitoring and measurement-taking applications. The breadth of these is
vast and diverse, from monitoring of distributed systems, centralised and
distributed application debugging, to usability studies.

• for real-time environments that are mostly sensor-driven. In addition to the
previous point, this covers control and management of physical environments
like home-area networks, engine management systems, and telemetry data
acquisition and management from vehicles and aircraft.

• within Active Databases. An active database monitors its storage operations and
can carry out specific actions upon the occurrence of certain conditions
pertaining to the state of the data it contains.

• for windowing systems that are usually composed of multiple control elements
representing the various visible and virtual layers making up a graphical user
interface. These generate miscellaneous events pertaining to mouse and keyboard
activity within their scope, and these have to be passed around to other
windowing or control elements that are interested in them.

The above list is not exclusive, and various applications overlap across the above
loosely defined categories.

While this section has introduced the main areas where the event-based paradigm
is relevant, Chapter 2 reviews these application domains in further detail.

1.3 The past, the present and the future

The paradigm of event notification is concerned with finding out about information
when it occurs and as it occurs. It reflects an act on the future. An event-consuming
entity is informed about changes or events pertaining to some knowledge that is
deemed interesting to it (maybe because it registered an interest with the source of
that information). By its very nature, this is restrictive, as it implies that there is no
access to the history of evolution of that knowledge. In order to get to its current state,
the item of interest will have gone through several permutations and changes over its
lifetime. Its nature will have changed in various ways, which may itself be meaningful
and interesting. Reviewing the history of occurrence of events and the evolution of
their attributes over time can uncover particular patterns of behaviour that one can
take advantage of.

Storage of event information, coupled with meaningful access to it, implies
detailed knowledge of event history, much as event notification provides for

Chapter 1 - Introduction

 6

knowledge of current information. As well as having auditing value, a history of
events can enable reconstruction of state.

Event notification history ranging over a whole system can identify the flow of
event information throughout a system, and recognize the causal relationships
between generation of events at different locations. The distinct patterns in a
workflow can be identified, bottlenecks and failure points located and acted upon.
Past events earmark crucial checkpoints in the execution of a system. Furthermore,
by analysing the consumption patterns of event clients one can take steps to optimise
the delivery of future events to those clients so that the information is better
‘contextualised’ for them. Future service can be improved.

Past event information can be queried, browsed, analysed, and even replayed. In
short, knowledge of past events can be as useful as knowledge of live events.

1.4 Storage and retrieval of event information

In order to enhance the existing functionality of event-driven systems and enable the
creation of novel applications, this dissertation identifies a new requirement. The
events used to glue together these application entities can be represented through a
generic model, stored, used for querying and replay, and as a basis for higher-level
services. The motivation for storing events is that events represent indexing points
into application sessions and correspond to a history of interaction.

In order to achieve this, this dissertation presents an event notification and storage
infrastructure that can capture and store events, enable querying on event histories, as
well as enable injection of events back into distributed application components to
simulate replay of sequences of activity. Changes in the state of a distributed system
can be captured as events, and replayed or reviewed at a later stage, supporting fault-
tolerance, systems management, disconnected operation and mobility. Using a
generic object-oriented model for events, events are notified around a distributed
system and retained within event repositories. The architecture of an event repository
delivers powerful search and retrieval facilities, enabling extraction of behaviour
patterns, searching for simple and composite occurrences, and replay of intervals of
stored sequences. This addresses business requirements in several industries (e.g.
finance, travel, news, retail and manufacturing) to locate temporal patterns of activity,
as well as provide a viable alternative to past system-specific solutions in areas like
logging of collaboration and ‘human memory prosthesis’-based tools. In the latter,
information is gathered about the events that occur in the physical and virtual
(digital) working environment of users. While past implementations [LN93,
LBC+94] have provided automated diaries that could be browsed to assist
recollection of activity, coupling with an event repository enables thorough querying
and analysis capabilities. Event storage also enables novel applications such as
visualisation and analysis of user mobility. In an example of this, the information
pertaining to a history of physical movement of people in some environment, like an
airport or an oilrig, can be employed to generate three-dimensional animated replays
of movement. This can be applied to improving security and safety in buildings.

1.5 Research issues

 7

The repository offers a selective store-and-forward functionality that enables
messaging environments to scale and provide enhanced brokering and federation
services. The architecture presented co-exists with and enhances event-based systems
while providing a cheaper, more flexible solution in areas where previously custom
monolithic designs had to be provided. In addition, bespoke niche queries can be
defined in support of specialised legacy and novel applications.

Other application areas identified as beneficiaries of this architecture are systems
monitoring for distributed debugging, tracking of phone data for
telecommunications fraud detection, and acquisition of marketing information for
Internet commerce. Within some scenarios, it is desirable to be able to use
information from all these different sources together, hence creating a better and
more fine-grained virtual picture of the human and computer activities monitored.

Chapter 2 will review a wide range of application areas where an event repository
service can be deployed. In these areas, it either serves as a viable alternative to
bespoke solutions, or acts as a novel enhancement, or provides the necessary
groundwork for emerging requirements.

It could be argued that a conventional database (relational, object-oriented or
temporal) would be suitable for carrying out the same function as the event
repository being proposed. However, a properly designed event repository is
significantly more powerful than its conventional database counterparts because:
• an event repository can efficiently perform functions that in conventional

database systems must be encoded in applications, e.g. temporal indexing, cross-type
event session organisation, event schema evolution, template matching, and querying by
sequential instance comparison

• an event repository suggests and facilitates applications beyond the scope of a
conventional database, e.g. replay of event sessions

• an event repository can perform tasks that require special purpose subsystems in
a conventional database, e.g. temporal indexing, retrieval and replay, archiving

• the highly specialised storage and retrieval required of event information justifies
a tailored storage engine and does away with the requirement for most
heavyweight database functionality, e.g. read-only historical access, very high-performance
write append, small event records, temporal indices, searching and retrieval by sequential
correlation

This issue will be discussed at further length in Chapters 5 and 6.

1.5 Research issues

The main issues investigated by this research, and discussed within this dissertation
are:
• A model for representing generic event instances.

An event storage service can be used in a plethora of application domains where
the nature of the event or messaging information varies. A suitable event model

Chapter 1 - Introduction

 8

is one that is simple enough to deploy generically, but can be easily extended if
required to accommodate the requirements of specific applications. It has to
enable the definition of events that can represent the wide variety of activities
and occurrences that tie together event-driven systems, while supporting
adequate granularity of searching for, and filtering of, interesting data. A generic
model of event representation is therefore defined.

• An architecture for seamless integration of the functionality and services of an event storage
repository with different environments.
Event capture in distributed environments is more complicated than in a
centralised system. A distributed system will consist of a number of processes
executing on different machines and communicating via message passing.
Centralised detection of event instances is not feasible in medium to large scale
distributed systems, because of the possible volume of event instances to be
monitored, delays introduced by the network transmission, and unsynchronised
system clocks across different machines. The differing distribution details of
various applications, as well as emerging requirements for loosely coupled
distributed systems, were investigated and taken into consideration while
designing a scalable solution for dynamic event propagation, capture and storage.

• A flexible storage service that embeds a high-performance storage paradigm tailored for the
particular nature of event data.
An event repository must be flexible in its design, so that it can be customised for
environments with constraints on memory, storage and processor availability. In
addition, a range of interfacing issues needs to be considered. Although event
instances could be mapped to relational records or tuples, or object instances, and
a relational or object-oriented relational database be used for storage, there are
several reasons to tailor the underlying storage engine. Event instances tend to be
relatively small structures, and since they constitute a history, are temporally
ordered and immutable. The storage engine can thus be greatly optimised to
address heavy volumes of incoming event streams and avoid the unnecessary
overhead of conventional general-purpose databases. Databases can have very
high costs associated with operations like insertion, deletion, as well as services
like transaction management and data rollback support, facilities that are not as
relevant for event storage. The data as stored must be representative of the causal
and temporal separation of the events as they were received in order to support
the deployment of a temporal retrieval interface over it.

• A powerful interface for retrieval and replay of information from event stores.
Although general-purpose query languages like SQL [ITI98] or OQL [CB97]
could be employed to retrieve information, there is much to be gained by
designing a query interface optimised for the temporal nature of the information
stored. Queries over temporal data and relating to time-intervals, as are event
instances, involve references to time which benefit from purposely-defined
temporal operators. The querying interface must permit expressing queries over
sets of different event objects or their aggregate types (composite events). This
dissertation presents a query interface that offers a superset of OQL
functionality. Therefore, while providing a standard database interface for

1.6 Dissertation outline

 9

applications, a repository can also support client applications that require analysis
and interpretation of event histories. This interface must integrate smoothly with
the event-driven environment, allowing seamless access to past event data and its
feeding back into the system.

1.6 Dissertation outline

This dissertation is organised as follows.
Chapter 2 addresses the motivating factors behind the thesis of this dissertation.

It starts by describes the primary application domains where the concept of ‘event’
persistence has been applied or is applicable. It then describes how the application of
event storage can enhance the functionality of these applications as well as lay the
architectural groundwork for more complex features. In doing so, it also reviews
research from an application perspective that is directly relevant to or has influenced
this dissertation.

Chapter 3 focuses on related existing event-driven and messaging frameworks. It
reviews several research and commercial event-based approaches and describes their
main features. Usage of event persistence within these systems is highlighted.

Chapter 4 introduces HERALD, a new event-notification communications
infrastructure that provides novel services for federation and dynamic application
construction and evolution. This chapter also introduces a general-purpose event
model. HERALD embeds and actively employs event storage, thus demonstrating how
event storage can be integrated within an event system to provide a comprehensive
event-driven framework.

Based on the motivating factors identified in Chapters 2 and 3, Chapter 5 then
identifies the information retrieval and replay facilities required of an event
repository. It addresses these requirements by introducing an event query language,
TEQL, designed to offer the retrieval power of an industry-standard language while
supporting a comprehensive temporal formalism for events.

The architecture of a general-purpose event repository is presented in Chapter 6.
This chapter describes a flexible design that can be customised to address the specific
requirements of the variety of application domains event storage is applicable within,
and discusses the issues involved in designing a storage sub-system tailored for the
particular nature of the data being handled.

Chapter 7 outlines a prototype implementation of the technologies discussed in
this dissertation and discusses deployment issues for event repositories. It then
describes a number of applications built around, or employing, the capability of an
event notification and storage infrastructure. The diversity in application domains
and environments these applications are representative of highlights the flexibility of
the design presented.

Chapter 1 - Introduction

 10

Chapter 8 discusses the solutions presented in this dissertation. It gives a
summary of the research, reviews insights gained in the course of this investigation,
and suggests directions for future research.

Chapter 9 concludes this dissertation, and highlights the main contributions.

 11

Chapter 2

Applications and
Motivations
This chapter motivates the premise of this dissertation, that a crucial service within
event-driven environments, is capture, storage and retrieval of the event information
driving these environments. A major motivation of this work is that it has been
illustrated by application-specific implementations in a number of research areas that
event histories are required for providing advanced functionality. However, in these
implementations, the lack of generic models for event representation, notification
and storage has severely constrained the extent of the functionality that could be
supported.

Section 2.1 introduces the application domains where event notification has
found application, or is emerging as an applicable solution. It also comments on the
origins of the event-driven paradigm. The following sections then address the most
representative applications in the categories identified in Section 2.1, where, within
each domain, event storage is applicable to enhance functionality, or otherwise is required
groundwork for envisaged future services. Realistic developments that can be envisaged as
resulting from building over an event storage service are highlighted.

Section 2.2 introduces the use of event notification in application integration and
construction of distributed systems. Specific event solutions are not examined in this
section, as this is done in greater depth in the related work overview given by
Chapter 3. After examining the potential of event storage, it considers the area of
fault-tolerant computing and distributed debugging, where capture of event histories
has been applied.

In Section 2.3 the emerging area of workplace awareness is described. Future
research directions in this area are explored, and it is argued that these developments
need a comprehensive event storage service as a crucial starting point.

Event notification and storage in computer-supported cooperative work are
examined in Section 2.4, while Section 2.5 looks at a number of other interesting
application areas, like visualisation of mobility, the networked home, and graphical
user interface evaluation.

Chapter 2 - Applications and Motivations

 12

In order to avoid confusion this document uses the phrase event storage
predominantly to imply event logging, event tracing and event capture; terms that are often
employed in the related literature. Except where specified otherwise, the phrase is
also taken to denote not only the act of event detection and storage, but also an
aggregate feature-set consisting also of event interpretation, transformation, retrieval
and replay.

2.1 Applications of event notification

As introduced in Chapter 1, there are several areas of computer science where the
event notification paradigm has either found application, or has emerged as an
applicable solution to address evolving requirements.

In an active environment, an application is composed of a number of software
entities that react to each other’s activities rather than directly control each other. An
entity therefore triggers activity in another one by sending it a message in some
structured format known to both that details the event. Such an entity is known in
this document as a source of events, i.e. an entity that, further to some user input or
device monitoring, can generate these event triggers. In other literature, such entities
are sometimes called servers, but this association with the client/server paradigm (see
Section 3.1.1) can be misleading. Sources either maintain information about the other
entities that are interested in their events (the clients) and dispatch them directly to
them, or in a variation on the model (employed by several event-based systems), pass
them on to a centralised or local notification service. This module is then where the
data pertaining to interested third parties is retained and from where the event
messages are dispatched.

This model of communication is based around the premise that the client would
first have expressed its interest, with either the notification server or directly with the
source, through a registration or subscription of some sort. However, in several
applications where the clients and sources are static in number and nature, the target
of notification can be hard-coded into the application logic. In this case,
communication can be said to have reverted to the messaging model. This more-
general method of communication is widely used in application integration (see
Sections 2.2 and 3.4).

The discussion above and in Chapter 1 has used the conceptual and vague term
entities on purpose, for two reasons: firstly, because there is no consistent vocabulary
for discussing event systems; secondly, because their actual embodiment depends on
the application domain under consideration. From a software perspective, an entity
can be a module within a process, a process within a multi-threaded application, an
independent component within a distributed system, or even a whole system that is
communicating with another system over a wide-area network.

2.2 Application integration and building of distributed systems

 13

As listed in Section 1.2, event-driven notification is at the heart of countless
software applications. These fall into one or more of the categories below:
• Composing and building large scalable distributed systems; Enterprise application

integration; Concurrent/parallel programming languages; Modelling of
information flow; Distributed debugging and fault-tolerant distributed systems
(see Section 2.2)

• Modelling and supporting work practices relating to communication in between
individuals (see Section 2.3)

• Building computer supported cooperative applications and collaborative shared
platforms (see Section 2.4)

• Applications based on monitoring and measurement-taking; Real-time
applications, i.e. applications that have to constantly act on data received from
physical or virtual sensors; Active databases; Windowing systems and graphical
user interfaces (see Section 2.5).

The above grouping reflects the organisation of the discussion in the remainder of
this chapter.

Often, the major applications representative of the above categories evolved into
using such a reactive model of inter-component interaction independently and in
response to emerging requirements. That is, this was not due to the application of
any formal software engineering architectural style. In fact, the notion of an event-
driven style has been formalised (see [BCTW96] for one such formal model)
primarily as the result of examining the concepts in common amongst reactive
applications. The implication of this is that there is a plethora of bespoke and
incompatible designs and implementations of event-driven systems. However, their
common basis makes it possible to reason about an event-driven system in a generic
sense. Likewise, this allows one to reason about the knowledge that can be gleaned
through study of event histories. Based on this premise, this dissertation proposes a
generic event storage architecture that can be deployed and employed in different
instantiations of the event-driven paradigm.

The following sections will now describe in further detail some applications that
are representative of the above categories. The discussion will look at the potential
for retaining event histories in each application, and describe functionality enabled by
event storage.

2.2 Application integration and building of
distributed systems

A major motivation of this work is to provide a generic and scalable way for
integration of distributed components. Currently this is needed in important business
applications such as determining business information flow. Current techniques for
integrating components lack interoperability and thus hamper scalability.

Chapter 2 - Applications and Motivations

 14

The deployment of distributed systems is a major area of application of event-
driven systems at present on a commercial basis. It is also an umbrella category, in
that conceptually it encompasses most of the other categories. While this section
discusses the issues involved in application integration, actual event-driven solutions
and the messaging systems they are often built from (Message-Oriented Middleware)
are reviewed in Chapter 3. Most of the solutions applicable to application integration
and construction of distributed systems are general-purpose in nature and are
therefore representative of the bespoke solutions that are deployed in other areas,
like those discussed in Sections 2.3 – 2.5.

2.2.1 Background requirements

The Internet’s acceptance by the commercial world has created a global and standard
communication infrastructure never available before. Distribution of one’s software
architecture across multiple networked platforms and systems is often a necessity
dictated by requirements of customer service, management resources, or simply
utilisation of the best existing, and rapidly evolving, technology. In most cases, re-
design and re-implementation of the components required to form part of the new
integrated system are not viable, if only because time-to-market periods have become
so short. Alternatively, due to their distinct administration and management, it may
be technologically impossible, or politically unacceptable, to modify existing systems
extensively in order to make them work together.

The other primary issue with application integration is the dynamic nature of
software systems. Few, if any, systems are not altered or adapted to changing market
requirements during their lifetime. In some markets, like finance and the travel
industry, the electronic information being traded and presented has its origin from
multiple sources managed by independent companies. These are often faced with
dynamically evolving diverse client and market requirements requiring continuous
updating of their software systems. However, as such modifications may break the
information chains of other companies, much duplication and complexity often
needs to be introduced.

2.2.2 Event-based integration

Approaches to distributed integration have ranged from loose, in which the
components have little or no knowledge of one another, to tight, in which modules
require comprehensive information about each other. The latter requires knowledge
of interfaces, communication protocols and data structures rarely available other
than within a co-ordinated design and implementation project, or within
environments where strict industry standards are available and adhered to (see
Section 3.1.2 for further detail). Loose integration is therefore more suited to the varied
and dynamic nature of a typical distributed system’s components, as it helps reduce
the impact on a system when modules are added or changed.

2.2 Application integration and building of distributed systems

 15

Event-based integration, in which distributed modules interact by announcing and
responding to event occurrences (or messages), is perhaps the most prevalent loose
integration approach. In what is also termed publish-subscribe, the modules and
components to be integrated are turned into sources and consumers of events
through their interfacing with an appropriate messaging or event-driven middleware.
In most scenarios, event information can map directly to the main activities of a
business. Examples of important events, depending on the industry, are movement
of parcels, the ordering, purchase and sale of goods and services, changes in prices
or conditions. Enterprises need to be responsive to these events, often in real-time.
Figure 2.1 illustrates how asynchronous events can be used to integrate modules
within a book-selling operation, as well as link it to external entities like publishers
and independent financial assessors.

Chapter 3 analyses the issues involved in building distributed systems in some
detail, and addresses the advantages and shortcomings of alternative distributed
middleware solutions. It also describes the highlights of some key event systems and
commercial messaging products, amongst which general-purpose solutions like the
Cambridge Event Model [BBHM95, BBMS98], ECO [SCT95], Yeast [KR95],
FIELD [Rei90], Polylith [Pur94], the CORBA Event Service and Notification
Service specifications [OMG97, OMG98a], as well as commercial systems from IBM
[IBM99], Oracle [Ora99], and Talarian [Tal98] amongst others.

MarketingMarketing

SalesSales

BookBook
StockStock

BookBook
CatalogueCatalogue

Book PublishersBook Publishers

CustomersCustomers

IndependentIndependent
PerformancePerformance

EvaluatorEvaluator

Stock BrokerStock Broker

CustomersCustomers

Book ReviewsBook Reviews

New book titlesNew book titles

AcquisitionAcquisition
RequiredRequired

Title availabilityTitle availability

Book Book
selling selling

statisticsstatistics

Best selling titlesBest selling titles

Relevant titlesRelevant titles

CustomerCustomer
reviewsreviews

New interesting titleNew interesting title

Performance figuresPerformance figures

AssessmentAssessment
ShareShare
adviceadvice

Figure 2.1

Event flow in an e-commerce based book-retailing operation

Chapter 2 - Applications and Motivations

 16

2.2.3 Programming environments

Event notification has also found application in concurrent programming language
environments, both in pure parallel languages, and in languages that support multi-
threading. Several languages allow execution to be split along several concurrent
threads or processes. Synchronisation and communication between these concurrent
paths is then carried out through protected shared data or through message passing.
Some [Reu80, Sha89, SCT95] extend the intra-process messaging model into a fully-
fledged event model, where events are delivered by the language’s runtime system in
an asynchronous fashion from process to process according to the requests of the
processes. These systems are akin in functionality to a subset of distributed event
models, and will therefore not be addressed explicitly any further in this chapter.

2.2.4 Applying event storage to distributed systems

In distributed systems, the events propagated in between the distributed components
are the systems glue that ties together the otherwise distinct components. As events
propagate throughout a distributed system, they trigger actions in components, some
of which generate other events of interest to other components. This flow of events
and actions often corresponds to the flow of business information in an organisation
or in between organisations. Capturing details of the event streams, whether at their
source, or at distributed nodes, or even at a centralised location, can enable one to
identify the main paths of execution throughout a system, and locate inefficiencies
and possible failure points. At present, this interpretative functionality is available
using workflow systems [AAEM97, CHRW98, GHS95]. However, the information that
a workflow system allows analysis of needs to be entered by a user, and is not
obtained in an automated fashion directly from the system. Since event flows often
map directly to business flows, it is envisaged that event histories could be used to
feed a workflow application with little or no user intervention. Such an analysis
would be very useful in a loosely coupled and dynamically evolving distributed
system. Event histories can be used to modify the service provided and the business
flow itself.

The following scenarios illustrate functionality that can be enabled by building on
top of an event repository service in the context of systems integration:
• Auditing of event generation at event sources, event transformation and delivery,

as well as event consumption at clients.
• Identification of periodically repeating events and attribute evolution for event

instances of the same type.
• Analysis of event registration, notification and consumption at client components.

This can yield information on how different event notifications influence a
client’s execution with respect to their sequence and over time. This can allow
one to determine when information is most useful for a client and modify the
delivery or contents of future information to contextualise it better.

2.2 Application integration and building of distributed systems

 17

• Tracking of repeating patterns of activity covering one or more event types over a
number of event sources and clients.

• Checkpointing of execution. The history of event interaction between event
components is analogous to a history of evolution of state in the system.
Supporting the capture and retrieval of events is analogous to recording
checkpoints (for rollback purposes) in a database system. The main points of
interest in an activity can be reconstructed later using these temporal indices.
Among other uses, this can support the construction of fault-tolerant distributed
systems. See the next section for further discussion of this point.

2.2.5 Debugging distributed systems
The last bullet point of Section 2.2.4 introduces two research areas; fault-tolerant
distributed systems and distributed debugging. These research areas are interesting because
of the problem of non-determinism that arises in them. The independent execution of
multiple processes communicating with asynchronous protocols introduces a large
degree of non-determinism in a distributed application. This makes it difficult to
implement debugging functions such as distributed breakpoints in an efficient
manner. Several treatments of these aspects of distributed debugging have appeared
in the literature (see [PN93] for an overview). The most widely acknowledged way of
addressing this is to wrap event monitors around the distributed modules of the
application being monitored or debugged, and then employ an event propagation
mechanism to propagate the event information to where it can be stored. LeBlanc et
al. [LR85] and Bates [Bat95] illustrate how heterogeneous distributed systems can be
debugged using event-based models of behaviour.

Several authors [For91, HS92, LIT91] have examined event detection and capture
in the context of fault-tolerant computing and distributed debugging. Logs are
maintained of event ‘traces’, where these traces represent low-level system activities
like processor communication. In particular, [HS92] examines how events generated
to reflect activity in a system can be coalesced into a smaller number to reduce the
size of event logs, as well as avoid redundant events. The relationships between event
log entries, system workload and system configuration have received attention by
several researchers, amongst which [Han88, Tsa83, IYS86, LS90]. These provide
techniques as to how event logs can be examined for determining trends in
application execution.

By capturing all events pertaining to remote-procedure calls (RPC) and other
communication primitives going into a process, and retaining them in an event
repository, during a debugging session one can feed back the event data (or use it to
reconstruct the primitives) into one or more of the distributed modules. This enables
selective replay of the application where the user has control over the data being
input into the module and can test it in isolation.

Methods to reproduce the execution behaviour of programs comprised of
loosely coupled processes that communicate using messages typically require that the
contents of each message be recorded in an event log as it is received [CW82,

Chapter 2 - Applications and Motivations

 18

Smi84, TA87, Wit88]. The programmer can either review the events in the log in an
attempt to isolate errors, or the events can used as input to replay the execution of a
process in isolation. In order to address variations in scheduling and message latency
during multiple executions, the order in which messages are delivered can also be
traced. Since parallel programs are long-running, providing fast response to
debugging queries requires incremental replay, where re-execution is started from
intermediate states instead of from the beginning. To support incremental replay,
processes must be checkpointed periodically and the contents of some messages
captured. Adaptive event-message logging can be employed in order to reduce the volume
of messages that need to be retained [NX93].

Checkpointing and message logging has also been studied in the context of fault-
tolerant computing [JZ88, SY85, WF92]. In [LIT91], statistical techniques are applied
to automatically generated event logs from fault-tolerant systems in order to measure
dependability.

All these systems employ proprietary mechanisms for event propagation that are
very specific to the particular application, and provide highly focused retrieval
interfaces to the logs of event traces retained. More than lack of functionality, this
has contributed to their lack of uptake in the commercial world. The generic model
for event representation and the event storage service proposed address these issues,
and allow wider scope in event trace analysis.

2.3 Awareness of working practices

An event storage architecture is required in order to provide much needed
homogeneity and to support development of the novel analysis and interpretation
needed within this emerging research area.

The study of work practices in organisations has only recently gained research
attention. Ethnographic workplace studies carried out by the Xerox Research Centre
Europe [BRS+94] and others [Tan91, KFRC93, WFD94, Fro95] in businesses of
various kinds as well as of institutions like hospitals, have revealed that the way in
which individuals run their day-to-day duties is often reactive and exhibits
notification properties analogous to an event-driven model. Apart from organised
venues of interactive sharing of information, like organised formal discussion
meetings, most work activities are in fact coordinated through informal interaction
between users, unscheduled notification, or discovery of relevant information.

For example, a business manager may want to keep himself up-to-date by
requesting that specific intelligence is sent his way immediately by his staff. He does
not wish to be informed of everything, but does want to know when certain events
take place, or when certain sequences of activities happen. From his perspective, this
information can be passed to him at any time, as seen fit by his staff. When he does
find out about matters of interest he takes some action or starts some work process
in response. This is analogous to carrying out a subscription of interest in the
occurrences of a primitive or composite event in an event notification environment,

2.3 Awareness of working practices

 19

and then taking some meaningful action on notifications of the event. In most
routine organisational work, it is discovery of information that is the trigger for most
work activity. Information can be received at any time through various means, e.g.
receiving email, phone calls, people visiting, incoming paper correspondence, or the
publication of a relevant article in a magazine, newspaper or web site.

Likewise, knowing about a colleague’s status and being aware of their current
activities is very useful for coordinating activity. This information, on the other hand,
is rarely notified to users in the real world. One does not know that a file has
changed, a colleague has arrived, a new directory created, and so on, unless one
explicitly thinks to check. In short, few office jobs can be carried out in an isolated
information space, i.e. one with no means of interacting with colleagues and external
news sources [Whi96, WSKS97]. These sources of information are like event
sources, and their occurrence is in itself an event, much as their contents are
analogous to the attributes of an event.

The challenge for these studies is to achieve the explication of work practices in
terms of the structure of the activities and interactions involved in work. These can
be embodied in technology intended to support work practices. Systems like
Khronika [Lov91], and the TickerTape built on the Elvin notification service
[FMK+99], attempt to provide users with awareness of the activities or status of
others through a continuous stream of events that describe user activities. They
collect information pertaining to the real world in a variety of ways, by monitoring
physical location, email notification and filtering, schedule and booking of resource
monitoring (like booking a room for a meeting), and through file-watching and web-
watching. These latter event generators monitor changes to the network file stores
and to internal and external web pages, and dispatch or broadcast notifications. While
not directly attempting to support awareness, TeleNotes [WSKS97] creates a shared
context for communication where users can follow conversations through ‘sticky’
piles that characterize the temporal progression of the conversation.

A wealth of information can be collected from a working environment and used
to deduce the nature and context of a user’s activities. In addition to the events listed
above, other noteworthy examples are; monitoring of workstation logging in and off,
monitoring of execution of applications or opening of documents for reading and
editing, creation of documents, browsing of web pages, composing and sending
email, access to newsgroups, engaging in shared online collaboration, making phone
calls and sending faxes, printing documents, etc. Even interaction with devices like
the communal coffee machine can be interesting, and actually feature as an
application in experiments [ATT99]. In themselves, these isolated events are of little
consequence, but in aggregate, and in the context provided by their causal and
temporal relationships to each other, they define a picture of activity and interaction.

The above point can be summarized as follows: acquiring awareness of individuals’
activities and making that awareness widely available. If retained and interpreted properly,
this awareness can help in identifying individual knowledge and expertise, and at the
same time assist in its distribution throughout the organisation. Duplication of work,
particularly as concerns seeking of solutions to problems, can be avoided. When
associated with appropriate privacy policies, this can dramatically increase efficiency

Chapter 2 - Applications and Motivations

 20

in an organisation. Some attempts to identify and make use of expertise have been
carried out in controlled closed environments. Building on the newsgroup concept,
Beehive [Abu99] is a commercial service that, through email and the Web, enables
users to locate, contact and interact with others who have similar professional
interests and want to share their individual knowledge and experience with one
another. It monitors and scans discussion forums on a number of web sites to
determine potential experts in any area by studying their replies to other users’
questions. As its knowledge base grows and evolves, it attempts to pass on questions
to the ‘experts’ most likely to have the expertise required to answer them.

2.3.1 Enabling functionality through event histories

It is clear that while live notification is very useful in this domain, major benefits can
only be achieved through logging and analysis of the event information collected. A
history of activity is the starting point that may be used:
• for providing a memory recollection tool or diary of events,

In [LN93, LBC+94], Lamming et al. define the concept of a human memory
prosthesis, a tool for assisting memory recollection. It is well known that human
memory relies heavily on context for recollection. One might forget the details
of a particular activity they undertook, but they are likely to remember details
about its temporal relationship to other activities that were being undertaken at
the same time, or occurred earlier or later. Events pertaining to an individual can
be captured and used by that individual in a diary-like manner (see Section 7.3).
Applying the underlying concepts of memory prosthesis over a generic event
model and transport like HERALD (see Chapter 4) would provide knowledge
acquisition of a finer granularity, due to the increased variety of events pertaining
to the real and virtual worlds that users work with. When coupled with the event-
storage and query service described in this dissertation, the resulting application
would enable users to have expressive querying lacking in previous solutions.

• for determination of work coordination and work flow,
Events pertaining to news distribution and users’ actions can be retained and
studied in order to determine how work is being coordinated in between
individuals. This can yield very useful information on what are the most
important incoming events that trigger activity, their sources, and the sequences
of activities and other events that they cause to be generated. Insight can
therefore be gleaned on the flow of work in a reactive environment, which by its
seemingly unpredictable nature is hard to model. There exists some
understanding on how to generate social process models from event traces
[RN96].

• for modelling an individual’s role and execution of duties.
High turnover of staff in the computing industry (where individuals tend to have
unique expertise and experience) is of major detriment to successful conclusion
of research or development projects. When an individual leaves, the person
taking on their role often ends up starting with a considerable set of documents

2.3 Awareness of working practices

 21

pertaining to the project the departing person was working on. The time required
to browse, get acquainted with, and identify crucial data, through what may be
mostly useless and irrelevant documentation, is both extensive and expensive.
Furthermore, the new person has to determine how the documentation was
arrived at and the best use it can be put to. They also have to figure out how the
departing person executed their role with regards to their colleagues and
recognize upon what information input or feedback did they carry out and
develop their work, and produce deliverables. By acquiring and retaining detailed
information on an individual’s activities, and introducing the concept of a history
of use of all documents by different individuals, it is envisaged that it may be
possible, through automated and manual study of the history of activity created,
to create some meaningful model of the departing individual’s working duties.
This belief is reinforced by the observation that 53% of workplace interaction
involves a document [WFD94]. Indexing, cross-relating and retrieving email
threads that relate to documents would also provide a temporal and personal
context for the evolution of work surrounding those documents [WS96]. By
manipulating and appropriately presenting this information, a new person can be
assisted in getting up to speed quickly, since they can more easily determine the
major characteristics of the role. This scenario as envisaged is illustrated in Figure
2.2. Research on the issues involved in carrying out such an analysis is currently
ongoing at Xerox Research Centre Europe [Ben99].

2.3.2 Uses of event logging in the literature

Some aspects of the above have been attempted in various bespoke (and often
limited in scope) experimental environments.

In their investigation, Lamming et al. [LN93, LBC+94] collected information
pertaining to users’ activities, like details of their location together with extensive

Making and receiving Making and receiving
phone callsphone calls

Sending and receiving Sending and receiving
emailemail

ProgrammingProgramming

Creation of Creation of
new documentsnew documents

Reading Reading
documentsdocuments

Filing and Filing and
archivingarchiving

Capture a user’sCapture a user’s
working dimensionworking dimension

Represent Represent
and and

retainretain
historyhistory

Generation ofGeneration of
abstract representationabstract representation

of working roleof working role

Visualisation Visualisation for for
Browsing andBrowsing and

QueryingQuerying

CrossCross--referencingreferencing
and and

AnalysisAnalysis

Synthesis activity andSynthesis activity and
assist in understandingassist in understanding

working roleworking role

Figure 2.2
Acquiring awareness of activities through events and keeping a history

Chapter 2 - Applications and Motivations

 22

video footage of various activities they undertook. After the records captured were
textually annotated (through user intervention or through limited automated
deduction), users could carry out limited searches on the diary of activity thus created,
as well as locate the video footage relevant to the episode they wanted to recollect or
retrieve information on. The non-extendible event model employed to model
activities, and the restricted querying capabilities available, constrained the usability
of the tool created.

In the Where-Were-We [MH93] project, workgroups were allowed to carry out
playback of the video record as it is being taken, thus aiding recollection in case of
distractions or the need to clarify or review previously discussed points. Building on
this research, the Coral suite of tools [MHJ+95] supports real-time capture and
subsequent access to informal collaborative activities. Manual annotation in real-time
during the activity is required, this then being associated with automatically logged
events like drawing on the shared whiteboard tool. The meeting can then be replayed
from any instant.

Automated annotation of video (as mentioned above) would greatly assist the
above indexing techniques. [GGR94] segments continuous audio and video into
natural units and relates these to discrete events from the multimedia application,
such as user interaction, control events, and data content. The latter are obtained by
keeping a record of the most significant events sent to the X Windows server
windowing software running on the participant’s machines.

Another approach is employed by CECED [CLFS93]. This tool is intended to
aid collaborative work in engineering design by capturing the history of the informal
phase of the specification and design process. In this case, audio records are stored
together with a log of the design traces, and system-level data like X events. This
allows subsequent replay of design traces. Similarly, Bellcore’s STREAMS project
[CH94] focuses on making and accessing recordings of technical presentations.

In the above representative investigations, event logging is used to capture
activity, but the logging capabilities are tailored to the application, and limited in
functionality. No classification of events is carried out, and this makes the use of
events specific to the application domain in question. The lack of a comprehensive
event model implies that the system cannot evolve to take on new event types
without requiring modification of the distributed components. It is not possible to
abstract event types of similar semantic meaning into a collective type, and events
cannot be composed into higher-level constructs. Retrieval is limited by the lack of a
dedicated storage sub-system and is often constrained to SQL-like searches. Users
are only able to browse through the activities undertaken, as annotated or recognised
by the system. In order to address the storage scenarios outlined above, an
appropriate query interface is required that has the capability of exploiting the
temporal and causal relationships between event instances.

2.4 Computer-supported cooperative work

 23

2.4 Computer-supported cooperative work

Some of the tools derived from studies of working practices between individuals
(Section 2.3) can be termed Computer Supported Cooperative Work (CSCW) tools. It is
proposed herein that by using events to communicate between and drive interaction
within such tools, interoperability, flexibility and extensibility is enhanced massively.
Communication mechanisms within current tools are often hard-wired (e.g. 2
distributed whiteboards communicating using a specific whiteboard protocol) thus
hampering flexibility and extensibility. In addition, a new requirement outlined herein
is the capture of the history of collaboration.

CSCW technologies enable multiple users to collaborate on some task. They
often achieve this by applying the notion of a shared space where multiple users may
interact on some common state. This may range from a simple common drawing
surface, to a shared document that may be edited by several users concurrently, to
complex three-dimensional virtual worlds [IKG92, GRWB92].

A crucial feature of collaborative interfaces is feedthrough, that is the ability of one
person to see the effects of another’s actions. Technically, there are two requirements
that need to be addressed, firstly to access and update shared data, and secondly to
know when that data has been updated. The latter requires notification mechanisms.
Even if data is stored and accessed rapidly from a central location, it is of no use
unless client programs know that it has changed and users’ screens are updated
accordingly. A notification mechanism fulfils this role, telling programs and users that
changes have taken place. Without notification, users may eventually see that changes
have occurred but at a timescale and pace that often are not acceptable for the task at
hand.

Event propagation is a good model for describing instantaneous input in user
interfaces and collaborative systems (like key-strokes, mouse clicks and network
messages). However, collaborative systems emphasise the notion of shared data,
where the event-based model fits less well. Shared data persists – it does not happen
at a particular moment. To address this, a collection of semi-formal and formal
techniques known as status-event analysis can be employed to define a shared
conceptual framework that includes aspects of both events and data state [DFAB98].
This has been employed to model the complex behaviour of shared windowing
elements in collaborative applications [DA96a], and has brought about an
understanding of the delays in user interfaces and collaborative systems [DA96b].
[RDR98] investigates the design space for notification servers in CSCW applications
and documents status-event analysis; i.e. the various ways in which event notification
can be coupled with other communication mechanisms to bring together both event
propagation and shared data.

Capturing the history of collaboration

In addition to the scenarios enabled by storage of events outlined in Section 2.3,
there is another aspect to CSCW tools that is empowered through use of event

Chapter 2 - Applications and Motivations

 24

histories. Because the majority of input events in a cooperative tool are sourced from
an entity external to the system, the user, most events are not directly causally related.
For example, when a user draws a line on a shared white-board, that event is
propagated to all the other shared whiteboards, where its interpretation involves
drawing a corresponding line. Therefore, the action that triggered the event came
from outside the system, and is not itself the result of some automated computation
in response to some other event. This implies that capturing all the triggered events,
and replaying them is analogous to regenerating the external triggers, thus enabling
replay of the whole interaction. Replay is not always possible otherwise because of
the feedback problem (see Section 7.2).

Consider a typical CSCW application; a cooperative shared meeting with multiple
users taking part. Providing the new feature of capture and storage of the event
messages that are propagated amongst the distributed components can allow:
• replay of sequences of interaction and collaboration for post-meeting review.

A participant, or a person that was unable to take part in the original meeting, can
(as allowed by any security policies in use) replay, browse through, and review the
whole and/or part of the meeting.

• locating of the sequences to replay or browse.
It is useful for one to be able to search on event type, event attribute, or activity
composed of multiple events; with the ability to further qualify each in terms of
other events and/or activities that have occurred before or after. This allows
users to locate sequences of interest through imprecise qualification based on the
knowledge they can recollect regarding when the sequence occurred (as in a
memory prosthesis).

• automated generation of a summary of the meeting.
In addition to automated minute taking based on real-time monitoring of activity,
it is also possible to extract a limited summary of a meeting from the history of
the events that occurred within it. This, however, requires analysis of any video
and audio streams used – either through software, by detecting specific images
and using speech recognition to pick keywords; or through manual annotation.

• More elaborate options for coping with mobility and network partitioning.
When components become mobile, their ability to receive events is suspended
until they reconnect. If the mobile user is involved in a computer-based
collaboration, important aspects of the meeting can be lost. For example, when
the user’s components complete a move to a new workstation, the components
can once again communicate with the other users’ conference components and
network services. At this point, to build their state to a level consistent with that
of other users, the components require all the events missed from the period of
disconnection. The situation is complicated by the fact that while one user was
disconnected, other users may also have been disconnected and thus no user has
a consistent view of the application. One approach to address this problem is for
each user to retain events from the session so that each has a consistent view of
the events generated locally. After re-connection, a user can request that the other
users send him/her the events generated by themselves locally.

2.5 Other application areas

 25

A similar problem can result if the network fails temporarily, resulting in a
conference being partitioned into two or more segments. One way of addressing
this without resorting to complex conflict resolution is to show a user what
happened whilst he or she was disconnected. This can be carried out by creating
a copy of all local objects, initialise them up to the point of partitioning, and to
replay within them the collaboration pertaining to the remote conference. Users
can discuss what happened within the separated groups during the conference’s
partitioning, and decide which of the sequences of activity they wish added to
the new global session.

While the above points utilise the example of a cooperative meeting, event capture is
also applicable in most shared collaboration applications like shared document
editing, media spaces [GAV92, BHI93], and virtual-reality multi-user worlds
[FBSC93].

2.5 Other application areas

This section reviews some further application areas that would benefit from the
application of a comprehensive event model and event storage architecture.

2.5.1 Visualisation of mobility
Another application enabled by event storage and replay is that of visualisation of
user mobility. Several technologies enable people to be tracked and followed as they
walk around a building. Examples in deployment include the infra-red-based Active
Badge [HH94], its ultrasonic equivalent the Active Bat [WJH97], and technologies
employing image recognition techniques through widely deployed video cameras
[Lop99, SKB+98]. The hardware detection technology is then interfaced to
monitoring software that exports some bespoke application interface. By interfacing
these proprietary technologies to a generic event infrastructure, they can be used
together in aggregate for a more thorough view of the physical world.

By retaining a history of movement for some period, several applications become
possible. One is, as documented in Section 2.3.1, to enhance the context information
within a user’s automated diary. Another application is enabling visualisation of
mobility for security reasons, or for carrying out safety evaluations of a building. The
movements of individuals can be fed into a virtual reality model of the building (see
Section 7.6) and reviewed from any three-dimensional viewpoint while, for example,
people leave a building during an evacuation drill. This can be used to identify and
rectify potentially dangerous bottleneck zones in the layout of the building. Similarly,
by replaying people’s movements into a knowledge base, it might be possible to
deduce the identity of the possible perpetrators of a crime (the classic who-dunnit
scenario!).

Chapter 2 - Applications and Motivations

 26

2.5.2 The Active Home

An area that is inciting major research and commercial interest is that of the
networked home, where ubiquitous computing devices and networked consumer
devices are widely deployed. It is proposed here that event notification is the only
feasible approach towards internetworking the appliance space. Additionally, event
storage can enhance the services that could be made available.

There have been various proposals for enabling the integration of the plethora
of devices that one can envisage being available in such an environment (a survey of
which is given in [Dut99]), with most exporting a proprietary interface language or
adhering to conflicting industry standards. Suitable candidates for networking and
digital interfacing in a home are systems like lighting, entertainment (audio and
video), security, communications (telephones, video-phones, and door intercoms),
climate-control, fridges, ovens, toasters, and even the cat flap! It is unlikely that a
tightly coupled communications model can ever be used in this scenario, where
devices will be supplied by manufacturers with widely conflicting and competing
commercial objectives and backgrounds. The computing capabilities embedded in
such devices are also likely to vary considerably in their extent and heterogeneity (see
Figure 2.3). With these constraints, a loosely coupled model of communication and
interaction is appropriate.

The above, and the fact that most household device programming is reactive in
nature (“do A in response to B”), makes the event-driven style particularly appropriate.

Sound and VisionSound and Vision
Entertainment SystemsEntertainment Systems

Home Computer(s)Home Computer(s)

OvensOvens

Clever toasterClever toaster

Heating and VentilationHeating and Ventilation

FoodFood
StorageStorage

LightingLighting

Health Health
MonitoringMonitoring

DevicesDevices

TelecomsTelecoms

HOME AREA HOME AREA
NETWORKNETWORK

EventEvent
RuleRule
BaseBase

Figure 2.3
The Active Home

2.5 Other application areas

 27

Lightweight wrapper programs can be written around the proprietary interfaces to
make devices active (i.e. event sources and/or consumers). Other software modules
can then be written to control and monitor the various devices according to some
declarative logic. Novel examples of such expressive configurations are “If I am home,
turn on the heating in the kitchen at 6am and activate the hot water boiler” or “if I am watching
television and someone rings the doorbell, re-route the outside camera image onto the TV”, as well
as “move the music around the house to follow me as I walk around”.

Configuring such rules can be complex, and possessing information on
behaviour patterns can be very useful. By building a model of behaviour of the
residents, as well as monitoring patterns of variation in the physical environment (like
temperature), the control software can be made to fine-tune its programming or
devise entirely new flexible rules for driving the home’s hardware. In short, the Active
Home can be made to adapt itself to suit its owners’ preferences.

2.5.3 Graphical user interfaces and usability studies

Although windowing systems and graphical user interfaces (GUIs) are, for the most
part, single-address-space applications, event notification and messaging have long
been employed within them. The chief concern with the current approaches
undertaken by these systems is their reliance on proprietary and largely application-
specific centralised event infrastructures. In this area, event storage and trace
interpretation has also found some application, however the query interfaces
provided are bespoke, based on the application-specific interpretation that is applied.
It is therefore not possible to deploy these systems within other environments. The
pitfalls encountered by these approaches further motivate this thesis.

Graphical user interfaces of complex applications are usually composed of
hundreds of windowing components like scroll-bars, menus and menu entries, push
buttons, text-fields, dialog boxes, status bars, drop lists, etc. Constructing a graphical
application with multiple layers of windowing containers and elements, and
configuring communication between them is complex. For this reason, most GUI
development packages model windowing elements as stand-alone objects, and the
user interface is then assembled by encapsulating multiple elements within each other
as in a structural hierarchy. For example, the menu entries are embedded within a
menu option, and the menu options within the menu bar, which in turn is
encapsulated within the window header component. Input events pertaining to input
devices like the mouse, keyboard or touch pen are passed on upwards along this
hierarchy if the components ‘register’ that they can process, or ‘listen to’, such events.
However, these events often also need to be propagated across the hierarchy, since,
for example, moving the mouse over a menu entry could be made to display an
explanatory message within a status bar at the bottom of the application window.
This can be handled by each windowing element exporting a list of events it can
supply, and other components can then designate themselves as listeners for these
events. This is analogous to event notification, and a good example of it is Java
2™[Sun99c]’s internal event model within the AWT [Sun97b] and SWING [Sun99a]
user-interface construction class packages.

Chapter 2 - Applications and Motivations

 28

Retaining and storing some or all of these internal events has been applied in a
number of contexts. Most notably, in studies of application usability, event traces
(usually coupled with captured video) pertaining to users’ interaction with an
application are employed to appraise its user-interface [BHS93, HHH92]. Keystroke,
mouse clicks, mouse trajectories and other low level events are logged and
interpreted based on some semantic knowledge of the state of the application and
interface. Evaluation parameters are the interface’s intuitiveness (how easy it is to
figure out how to carry out some operation) and expressive power (how many steps
are required to complete a task).

Of particular interest is Microsoft’s Lumiere [HBH+98] technology that seeks
to not only study user interaction but also assist the user in real-time. At the heart of
Lumiere are Bayesian models that capture the uncertain relationships between the
goals and needs of a user and observations about program state, sequences of
actions over time, and words in a user’s query (based upon when the query was
made). Lumiere monitors events with an event system that combines atomic actions
into higher-level modelled events. The modelled events are variables in a Bayesian
model. An event language was developed for building modelled event filters. As a
user works, a probability distribution is generated over areas that the user may need
assistance with. A probability that the user would not mind being bothered with
assistance is also computed. Lumiere is deployed in all of Microsoft’s Office
97/2000 products [Mic99b] as the Office Assistant. In its production version, an
animated avatar is used to suggest context-sensitive tips to users on how to facilitate
their work by using features they may not be aware of. The system also attempts to
infer questions that users might be about to ask before they have even brought up
the help system. In Office 2000, the applications monitor users’ use of menu entries
over time and modify the menu selections available to more closely reflect the
feature-set that each individual deems useful. Similarly, the forthcoming Windows
2000™ operating system [Mic99c] contains a related module that studies several ways
in which a user interacts with its windowing environment and dynamically alters its
structure to prominently reflect applications and tools that are used frequently.

2.6 Conclusion

This chapter has not exhaustively detailed all the possible applications of event
notification and storage of event information. Instead, it has introduced the most
relevant application categories. Within these broad categories, it has discussed novel
and enhanced functionality that can be enabled through the provision of a powerful
event storage paradigm, and highlighted related work. Much of the envisaged
functionality requires complex application logic that is beyond the scope of this
document. Rather, its illustration motivates the requirement for an event storage
service that can provide a sufficiently powerful storage and retrieval paradigm that
supports tackling the major research issues in these areas.

2.6 Conclusion

 29

By examining the core requirements of the functionality described, one can draw
up a set of criteria that need to be satisfied by a comprehensive event storage
solution. These are:
• a generic and flexible model for representing event types,

Proprietary event-driven solutions sometimes have an event type-system, while at
other times rely on unstructured string-based messages. This model is often not
extensible, therefore restricting evolution of the application. Invariably, this also
implies that the system will be a closed world of related components. A generic
event type model, on the other hand, encourages dynamic adaptation of an
application, and enables it to be constructed from independent components.

• a non-intrusive architecture for notification and capture of events at various conceptual locations
within an application,
Event information can be collected at various locations, for example, at event
sources, at centralised application-driven locations, and at gateways between
domains. Event storage also needs to be employed within the event notification
mechanism as well as outside it, interacting directly with applications. Issues like
lack of global time, network latencies and scalability need to be addressed.

• an event storage architecture,
An event repository must be flexible in its design, so that it can be customised for
environments with constraints on memory, storage and processor availability. It
must also embed a storage engine that can process and keep up with streams of
incoming events, while at the same time provide facilities that enable a temporal
retrieval interface to be deployed over it.

• a core subset of temporal retrieval and replay functionality that can be built-upon by
applications to enable higher-level application-specific interpretation of event histories.
In order to enable interpretation and analysis of event histories, a retrieval
interface is required that goes beyond traditional database query languages and
supports primitives that reflect the temporal sequencing of events.

These requirements and the issues they raise are addressed in depth in Chapters 4, 5
and 6.

 31

Chapter 3

Related Event Middleware
This chapter reviews related general-purpose event-driven and messaging
infrastructures.

It starts by briefly introducing distributed middleware and the important role it
plays in building distributed systems. It then focuses on asynchronous messaging
technologies that implement event notification. While Chapter 2 dealt with event
notification at application level by describing its usage in various domains, this
chapter looks more closely at specific messaging and event-driven systems, and their
infrastructures.

Section 3.1 lists the technologies available in distributed application middleware
and describes coupling models of integration. Section 3.2 then shifts the focus onto
event notification by describing variations on the event-based messaging model.

Two primary categories of event transports are then distinguished; event-driven
systems are reviewed in Section 3.3 while message-oriented middleware products are
treated in Section 3.4. Although the functionality of either overlaps considerably,
their distinct origins and different (although converging) philosophies merit separate
discussion. The most representative solutions and products in both fields are
reviewed with a view to their application, or lack, of event storage and retrieval.

3.1 Distributed application middleware

In general, building any distributed system implies satisfying a number of basic
requirements; application processes are distributed across several machines, those
processes need to be located, and they need to communicate amongst themselves. In
addition one needs to maintain security of the data, work with heterogeneous
platforms involving different networks, operating systems and data formats, and cope
with limiting constraints like unreliable, low bandwidth or high latency network
connections. Addressing all these issues within each application is a major task, and
therefore it is practical to resort to general-purpose middleware that tackles the
problems transparently and abstracts away all the nitty-gritty details of distribution.

Chapter 3 - Related Event Middleware

 32

In this discussion, therefore, the term distributed middleware is taken to denote
software components, running between the application and operating system layers,
that address the above issues and enable communication complexity to be abstracted
away from the application writer. This is usually carried out by providing the
application developer with an Application-Programming-Interface (API) that
abstracts away most aspects of distribution.

3.1.1 The categories of middleware

Distributed middleware can be grouped into three loosely defined categories:
• Client/Server

This involves connection-based communications using a procedure-oriented
invocation model. Examples of this category are remote database access
middleware, remote stored procedures and remote procedure calls (RPC). In this
well-established method of distributing application processing, an application
uses RPC’s to execute remote procedures that are located in another program,
where the latter can be located on a different computer and/or platform.
Client/Server uses the call procedure construct from structured procedural
coding techniques. The client calls a procedure to perform an operation, which is
then carried out by the server on behalf of the client. Execution at the server is
thus controlled by the client. RPC communications are inherently synchronous,
with control being passed from the local procedure to the remote one, and local
execution being blocked until a result (and control) is returned. Asynchronous
communications can be supported but require explicit support from the
application through multi-threading.

RPC systems emphasise strong data-typing of the result data transferred.
This is due to their frequent integration with a programming language
environment that is common to both client and server. The server’s interface is
mirrored in a stub or skeleton, that is then linked with the client code to enforce
type matching at compile time. This is illustrated in Figure 3.1.

ResultResult
Unblock clientUnblock client

Call functionCall function
Block clientBlock client

Server API Server API
stubstub

Server APIServer API

ClientClient
codecode

Get stub and link with Get stub and link with
client at compilation timeclient at compilation time

ClientClient ServerServer

Figure 3.1
Client/Server – Remote Procedure Call

3.1 Distributed application middleware

 33

There are a large number of proprietary RPC systems, with the most widely
used being DCE’s RPC service [OG97], ONC [Sun98], and Java™ RMI
[Sun97a] (whose features make it overlap onto the next category below).

• Distributed object frameworks
These provide connection-based communications using an object-oriented
invocation model to distributed computing, which increases the flexibility and
reusability of application systems. In the same way as client/server, the client
controls the operation of the server. The user performs operations through a
local object on an object created by the distributed object system, by invoking its
methods. In general, this interaction is also synchronous. The distributed
components, here being objects, usually interact through an object request
broker, or ORB. The ORB handles the requests that an object makes of another
object, and provides the mechanism for locating and interacting with objects
across the network. The structure of the OMG’s CORBA ORB [OMG99] is
illustrated in Figure 3.2.

Distributed object frameworks enforce strong data-typing but are designed to
integrate heterogeneous components with different environment type systems. In
order to address this, they provide a standard type system that language-specific
type systems map to. An interface definition language, like the Object
Management Group (OMG)’s IDL [OMG99], is used to describe the object
interfaces, from which programming-language dependent stubs can be compiled.
These then allow compile-time type checking.

The main distributed object technologies in widespread use at present are the
OMG’s CORBA standard, and Microsoft’s DCOM/COM+ [EE99].

• Event-driven systems and Message-Oriented Middleware (MOM)
Message-oriented middleware usually involves connectionless communications
using a message transport, sometimes called an event bus architecture or message
pipeline, to send event messages between applications. An asynchronous peer-to-
peer invocation model is employed, where an application sends a message by
passing it to the local middleware at its end. This step is functionally separate and
decoupled from the act of transferring the message to its destination, where the
receiving end of the messaging middleware delivers it to the receiving
application. No acknowledgement of delivery is sent to the sending application

ORB CoreORB Core

DynamicDynamic
InvocationInvocation

IDLIDL
StubsStubs

ORBORB
InterfaceInterface

Static IDLStatic IDL
SkeletonSkeleton

DynamicDynamic
SkeletonSkeleton

ObjectObject
AdaptorAdaptor

ClientClient Object ImplementationObject Implementation

Figure 3.2

The structure of a CORBA Object Request Broker

Chapter 3 - Related Event Middleware

 34

unless it explicitly asks for one. Building on the basic communications channel
thus provided, important value-added services include message-queuing middleware,
where guarantees can be provided on message transfer even if the applications
cannot communicate at all times. Another important service is that provided by
message brokers, which amongst other things, provide for publish/subscribe services,
message transformation, and limited composition. Several MOM systems do not
have a type system for structuring message data. There are several industrial
products providing MOM, and Section 3.4 illustrates the functionality of some
of the major products in the market.

Pure event-driven systems have evolved separately from message-oriented
middleware; whereas MOM originated from the need to reliably connect
application programs to a centralised database server, the concepts behind event
notification systems derive from internal system tasks like graphical windowing
and active database triggers. In this area, the emphasis is on a source of event
messages advertising what events it has available, and clients then registering their
interest in being notified on when those events, with some qualifying constrains,
occur. The constraints can reflect content, frequency, and composition. In its
most lightweight form, this corresponds to the publish/subscribe service provided
by most MOM vendors. However, several research systems go far beyond this by
supporting type systems, comprehensive registration, event brokering, federation,
and composite event sequence specification. Section 3.3 describes some examples
of this functionality in more detail.

Although the above categories might appear exclusive, in practice several middleware
solutions in use today provide functionality overlapping across all three areas. No
technology is more exemplary of this that the ever-evolving Object Management
Group’s CORBA specification, which now provides services to tie it into RPC-based
systems, messaging, and supports event propagation through the CORBA Event
Service [OMG97] and the CORBA Notification Service [OMG98a] specifications.

3.1.2 Distributed models of coupling

Client/Server and distributed object frameworks are based on a tight coupling between
the object that requests a service (the client) and the object that satisfies such
requests (the server). Before invoking a service, the client has to know the existence
of a server capable of satisfying its request and has to obtain a reference to the
server. These client and server need to be:
• aware of each other’s API. Changes to any one side need to be applied or

reflected within the other application,
• online at the same time,
• able to communicate synchronously over a network.

These constraints are difficult to address in dynamic environments, where the clients
and servers making up a distributed system have different lifetimes and may be under
different technical or organisational management. In many situations, a de-coupled,

3.2 Event-based messaging models

 35

or loosely coupled, communication model is preferable. Under such a model,
communicating distributed modules (not necessarily identified as clients and servers):
• need have little or no knowledge about one another,
• can be modified independently of each other without requiring modification or

recompilation of one another,
• need not run at the same time,
• communicate asynchronously, in that they can proceed with their computation

independent of each other’s state of execution and need not block awaiting
replies to messages.

Message-oriented middleware and event-driven systems meet these criteria by
decoupling the delivery of data from the distributed components. This enables
dynamic system configuration. The remainder of this chapter will now focus on
these systems and illustrate them in further detail.

3.2 Event-based messaging models

There are several variations on the event-based messaging model (as defined in
Chapters 1 and 2), most relating to the level of distribution of the services making
up the event-based style and their location. There are three notional entities in the
event-based model: (1) a source of messages or events, (2) a consumer (or client) of
events, and (3) a message transfer service that delivers messages from the former to the
latter. The services of event-registration (or subscription), filtering, action injection,
fault-tolerance/error handling, and message transformation that may be available can
be positioned at various locations at or in between these three entities. Different
systems distribute or centralise these services differently. For example, filtering can be
carried out either at the source, at the message bus through a notification server or a
message broker, or at the client. There are advantages and disadvantages to each
approach.

From amongst these distinctive approaches, one can identify two opposing styles:
• Direct (Client/Source) – the event clients and event sources are aware of each other

during communications, that is, a source sends a message directly to a client it
knows about, and clients carry out registrations directly with the source of
information. This does not imply a static system, as the components can discover
information about each other dynamically at runtime. This is the pure distributed
event notification model where there is no centralised messaging entity (except
maybe for a directory service or other specialised components). The core
messaging technology is therefore available at each component, and therefore,
the functional focus of the system is in its components.

• Indirect (Client/Channel/Source) – in this model all functionality is contained in the
delivery entity, the event/message channel (also called a message bus or a message
transport). This can be distributed, centralised, or consist of a mixture of

Chapter 3 - Related Event Middleware

 36

distributed and centralised modules. Therefore, the source passes on its messages
to the channel, and clients register with the channel. Clients and Sources know
only about the message channel and do not know about each other. The message
channel is therefore a complete go-between.

These two approaches to event notification are shown in Figure 3.3. In practice,
many event systems have elements of both styles, and the same functionality can be
provided by both. While in the indirect model, messaging functionality is embodied
in the transport, and duplication of functionality can be removed through
centralisation, the direct approach requires that all functionality be replicated at each
component. Although this may require that platforms at the component level be
more powerful, it makes integration of components under different management
more straightforward and renders the system immune to failures of crucial modules.

Another important qualification is how general purpose an event notification
system is. Most of the event notification systems deployed in the areas outlined in
Sections 2.2 - 2.5 are designs tailored for the application domain they are deployed in.
An indication of a design’s generic nature is whether it applies any semantic meaning
to the event messages it delivers. A general-purpose event solution should not make
any assumptions as to the meaning of the event data it is delivering and should not
attempt any non-application-driven interpretation of it.

Early event systems did not provide type-support, and messages consisted of
strings or packets of unstructured bytes. Since then varying degrees of type system
support have been provided. Some transports only allow message typing, in that an
event message can be of a defined type. At the other end are comprehensive type
systems that allow structured typed events with typed parameters. In the latter, event
schema can be propagated amongst components statically through stub linking at

EventEvent
ClientClient

RegistrationRegistration

Event Event
NotificationsNotifications

Event SourceEvent Source

FilteringFiltering

A.A.

B.B.

Event Event
ClientClient

Registra
tion

Registra
tion

Event Event
NotificationsNotifications

Events
Events

List of clients and List of clients and
their registrationstheir registrations

FilteringFiltering

Notification ServerNotification Server

Event Event
SourceSource

EventEvent
TriggersTriggers

List of clients and List of clients and
their registrationstheir registrations

EventEvent
TriggersTriggers

Figure 3.3
A. Direct event model
B. Indirect event model

3.3 Event-driven systems

 37

compilation time, as in CEA [BBHM95], or dynamically at run-time, as in HERALD
(see Chapter 4).

3.3 Event-driven systems

There are several systems that qualify as general purpose event-based communication
mechanisms, with some having evolved into such from more bespoke origins in
specific application areas (see Chapter 2).

Several early software integration systems, such as FIELD [Rei90] and
SoftBench [Ger90], provide message routing services to deliver messages and enable
modules to react to events generated elsewhere. Event-based general-purpose
communication mechanisms for loosely coupled integration are suggested in [GN91,
SN92, OPSS93, MDL93].

The concepts of event notification have found application within programming
environments. An event-based language for parallel programming called EBL is
described by Reuveni [Reu80]. In this language, events are the only control
mechanism and cause the activation of event handlers. Some languages have event
announcement primitives built in to facilitate intra-program interaction, e.g.
Smalltalk [Sha89]. ECO [SCT95] defines language extensions for C++ and Java™
to enable event-driven method invocation in objects.

Similar in concept is the idea of tuple spaces. Tuple space systems define a shared
space, like a whiteboard, where tuples (a list of typed data fields) of information are
placed. Multiple concurrent client processes then have available a small set of
operations through which they can interact with the tuple space, and read and write
data in it. A sender places a tuple in the tuple space, and receivers can inspect or
remove tuples from this space by specifying a template tuple. Reception occurs when
a match for the template tuple is found. Linda [Gel85] first illustrated the concept of
a tuple space, and since then, several other systems [MW88, DFWB98, WMLF98]
have been proposed that enhance the basic functionality by providing services like
persistence and distribution.

Event notification concepts have a long history in the AI community, such as
actors [HI91] and blackboard systems [JDB89]. Some rule-based systems, such as those
found in certain process-centred environments like Darwin [MR90], Marvel/Oz
[BK95], Oikos [MA94], and Adele [BEM94], are based in part on event-based
substrates, in that updates to data may trigger particular actions. Generally, these
systems have a broader focus than application integration, encompassing
configuration management, software process and other domains.

This section introduces some general-purpose distributed event systems and
illustrates their main features. Where applicable it describes their use and support of
event storage.

Chapter 3 - Related Event Middleware

 38

The Cambridge Event Architecture (CEA)
The Cambridge Event Architecture (CEA) [BBHM95] is a direct notification model
(as defined in Section 3.2) and was one of the first architectures to embrace the
publish-register-notify programming paradigm. CEA has been used in building of large
scalable distributed systems in various fields, amongst which were multimedia
cooperative applications, telecom monitoring systems [Ma97], network management
and location-oriented applications [BHB96, BSHB98].

Just as CORBA objects are defined using the OMG’s Interface Definition
Language (IDL) [OMG99], which allows other objects that want to interface with
them to encapsulate pre-written stubs at compilation time, active objects in CEA use
an extended version of IDL to declare and publish the events they will notify to
clients if asked. Event stubs are automatically generated and linked in with client
code. Such objects have a register method in their interface and interested parties may
register interest in any event class, specifying parameters or wildcards in their
registration template. Event occurrences are created as objects of specified type. Events
may be named and parameterised, where the parameters can be of any IDL
supported type. When an event occurs, the service matches it against a stored
template associated with each registration; subject to access restrictions, each client
whose template is matched will be notified of the event that has occurred. Figure 3.4

shows the approach.
In addition to direct, source to client, notification of events, intermediate services

known as event mediators can be defined. An event mediation service might be set up
to notify any number of clients, and might register interest with any number of event
sources. One use for a mediator is to remove the filtering function from a primitive
event source by providing an indirection between it and its potential clients. Any
source that cannot afford the overhead of template matching can notify all its
detected events to such a mediator. A mediator can be used to prevent a mobile user
from missing events of interest while disconnected from the networked systems for
periods of time. It registers interest with the required event sources on behalf of the
mobile client and buffers the events notified to it by these sources. It also registers

NOTIFYNOTIFY

REGISTRATIONREGISTRATION
INTERFACEINTERFACE

SYNCHRONOUSSYNCHRONOUS
INTERFACEINTERFACE

NOTIFICATIONNOTIFICATION
INTERFACEINTERFACE

ACTIONACTION

event clientevent client
object which isobject which is
an event sourcean event source

asynchronous notification(s)asynchronous notification(s)
of matching event(s)of matching event(s)

synchronous methodsynchronous method
invocationinvocation

Figure 3.4
The publish, register, notify event architecture of CEA

3.3 Event-driven systems

 39

interest in the location of the mobile client, and notification of an attach event
(detecting the mobile user) triggers the delivery of the accumulated events to the user
at the new location. CEA therefore employs source-side filtering in order to reduce
the volume of events sent over a network and in order to ensure that clients need
only receive information that is relevant to them. This also reduces performance
requirements at the clients.

CEA also introduced the notion of composite events being generated from
temporal combination of primitive events. Complex scenarios can then be defined
and specified, and composite event services can be built that will, on their clients’
behalf, register interest with appropriate event sources and notify clients when a
composite event is detected. A composite event server is an example of an event mediator
that can carry out filtering across events of different types from different sources.

The CEA architecture has been designed to inter-work with a comprehensive
role-based access control scheme called OASIS [Hay96].

In [BBMS98], the CEA event model is enhanced to support hierarchical event
type specification and inheritance, and the concept of an event federator is introduced.
This module can detect composite event sequences and inject actions into application
components in response. Event brokers also retain information pertaining to the
event sources and can act as gateways between different event systems, providing
event transformation and mapping services. The HERALD event transport (see
Chapter 4) builds on this extended framework.

Due to its reliance on IDL and static stub linking, CEA cannot be termed a
loosely-coupled infrastructure as defined in Section 3.1.2. This is because event client
objects that want to interact with event sources need to know about each other’s
interface methods at compilation time. Its primary contribution is in demonstrating
how asynchronous operation and comprehensive event services can be added to
inherently synchronous industry standard platforms. CEA implementations have
been demonstrated on top of RPC-based mechanisms like MSRPC3 and Java™
RMI [Sun97a]), as well as on top of CORBA; the COBEA implementation [MB98].

The Events-Constraints-Objects (ECO) model
In the ECO (Events-Constraints-Objects) [SCT95] programming model from Trinity
College, Dublin, the basic abstractions are objects, classes, events and constraints. ECO is a
programming model rather than a middleware service, as it defines event extensions
to object-oriented programming languages like C++ and Java. Its treatment of
events as triggers for method invocation is reminiscent of Smalltalk [Sha89].

In ECO, objects are instances of a class, and have instance variables and
methods that operate on those variables. A class specifies the interface to its
instances together with the events and constraints used by the instances. A property
of the class is therefore its capability to consume and to generate specified events.
Objects communicate by announcing events and by processing those events that
have been announced. A method can be bound to one or more events and several
methods of an object can be bound to the same event. A bound method therefore
behaves as an event handler in that it is invoked automatically when the

Chapter 3 - Related Event Middleware

 40

corresponding event is announced. The programming language runtime system is
responsible for gathering the events generated and for notifying events to the
interested objects. This effectively decouples objects, in that they do not have to be
aware of each other and can execute asynchronously with respect to each other.

A constraint specifies a condition that controls the propagation of events. There
are different kinds of constraints, categorised by the data that they can access, by
their evaluation points, and by the actions that they are allowed to perform. Notify
constraints are set by destination objects at subscribe time, and place conditions on
notification. Such conditions are priority and the number of recipients. Pre- and
Post- constraints are attached to the event/method bindings and can be employed to
force synchronisation in an otherwise fully concurrent programming environment.

Other event systems
FIELD [Rei90] was probably the first event-based integration system. FIELD has a
client-server architecture. Client programs, called tools, broadcast messages
anonymously by sending them to a central message server, Msg. Tools specify the
classes of messages that they want to receive by registering message patterns with the
server. Msg then delivers to each tool only the messages that match the tool’s
message patterns. FIELD also provides an optional tool, called the Policy Tool,
which can intercept messages and perform user-specified actions on receipt of those
messages (reroute messages, replace them with other messages, etc). These user-
specified actions, called policies, are external to tools, so no tool modification is
necessary to enforce policies.

Polylith [Pur94] employs a software bus architecture. Individual programs, also called
tools, connect their input and output ports to an abstract bus, and send and receive
messages on named bus channels. A module interconnection language (MIL) is used
to encapsulate external programs as tools and then bind the output ports of tools to
the input ports of other tools. Messages may be of simple, structured, or pointer
types.

In Elvin [FMKAPS99], notifications are sets of named and typed data elements.
A subscription is a declarative Boolean expression over the contents of event
notifications. By issuing a subscription, a component can declare its interest in a
number of notifications characterised by some common property.

A similar mechanism is provided in JEDI [CDF98]. In JEDI, a notification is
defined by a name and by a number of parameters as in CEA. Event receivers
subscribe for event patterns, which are expressions over the name and parameters of
a notification. This is more expressive than the template matching mechanism of
CEA in that subscriptions can also apply wildcard match on the event type itself as
well as on the number of parameters.

Yeast [KR95] is a client-server system in which distributed clients submit event-
action specifications with a centralised server, which performs event detection and
specification management. Each specification submitted by a client defines a pattern
of events that is of interest to the client’s application plus an action that is to be
executed in response to an occurrence of the event pattern. Therefore, this is not an

3.3 Event-driven systems

 41

event-based infrastructure per se, since its event service triggers actions rather then
notifications. By default, any output produced by the commands of the action is sent
by electronic mail to the user who submitted the specification. Most of these
specifications and events relate to platform and operating system properties like
filing, disk storage, memory usage, processor load, user activity etc. READY
[GKP98] elaborates on Yeast’s specification language to allow compound matching
and aggregation (similarly to CEA).

3.3.1 Event standardisation efforts

There are a number of mainstream event-related standardisation efforts. The main
ones are the OMG’s CORBA Event Service [OMG97] and Notification Service
[OMG98a] specifications, the TINA consortium’s Notification Service [TIN96],
and the IETF’s Internet-Scale Event Notification Service effort that is still at the
drafting stage.

CORBA Event Service
The CORBA Event Service specification defines an indirect channel-based event
transport for deployment within distributed object frameworks. It defines an
EventChannel interface that decouples event suppliers and consumers. Suppliers cause
events to be generated and placed onto the channel, and consumers obtain events
from the channel. Channels are typed, in that a channel only has the means to signal
events of its own type to its consumers and will ignore all other types of events. In
the Event Service, as in ECO, and in contrast to CEA, events are not objects or
entities onto themselves. They are merely triggers that cause methods to be executed,
albeit untyped parameters can be passed into those methods. The specification allows
for different styles of interaction with an event channel, specifically push and pull.

Push interaction is supplier-driven. In this style of interaction a consumer object
must have its interface conforming to the PushConsumer interface. After it registers

ConsumerConsumer SupplierSupplier

EventEvent
ChannelChannel

PushSupplierPushSupplier PushSupplierPushSupplier

PushConsumerPushConsumer PushConsumerPushConsumer

ConsumerConsumer SupplierSupplier

PullSupplierPullSupplier PullSupplierPullSupplier

PullConsumerPullConsumer PullConsumerPullConsumer

Figure 3.5

Event propagation styles in CORBA

Chapter 3 - Related Event Middleware

 42

interest in an event type with the channel, whenever an event of that type is
generated at a supplier, the consumer’s push method is invoked with the event’s data
as input parameter.

On the other hand, pull interaction is a polling consumer-driven style. In this style
the supplier buffers events of the type that a consumer has registered interest in, and
it is up to the consumer to invoke a pull method each time it is ready to receive an
event. This blocks the client until such an event is available, upon which the method
is executed with some or no event data. An alternative non-blocking interface that
returns a boolean value reflecting whether an event was available or not can also be
employed. Event buffering is initiated at the supplier once the pull-style client-
channel-supplier connection is made.

These two styles of event propagation are illustrated in Figure 3.5. A channel can
support multiple suppliers and consumers concurrently.

The CORBA Event Service specification does not directly support events
having structure and typed parameters, and therefore restricts the extent to which a
consumer can define what events it wants to receive. Its decoupling of supplier and
consumer identity is also not always desirable.

CORBA Notification Service
The Notification Service specification is currently at the draft stage, but is close
enough to being finalised to warrant discussion. This specification is important as it
addresses the shortcomings of the Event Service specification and extends it to
provide features from research-based event systems. Its main developments in this
regard are in supporting structured events, content-based filtering, and a quality-of-
service (QoS) interface.

In the Notification Service, an event is similar to an object in that it is
structured into a number of compulsory and user-specified parameters. It has a type
defined as a domain/type/name triple, and within a secondary header defines a
number of optional constructs that define its priority, reliability and timestamp. The
user-specified body is divided in two sections, each of which can contain any number
of fields. The first lists filterable fields that may be used by a consumer to specify
filtering, while the second contains additional message parameter data as desired by
the user.

Channels support the filtering interface, which allows a filter object to be
attached to them. Such an object, usually located before a consumer, only forwards
through it events that match the filtering expressions it is configured with. Mapping
filters may also be used that take action on events according to their optional headers.

QoS constrains may be imposed on a per-channel, per-proxy and per-event basis.
The specification demands that the following default set are recognised (although not
implemented): Connection Reliability, Priority, Event Reliability, Maximum
Batch Size, Ordering Policy, Discard Policy, Expiry Time and Pacing Interval.

Finally, the specification goes some way to support dynamic evolution of events
and dynamic adaptation of consumers by providing for an Event Type Repository.
This facility lists the names of event types with their associated structure.

3.4 Message-oriented-middleware

 43

3.3.2 Storage in event systems

To the best knowledge of the author, none of the above general-purpose event
systems or service specifications have defined an event storage service. The need was
perceived in the context of the CEA research project at Cambridge, and this
dissertation is a result of that research. However, an analysis of the underlying
concepts behind most of the above event-driven systems reveals scope for not only
the provision of an event storage and retrieval service within event-based systems,
but also for integration of such a service within the core infrastructure of the
systems. This is highlighted in the discussion of HERALD (see Chapter 4).

3.4 Message-oriented-middleware

This section describes Message-Oriented-Middleware (MOM), the mainstream
commercial equivalents of event-based systems. Early MOM products originated
from the need for remote applications to communicate asynchronously with
centralised database systems, but rapidly evolved into middleware for enabling
systems integration (particularly in terms of legacy applications). The term
‘messaging’ is popularly used to refer to electronic mail systems, and this comparison
is appropriate since messaging middleware is analogous to a general-purpose high-
speed e-mail system with guaranteed delivery.

3.4.1 Core features of MOM

MOM provides an asynchronous communication channel (or message bus) between
applications or components. There is no explicit client/server relationship at the
middleware level, as the communicating applications are viewed as equals. One
application sends a message to another. Its primary acknowledgement of delivery is
that it has submitted its message to the messaging middleware at its side. The
messaging transport then guarantees that at some time, in some way and through
some route, the message will be delivered to the intended recipient. On top of this,
some products/systems do provide temporal guarantees on delivery, and the ability
to request acknowledgement of receipt from the receiving application. This structure
is shown in Figure 3.6.

Message-Queuing Middleware (MQM) is a type of MOM that combines a message
transport and a queuing service. Although, conceptually, message queuing is a service
provided on top of the core messaging transport, it is required for guaranteed
delivery and has become an intrinsic feature of messaging. Message queuing is
provided by all major MOM products. Messages are pushed into the local
transmission queue for delivery, delivered between queues asynchronously, and
placed into the receiving queue at the receiving end. The receiving application can
then retrieve them when it can. Transactions can be applied to the act of placing and
retrieving a message into a queue, transmission between queues, or over all three

Chapter 3 - Related Event Middleware

 44

stages. Queues can be persistent on disk storage, and can be reinstated after a system
failure or restart. Other key functionality includes load balancing, multi-casting,
guaranteed delivery, and several levels of fault tolerance. The various MOM products
available provide some subset of this functionality, and most add several high-level
value added services like message brokering and publish/subscribe.

A message usually consists of a structured collection of fields making up an
object or data structure, mapped to a human- and/or machine-readable string. The
nature of the mapping employed and extent of the typing supported varies according
to the messaging system, and can be language or platform dependent. At present,
there is a drive to employ XML [BPS99] tagging as a standard representative format,
due to XML data being self-describing. Although messaging is particularly suited for
application integration over heterogeneous platforms and environments, it can be
applied over homogenous domains, and as a communications pipeline for other
middleware technologies. For example, two applications built using the same
programming languages (like Java™ or C++) can transmit flattened (or serialised)
objects over MOM. Similarly, the marshalled parameters of a CORBA remote
invocation may be sent over a messaging transport. In fact, the CORBA Messaging
specification [OMG98b] lays down a standard framework for carrying this out.

Products from different vendors have different APIs and do not easily
interoperate with one another. Each vendor’s products employ proprietary location
(directory and naming) and security services. Sometimes there are, however, gateways
that make it possible for competing products to communicate with one another,
particularly with regards to the major market players.

3.4.2 Publish/Subscribe

At its core, message-oriented-middleware is concerned with delivering messages from
one application to another. Through a publish/subscribe service, the system can then
enable message delivery to be tailored for recipients that it knows have expressed
some interest in a category of messages. Publish/subscribe is therefore analogous to
publish-register-notify as discussed in Section 3.3. Information is published, or advertised
as being available, and clients can then register interest in being notified of when
messages matching their subscriptions occur. The propagation of messages is

Application AApplication A Application BApplication B
Message TransportMessage Transport

Asynchronous executionAsynchronous execution

Message QueuesMessage Queues

Figure 3.6

Decoupling of message propagation in MOM

3.4 Message-oriented-middleware

 45

therefore dependent on subscriptions that may be defined and revoked by client
applications at any time. The implication of this is substantial, as client applications
can specify information they want to be told about, rather than receive everything
that a sending application transmits.

The subscriptions that define what information an application is interested in
vary in form according to the particular product or solution, but are usually topic
and/or content-based. Messages can be tagged as belonging to some category (which
can be part of a hierarchical information structure) through textual keywords. A
subscription then defines some filtering criteria to select from the messages available.
Figure 3.7 illustrates how subscriptions are defined in MQSeries™.

Some message-oriented middleware solutions provide publish/subscribe services,
usually through the provision of a message broker. The broker conceptually acts as a
proxy around the sending application, by accepting its messages, and placing them
within some structural category based on their topic/content. Client applications can
carry out subscriptions with the broker for specific information, which then
dispatches the messages, using the underlying MOM transport, to those applications
when the relevant information becomes available.

3.4.3 Representative solutions

The market for MOM is substantial and there are a large number of products in wide
deployment. Leading products include IBM’s MQSeries™ suite of middleware
solutions [IBM99], Microsoft MSMQ [Mic99a], Talarian SmartSockets™ [Tal98],
4Tier Systems’s OpenMOM™ [4Ti99], Oracle’s Oracle8i AQ™ [Ora99] and
Tibco’s TIB™ product family [Tib99]. There are no pervasive standards for MOM,
although the CORBA Messaging [OMG98b] specification is attempting to
standardise the integration of MOM with distributed object technology. Some
products embrace multiple middleware paradigms and enable wider enterprise level
integration. For example, Inprise’s Entera/QX™ [Inp99] provides a platform for
integrating MOM and Client/Server, while TIB™ provides both real-time messaging

PUBLISHPUBLISH
Stock/MicrosoftStock/Microsoft

PUBLISHPUBLISH
Stock/IBMStock/IBM

PUBLISHPUBLISH
News/MicrosoftNews/Microsoft

SUBSCRIBESUBSCRIBE
Stock/*Stock/*

SUBSCRIBESUBSCRIBE
/Microsoft/Microsoft

Su
bs

cr
ip

tio
n

Li
st

Su
bs

cr
ip

tio
n

Li
st

PublishersPublishers SubscribersSubscribersMessage BrokerMessage Broker

Stock/IBMStock/IBM

Stock/MicrosoftStock/Microsoft

News/MicrosoftNews/Microsoft

Stock/MicrosoftStock/Microsoft

Figure 3.7
MQSeries™’s Message Broker.

Chapter 3 - Related Event Middleware

 46

and message queuing for guaranteed delivery as well as a tightly integrated ORB,
which is CORBA 2.0 [OMG99] compliant.

While the above discussion has highlighted the main features common to most
products, it is informative to review the feature-set of some of the main solutions.
MQSeries™, MSMQ, Oracle8i AQ™ and SmartSockets™ will now be outlined
in further detail. The MQSeries™ suite dominates the marketplace, and while acting
as the benchmark product range, its feature-set is largely representative of the most
comprehensive solutions available. MSMQ is the main competitor to MQSeries™
on the important Microsoft Windows™ platform. Oracle8i AQ™ has been picked
out because of its distinctive integration with a database management system, while
the SmartSockets™ product is particularly relevant to this discussion as it actually
attempts to provide an event storage service.

IBM MQSeries™ and Integrator
IBM’s MQSeries™ suite of middleware software represents some of the earliest
available commercial messaging solutions, and today still dominates the market.
MQSeries™ is the MOM transport and, partly due to its availability on 40+
platforms as well as its technical feature-set, controls in excess of 50% percent of the
market.

MQSeries™ applications (local or remote) communicate by putting messages on
queues and by taking messages out from queues by using the Message Queue Interface
(MQI) and MQSeries™’s API. A message from a sending application is placed on a
queue, where it then waits for a signal that the receiving queue is ready to accept it.
Maintaining the messages queues, the relationships between programs and queues,
handling network restarts and moving messages around the network, is the
responsibility of MQSeries™. MQSeries™ provides various transaction guarantees,
which can be controlled by its own built-in transaction processing (TP) monitor or by
an external X/Open compliant TP monitor.

A queue can be predefined or created dynamically. A local queue belongs to the
same queue manager as the application that is connected to it. A remote queue is owned
by a different queue manager. A transmission queue is a special queue used by the queue
manager and transmission programs to temporarily store messages destined for a
remote queue manager. An alias queue provides an alternate name for a queue. A model
queue is not used directly as a queue, but is used as an example when assigning
characteristics to a dynamic queue. Each message queue belongs to a queue manager.
The Message Queue Manager is the most important and central object in the
MQSeries™ environment. Queue managers are the system providers of message
queuing facilities used by applications. Additionally, queue managers process system
commands and manage all message queuing related objects. There must be at least
one queue manager on a system.

Applications local to one queue manager can put messages on remote queues
owned by another queue manager through distributed queue management. Current
versions of MQSeries™ simplify distributed queue management by allowing
applications to read only local queues, while allowing them to write to both local and
remote queues. Queue managers on different computing platforms communicate

3.4 Message-oriented-middleware

 47

with each other through programs, called message channels. They are made up of
two Message Channel Agents (MCAs or movers), consisting of a sender and a receiver,
and a communication link. MCAs communicate with each other using the
MQSeries™ Message Channel Protocol.

MQSeries™ provides assured message delivery by moving messages to remote
queue managers in groups. Messages that are defined as persistent are never deleted
at the transmitting queue manager until their confirmation of receipt at the
destination queue manager. Messages in MQSeries™ can have a priority field that
can override their submission order with regards to their delivery.

IBM’s Message Broker builds on top of MQSeries™ ’ reliable asynchronous
messaging graph to provide publish/subscribe. The broker is an integral part of a
queue manager, and keeps track of both published information and subscriptions to it.
The broker can send information to other brokers when required. Subscriptions are
topic-based and are defined using character strings. Structure can be implied by the
use of delimiters (like ‘/’). For example “Stock/*” matches published ‘stock prices’
for ‘all’ companies, while “News/IBM” would refer to published ‘news’ relating to
‘IBM’. Figure 3.7 illustrated this functionality.

MQSeries™ Integrator employs MQSeries™ as the messaging transport and
adds; Formatter, which provides message parsing and reformatting capabilities,
Rules, which provides content-based decision making capabilities, and the
MQSeries™ Integrator daemon, which combines the messaging, Rules and
Formatter components to process messages. This enables limited monitoring for
composite events.

MQSeries™ does not provide a dedicated event storage service other than
making events persistent for some time, until they are acknowledged as having been
delivered. There is no distinctive query interface to these persistent queues.

Microsoft MSMQ
Windows™ NT 4.0 Server and Windows™ 2000 contain Microsoft Message
Queue Server (MSMQ) as a built-in service. The aim of this MOM product is to
become the middleware of choice for integrating applications running on the widely-
used Windows™ platform. While its MOM feature-set is fairly mainstream, its
attraction derives from its ease of deployment and administration. It benefits from
close integration with other operating system services like transaction support,
directory service, security and clustering. Obviously, this tight integration with the
comprehensive services available in the NT domain make it a strong contender in
the Windows™ platform, but also prevent it from being of major relevance in other
platforms or in heterogeneous application integration.

Oracle8i AQ™
Oracle’s Oracle8i Advanced Queuing™ (AQ) is interesting because of its
distinctive architecture. Given that most of the architectural and storage
requirements of persistent message queues are easily available in a relational database,
and given Oracle’s in-house expertise in relational database management systems,

Chapter 3 - Related Event Middleware

 48

Advanced Queuing is implemented as an integral part of the Oracle database
management system. Advanced Queues are represented as regular relational
database tables that have been enhanced to support queuing operations like enqueue
and dequeue. Messages in queues correspond to rows in a table. The database is then
accessed by multiple applications to transfer messages between them, or multiple
databases communicate to move messages between their queues (as shown in Figure
3.8).

AQ focuses on message management. It can track messages through their entire
life-cycle by keeping track of the state of a message at all times (waiting, ready,
consumed or expired), and making each message carry its history with it (all the
nodes that it has visited and which of the recipients have actually received it). As
messages move, they can split, merge and clone, and the causal relationships between
them are automatically tracked.

Due to their being regular database tables, Advanced Queuing queues can be
queried using standard SQL. This contrasts with the restricted logging functionality
of other MOM products. In addition, applications can optionally retain messages in
queues after they have been consumed or propagated to a remote queue. This implies
that the local application can carry out queries on its own message history for
auditing purposes.

The storage capability provided by AQ is, however, insufficient to address the
requirements motivated by the discussion of Chapter 2. This is because SQL on its
own has insufficient expressive power to interpret event histories (see Chapter 5).

Talarian SmartSockets™
Talarian’s SmartSockets™ publish-subscribe middleware product [Tal98] is a
comprehensive message transport that, in addition to all the MOM ‘common’
feature-set listed earlier, also provides some novel services. SmartSockets™
provides the application not only with a control API, from where it can send and
receive messages, but also a monitoring API, that may be interfaced with either

Application

Application

ORACLE DB

Advanced
Queues

ORACLE DB

Advanced
Queues

ORACLE DB

Advanced
Queues

Network

ApplicationApplication

ApplicationApplication

Figure 3.8
Advanced Queueing™ transparently propagates messages over the network

in between Oracle™ instances.

3.5 Conclusion

 49

synchronously or asynchronously. In this way, a client application can set itself to
receive events pertaining to the state of various internal SmartSockets™ variables.
The product allows dynamic message routing with weighted node connections, where
developers can allocate different priority weights to each node that their application
can deliver messages to, so that messages are delivered in order of the weights.

Of particular interest are the add-on SmartModules™ that can be added to the
product. One is the RTie (Real-Time Inference Engine), instances of which can be
placed at various nodes. This allows a developer to specify high-level rules upon
which actions are undertaken. The rules allow limited composite event detection and
event qualification based on attribute value. Incoming event streams are monitored
for the event patterns and one or more rules can be triggered.

Of direct relevance to this discussion are the RTarchive and RTplayback
modules. These provide event/message storage and retrieval for SmartSockets™
applications.
• RTarchive is used to archive or record messages via SmartSockets™. All

archive messages are saved to a set of files, some of which are indexed by time,
message type, or subject. Filters can be set up to archive the data and messages
desired. Archiving can be turned on and off by any process in a SmartSockets
application.

• RTplayback is used to retrieve or playback messages that have been recorded by
RTarchive. Upon receipt of a request for retrieving messages, RTplayback
searches for, retrieves, and distributes the selected messages to the terminal, file,
or one or more client processes that are part of the same SmartSockets™
application. RTplayback can be used to handle multiple playback requests.
There are a number of tasks for which RTplayback can be used, including the
replay of data faster or slower than real time, the retrieval of historical data for
SmartSockets modules, and the analysis of data by exporting it into a file for
further examination.

Although the lack of availability of technical documentation on the above modules
prevents appraisal of their functionality, marketing literature indicates that these
modules attempt to address a subset of the feature-set of the service proposed by
this dissertation. The modules can only be thought of as an added local service for a
SmartSockets™ node. They can only be accessed locally, and the retrieval interface
is mostly restricted to interactive browsing and manual selection through a graphical
user interface.

3.5 Conclusion

In summary, this chapter has reviewed existing event messaging solutions. After
giving an overview of distributed middleware, it has described the variations in the
event model, and then reviewed the most important examples of event-driven
systems and message-oriented middleware. Where applicable it highlighted these
examples’ treatment of event storage.

Chapter 3 - Related Event Middleware

 50

The above discussion and the preceding one in Chapter 2 demonstrate that
existing approaches to event storage are either solely applicable to highly specific
application domains, or else are just very limited in scope. To the best knowledge of
the author, the storage service outlined in this dissertation goes beyond any existing
solution in terms of generic applicability and functionality, and in marked contrast,
actually promotes interoperability in between different systems.

 51

Chapter 4

A Storage-Enabled Event
Infrastructure
This chapter presents a comprehensive event infrastructure called HERALD. This
provides event notification, storage and retrieval. The chapter starts by describing a
generic and extensible event model, and proceeds to discuss the main features of the
HERALD infrastructure. Apart from its novel architectural and technical features
based on registration policies, HERALD demonstrates how event storage and retrieval
capabilities can be embedded within a messaging or event-driven framework to
provide enhanced functionality and performance.

Section 4.1 presents an event model where events are typed, have structure and
can form part of inheritance-based event taxonomies. This generic event model
supports schema evolution and is supported both within the HERALD infrastructure
and within the event repository architecture (see Chapters 5,6).

Section 4.2 gives an overview of the HERALD infrastructure. It defines the
conceptual entities within the HERALD event model, describes its concept of
registration policies, and illustrates its flexible loosely-coupled approach to dynamic
environments.

Event storage and retrieval within HERALD are discussed in Section 4.3. This
section describes how event repositories, i.e. event storage facilities, can be embedded
within HERALD components and gives an insight into how these may be used. This
section concludes with a brief look at how an event repository could be employed
within message-oriented-middleware solutions.

4.1 A generic event model

It is important to first define an event model for use within the event notification and
storage infrastructure. This model will be applied within the event-based transport of
HERALD as well as internally within the event repository.

Chapter 4 - A Storage-Enabled Event Infrastructure

 52

4.1.1 Event type system

An event is a message that denotes the occurrence of an activity of interest, and
belongs to an event type. An event type is analogous to an object class, and it
encapsulates a number of parameters or attributes. While an event instance itself usually
reflects the occurrence of some activity, its attributes uniquely identify that activity by
representing its parameters.

An event occurs at a precisely determined point in time, a time-point, and has no
duration. In this model, time is assumed to consist of an infinite number of discrete
time-points, each of infinitesimally small duration. In practice, however, time-points
that are extremely close to each other (within microseconds on modern machines),
cannot be distinguished accurately, so events that occur this close to each other need
to be distinguished using means alternative to their timestamp.

Each type has associated with it an event scheme. This defines and names the
parameters associated with the event type, which distinguish each event occurrence.
The parameters of an event can be defined in any of the Object Data Management
Group (ODMG)’s Object Model primitive types [CB97]. It is convenient to adopt
this widely used industry standard specification as the base type system, since it also
provides a binding from its type-set to the most commonly used language-specific
types, including those of C/C++, Java™ and Smalltalk. In addition, this makes
interfacing with CORBA environments and most current commercial databases
straightforward. There are only minor differences between the Object Management
Group (OMG)’s type system and the ODMG’s.

Like classes in an object-oriented environment, event types can inherit from a base
type event. The base type represents the basic properties of an abstract event, in
essence defining the header that is attached to each event instance. These basic
properties are the event’s creation timestamp as entered at its source, a scalar counter
set by the source, and the identity of the source where it originated. Other fields are
provided in order to support provision of security. Events are tagged as being of live,
past, or replay type. In addition, past and replay events have a retrieval and replay timestamp
respectively. Furthermore, all events can be regular or compound composite.

At this point the following definitions must be made:
• A primitive event is any event that is generated at some event source in response to

some device’s activity, and cannot be broken down into any finer-granularity
constituent activity. All primitive events are regular events.

• A composite event is any event that is generated to denote the presence of a
particular sequence of events. It is defined as having occurred when the whole
event sequence that defined it occurred, this being equivalent to the time of
occurrence of the event that concluded the sequence. A composite event still
occurs at a particular instant and has no duration. Within HERALD there are two
ways of supporting composite events: (1) regular events that are associated with a
type and have attributes, or (2) compound composite events, which are events that
encapsulate the constituent regular events within them in addition to their own
parameters.

4.1 A generic event model

 53

Figure 4.1 illustrates the difference between a regular event and a compound
composite event. In the example portrayed, the compound composite event embeds
the three regular events (that might have been primitive) that defined the matching
pattern. In this case, they are shown as being of three distinct different types.

4.1.2 Event inheritance

All application-defined event types add parameters to the base event type definition
to define instantiable events. Event types with a common semantic meaning can be
grouped into an inheritance tree. For example (as illustrated in Figure 4.2), a service
that provides information about the location of users can offer the following event
type; LocationEvent(Domain, Name, Type, Location). The event type LocationEvent
might identify that an entity has changed physical location within a specific
application-defined domain. The entity can be, for example, a person or some
equipment. There are several technologies enabling tracking of physical movement
of people and other entities, with representative examples being the Active Badge
[HH94] and the Active Bat [WJH97] systems, where electronic tags are worn by or
attached to the entity being tracked. LocationEvent can then have sub-types inheriting

LocationLocation
EventEvent

ActiveBadgeActiveBadge
SightingSighting

TerminalTerminal
AccessAccess
SightingSighting

ImageImage
RecognitionRecognition

SightingSighting
GPSGPS

SightingSighting
ActiveBatActiveBat
SightingSighting

LocationEventLocationEvent(Domain, User, Location)(Domain, User, Location)

+(Lat, Long, Alt)+(Lat, Long, Alt) +(Lat, Long, Alt)+(Lat, Long, Alt)+(Workstation)+(Workstation)

Inheritance pathInheritance path

Event Base TypeEvent Base Type

Location SubLocation Sub--typestypes

Location EventLocation Event
base typebase type

Figure 4.2

Example of event type definition

Regular eventRegular event

Compound composite Compound composite
eventevent

Event Event
Type IdentifierType Identifier Event AttributesEvent Attributes

Regular events that caused Regular events that caused
composite event to be matchedcomposite event to be matched

Figure 4.1
Distinction between regular and compound composite events

Chapter 4 - A Storage-Enabled Event Infrastructure

 54

from it that reflect the actual tracking technology being employed, with parameters
specific to that technology. These could be ActiveBadge-Sighting, ActiveBat-Sighting,
GPS-Sighting, ImageRecognition-Sighting, and TerminalAccess-Sighting. The advantage
of being able to specify such an inheritance grouping around the base type
LocationEvent is that it becomes possible to carry out operations and queries on the
base type that implicitly encompass event instances from all the sub-types. Therefore,
while the model supported is analogous to an object-oriented model in an object-
oriented environment, it differs in that event types (analogous to object classes) have
no behaviour.

4.1.3 Event schema

Event type schema themselves have associated meta-data. A scheme is tagged with
the name of the event type it represents, a version number in order to support
schema evolution, a numeric identifier, the originating component’s identifier, and
two strings describing the activity denoted by the event.

The first string is a textual description of the activity the event represents, while
the second is a structured string with classification information. The keywords
defined within the classification information are inherited by any sub-types of the
event type being described and may be appended to. The string fields can be
employed by event clients while searching for interesting events and their respective
sources at event brokers. Both the version number and numeric identifier are unique
with respect to the context of the event component where the scheme was defined,
whose identifier is the third number.

 A scheme is owned by this event component, details of which are also provided
within the scheme meta-data. Although in HERALD any event source can define a new
event type and advertise it, it is usually the case that event types are defined at an event
broker, from where their identification details can be obtained by multiple sources for
adoption (see Section 4.2.6).

The rest of the scheme structure defines the event type’s parameters and
inheritance details. Each parameter definition also has attached to it a textual
description of the attribute represented by the parameter.

When an event is dispatched to an event client, its scheme’s compound identifier
is attached to the event instance’s parameters.

4.1.4 Event evolution

In a dynamic and reactive environment like a messaging infrastructure, where the
event repository is an important component, application components can be
expected to change and evolve independently of each other. Therefore, the event
model supports schema evolution through schema versioning. A new evolution of a
event type’s scheme need not re-define the whole inheritance tree from the base type
event downwards. It need only re-define the tree from the first node altered onwards.
This is illustrated in Figure 4.3. In this example, one can see the effect of defining

4.1 A generic event model

 55

four new versions of existing event types. The new type definitions do not overwrite
the previous versions. Rather, they are attached to the existing tree, adding an
alternative dimension to it. Each entry is identified through the version number given
to it by the component that defined it, and needs to be fully qualified with respect to
its position within the evolving schema tree. Therefore, LocationEvent$A1 refers to
the definition version 1 of LocationEvent made at component A.

New definitions ofNew definitions of
LocationEventLocationEvent$Y1$Y1..GPS_SightingGPS_Sighting$Z2$Z2 (by Z)(by Z)
LocationEventLocationEvent$A1$A1 (by A)(by A)
LocationEventLocationEvent$A1$A1..GPS_SightingGPS_Sighting$A1$A1 (by A)(by A)
LocationEventLocationEvent$A1$A1..ImageRecognitionImageRecognition_Sighting_Sighting$Y2$Y2 (by Y(by Y))

Schema DefinitionSchema Definition

EventEvent
(…)(…)

LocationEventLocationEvent (…) (…)
(version Y.1)(version Y.1)

ActiveBadgeActiveBadge_Sighting_Sighting (…) (…)
(version Y.1)(version Y.1)

GPS_SightingGPS_Sighting(…) (…)
(version Z.1)(version Z.1)

ImageRecognitionImageRecognition_Sighting_Sighting (…) (…)
(version Y.1)(version Y.1)

LocationEventLocationEvent (…) (…)
(version A.1)(version A.1)

GPS_SightingGPS_Sighting(…) (…)
(version A.1)(version A.1)

ImageRecognitionImageRecognition_Sighting_Sighting (…) (…)
(version Y.2)(version Y.2)

Schema DefinitionSchema Definition

EventEvent
(…)(…)

LocationEventLocationEvent (…) (…)
(version Y.1)(version Y.1)

ActiveBadgeActiveBadge_Sighting_Sighting (…) (…)
(version Y.1)(version Y.1)

GPS_SightingGPS_Sighting(…) (…)
(version Z.1)(version Z.1)

ImageRecognitionImageRecognition_Sighting_Sighting (…) (…)
(version Y.1)(version Y.1)

V
er

si
on

 N
od

e

GPS_SightingGPS_Sighting(…) (…)
(version Z.2)(version Z.2)V

er
si

o
n

 N
od

e

Figure 4.3

An example of schema evolution

Chapter 4 - A Storage-Enabled Event Infrastructure

 56

4.2 Overview of HERALD

The HERALD event system is based on the revised version of the Cambridge Event
Architecture (CEA) [BBHM95] described by Bates et al. in [BBMS98], and endorses
the publish-register-notify programming paradigm.

HERALD differs from CEA in that it does not employ any interface definition
language to describe the event types supported at sources. CEA uses these
definitions to construct event stubs that are linked in at compile time with the event
client components. This model imposes statically defining and publishing an event
source’s events at compilation time, implying that if an event source is subsequently
modified, the clients that were communicating with it need to be recompiled. Instead,
in order to support loose-coupling, HERALD endorses a purely reflective interactive
model, where components discover and learn about each other’s capabilities and
events at run-time as required. This is not entirely novel in concept, as the CORBA
2.0 [OMG99] specification provides for both a static and a dynamic invocation
interface. However, few ORB implementations support the dynamic interface, thus
restricting the developer to build a closed system.

In a distributed system built using HERALD, each event-aware application unit is
known as an event component. There are two primary types of conceptual
components, event source and event client components. Conceptually, events are
structured objects, and flow from event sources to consuming event clients. Sources
can be wrappers around an application or device, and based upon the monitoring of
some property or activity within that application/device, generate events pertaining
to it. Event clients register interest in events directly with event sources and are sent event
notifications when events matching their registrations occur at that source. This structure
is shown in Figure 4.4.

In practice, the functionality represented by either component type is provided
through a package of class libraries (see Section 7.1.1), of which EventClient and

Device or Device or
ApplicationApplication

being being
MonitoredMonitored

HHERALDERALD
EventEvent
ClientClient

Event Event
NotificationsNotifications FilteringFiltering

EventEvent
TriggersTriggers

Request schemeRequest scheme for for
event type event type EmailSentEmailSent

Scheme for event type Scheme for event type EmailSentEmailSent
--EmailSentEmailSent(Sender, Recipient, (Sender, Recipient,

Subject,Subject, MessageReferenceMessageReference))

RegisterRegister
EmailSentEmailSent((Mark, Richard, ?, ?Mark, Richard, ?, ?))
-- Priority Policy: Priority Policy: low prioritylow priority
-- Expiry Policy: Expiry Policy: 30minutes30minutes

HHERALDERALD
Event SourceEvent Source

Policies SupportedPolicies Supported

Schema for eventsSchema for events
sourcedsourced

List of clients and their List of clients and their
registrationsregistrations/policies/policies

EventEvent--drivendriven
Device or Device or

ApplicationApplication

ActionAction
InjectionInjection

Figure 4.4

A simple registration sequence in HERALD

4.2 Overview of Herald

 57

EventSource embody the functionality of a HERALD event client and a HERALD
event source respectively. These libraries abstract away most of the detail pertaining
to event registration, filtering, event queuing, communication, fault tolerance, event
persistence, reliability and security. Application writers can wrap event functionality
around their application units or legacy interfaces very rapidly without concerning
themselves with the underlying middleware intricacies. A hardware monitor can
therefore have an event source written around it that internally communicates with
the proprietary device interface, but only ‘exports’ events to the outside world.

The above discussion used the work ‘conceptually’ because a component, or any
independent software entity, need not necessarily map to a source or a client. In fact, it
can be both a source and client of events concurrently with respect to different
components. By integrating both source and client functionality, it is possible to built
specialised transforming components like federators, gateways, storage modules, and event
brokers. These are analogous to the concept of mediator components within the CEA
framework. More detail on these services will be given shortly.

In HERALD, communication between event components is asynchronous, with
event propagation being decoupled from the execution at the source and the client.
When one or more events are received at a client, the HERALD Event Client module
passes them into the application through an application-specified object handler.
Different object handlers can be invoked according to the type of the notification
received. Likewise, although they do not have to, an application developer can tap
into and monitor inter-component control messages. Examples of the latter are
event registrations and enquiries as to what capabilities are available at an event
source.

Components are denoted by a component identifier, which is a structure that
contains a unique identifier, the component’s network and communication details,
and, if applicable, the component’s identifying digital public key.

4.2.1 Registration templates and policies

HERALD clients register interest in event types with one or more event sources. In
order to carry out such a registration, the client must first locate the event source it
wants to receive notifications from. It can do this either by knowing the location of
the source on the network in advance (i.e. the location being hard-coded in the
application code). A more likely scenario in a dynamic environment is that a client
queries an event broker in order to search for appropriate event sources. It can carry
out this search by providing the broker with details of the event types it is interested
in, upon which the broker will provide it with the location and naming details of
relevant event sources. The client can then enquire of each source its capabilities and
if required request the schema of the events that source can supply. It then submits
an event registration to the source.

In the CEA model, a registration consists of an event template. This is an event
instance with fields for exact match filled in and those for wild card match expressed
as variables. Filtering is therefore carried out at source, and the client is notified only

Chapter 4 - A Storage-Enabled Event Infrastructure

 58

of those events that are of interest to it, in that they are not only of the type that it
wanted to monitor for, but also match one or more parameter values. This implies
additional complexity at the source, as it must now keep track of all the registrations
pertaining to its clients (and effectively track all those clients) and carry out template
matching for each event that is generated. However, this approach reduces network
bandwidth, allows for simpler clients, and enables better control and management on
service provision, in line with current Internet trends. Registration of interest in a
super-type event, as defined within the event taxonomy of that source, can be
extended to cover all the sub-types of that super-type.

HERALD enhances this registration model by extending it with registration policies. In
HERALD a registration consists of two segments, the first being the event template as
described above, while the second part being a list of one or more registration
policies. Policies qualify the registration, in that they alter the way in which the
registration is to be carried out or its scope. There are several policies defined in
HERALD, and the model is flexible enough to support additional ones being attached
at a later stage. It is possible for a client to carry out two registrations for the same
event type with different parameters and different qualifying policies. The main
categories of registration policies are:
• Priority – A source can support multiple delivery queues with different priorities.

If this feature is enabled, a client can differentiate its registrations based on how
important it deems having those events delivered to it rapidly. The number of
priority levels and the default priority is customisable at the source, and can be
enquired about by clients. For example, a event client component that monitors
network components can ask to have emergency ‘high load’ events sent to it with
very high priority, while regular service-level data is dispatched at lower priority.

• Frequency – Frequency policies represent constraints on the volume of event
notifications that a client wants to receive with respect to its registrations. For
example, a client can request that it not be sent more than one identical
notification within a specified amount of time. This is particularly suitable for
recurrent error notifications such as those generated by the file system filling up.
Two hundred identical error events are unlikely to be very useful.

• Expiry – A client can attach a policy to its registration setting an explicit expiry
condition on the lifespan of the registration. Examples of such conditions are
that the registration is only to last for a specified number of event notifications
or for a length of time from its acceptance at the source.

• Storage – Storage policies are of importance in this context as they are available
only if the event source encapsulates an event repository and provides event
storage and retrieval capabilities. Apart from conventional message queuing store-
and-forward capabilities, clients can demand that their notifications be dispatched
in batch every specified amount of time, or that notifications be retained for
them until they send a trigger requesting dispatch to a specific location. The latter
policy addresses the issue of mobile clients, or disconnected clients on dynamic
IP addresses (like users on dial-up networking connections). Other policies
enable retrieval and dispatch of past events matching the template submitted, or

4.2 Overview of Herald

 59

even fully fledged temporal queries on the events that the source has generated in
the past. How far back in time the source retains events is a property set by the
application writer responsible for implementing the source. Persistence
capabilities are described in greater depth in Section 4.3.

• Reliability and fault-tolerance – In analogy to how in key message-oriented-
middleware products one can request guarantees on delivery, event clients can
attach reliability policies to their registrations. Fault-tolerance policies then specify
how the source should behave in error situations. If a connection-based
transport like TCP/IP is used for event dispatch, the source can tell when
delivery fails. In this case, one option is to assume that the client is dead and to
purge all its registrations, while another policy guarantees delivery by retrying
delivery at regular intervals until an acknowledgement is received from the client.
Event clients implement a session protocol where they attach a session identifier
(reflecting an execution run) to communications with sources. This allows a
source to recognize when a client has crashed and been restarted. A heartbeat
protocol service can be requested, where the source sends a regular heartbeat
event to a client to signal its continued uptime and verify communications.
Alternatively, the source can provide a regular heartbeat signal on a multicast
group address that clients can listen on.

• Security – There are two aspects relevant to this area; authentication of
clients/sources, and security of transmission. HERALD supports the concept of
clients attaching a public key as a policy parameter, which is then used by the
source to transmit encrypted events. If the key is issued by a trusted third party,
then it also serves to authenticate the client. It is envisaged that a more elaborate
and comprehensive event security model, like OASIS [Hay96], could also be
applied.

In contrast to earlier event-driven environments, which compromise between
functionality and performance, HERALD allows each source component writer
complete freedom to enable as many or as few policy modules as wished. The core
source functionality consists of the basic CEA registration-notification capability,
which is ideal for a lightweight but functional event notification service. On top of
this, one can then enable the modules that provide multiple priority queues, security,
reliability, and persistence (which launches an event repository within the source), and
choose the individual policies to support. The compromise lies in a degradation of
performance and an increase in storage requirements, against additional functional
service to event clients. A further enhancement on this model would be
differentiation of service by client, undoubtedly a requirement in an open
commercial environment. In this case, while some clients would see a core
lightweight event source, other more favoured clients (qualified as such through their
presentation of an appropriate identifying certificate) will be able to enjoy greater
functionality.

Furthermore, a source component can be written to monitor its own load and
gracefully reduce its service by selectively disabling its feature-set dynamically. As this

Chapter 4 - A Storage-Enabled Event Infrastructure

 60

affects the registration policies supported, clients can then be notified that the
policies they attached to their registrations can no longer be supported.

Activation of each module effectively enables a number of policies, and these are
advertised in much the same way as the event types the source can supply, i.e.
through brokers or directly to clients.

An event client can also be customised along similar lines. It can also embed an
event repository, a federator module (see Section 4.2.5) and use a sliding event
observation window to enforce global ordering of events (see also Sections 4.2.4,
5.2.6, 6.3.1).

4.2.2 Component communication

Communication between HERALD components is decoupled from the application
execution at either side, and is connection-less. Messages are placed on a queue at
one side, and then dispatched and placed in a queue on the receiving side. They are
then processed, and if necessary, an acknowledgement is sent back in the same
asynchronous manner. Control messages sent by the client to the source are always
acknowledged, so that the client knows that its request has been received. In addition,
the source can return information pertinent to the nature of the control message
within the acknowledgement. An example of this is a client request to be sent the
scheme of an event type, or to carry out a registration. Clients label their control
requests according to their own individual labelling criteria, and the label is returned
by the source within the acknowledgement.

The event and message data is sent over the network in a language and platform
independent format, allowing easy portability of HERALD across heterogeneous
environments.

Given the individual settings pertaining to event notification (e.g. event types,
parameter templates, registration policies) that HERALD allows clients to define, most
communications within the HERALD model are unicast-based. There are inherent
problems with employing multicast for event dispatch. Due to the potential of a
client receiving thousands of unwanted events per second, in multicast scenarios
clients have to carry out local filtering and in general run on a more powerful
platform. In addition, multicast across wide-area networks is not always possible due
to technical restrictions, and there are a limited number of multicast-addresses.
Therefore, conflicts need to be managed. Reliability and security become difficult to
address and require complex solutions (often requiring resorting back to unicast).

4.2.3 Dynamic nature

HERALD was designed for deployment in loosely coupled dynamic environments like the
Internet. It is assumed that application components are developed independently of
each other, and are likely to be under different management. An implication of this is
that components can be created and destroyed without notice, and will evolve over
time. Component evolution spans basic core technologies like the event transport

4.2 Overview of Herald

 61

itself and the nature of the event data available. Just as any software technology
evolves and matures over time through new versions, likewise, one can assume that
newer components may deploy newer versions of HERALD. These may make
available new functionality and support a different instruction-set in component
communication.

In a separate issue, the event types available at a source may evolve over time as
the underlying triggering conditions change. For example, an event type
CashWithdrawn(ATM, Customer), reflecting a bank’s Automated Teller Machine
network, may evolve to CashWithdrawn(ATM, ATM_Owner, Customer) when the bank
sets up an agreement with other banks to allow its customers to use their ATM
networks. Alternatively, a LineDrawn event in a shared whiteboard application may be
changed in a newer version to a different set of parameters to reflect whether the
drawing of the line was via a mouse or a handheld pen.

In a dynamic environment, it is not possible to recompile or even restart remote
components when these changes occur, or otherwise assume that they will be
modified to cope with the changes. HERALD addresses these issues through the
provision of a core set of immutable inter-component messages providing reflection
and versioning services. A component can therefore enquire as to the capabilities of
any other component, the event data it provides, and the version of the event
interface it supports. Ideally, newer interfaces should support older versions but do
not have to do so. For this reason, the schema defining the parameters attached to an
event type are versioned, and the version identifier is constructed in relation to the
source that defined each scheme in the first instance.

Similarly, functional services that may be available at an event source and are
represented by policies are also versioned. Likewise, all constructs that are
transmitted in between components, like events, control messages,
acknowledgements and schema, are tagged with the version number of the HERALD
event transport libraries that they were created by.

An event client may ask for the scheme of an event type from a source, and it
may request a list of the policies (be they related to registration, security, reliability,
etc.) supported by that source. It may also enquire as to whether any particular policy
is supported by that event source, and the reply from the source will list the versions
of the policy functionality supported if applicable.

4.2.4 Causality, distributed time, and timestamps

In any distributed event-based system, there are two concerns related to time:
• Lack of global time – Each machine has its own clock, which may drift at varying

rates.
• Network delay – Events sent between machines will incur a delay dependent on

machine and network loads.

The theoretical problems of timestamping events and synchronizing clocks across
distributed systems are well known. Lamport first examined the problem of

Chapter 4 - A Storage-Enabled Event Infrastructure

 62

distributed clocks and imposing global ordering of events in [Lam78]. However, the
full ramifications associated with wide-area scaling are not yet fully understood.

Amongst the distinguishing characteristics of a loosely coupled system is the
variable and potentially vast number of components in it. Because of this, it is
infeasible to employ several mechanisms that could be used to support event
notification in a tightly coupled application. Vector clocks [Fid91, Mat88] or the more
complex matrix clocks [FM82], which piggyback on each message exchanged between
the event components a vector timestamp that aids identification of causally related
events, cannot be used because the timestamp’s size is linear in the total number of
components in the system.

Applications therefore have to accommodate approximate representations of
time, such as assuming the existence of a global clock even though such an
assumption may result in inconsistent observations in different frames of reference.
A number of approaches can reduce the negative implications of this assumption,
and are surveyed comprehensively in Dietz [Die96]. Commonly, clocks are
synchronised within a local area network using the Network Time Protocol (NTP)
[Mil91] that achieves an accuracy of below 100ms even in wide-area networks. This
can be coupled with data from the Global Positioning System (GPS) [AL95],
which transmits Universal Time Code (UTC) signals that have an accuracy of
between 0.1 – 10ms. By employing the notion of an approximated time base [Kop92],
this implies that all events that occur outside of 20ms from each other can be
ordered.

Because of these issues, all HERALD timestamps are tagged with the identity of
the component that placed them as well as an event sequence number attached by that
component. The timestamps themselves reflect real time, and consist of two long
values that denote the number of microseconds since 1st January 1970.

These issues are discussed further in Section 5.2.6.

4.2.5 Federators, action-injection and composition

In [BBMS98], Bates et al. describe how event-based components can have an
interface for action injection. This allows a client of a component to invoke methods
that inject actions into the component. By authoring a glue component, known as a
federator, the actions to take upon event receipt can be specified through a set of
declarative rules.

HERALD enhances this through a flexible ‘building block’ model. There are three
ways how this functionality can be achieved in HERALD:

• In the basic HERALD model, an event client is effectively a wrapper around a non-
active component that exports a control interface. An event handler object is
then written by the application writer, and this, upon being passed event
notifications pertaining to a specific registration at a source, calls the appropriate
methods on the underlying component (thus injecting actions into it).

4.2 Overview of Herald

 63

• Alternatively, the application writer can use a pre-defined federator handler, and
pass all the event notifications to it. Rule-based action rules, which determine
what actions it should undertake, i.e. what component methods it can invoke, can
then be issued to the federator. The federator applies its rule-based logic to
whatever new events are received, and encapsulates a composite-event engine
(see below).

• In the third and most powerful variant, the event-client/federator and the target
component can be disjoint software entities, running on the same or on different
platforms. It is also possible to have one federator triggering actions in multiple
components. Communication is carried out through a conventional RPC-based
interface between the federator and a lightweight HERALD injection interface
wrapper around the target component.

Figure 4.5 illustrates the configuration applied by the second variant. The third would
be represented similarly. As described in [BBMS98], rules take the following format:

rule <name> <Event Expression>{Actions}

where the event expression can consist of a composite sequence of events. Actions
can therefore be triggered after the detection of a complex pattern of events. Figure
4.6 illustrates how a federator can be used to compose a shared whiteboard
cooperative application. Chapter 5 discusses the grammar of composite event
specification in detail.

Federator rules call upon developer-supplied methods. By writing a method that
triggers new events and using it to drive a HERALD event source interface, an event
mediator can be built.

It is therefore possible to compose components that register interest in events

ApplicationApplication

Event SourceEvent Source

Event FederatorEvent Federator
with with Event ClientEvent Client interfaceinterface

and and ActionAction--InjectionInjection interfaceinterface

Template Template
FilteringFiltering

Event Event
NotificationNotification

Event Event
RulesRules

RuleRule
MatchingMatching

ActionAction
InjectionInjection

Current Current
timetime

Incoming Incoming
event event
streamstream

Sequence Sequence
to matchto match

Composite Composite
event event

detecteddetected
Current Current

timetime

Incoming Incoming
event event
streamstream

Sequence Sequence
to matchto match

Composite Composite
event event

detecteddetected

Figure 4.5
An event federator that applies rule-based logic to inject actions

inside components

Chapter 4 - A Storage-Enabled Event Infrastructure

 64

from remote sources, apply some rule-based logic upon receipt of notification, and
generate new events of their own. In HERALD, as in CEA, these are called mediators. A
mediator has both an event client and an event source interface. It registers interest in
events from remote sources, applies some computation relating to the events that is
notified of, and generates events of its own. A composite mediator issues new events
that are triggered upon detection of a sequence of events, and whose parameters
reflect the parameters of the original constituent events. Composition of events from
primitive events into composite events is discussed at length in Chapter 5. A transforming
mediator can apply some logic to augment or translate event data. A gateway service
mediator works in similar fashion to map events from one event taxonomy to another,
and act as a gateway between event domains. These components can all embed event
repositories (see Section 4.3.3).

4.2.6 Event brokers

An event broker is analogous to a trader. Event sources publish details of the events
they have available with it, and clients can interrogate it to locate appropriate event
sources. Note that this differs from a Message Broker as frequently defined in MOM
middleware, where publishers pass their messages on to the broker, and the broker
then forwards the events to the subscribers. As shown in Figure 4.7, in HERALD, the
broker acts as a repository for the event taxonomies available at its local event
sources, and its use is in bringing event clients and sources together, rather than

ManagementManagement
//FederatorFederator

ObjectObject

ManagementManagement
//FederatorFederator

ObjectObject

Event Event
RegistrationRegistration

InterfaceInterface
Event Event

NotificationNotification EventEvent
InjectionInjection
InterfaceInterface

Register interestRegister interest
inin LineDrawnLineDrawn

LineDrawn LineDrawn (..(..

TemplateTemplate
MatchingMatching

Drawing board Drawing board
AA

ApplicationApplication
input interfaceinput interface

Application APIApplication API

Drawing board Drawing board
BB

…
If LineDrawn then call method

DrawLine() into local component
…

Application APIApplication API

Figure 4.6
Using a federator to compose a shared whiteboard application

4.3 Applying event storage and retrieval

 65

transparently decoupling their identities and acting as a go between for event
dispatch.

As described in Section 4.1.3, event types in HERALD are defined by schema
which themselves have associated meta-data. Although in HERALD any event source
can define a new event type (with its scheme) and advertise it, it is usually the case
that event types are defined at an event broker, from where their identification details
can be obtained by sources for adoption. Adoption means that an event source
downloads the scheme for an event type from an event broker, and generates its
events according to the scheme. Should it be asked to provide the scheme for its
events to an event client, the source will forward the scheme it had obtained in the
first instance from the broker. If the scheme subsequently evolves at the broker (for
example to contain additional parameters), the event source does not have to know
or update its events. It can continue serving events under the old scheme, as both will
be distinguishable by their version identifiers.

Brokers can communicate and federate their taxonomy information. [BBMS98]
describes a number of ways in which event brokers can be federated.

4.3 Applying event storage and retrieval

This section describes how event storage and retrieval fits in within the infrastructure
described.

Current event-driven and message-oriented-middleware frameworks restrict
event-clients to acquire only live information. An event client will only receive events
that occur after it has established its connection to the event source or notification
service and submitted some sort of registration of interest.

As described in Chapter 3, persistence in most of these systems is limited to
having persistent message queues that can survive system failure, so that upon restart,
the queue can be reinstated. The system can then proceed with dispatching those
messages that were outstanding on the dispatch queue before failure. What an event
repository enables, however, is storage of part or all of the message history
generated at the message source. This enables several novel applications not

HHERALDERALD
EventEvent
ClientClient

HERALDHERALD
EventEvent

SourceSource

HHERALDERALD
Event BrokerEvent Broker

Taxomony Taxomony of eventsof events
available locallyavailable locally

HHERALDERALD
Event BrokerEvent Broker

Taxomony Taxomony of eventsof events
available locallyavailable locally

Advertise that Source has Advertise that Source has
events of a specific type events of a specific type
available for notificationavailable for notification

Search for interesting Search for interesting
events and events and

locate sourceslocate sources

Event type Event type
and source locatedand source located

Contact Source directly for scheme Contact Source directly for scheme
and registrationand registration

Figure 4.7

Searching for events and sources at a Broker

Chapter 4 - A Storage-Enabled Event Infrastructure

 66

previously possible in messaging applications, some of which were illustrated in
Chapter 2.

The advantages of storage are more clearly outlined in some applications than in
others. These advantages are more obvious in an environment where the messages or
events are not intended for a specific target but are available for general
consumption. Retaining highly specific peer-to-peer application messages in a tightly
coupled environment is not as useful as retaining events in loosely-coupled
distributed systems where event consuming-clients can come and go dynamically, and
sources make no implicit assumptions about their clients.

Event storage can be employed in two ways within an event infrastructure:
• within event components where its use is implicit,

By embedding an event repository within them for their interval use, some core
components can provide enhanced services like buffering, store-and-forward,
state querying, and history retrieval.

• at dedicated storage nodes where it provides an explicit service.
In the same way as there can be a mapping mediator that modifies messages, or a
composite-event mediator that collect fine-granularity events and generates composite
events, there can be a storage mediator. This component is a dedicated storage node
whose sole purpose is to capture and store events. Other components can then
query it to retrieve or replay event streams.

A comprehensive description of the feature-set of an event repository and its
interface are not given here, as that is the subject matter of Chapters 5 and 6.

4.3.1 Embedding of storage capability within core
modules

The HERALD core modules that provide the functionality of an event source and of an
event client can both embed an event repository. Both modules allow an application
developer to activate retaining of event histories and specify parameters that specify
for how long, and how many, events are to be retained. Chapter 5 describes a
comprehensive query and control interface that allows extensive interaction with a
repository, and the HERALD modules use this interactive capability internally while
exporting an API-based interface to the application developer.

Event client module
In the case of a HERALD client module (see Figure 4.8), the events retained will be
events that have been generated elsewhere and received by the client because of
registrations it has carried out with remote HERALD event sources. The application
can specify which of the incoming event streams must be retained. Therefore, the
events stored can be of different types and originate from different event sources.

By default, these events will be stored and time-stamped with their storage time,
although their creation time, applied by their sources before notification, is retained,
and can be utilised for querying. The former may not always be consistent with

4.3 Applying event storage and retrieval

 67

global ordering across the different
remote sources. As reflected in
Section 4.2.4, apart from the
problem of remote HERALD
sources having system clocks that
are not in perfect synchronisation
with each other causing shifted
relative ordering, network delays in
transmission can reflect a different
temporal separation. While the
latter can usually be ignored (except
where high-precision replay is
required), the former can be
troublesome. Nevertheless, if the
application wants to retain a history
of the events as it received them,
then the storage timestamp represents an accurate reflection of that view.

The incoming events can also be grouped in event sessions when stored. Sessions
are described in Section 5.2.5, and are a means of associating event instances of the
same and of different types into meaningful groupings. An event instance may
belong to one or more sessions, and retrieval and replay queries can be carried out by
session rather than by event type.

Event source module
On the other hand, only locally sourced events are captured within a HERALD event
source when this embeds an event repository (Figure 4.9). This enables the source to
retain its own history of the events that it has generated over time. Time-stamping
and ordering in the event repository is not an issue here, as the events are being
captured locally. In this case, as well, since the source may be able to generate several

event types, the application
determines which are stored and
notified, and which are not
retained beyond notification to
interested HERALD clients. As
with HERALD client module
storage, the outgoing events to
be retained can be associated
through event sessions. As
described in Section 4.2.1, event
storage and retrieval within
event sources is an implicit
requirement for a number of
HERALD’s more powerful
features. A number of policies
can only be made available if a

Event Event
RepositoryRepository

Device /Device /
SoftwareSoftware

ApplicationApplication
HHERALDERALD

EventEvent
ClientClient

ActionAction
InjectionInjection

PastPast
EventsEvents

Live nLive notificationsotifications fromfrom
event sourcesevent sources

Direct Direct
queryquery

Figure 4.8
Embedding an event repository within

an event client

Event Event
RepositoryRepository

Device /Device /
SoftwareSoftware

ApplicationApplication
HHERALDERALD
Event Event
SourceSource

Event Event
TriggersTriggers

PastPast eeventsvents,,
in response to in response to

Registration policiesRegistration policies
or direct queriesor direct queries

Live nLive notificationsotifications to to
registered clientsregistered clients

Figure 4.9
Embedding an event repository

within an event source

Chapter 4 - A Storage-Enabled Event Infrastructure

 68

source contains an embedded event repository service. By requesting these policies,
the client components cause the source module to interact with its event repository.

4.3.2 Applications of event histories

This section discusses some of the capabilities enabled by event storage within
HERALD. Section 4.3.2 then illustrates where these capabilities are applicable.

Retrieval and replay of past events
A HERALD event source equipped with an event repository can allow clients to be
more selective in their queries as regards its history of the events it has generated. An
event repository goes beyond being a data store or buffer of events, and supports a
dedicated retrieval interface (see Chapter 5 for a discussion of TEQL).

HERALD clients can demand that they be forwarded event notifications, matching
their registrations, which occurred in the past. Policy parameters determine whether
this is done in batch or sequentially. These events are tagged as past events, and have
both a transmission timestamp and the original creation timestamp.

A HERALD event client can also request replay of events from a storage-enabled
HERALD source. In order to do this, the client can provide two time values to demark
the interval of activity to replay from. Alternatively, it can attach a TEQL query to its
‘replay’ request. This enables a client to detail the past events it wants to know about
in terms not only of their content, as in their parameters, but also in terms of when
they occurred with respect to time, or with respect to occurrences of other events.
This ‘single shot’ registration, in that it is processed, handled and then deleted,
processes the event history to locate the events that satisfy the query, and then
initiates a replay at the same temporal separation as the original events occurred. The
client receives the relevant event streams as if they were live data. Replayed events,
however, are tagged as such, and have both transmission and creation timestamps.

Initialisation and reconstruction of state
Event information often reflects a change of state of some kind. In a location
monitoring application, this could be a PersonMovement event, which occurs
whenever an individual walks from one location to another. Alternatively, consider an
event reflecting the share price of a company reaching a certain threshold. These
events were triggered by a change, and therefore any client application that starts up
and registers interest in the change will have no idea of the current value of the state
being monitored until a change in it takes place (unless it can obtain the information
through some bespoke communication).

If the event denotes a change to a new value, being able to retrieve the last
instance of the event that occurred before the registration was affected, enables the
client to initialise its data until it is notified of a further change. This does not merely
require the event source retaining the last occurring event instance of any event type,
since a HERALD client would require the last notification that matches its registration
template. Therefore, different clients would require different past instances.

4.3 Applying event storage and retrieval

 69

In other cases, re-initialisation of state requires more than just one past instance.
For example, an application might require all events since a particular time-point. If
the application logic is based around processing external events, obtaining all the
events again can enable it to re-instantiate its state following failure. Alternatively, the
event client embedded within the application could have captured and retained all the
input event streams, whereupon the application could re-apply them to itself in the
same sequence as it received them in the first instance. Obviously, this requires
dedicated fault-tolerant logic within the application.

In another scenario, individuals that join a cooperative work session late can have
their cooperative application’s event client request all past events from the event
sources attached to their colleagues’ applications. Their application would then be
able to initialise itself to a state consistent with their colleagues’.

Encapsulation of functionality
When an event source is interrogated about the policies it supports, it can advertise
that it can provide information on past events of a particular type. Taking this
further, an application-writer can decide to advertise that a source can provide past
events that in fact it does not even provide live instances of. This can be achieved
because the source can be made to search its local event history and locate composite
events that consist of patterns of the events stored. Composite events are typed and
structured just like primitive events, and can therefore be forwarded to clients as
either normal event messages (also known as regular composite events), or as compound
composite events, which also encapsulate the constituent regular events that made
them up.

Enhanced support for mobile and disconnected clients
Conventional store-and-forward capability can be optimised by the source not having
to retain and buffer separately event streams for each of its clients. Instead, if the
data is to be forwarded upon a trigger or at a time value, it can be retrieved from the
local event store encapsulated within the event source, just prior to its being
dispatched.

In this regard, HERALD allows clients to set up buffering policies where either all
their notifications are dispatched periodically in batch (e.g. every fifteen minutes), or
else their notifications are dispatched upon receipt of a trigger message by the client.
When a client first carries out such a policy-qualified registration, it is issued with an
authorising certificate contained in the acknowledgement returned to it by the source.
The trigger it then sends to obtain its data must contain this certificate in order to
identify itself, and not only indicates that it is appropriate for the source to dispatch
the events, but also specifies where to dispatch them to. This feature addresses the
problem of disconnected and mobile clients. These occur in three scenarios:
• The first is that of event clients that are in effect mobile agents or mobile

applications, which retain state and carry on execution as they relocate from
location to location.

Chapter 4 - A Storage-Enabled Event Infrastructure

 70

• The second category is that of applications on physically mobile platforms –
such as applications running on handheld devices, embedded ubiquitous
computers, or notebook and laptop computers. When these reconnect to a fixed
network, they often do so at different endpoints and therefore obtain a different
location identifier (e.g. IP address). Unless low-level transports transparently
address this issue of mobility, as proposed in the Mobile IP [IET99] draft, it
needs to be addressed at middleware or application level.

• The third category is conceptually similar, in that it consists of all those millions
of home users that connect to the Internet on a non-permanent basis through a
telephone line to an Internet Service Provider (ISP), and are issued with a
different IP address each time.

4.3.3 Storage-enabled event components

Using the storage capabilities inbuilt within HERALD’s event source and event client
modules, a number of storage-enabled event components can be built.

Monitoring Event Source
A monitoring event source is an event source that monitors some hardware or software,
both here termed a device, and generates events to reflect activity within the device.
This is the most common component in any event infrastructure. Often, the event
source is structured like a wrapper around the entity being monitored, and acts like a
bridge between its proprietary interface and the rest of the event-driven system. An
example is the HERALD-based Active Badge Event Source that is illustrated in
Section 7.3. This is attached to the software driver that interacts with the networking
hardware of the Active Badge sensor network. While other applications that wish to
receive badge sightings have to implement the complex interface of this software
driver, HERALD client components need only connect to the Active Badge Event
Source and register interest in sighting or movement events. Another example is an
email reader event source that monitors the receiving and sending of email, and
generates informative events that reflect information about the emails sent.

By embedding an event repository within the source module, the event source
can retain, for some time at least, a history of the activity that has taken place in the
application it is monitoring. This has three primary purposes:
• Initialisation of state. As described in Section 4.3.2, remote clients can request to

receive details of past device activity that they may require in order to initialise
their data structures, in anticipation of future notifications.

• Analysis of device performance and activity. An application attached to the event
source, or alternatively a remote client, can use the embedded history to analyse
activity within the device being monitored. It can review the frequency with
which events have been generated, locate recurring sequences of events, and
summaries of activity that may be browsed by a user can be generated. The data
may be used by service management software to modify the functionality of the
device, or to start alternative instances of it.

4.3 Applying event storage and retrieval

 71

• Enhanced service provision. Remote clients can specify that they only want updates
on the device’s activity at periodic intervals, or that they do not want to be
notified of repetitive events.

Mediator components
HERALD mediators have both an event client as well as an event source interface.
They are notified of events, process them, and generate new events. For this reason,
they can store either the incoming events on the client side, the generated events on
the source side, or both. If both their client and source modules activate event
storage, they share the same event repository. This is illustrated in Figure 4.10.

Gateway mediators are like proxy event sources, in that they register interest in
events from external domains, and then forward them to interested parties within
their local domain. By retaining events within an embedded event repository, they
provide their local clients with the same storage service as they would have if they
communicated directly with the remote event sources.

Composite and transforming mediators consume events and generate new events of
different types. Composite mediators parse the incoming event streams to look for
predefined event sequences. When they detect such a sequence they then generate a
composite event, which to all intents and purposes can be identical to a normal
primitive event. Transforming mediators apply some application specific logic to
translate events from an event taxonomy to another. Both types of mediator can
embed an event repository, and utilise their event histories to fine-tune their
behaviour as well as enable historic event retrieval services.

Storage mediators
A storage mediator is a dedicated storage component. The aim of a storage mediator
is to collect and store events. It registers interest in events and retains them once they
are notified to it. It can be dedicated to one application, in which case it is likely to be
attached to such an application. The application then uses TEQL to access the stored

EventEvent
ClientClient
InterfaceInterface

EventEvent
SourceSource

InterfaceInterface

Mediator Specialised LogicMediator Specialised Logic

EventEvent
RepositoryRepository

••Event TransformationEvent Transformation
••RuleRule--based Logicbased Logic
••Composite Event DetectionComposite Event Detection

IncomingIncoming
eventevent

notificationsnotifications New events New events

Figure 4.10

Structure of storage-enabled mediators

Chapter 4 - A Storage-Enabled Event Infrastructure

 72

events. Otherwise, it can serve a number of remote applications. These can either
interface with it through some proprietary interface or through an event source
interface. See Section 7.2 for more information on this topic.

4.3.4 Additional applications within message-oriented-
middleware

Although this discussion has focused on providing an event-based infrastructure that
embeds event storage, an event repository could also be embedded within a MOM
product.

Most benefit can be derived from embedding an event repository within a
Message Broker that provides publish/subscribe and message transformation
services. Subscribers can then ask to retrieve past information, and could carry out
queries on messages generated up to some threshold in the past. The Broker itself

Application AApplication A Application BApplication B
Message TransportMessage Transport

EventEvent
RepositoryRepository

AnalysisAnalysis
and Displayand Display

of message statisticsof message statistics
And flowsAnd flows

PUBLISHPUBLISH
Do not retainDo not retain

PUBLISHPUBLISH
and retainand retain

PUBLISHPUBLISH
and retainand retain

SUBSCRIBESUBSCRIBE
normalnormal

SUBSCRIBESUBSCRIBE
past messagespast messages

PublishersPublishers SubscribersSubscribers

Message BrokerMessage Broker

Past messagesPast messages

EventEvent
RepositoryRepository

Figure 4.11

Embedding an event repository within MOM

4.4 Summary

 73

could use the history at its disposal to generate message digests, which can
themselves become a service that clients could subscribe to. Periodically, the broker
would analyse the messages generated within a recent window of time and produce a
meaningful summary. This could then be made into a message itself and propagated
to interested subscribers. Since these messages could be retained themselves, future
subscribers could request copies of past ones that they are interested in.

By attaching an event repository to the MOM transport itself, the transport could
retain a history of the messages that are propagated by it. If the MOM is not
structured around a centralised message delivery service, event storage could be
embedded at the MOM modules at the sending and receiving sides.

These two scenarios are illustrated in Figure 4.11.
A MOM product can use an event repository to store events that reflect meta-

data on its activities. Specifically, it can store events that track the flow of transactions
within the message transport.

4.4 Summary

HERALD is a general-purpose event-based infrastructure that embeds event storage
and retrieval. It endorses an event model where events are of a defined type and have
typed parameters. Event types can belong to type inheritance trees, and their schema
are versioned in order to support schema evolution. HERALD assumes deployment in
a dynamic environment where components can come and go, and can be modified
independently of each other.

Event storage can be embedded at various locations within HERALD modules. It
supports retrieval and replay of past events, regeneration of application state,
support for mobile and disconnected clients, as well as specific services within
specialised mediator components.

The main components of the infrastructure presented were built and deployed in
a number of application scenarios. Some of these are illustrated in Chapter 7.

 75

Chapter 5

Querying Event
Information
As discussed in Chapter 2, a generic event-storage service is applicable within various
application domains. The event information deposited into an event repository needs
to be accessed, reviewed, and retrieved in different ways. These are specific to the
application, and depend on the activities represented by its event information. This
chapter discusses the interfacing capability required in order to address these diverse
requirements.

In order to achieve this, the event repository proposed supports an interface that
supports: (1) customisation, configuration and specific event operations, and (2) the
execution of queries in an event query language called TEQL that explicitly supports
the temporal nature of events and defines a temporal formalism. This passing of a
TEQL query though a programming interface is analogous to Microsoft’s ODBC
[Mic99d] and Sun’s JDBC™ [Sun99b] database interfaces. Since several important
research issues are addressed in the language proposed, this discussion focuses on the
query language, while Chapter 6 describes the remainder of the interface.

Section 5.1 introduces the temporal model endorsed by this discussion and
reviews the temporal entities recognised and their relationships to one another.

Section 5.2 then identifies the querying requirements of an event query language
by examining the peculiar nature of event data and suggesting typical queries that
one needs to address. The properties and temporal characteristics of the language are
discussed.

Since there have been numerous research initiatives to develop languages that
emphasise the notion of time, Section 5.3 surveys the main contributions from a
number of research domains that are relevant to this discussion.

Section 5.4 then presents TEQL and describes its primary constructs. This
language is designed to satisfy the query requirements of an event repository, and
allows the representation and treatment of qualitative temporal relations between
events, composite events and temporal intervals. It can also be used for powerful and

Chapter 5 - Querying Event Information

 76

generic data access, as it is a superset of OQL [CB97], which is itself a superset of
SQL-2 [ITI98].

In conclusion, Section 5.5 evaluates TEQL by demonstrating its expressive power
through a number of examples.

5.1 The temporal model

It is useful to start this chapter by defining the temporal model and entities that will
be used in the remainder of the discussion.

Reviewing the definitions given in Section 4.1, an event is a message that denotes
the occurrence of an activity of interest, and belongs to an event type. An event type is
analogous to an object class, and it encapsulates a number of parameters or attributes.
While an event instance itself usually reflects the occurrence of some activity, its
attributes uniquely identify that activity by representing its parameters.

Time can be modelled and reasoned about in several ways, with most approaches
differing on the definition and relationship of time points to time intervals. Allen
describes the main models in [All83] and [All91]. In this document, an event is taken
to occur at a precisely determined point in time, a time-point, and has no duration.
Time is assumed to consist of an infinite number of linearly-ordered discrete time-
points, each of infinitesimally small and negligible duration. This is in contrast to
other formalisms where events can span a determined amount of time. Because of
this, every two events can be either temporally ordered, or else deemed to have
occurred simultaneously. The latter can be applied if the events fall within some
minimum time separation from each other over which clock inaccuracy becomes a
factor.

A time interval I is a set of time-points between a starting and an ending time-
point, where the start-point and all points between the start and the end belong to I.
It is realised that this can be counterintuitive. For example, consider the situation
where a person moves from a room to another. To describe a change of location one
can have an interval of time during which the person was in the first room, followed
by an interval where they have moved to another room. The question arises as to
whether these intervals are open or closed; that is what is the nature of the time
point between the two. If the intervals are open, the state at this point would be
undefined, while if they were closed, it would belong to both. A pragmatic although
artificial compromise is to adopt a convention where an interval is closed in its lower
end and open on its upper end.

A primitive event is an event that is generated at some event source in response to
some device’s activity, and cannot be broken down into any finer-granularity
constituent activity.

A composite event is an event that is generated to denote the presence of a
particular sequence of events. It is defined as having occurred when the whole event
sequence that defines it occurs, this being equivalent to the timestamp of the event
that concludes the sequence. Recall that composite events can be either regular or

5.2 Querying requirements

 77

compound composite. A composite event still occurs at a particular instant and has no
duration, however, a compound composite event can be transformed into a time interval to
apply queries over the duration of the sequence that it matches.

Primitive and composite events can be related between themselves or to each other,
and both can be related to fully defined, or vaguely specified, time intervals. The latter
can be user-defined or be calendar definitions.

An event A can occur before an event B, whereupon B is said to be after A or to
follow A. Both terms, after and follow, are used to distinguish different query semantics
within Section 5.4. Events cannot overlap as they have no duration.

Because intervals have duration, relationships between them are more elaborate.
There are thirteen relationships possible between an ordered pair of intervals, and
Table 5.1 shows the main ones (not including the inverses).

Finally, a timeline is the range of timepoints over which a query or operation is
considered. In the case of event histories, this can range from -∞ to the present,
NOW. In practice, this is restricted by the fact that the history will have a specific
beginning, and NOW is more likely to be a few seconds behind the current time due
to the indexing and storage requirements of the event repository’s storage subsystem.
In this discussion, it is assumed that there is a notion of global time in the system
through reasonable clock synchronisation with Universal Time Code (UTC).
Section 5.2.6 discusses the implications of this assumption. Therefore, the values of
timepoints on any timeline correspond to values of real time. This is desirable since
query operations in several application domains would be made by users in terms of
real time.

5.2 Querying requirements

This section first recalls the application classes where the repository is applicable and
then reflects on the nature of queries that one needs to be able to support. It then

Relation Pictorial Example
A before B AAA BBB

A equal B AAA
BBB

A meets B AAABBB

A overlaps B AAA
BBB

A during B AAA
BBBBBB

A starts B AAA
BBBBB

A finishes B AAA
BBBBB

Table 5.1
The relationships possible between ordered intervals, less their inverses.

Chapter 5 - Querying Event Information

 78

defines the properties and characteristics of an interface language for an event
repository.

5.2.1 Applications

As described in Chapter 2, an event repository can be used in a large variety of
application domains. It is useful to categorise these as:
• Loosely-coupled applications employing general-purpose event-driven infrastructures

Event-driven applications are constructed of active components that act, or
execute code, in response to being notified of relevant events. These components
do not need to be aware of each other and of the general structure of the
application, as it is event notifications that drive computation within the
environment. Events histories can be used at event sources, event brokers and
gateways, both implicitly and explicitly. Chapter 4 described the role of event
storage within these environments in detail. Access to stored event information
tends to be dynamic and varied, with flexibility required in defining queries over
multiple types, event instances, and composite event sequences.

• Applications that employ bespoke message-propagation mechanisms for communication
These are applications that adopt a bespoke messaging system in order to drive
their execution. It is likely that their components are aware of the general
structure of the application and are dependent on each other. Centralised control
structures are more predominant. Access to stored event information tends to be
statically defined and of a bespoke nature within the application itself, unless the
event trace is being analysed by an external application. Examples are simulation
software, windowing systems, collaborative environments, and usability capture
software.

Some applications demand straightforward conventional access to persistent event
information, as they would with a conventional relational or object-oriented database
system. In this context, the primary benefit to them of using an event repository lies
in the high-speed event deposit performance provided by the store.

Others can benefit by being able to replay or retrieve stored event sequences (and
have these injected back into their components), in order to review activity, analyse
past computation, or rebuild lost state. The more powerful the granularity with which
they can define and construct the sequences to be replayed, the greater the advantage
they can extract from using an event repository service over a conventional database.

5.2.2 The nature of queries on event histories

The dynamic nature of execution within asynchronous event-driven environments
implies a lack of predictability in the stored event data. It becomes harder (and is
very limiting) to only be able to qualify the stored event information through
relations on its content (as in languages like SQL or OQL). Event information
differs from other data in having a temporal aspect. This tagging of an event with a

5.2 Querying requirements

 79

creation or deposit timestamp, as well as its occurrence in time relative to other events or
temporal entities, allows a completely different type of query reasoning to be applied
to event data. An event can be qualified not only by its content but also based on
when it occurred, and how that temporal position relates to other events’ or to a
calendar.

While an event repository should be accessible like any conventional database for
typical queries like:
Ex.1 “find the event of type ServerCrash where the server was the ActiveBadgeServer.”

it also ought to be possible to search on the basis of the temporal sequencing of the
events. The following natural language sentences indicate the wide scope of temporal
expression that one can come across in queries relating to event occurrences:
Ex.2 “find all occurrences of Alarm A being followed by Alarm B, and the web server

crashing, within 5 minutes, and without Alarm C having occurred in between”

Ex.3 “Replay all sightings of John from when John was present in the Meeting Room,
and then sometime within 30 minutes John was seen in the corridor with Giles,
until …”

Ex.4 “Locate the text that was displayed on the whiteboard by Jean during the
collaborative session on Monday, given that it occurred while a video on
Presentation Skills was being played.”

Ex.5 “Replay all the display events (mouse movements and clicks, key-presses) which
occurred within the interval when both Netscape Navigator and Microsoft Internet
Explorer were being used concurrently, and the latter was displaying Tim’s
homepage.”

Example 2 involves a search for a sequence (or pattern) of events, where these would
be alarm and warning events probably generated by one or more fault monitoring
components in a distributed system.

Example 3 illustrates the problem that one can encounter when trying to map
real-world activities to computer activities. It is possible to define this query solely in
terms of primitive events, but such a definition would be complex and unwieldy.
Being able to define temporal intervals, and then reason with regards to them, makes
it much easier to write. One thus first wants to locate the interval during which John
was in the Meeting Room. An easy way to do this with Active Badge location
technology (although not entirely accurate), is to look for the first sighting of John in
the Meeting Room (the start of the interval), and then denote the first subsequent
sighting of John outside that room as the end of the interval. One then wants to
make sure that this interval is the correct one by searching for John being seen in the
corridor with Giles within 30 minutes from any part of the first interval. This second
occurrence can be defined as the start of the intersection of the intervals during
when John and Giles were in the Corridor respectively. Alternatively it can simply be
defined as the sequence of a “John in corridor” sighting followed by a “Giles in
corridor” sighting without John being seen anywhere else in between.

Example 4 is similar to the previous example, although it illustrates the use of
events relating to drawing and presentation activities within a collaborative shared-

Chapter 5 - Querying Event Information

 80

space environment. The playing of the video can be mapped to an interval. There is
also a relation to a pre-defined calendar entity (e.g. ‘Monday’).

Likewise, Example 5 deals with an application-based scenario, and represents a
query typical of someone working with a usability monitoring tool or a thin-client
session recording utility as described in Section 7.4. Three intervals are being related
to each other: the running timeframes of the two web browsers and the interval
during which the homepage was displayed, from which a new interval is defined.
This is then used to initiate a replay.

5.2.3 Language properties

No repository query language can match the above natural language sentences for
expressive power. However, the above expressions serve to demonstrate that a
language that allows interfacing with stored event data within an event repository
must address the following issues:
• Flexibility – It must be possible to define queries rapidly and in a flexible fashion,

e.g. interactively as well as through embedding within application components.
• Intuitive – One should use language keywords and operators that offer the right

compromise between the clarity of natural language constructs without being
excessively verbose. Words with an already accepted meaning, e.g. an informal
meaning, should not be given an additional meaning.

• Conventional constructs – It is desirable to support conventional querying capabilities
as available in standard database query languages (like SQL and OQL). If
excessive specialisation comes at the expense of generic data access, the language
is unlikely to be suitable as the interface to a general-purpose store.

• Type-independence – Most database query languages allow retrieval of data of a
single type in any query operation. Support for operations that span several event
types in any one query is desirable.

• Composition of events and derivation of new views – As defined within the temporal
model, one needs to allow composition of multiple-type event instances into
composite events. These could be saved to generate a new derived event data-set
that reflects a coarser-granularity view of the original event data. Query operators
that range over both primitive and composite events are required.

• Temporal context – Type-independent specification of temporal relations between
event instances should be supported, and a consistent formalism for time and
temporal entities (calendar, or otherwise) must be available.

• Standard type system – New and novel query languages require time, investment,
and dedication on behalf of organisations in order to train personnel. Software
modification is expensive and undesirable. Due to these pragmatic constraints, a
language that is close to an industry standard and supports a standard data model
(like the OMG or the ODMG’s data models) is more desirable.

5.2 Querying requirements

 81

5.2.4 Main temporal characteristics

While Section 5.1 has given the temporal formalism underlying this discussion, the
examples in sub-section 5.2.2 have hinted at the temporal queries that may be carried
out on event instances. With this information, one can now outline the main
temporal characteristics required of an event query language:
Temporal relativity between events – Relative comparisons between event instances based

on the events’ temporal position along a common timeline should be supported,
e.g. “A occurs before B”, or “B was deposited before A”.

Temporal relativity between events and calendar entities – It is useful to support relative
comparisons based on an event’s temporal position to user-defined or system
defined calendar entities along a common timeline. E.g. “A occurs on Monday”
and “B occurs during term-time”.

Imprecise Sequencing – The representation should allow significant imprecision. Most
temporal knowledge is strictly relative (e.g. “A is before B”) and has little relation
to precise time values or dates.

Event composition – By identifying a pattern of events that are temporally related, one
can define a composite event, which is taken to have occurred when the last
element making up the pattern occured.

Variable temporal granularity – The representation should allow one to vary the grain of
temporal specification, i.e. when relating events to real time, one may need to
consider their occurrence with regards to (e.g.) hours, minutes, seconds, or less.

Intervals – Elaborate temporal comparisons are not possible without a definition of
temporal intervals. The representation should define an interval with respect to
the temporal model adopted, and support relating of intervals to themselves, to
primitive and composite events, and to calendar entities.

It is important to note that throughout this dissertation events have been considered
as a “point in time” occurrence, where each event instance is inherently different
from any earlier or subsequent instance of the same type. This is an important
distinction as it implies that there is no implicit notion of a state for an event. This
would otherwise evolve over time as event notifications of the same type occur. It is
possible to model the notion of state evolution but in this context this ought to be
specific to applications. This should therefore be supported at an application-level,
and it is not beneficial that there be implicit support for it in the query interface.

5.2.5 Event sessions

At this point it is useful to introduce the notion of event sessions.
An event session provides a context with which to associate related event

instances, and is particularly useful for limiting the scope of retrieval and replay. This
grouping of related event instances can consist of events of the same or different
types from one or more event sources. Any type of event can be associated with, or
belong to, a session, and the same instance can belong to multiple sessions.

Chapter 5 - Querying Event Information

 82

A session is set up by an application (or that application’s representative repository
client, as described in Chapter 6). A session therefore enables an application to define
a context or relation between events it deposits in a repository, so that it can then
retrieve them at a later stage based on that context.

An example is a person’s diary containing all events pertinent to their activities, or
a chronicle of every individual’s movements while exiting the building in an
emergency drill. Another example would be associating the line drawing activities of
an individual user within a whiteboard application through a session, as illustrated by
Figure 5.1. A replay on the session context would then enable only those events to be
replayed back and injected into the whiteboard. However, at the same time, those
events could also be associated with another session that also encompasses events
relating to drawing activity by other remote users.

5.2.6 Event timestamps

HERALD event instances deposited into the event repository have two timestamps:
• Creation timestamp
• Deposit timestamp

EventEvent
RepositoryRepository

WhiteBoard
Component

WhiteBoardWhiteBoard
ComponentComponent

In
je

ct
io

n
In

te
rfa

ce
In

je
ct

io
n

In
te

rfa
ce

Event Source InterfaceEvent Source Interface

Event Event
FederatorFederator

Local events being Local events being
notified to interested event clientsnotified to interested event clients

LineDrawnLineDrawn(…)(…)
TextEnteredTextEntered(…)(…)
CircleDrawnCircleDrawn(…)(…)

Actions Injected Actions Injected
into Whiteboardinto Whiteboard

Local Local
WhiteboardWhiteboard

Remote Remote
WhiteboardsWhiteboards

Events from Events from
remote remote

WhiteboardsWhiteboards

Local Local
EventsEvents

Remote Remote
EventsEvents

Session representingSession representing
local user activitylocal user activity

Session representingSession representing
all activity during all activity during

collaborationcollaboration

Figure 5.1

An example of deposited events being tagged as
belonging to either one or two sessions.

5.2 Querying requirements

 83

The creation timestamp is applied at the source where the event was created, while the
deposit timestamp is attached automatically to an event instance while it is being queued
for deposit into the event repository. When the event repository is attached to an
application that is generating the events that are being stored, or when it is embedded
within an event source, there is no need to distinguish between the two timestamps.
In fact, in this case the creation timestamp can be set to a null value.

When, however, the event repository resides in an application component that is
a remote observer of events generated elsewhere, the situation is different. In an
ideal world, these values would be identical, or at least the difference between them
would be constant. In practice, however, several factors can contribute to prevent this
from being so. As discussed in Section 4.2.4, in a distributed system there is no built-
in notion of a global clock, and each machine has its own clock that may be out of
synchronisation with the other machines’ clocks, and drifts unpredictably.
Furthermore, once an event is generated and timestamped, the event is queued at
that source, dispatched, queued again at the recipient, and finally passed into the
repository for storage. The time spent in being transferred over the network is not
constant as the network latency varies according to the network load and, in case of
an IP-based network, the route taken.

One can ensure that events from a particular source are correctly ordered with
respect to each other at the event repository’s location by providing a sliding time
window for observation, into which incoming events are insertion-sorted. This can
be achieved either by relying on their creation timestamp or on a scalar counter
attached to them by their source.

The same cannot be guaranteed of events from different sources, since their
creation timestamps are insufficient for ordering due to their having been produced
at potentially unsynchronised clocks. In a distributed application where processes
communicate using messages, vector [Fid91, Mat88] or matrix [FM82] logical clocks
could be used to enforce global ordering of messages. In a general-purpose event-
based system, however, these are not easily applicable because communication is
mostly asymmetric and the number of interacting components is variable.

What is definite is that the deposit timestamp reflects the order and temporal
separation of the events as received, or else accepted, by the client or observer where
the events are to be stored. This therefore reflects the viewpoint of the application
interaction as seen by the event observer. In most cases, NTP [Mil91] coupled with
modern computing hardware, provides for clocks to be within 10ms of each other
and of UTC anyway. This, in conjunction with a sliding time window of application-
specific length for event observation in order to counteract network delays, is enough
for most observations. For this reason, all query operations within TEQL are carried
out with respect to the deposit timestamp and its implied ordering.

If the observer is concerned about guaranteed ‘global-time’ event ordering, and
NTP is too imprecise to enable ordering the events being received (maybe because
too many events are within 20ms of each other [Kop92]), two approaches are
possible:

Chapter 5 - Querying Event Information

 84

• the application can provide a virtual time mechanism [Mat88], on top of the
event propagation protocol,

• rather than locate an event repository at a centralised location where it acts as a
remote observer of events, multiple event repositories can be located in close
proximity to the event sources, and their traces subsequently merged through the
repository federation facility described in Section 6.5.

This second approach is recommended by Dietz from her comprehensive study of
gathering and using time measurements in distributed systems [Die96].

As already qualified by Section 4.2.4 for HERALD, all timestamps in the event
repository consist of two parts. One is the component identifier of the event
component where the timestamp was attached, while the other consists of two long
integers that denote the number of microseconds since 1st January 1970. This
associates the system’s notion of global time with real time, which is desirable given that
most user-specified queries are envisaged as being with respect to real time.

5.3 Related work

The literature on languages that emphasise the notion of time is rich and growing.
There have been numerous research initiatives to develop and implement
temporal/historical query languages. The main areas where such query languages have
been investigated are:
• Event languages within event-driven environments
• Event languages within Active Databases
• Temporal/Historical Databases
• Artificial Intelligence
• Natural Language Processing
It is only recently that middleware infrastructures, such as those described in Chapter
3, have proposed and deployed general-purpose event notification services [OPSS93,
GKP98, OMG97, OMG98a, SCT95]. However, most of these can notify primitive
events only, and as such do not support specification of composition of events.

Researchers at Cambridge were amongst the first to propose the publish-register-
notify paradigm [BBHM95]. The Cambridge Event Architecture (CEA) (Section
3.3) enables distributed applications to be composed of heterogeneous software
components through registration in primitive or composite events, and supports
mobility, multimedia, and group interaction in collaborative environments [BHB96,
BBMS98]. Mediators provide the means to compose events. Within this context,
Hayton proposed a language for expressing composite event semantics [Hay96].
CEA has recently been enhanced through the COBEA implementation [MB98],
which extends the CORBA Event Service [OMG97] with the publish-register-notify
paradigm, and provides an implementation of an evolution of Hayton’s language.

5.3 Related work

 85

Bates and Nelson have presented a composite event specification language
[Nel98] that not only supports the basic happened-before relation in defining a temporal
ordering of events but also supports multiple consumption models (see discussion in
Section 5.4.6). An implementation of this language was deployed in the context of
location- and context-aware computing. Use of this language is also demonstrated in
[BBMS98], where it is employed to trigger actions within event federators (see Section
4.2.5) according to the CEA paradigm. This is in analogy to Event-Condition-Action
rule use within active databases, but applied to a distributed dynamic general-purpose
context. As documented in Chapter 4, HERALD is an evolution on the framework
presented in [BBMS98] and encompasses the Bates composite event engine for
detecting and manipulating composite events. In addition, HERALD enhances the core
CEA paradigm by providing persistence related registration policies, possible due to
its source components embedding an event repository.

EVE [TGD97, GT98] models a workflow enactment system as an event-based
middleware layer. The workflow is mapped to services and brokers. Distributed
events are composed into composite events and drive the actions to be taken by
event brokers. EVE uses the chronicle consumption model (or parameter context) to
interpret workflow notifications. Yeast [KS95] provides temporal connectives in
order to enable monitoring of compound event patterns in the context of server
monitoring. Other notable examples of event composition languages are GEM
[MS97], which evolved into a general-purpose event composition language from a
distributed systems monitoring background. Trinity College Dublin’s ECO model
[SCT95] does not support composite events, but it enables post- and pre- constraints
to be attached to the notification of events.

 Composition of events was first investigated within active database systems
[DBM98, GJS92, CM93, WC96]. This took place within the context of Event-
Condition-Action (ECA) rules. These rules enable a database action to be triggered by
the occurrence of an event or a specified sequence of events. The events supported
and monitored for internally by an active database can be: (1) events that denote
specific database activity, 2) timing/temporal events, and (3) user-defined events,
which usually reflect some change in state of the database’s data. From the work
illustrating architectures for composite event recognition within active databases,
representative examples are [GJS92, GD93, CKAK94]. HiPAC [Day88] focused on
general-purpose ECA rules and provided basic mechanisms for composite event
specification. Four consumption models and a formal definition of event
composition were introduced within Snoop [CKAK94]. Compose [GJS92] and Ode
[JS94] both provide complex event composition.

Some researchers have attempted to extract this functionality from within the
internal architectures of active databases and make it available in a more general-
purpose form [GKBF98, KK97]. This is analogous to what event-driven systems like
CEA have achieved by addressing distributed systems composition and interaction
directly.

Most of the languages discussed above are aimed at real-time detection of events,
and are thus not optimised for operating on a full event history such as that provided
by an event repository. Queries cannot be constrained by periods of time or calendar

Chapter 5 - Querying Event Information

 86

entities, and cannot be applied to event streams that have occurred in the past. In
addition, there is no support for expressions based on the end-points of composite
events, and on notions of temporal interval relations, as proposed in Allen [All83].
These are required for expressiveness in real-world complex queries.

In temporal and historical databases, whenever a data element is updated, its previous
value is retained, and the state of the element evolves. Looking back in time though
the database, it is possible to review and reason on the value of any element at any
time. Temporal and historical database query languages support only very limited
forms of temporal reasoning, as the emphasis in these languages is to enable
reasoning based on previous values of the state of a data element, and on
determining the overlap in time between states of different elements. There is thus
no support for the notion of sequencing between different data elements.
Nevertheless, aspects of these languages are of relevance to this research. Some of
these languages, in particular SQL-based approaches like TSQL2 [Sno95], support
Allen’s like qualitative relations in queries [Sno93, TCG+93].

Of interest is Jagadish et al. [JMS95]’s Chronicle Data Model. This model
addresses the requirement of transaction recording systems to store transaction
records in temporal sequences. A Summarised Chronicle Algebra (SCA) is
presented that can be used to define persistent views over the sequences.

Approaches in artificial intelligence (AI) and natural language processing focus on high-
level user-friendly formalisms for representing and reasoning on time. Many AI
treatments pay most attention to the treatment of temporal quantifiers (like once and
every) and e-Time (during some activity, etc). Examples are [Lad86a, Lad86b, Lig91,
MKL95]. The aim behind these treatments is to develop a form of temporal
reasoning for checking the consistency of a knowledge base of temporal facts, and
for deriving new temporal constraints from it. Following Allen’s proposals [All83],
most of these provide algebraic approaches in which a specialised formalism is
introduced to represent temporal information. These languages tend to be very
expressive and are closest to natural language expressions. However, they are ill suited
for application in information retrieval and querying because the high-level nature of
their constructs is not easily mapped to fine-granularity information sources like
events. Nevertheless, an exciting future research area will consist of investigating the
mapping of these AI-derived languages onto a query language such as that proposed
in the next section.

5.4 The TEQL language

This section proposes the basic elements of a language called TEQL that addresses
the requirements identified earlier. TEQL encapsulates OQL [CB97] within it, but is
more than just a superset of OQL. TEQL allows queries on content to be defined in
terms of OQL constructs like the select-from-where statement. However, such
reasoning is unwieldy when it comes to comparing event instances to one another,
like with respect to those events that precede or follow them. In order to address this

5.4 The Teql language

 87

lack of ease in specification within OQL, TEQL allows specification of content
templates.

This section emphasises the constructs and operators of TEQL rather than OQL.
As the data model within TEQL is compatible with OQL’s, OQL constructs and the
new TEQL constructs can be seamlessly used together. For a complete definition and
discussion of OQL, the reader is referred to Chapter 4 of [CB97]. OQL was chosen
as the basis of a query interface to the event repository because:
• it is a powerful database query language that can satisfy “conventional” access

requirements relating to content queries:
• it is an industry-defined standard for interfacing to object-oriented databases, and

its object-oriented extensions can be applied to the inheritance-based event
model presented in Section 4.1,

• it is largely a superset of SQL-2 (or SQL-92), which is the most widely deployed
database query language,

• it simplifies interfacing legacy and conventional non-messaging applications to
the event repository,

• there is extensive experience and investment by companies in OQL and SQL,
and this consideration needs to be applied against the case for defining a
completely new query language.

The only important feature of OQL that is not applicable here is object method
invocation. This is because the event ‘objects’ stored do not define any methods.

The temporal functionality of TEQL takes as its basis the query capabilities
described in [Nel98]. This composite event language is restricted in its power because
it does not have access to a complete history and can only carry out real-time
monitoring. TEQL is able to take the expressiveness further because it can look
forwards and backwards across a complete timeline.

5.4.1 Creating events

There are two ways of depositing events into the event repository. Both require the
scheme of the event type to have been defined in advance.

In the first case, an event stream for each type can be opened to the repository,
and event instances passed in (as they are received) through the repository server’s
command interface (see description in Chapter 6).

The alternative is to explicitly specify event instances for depositing as follows:
deposit <event type> (<creation timestamp>, <source component id>,

[<parameters>]);

All HERALD event instances encapsulate a creation timestamp and a source component
identifier. These refer to when and where the event instance was created, respectively.
If the event is being created by the component at the interface itself, then the first
two parameters may be omitted. In any case, the primary deposit timestamp of an event

Chapter 5 - Querying Event Information

 88

is implicitly set by the event repository upon insertion of the event instance. An
example of this would be:

deposit PersonMovement(“Mark”, “Room4”); (1)

and if the event instance is also being attached to one or more sessions, like for
example, to two sessions called MarkDiary and PersonnelLocation:

deposit inSession MarkDiary, PersonnelLocation PersonMovement(“Mark”,
“Room4”); (2)

The unqualified event type name PersonMovement can be used only if it is clear in the
current context, i.e. if there is only one definition for it in both the inheritance and
evolution trees (see Section 4.1). If the former case applies, then it can be specified
as:

deposit Event.LocationEvent.GPS_Sighting (…) (3)

while in the latter case, the following is required:
deposit Event.LocationEvent$<component><version>

.GPS_Sighting$<component><version> (…) (4)

This fully qualifies the scheme of an event type by specifying the components that
defined it, and the version of its definition within the context of that component.
The <component> and <version> identifiers can be obtained through the repository’s
API.

5.4.2 Temporal primitives

The following three sub-sections introduce the four temporal entities supported by
TEQL. They are primitive events, composite events, intervals, and timepoints.

Event templates
Whereas OQL relies on specifications such as:

select A
from PersonMovement A
where A.personName = “Mark” (5)

in order to locate events of the type PersonMovement(“Mark”, ?), TEQL also allows the
specification of event templates (as in Nel98). Templates are more straightforward to
define, are analogous to registration templates (as in HERALD), and enable multiple
compositions to be drawn up more easily. This will be demonstrated in the following
sections. A template specification equivalent to the above would be:

match PersonMovement(“Mark”, ?) as A;
retrieve A; (6)

where the first parameter’s value must be equal to the literal “Mark”, the second
parameter can have any value, and the variable A is used to denote the resulting event
template. As used in example (6), the retrieve clause searches for instances matching
the template over all the repository data. More information on this clause is given in

5.4 The Teql language

 89

Section 5.4.7. Each parameter needs to be either a literal value, an expression or
function that computes to a literal, or the symbol ?.

The power of template matching starts to become evident when temporal
sequencing is introduced into a query. One can deduce when a computer terminal
has been logged out from by its user for the evening by:

match TerminalLogout(“Mark”, “Room4”, ?) as A;
match PersonMovement (“Mark”, “Lift”) as B;
match (A before B within 15min) as … (7)

where in this context the qualifier before is syntactically analogous to which occurs before.
The final template will match all instances of A that occur before an instance of a B
within five minutes. If variables are not used, the above can be written as:

match TerminalLogout(“Mark”, “Room4”, ?) before
PersonMovement (“Mark”, “Lift”) within 15min … (8)

match always denotes a template of the same type as its first parameter. While in (7)
and (8) these were event templates, they could also be composite event templates or
interval templates (see below).

Composite Event templates
In order to specify a composite pattern of events and implicitly generate a new
composite event, one can specify a composite event template in terms of other event
templates as follows:

match (A follow B past 5min) as C;
retrieve C; (9)

where A and B are event or interval templates. The retrieve clause will now return an
ordered set of composite events, with each event having occurred when the pattern
denoting it finally occurred. In the above example, for each composite event
returned, this would correspond to the time at when the B within it occurred.

In this case, however, these composite events are virtual structures that are
untyped and do not have user-defined parameters. What they encapsulate is an
internal list that points to the events that make up the pattern they represent. In
order to create new compound composite typed events that can be retrieved and
propagated through the event infrastructure a scheme must be defined within the
query as follows:

match (A follow B past 5min) into NewEvent(A.parameter2, B.parameter1)
 as C;
retrieve C; (10)

This actually types the compound composite events matched as being of type
NewEvent having two parameters, whose types are automatically extracted from the
values passed. In this case, both type and value are taken from the parameters of the
matched A and B events. It is important to write the query such that A and B’s type
can be determined.

Chapter 5 - Querying Event Information

 90

Therefore, whereas A before B is analogous to “the A that occurs before a B” and is a
qualifier on its first parameter; follow is an operator which returns “the sequence of A
followed by B”.

The primitive events making up the sequence within a composite event can be
retrieved through

componentOf(C, n)

which returns the n’th plus one event that makes up the composite event C. As in
OQL, lists and set elements are counted starting from 0.

Intervals
The final temporal construct in TEQL’s temporal formalism is the interval. As
described in Section 5.1, an interval is defined as a period of time bounded by a start
and an end time-point. The start-point is taken to belong to the interval while the
endpoint does not. An interval can be created as follows:

interval A, B

where A and B denote time values. If A and B are event (primitive or composite)
templates, then their storage timestamps are extracted and used to denote the interval
endpoints. A is said to belong to the interval, while B meets it. The only assumption on
the relationship of A and B made by the interval clause is that B must always occur
after A, and which A and B are selected depend on the parameter context (see Section
5.4.6). Other examples of interval definition are:

interval 08/01/1975-22:10:30.15, 10:30 as I; (11)

interval PersonEnters, PersonLeaves as Stay; (12)

interval 15:00, 30min as Siesta;
retrieve Siesta; (13)

Example (11) illustrates the simultaneous use of an absolute timepoint and a query-time-
related timepoint (see next sub-section). Example (12) illustrates how two event
templates can be used to define an interval.

(13) then demonstrates a different way of defining an interval; by its length. This
mode is invoked by supplying a quantitative time value as the second parameter, e.g.
30 minutes. In example (13), the interval Siesta is defined as being the time from 3pm
to 3:30pm. If the second parameter had been negative, it would have meant 2:30pm
– 3:00pm. The retrieve clause returns a set of intervals matching the interval template
Siesta.

An interval’s boundary point can be denoted by another interval.
interval A, Siesta (14)

denotes an interval from the event A to the beginning of the interval Siesta, while
interval Siesta, A (15)

denotes the interval from the end of the interval Siesta to the event A. Interval
templates may be used within match constructs in a way similar to primitive and
composite event templates:

5.4 The Teql language

 91

match Siesta before PersonEnters within 15min as Return; (16)

match Stay follow Siesta within 1hr as AfternoonLull; (17)
(16) defines the interval template Return, which consists of all Siesta intervals that are
followed by a PersonEnters event within 15 minutes. In (17) a template denoting the
occurrence of a new composite event AfternoonLull is defined. This consists of the
sequence of an interval matching Stay being followed by an interval matching Siesta
within an hour.

Timepoints
As a language that emphasises the concept of time, TEQL supports several ways of
specifying time in queries.

A fully qualified or absolute timepoint is defined as
<year>/<month>/<day>-<hours>:<minutes>:<seconds>

For example:
1998/08/01-22:10:30.15

The qualification moves from left to right over the definition, with only the first value
required. Therefore 1975/08 is acceptable and is syntactically equivalent to
1975/08/01-00:00:00. Inversely a time point can be defined from right to left, in
which case it is called query-time-related timepoint and is evaluated with reference to
the time when the query is executed. Therefore:

15:30

01/15-20:30

stand for 3:30pm on the current day, and 8:30pm on the 15th of last January,
respectively. Resolving a definition of this kind may fail and cause a run-time error if
the query is run before the time represented.

5.4.3 Amounts of time and calendar entities

Timepoint-denoted intervals
An absolute time value may be used to denote an interval by preceding it with ‘*’.

The interval will be as long as the highest defined granularity within the time value.
For example:

*15:30

*1999/01

represent from 15:30 to 15:31, and all of January 1999.

Chapter 5 - Querying Event Information

 92

Time amounts
Amounts of time can be specified in any number of seconds (sec), minutes (min),
hours (hr), days (dy), weeks (wk), months (mth), and years (yr) by attaching the
respective qualifier to the quantity. Examples are

30sec, 5.6min, 10yr

Calendar entities
Calendar entities are like pre-defined interval templates relating to calendar periods.
There are two predefined sets of calendar entities, the days of the week, and the
months.

match A during Monday

defines a template that matches on those A’s that occur on any Monday within the
period of time during which the query is applicable (the current temporal scope).

TEQL could be further enhanced to allow users to define their own calendar with
its calendar entities (I-Times). This would require a formalism for specifying I-Times
such as that proposed by [Ter97].

5.4.4 Basic operators
The basic temporal operators on the temporal entities are now more fully described.

Qualification, occurs-before
The full definition of a before qualifier is

A before B [without C] [past T1] [within T2]

This matches “the A that occurs before a B within T2 amount of time but there is at
least T1 time between A and B, and no C occurs between A and B”. All A’s that match
the above would be matched.

past introduces a minimum amount of time that must pass between the two
events, while within restricts the maximum amount of time that can pass. In the
above example A and B can either be primitive events, composite events, intervals, or
timepoints. If both operands of a before are interval templates, the endpoint of the
first interval has to be larger than the starting point of the second interval. If a within
clause is not defined, the definition is taken to be open, i.e. valid until the end of the
current timeline. The temporal entities matched are always of the same type as the
type denoted by the A template, that is one of a primitive event, composite event,
interval or a timepoint.

A before B within T (18)

(A before B before C) within T (19)

(A before B within S) before C within T (20)

A before B without C within X (21)

5.4 The Teql language

 93

(A before B before C) without C within X (22)

The scope of the optional within and without qualifiers covers the last before qualifier,
unless braces extend their range over multiple before qualifiers, as in examples (19)
and (22). Example (19) illustrates nested use of before, where one wants to match an
A that occurs before a B, but the B occurred before a C, and no more than T time
must have elapsed between A and C.

Qualification, occurs-after
The “occurs after” qualifier after is semantically the inverse of the before qualifier.

A after B [without C] [past T1] [within T2]

The only difference from the before qualifier is that this matches “the A that is
preceded by a B in T amount of time, and no Z occurs between A and B”.

Composite sequence, followed-by
The full definition of a follow clause is

A follow B [without C] [past T1] [within T2]

This means “the sequence of an A that is followed by a B within T2 amount of time,
no C occurs between A and B, there is at least T1 time between A and B”.

follow is an operator rather than a qualifier, in that it returns a new composite
event template, with the timestamp of the composite event being the time when the
whole sequence was matched (or occurred).

Otherwise, the same discussion applies to its qualifiers without, past, and within as
for the before qualifier.

Disjunction and conjunction
These operators are defined as in [Nel98]. Disjunction (or) is notionally exclusive or.

match (A or B) follow C as Y (23)

means that the composite event template Y will match the sequence of either A
followed by C, or B followed by C. Care must be taken when or is employed in entity
qualification, as in:

match (A or B) before C as Y (24)

as this will match the A that occurred before C, or the B that occurred before C, where
A and B could be templates denoting different event types, or even different temporal
entities.

On the otherhand conjunction is available through the and operator and may
only be used alongside sequence constructs. In:

match (A and B) follow C as Y (25)

Y will match when both events A and B have occurred but the order is unspecified. (A
and B) is analogous to (A follow B or B follow A). and can be qualified with within and
without clauses.

Chapter 5 - Querying Event Information

 94

Interval operators
TEQL defines a number of additional operators specific to intervals. Of the thirteen
possible relations between temporal intervals defined by Allen [All83] (see Section
5.1), seven are explicitly supported by TEQL.

In addition to before and after, there are also the following qualifiers:

A isIn I – A occurs during interval I

A isOut I – A occurs outside interval I

I1 intersects I2 – interval I1 intersects with interval I2

I1 contains I2 – interval I1 contains interval I2

I1 notContain I2 – interval I1 does not contain interval I2

where A can be either a primitive event, a composite event, a timepoint, or an
interval-template itself.

An interval can also be defined as the:
intersectionOf(I1, I2)

which returns a template denoting the interval defined by the intersection of
intervals I1 and I2. This operation may return NULL.

The events occurring within an interval can be accessed through the function:
elementOf(I, n)

This returns the n’th plus one event that occurs within the interval I in the current
scope, or through:

elements(I)

which returns an ordered (by time) set of events. On the other hand, start(I) and
end(I) return the endpoints of the interval.

5.4.5 Variable matching
All the earlier examples have illustrated how variables can be used within a query to
denote a template. However, variables can also be used within template specifications
to tie together parameter values. One can re-write (8) as follows:

match TerminalLogout(User, “Room4”, ?) before
PersonMovement (User, “Lift”) within 15min … (26)

which will identify all conclusive terminal logouts in Room 4 (assuming one sole user
per terminal, and that users take the lift on their way out of the building!). Any term
that is not a keyword and not a literal is interpreted as a variable, whose type is
defined by its first appearance. Subsequent uses need to be on parameters of the
same type. A literal can be used to initialise a variable, which can be useful in
comparing values across events:

5.4 The Teql language

 95

match TerminalLogout(“Mark” as User, Room, ?) follow
TerminalLogin(!User, Room, ?) … (27)

This stipulates that the first parameter of TerminalLogin must not be the same as the
first one of TerminalLogout, i.e. not “Mark”, while the second parameter, Room, is
unspecified but must be identical over both events. In addition to this implicit request
for equality, and the explicit non-equality denoted by ! preceding the second use of
the variable, other qualifiers are >, <, >=, <=. These may be used on those types that
support comparative relations.

5.4.6 Parameter contexts
Any discussion of composition of events needs to consider parameter contexts, also
known as consumption models. The concept of parameter contexts was first described in
[CM93] and then refined in [CKAK94]. The best way to illustrate the concepts
behind the term is through an example. Consider:

match A follow B … (28)

where A and B are templates. Now consider that the query evaluator is going to look
for this sequence within the event stream:

A1, A2, B1, A3, B2, A4, A5, B3, B4

Where the An’s match the template A and the Bn’s match B. The issue at point is
which sequences of A’s and B’s will trigger the sequence in (28). In the most general
case, termed by [CKAK94] as the unrestricted context, and also known as the cross-
product, the possible sequences are fifteen in all, and are:

(A1, B1), (A1, B2), (A1,B3), (A1,B4), (A2, B1), (A2, B2), (A2,B3), (A2,B4), (A3,
B2), (A3,B3), (A3,B4), (A4,B3), (A4,B4), (A5, B3), (A5, B4)

It is expensive and often unnecessary to evaluate sequences in the unrestricted
context. The context that TEQL defaults to is known as the chronicle context, which
uses the first event seen of each class. Within this context TEQL matches:

(A1, B1), (A3, B2), (A4, B3)

for the event sequence of example (28). Although this may be suitable for the
majority of retrieval applications, it is appreciated that imposition of an arbitrary
context is restricting. In order to address this, TEQL, like Nelson’s CE system [Nel98],
supports two variations on the consumption model.

By preceding follow with the > modifier as follows:
 A >follow B … (29)

multiple evaluations of the expression are allowed to take place at any one time.
When an A-matching entity (such as A1) is encountered, the query evaluator searches
forwards for a B, but if it encounters another A in the meantime (such as A2), it
launches a separate second search for a sequence starting with that entity. The
resulting matches are then:

(A1, B1), (A2, B1), (A3, B2), (A4, B3) (A5, B3)

Chapter 5 - Querying Event Information

 96

On the otherhand:
A follow< B … (30)

causes the evaluator to first match, and then replicate and continue searching, on the
second parameter. In this case the result is:

(A1, B1), (A1, B2), (A1, B3), (A1, B4)

Placing both modifiers together as in
A >follow< B … (31)

matches on the unrestricted context. Parameter contexts are also applicable to
qualification on events (as with before and after), and to interval definitions.

5.4.7 retrieve and replay

The main constructs introduced by TEQL over OQL’s are the replay and retrieve
constructs.

retrieve
The format of the retrieve construct is:

retrieve <template_expression> [fromSession <session>] [in <interval>]
[<ordered set of events>] [fromRef <result reference>]

The constraints define the scope over which the retrieve operation is to run. If no
constraint is specified the scope of the retrieve is taken to be the entire repository,
from the beginning of time (this being the first event deposited) until NOW. The
constraints can be:
• fromSession <session> - look for matches for the template only through events

belonging to the session specified.
• in <interval> - look for matches for the template only within the interval

specified. This has to be an instantiation of an interval rather than an interval
template.

• <ordered set of events> - look for matches for the template within the stream of
events denoted by the set of events provided. This set could be the result of a
nested retrieve operation, or of an OQL select-from-where construct on the
repository.

• fromRef <result reference> - look for matches for the template only through
events belonging to the set of events identified by the reference. A reference is
returned programmatically with each result set and its associated events are
cached for some time.

retrieve always returns an ordered set of temporal entities of the same type as the
template expression passed to it as parameter.

5.4 The Teql language

 97

Since retrieve returns sets of entities, it is worthwhile mentioning how collections,
such as sets, can be manipulated in TEQL. Just as in OQL:

list(a,b,c,d)[1]

returns b. And:
list(a,b,c,d)[1:3]

returns list(b,c,d).

replay
replay is probably the operation most identifiable with the notion of an event
repository. The replay query in TEQL is very straightforward:

replay <interval>

replay <ordered set of events>

replay fromSession <session>

where the first variant will replay all the events which have occurred within the
interval specified. The interval supplied needs to be a defined instance. In the second
case, the events to be replayed will be the events within the set supplied. In both
cases, it is likely that the operand would have been obtained through a retrieve query.
The third variant is equivalent to the second but where the set of events is taken to
be the entire session from its start to the last event deposited.

By using together replay, retrieve and select (see Section 5.4.9) it is possible to
accurately specify a sub-set of events to be replayed.

Once the interval, or set of events, to be replayed are evaluated, the event
repository starts sending out the stored events as they occurred, with the temporal
separation reflected by the difference of their creation or deposit timestamps. This can be
modified with the by clause to force faster or slower replay.

replay <ordered set of events> by 2

will replay the events at twice the original speed. If a fraction is used, the replay will
be slower than the original deposit.

A replay can also be invoked directly through a repository-supported method. In
this case, a reference to a result set must be passed as parameter of the method. This
reference must qualify an ordered set of events or an interval, and can be obtained
within a programming environment from earlier retrieve queries.

5.4.8 Derived sessions

As described in various applications in Chapter 2, it is often desirable to generate a
derived view of an event history in order to assist interpretation of the data. This
view frequently has to contain selected primitive events and/or composite events
extracted from the original event history. In order to support this, one can create a

Chapter 5 - Querying Event Information

 98

derived session, which differs from a regular session in that it can be inserted into and
modified.

create derivedSession <sessionName>

create derivedSession <sessionName> <ordered set of events>

allow the creation of the derived session, with the second instantiating it with the set
of events provided, this usually being the result of a nested retrieve operation or of
an OQL select-from-where construct. Composite and primitive events can then be
inserted into the derived session as follows:

insert intoSession <sessionName> <ordered set of events>

A derived session is therefore analogous to a derived relation in SQL. It is equivalent
to a regular session for all other purposes, and can be used in all constructs where a
session can be used. Multiple ordered sets of events can be inserted into a derived
session during different queries, thus gradually constructing a temporally ordered
view that represents some high-level interpretation of the original event data. Since
retrieve operations can be restricted to sessions of all types, a derived session can be
used to derive another derived session of coarser granularity.

5.4.9 TEQL and OQL

The TEQL constructs fit in alongside OQL and can be used together as long as there
are no type conflicts. Consider:

match A before B within T as X;
define theXEvents() as
 retrieve X fromSession S;
select e.parameter1
 from theXEvents() e
 where e.parameter2 = literal and e.ofType(anEventType); (32)

Example (32) illustrates how this can be achieved. First one finds all events matching
A that are followed by a B within time T, and belong to session S. Then from all these
matching A’s only those whose second parameter has a specific value, and are of the
event type anEventType are selected. From this selection, the select clause then
returns the first parameter, or more accurately, a set of elements of the same type as
the first parameter. Of course, it would have been simpler to specify the fixed value
of parameter2 within the template statement defining A.

ofType() is a pre-defined method that can be invoked on all event types to check
their type. It returns a Boolean value reflecting whether the event type it is invoked
within the context of is equivalent to the type name passed as parameter.

OQL allows objects, their data and their methods, to be qualified according to
their position within the inheritance tree. Event types are mapped to the same object-
like inheritance model so that such qualification can be employed within OQL
constructs.

5.5 Evaluating Teql

 99

5.5 Evaluating TEQL

This section demonstrates how TEQL can be used to express queries on event
information.

A straightforward way of doing this is to return to the natural language
expressions used as examples in Section 5.2.2. It is often the case that there are
multiple ways of expressing a query in terms of the temporal entities supported.
Some may be more intuitive to write or follow, while others will be more concise.
Consider first:
Ex.2 “find all occurrences of Alarm A being followed by Alarm B, and the web server

crashing, all within 5 minutes, and without Alarm C having occurred in between”

This suggests searching for all occurrences of the composite event defined by the
sequence of the first alarm and the second alarm. TEQL syntax for it is:

match (Alarm(“A”) follow Alarm(“B”) follow ServerCrash(“web”)) within 5min
without Alarm(“C”) as theSequence;

retrieve theSequence;

Example 3 is more complex, and while it might not necessarily be indicative of a
frequently carried out query, it is useful to consider it for demonstrating TEQL’s
expressive power.
Ex.3 “Replay all sightings of John from when John was present in the Meeting Room,

and then sometime within 30 minutes John was seen in the corridor with Giles,
until John logged in on workstation Norton.”

The wording of the example can be mapped to three intervals reflecting John’s stay
in the Meeting Room, and both his and Giles’ time in the corridor. From the latter
two one needs to locate the time when both were together, and then relate that to the
first by checking whether it occurred within 30 minutes. In order to define the
intervals themselves one can locate the events representing the state of presence in a
room. This is applicable only within the default chronicle context. Figure 5.2 illustrates

Jo
hn

 e
nt

er
s

Jo
hn

 e
nt

er
s

M
ee

tin
g

R
oo

m
M

ee
tin

g
R

oo
m

Jo
hn

 le
av

es

Jo
hn

 le
av

es

M
ee

tin
g

R
oo

m
M

ee
tin

g
R

oo
m

Jo
hn

 e
nt

er
s

Jo
hn

 e
nt

er
s

Co
rr

id
or

Co
rr

id
or

G
ile

s
en

te
rs

G

ile
s

en
te

rs

Co
rr

id
or

Co
rr

id
or

Jo
hn

 le
av

es

Jo
hn

 le
av

es

Co
rr

id
or

Co
rr

id
or

G
ile

s
le

av
es

G
ile

s
le

av
es

Co
rr

id
or

Co
rr

id
or

Event Event
TimelineTimeline

John in John in
Meeting RoomMeeting Room John in John in

CorridorCorridor
Giles in Giles in
CorridorCorridor

Both John and Giles Both John and Giles
in Corridorin Corridor

30 minutes30 minutes
maximummaximum

Jo
hn

 lo
gs

 o
n

on
Jo

hn
 lo

gs
 o

n
on

N
or

to
n

N
or

to
n

Figure 5.2
The events and intervals involved in Example 3

Chapter 5 - Querying Event Information

 100

the events and intervals involved in mapping the natural language query of Example
3 to a query in TEQL.

A suitable full expressing of the example in TEQL is:
interval BadgeSighting(“John” as John, “MeetingRoom” as MeetR),

BadgeSighting(John, !MeetR) as iJohnMR; [1]
interval BadgeSighting(John, “Corridor” as Corrd), BadgeSighting(John, !Corrd) as

iJohnCorr; [2]
interval BadgeSighting(“Giles” as Giles, Corrd), BadgeSighting(Giles, !Corrd) as

iGilesCorr; [3]
match iJohnMR before intersectionOf(iJohnCorr, iGilesCorr) within 30min as

iJohnMR_OK;
interval start(iJohnMR_OK), TerminalLogin(John, ?, “Norton”)

as iReplayInterval; [4]
define firstMatchingInterval() as

(retrieve iReplayInterval)[0];
replay (select events

from elements(firstMatchingInterval()) as events
where events.ofType(BadgeSighting) and events.user = John); [5]

Parts [1], [2], [3] and [4] define templates for the primary intervals of the query.
[1] locates intervals when John was in the meeting room, [2] locates intervals

when John was in the corridor, while [3] locates intervals when Giles was in the
corridor. [4] then defines the interval during which both John and Giles were
together in the corridor, and uses it to cut down the set of all intervals of when John
was in the meeting room, to those that occurred within 30 minutes before the
John/Giles encounter. A new interval is then defined from the beginning of John’s
time in the meeting room until the first subsequent time he logged on-to Norton.
This defines suitable intervals for replay.

One should point out that [1], [2] and [3] are employing the property that:
interval A, B as I;

is equivalent to
match A follow B as AB;
interval componentOf(AB, 0), componentOf(AB, 1) as I;

While the maximum cut off time of 30 minutes was from the end of John’s stay in
the meeting room, the example requires replay from the beginning of that stay. It
also requires replay of only Active Badge events, so rather than replay the satisfying
interval, the query extracts the events within the interval and then filters them on
type and content (see [5]). Since theoretically there may be multiple intervals that will
match the above specification, only the first interval is being considered from the list
of results returned by the retrieve construct.

Note that the above example could also have been evaluated solely in terms of
composite sequences by replacing [1], [2], [3] and [4] with:

match BadgeSighting(“John”, “MeetingRoom”) follow BadgeSighting(“John”,
!“MeetingRoom”) as cA;

5.6 Summary

 101

match BadgeSighting(John, “Corridor”) follow BadgeSighting(“Giles”, “Corridor”)
without BadgeSighting(“John”, !“Corridor”) as cB;

match cA before cB within 30 mins as cAA;
match componentOf(cAA,0) follow TerminalLogin(“John”, ?, “Norton”) as cT;
interval componentOf(cT, 0), componentOf(cT, 1) as iReplayInterval;

Space constraints dictate that further examples cannot be given here, but the above
examples are sufficient to indicate that by joining the expressive power of OQL with
the temporal constructs of TEQL, the combined language has sufficient expressive
power to enable a large collection of powerful queries to be carried out.

5.6 Summary

The event information deposited into an event repository needs to be accessed,
reviewed, and retrieved in different ways that depend on the application and the
activities represented by its event information. This chapter has reviewed the issues
involved in providing the interfacing capability required of an event repository for it
to service the diverse application domains where it can be deployed.

The temporal formalism adopted by the treatment was defined. Subsequently, the
properties and temporal characteristics of a suitable event query language were
determined. After reviewing related work on temporal languages, the remainder of
the chapter presented a query language called TEQL.

This language is designed to satisfy the query requirements of an event
repository, and allows the representation and treatment of qualitative temporal
relations between events, composite events and temporal intervals. It also supports
the creation of derived views of the original event history in order to aid
interpretation, analysis and review.

 103

Chapter 6

The Repository
Architecture
This chapter presents a design for the architecture of a general-purpose event
repository service that addresses the requirements of the application domains
identified in Chapter 2. It also integrates seamlessly with the HERALD event
notification infrastructure described in Chapter 4.

Section 6.1 starts by identifying the functional requirements of an event
repository and Section 6.2 then introduces a specific design for an event repository
that meets these requirements. In order to offer the flexibility required of a general-
purpose event repository, the architecture proposed is functionally divided into what
are termed the repository server component and the repository client component.

Section 6.3 looks at the role and structure of repository clients, and discusses
their exclusive view of events, their interfacing with a repository server, and how they
can be written.

Designing the generic aspect of the storage architecture, i.e. the repository server,
is addressed in Section 6.4. Approaches to providing the required functionality are
discussed and the modules that support client interfacing and query handling are
introduced. In particular, Section 6.4.4 identifies the characteristics required of a
storage sub-system for event data, and then proposes a custom log-based hybrid
design.

In Section 6.5, the issue of propagation of event histories in between event
repositories is considered.

In this chapter, the term conventional database is taken to refer to an industrial
relational or object-oriented database system.

Chapter 6 - The Repository Architecture

 104

6.1 Functional requirements

Based upon the discussion in the preceding chapters, one can identify a number of
functional requirements of an event repository. In particular, one needs to:
• support storage and retrieval of event information, where an event is defined as

being a message denoting the occurrence of an activity of interest, of a defined
type and structured with typed attributes.

• support high-speed writing, so that high volumes of events can be written in
quickly without data loss.

• enforce the fact that event information has a historical value, so it may not be
modified once deposited (entered) into storage.

• support the temporal retrieval and replay query interface TEQL as described in
Chapter 5. Since this is a superset of OQL, legacy applications can also query
event data as if the repository were a conventional database.

• support the Object Data Management Group (ODMG)’s data model for
primitive types [CB97] for attribute typing within events. This supports the
operation of mirroring the contents of an event repository into an ODMG
compliant conventional database management system should this operation be
required.

• provide a repository that can be integrated seamlessly within an event-driven
infrastructure like HERALD, where event components can interact with it: either
implicitly (transparently) through registration policies, or explicitly for carrying
out specific queries on past activities.

• support application-driven contextualisation of events of different types through
the notion of sessions.

• support derivation of new higher-level views of the event data.
• provide for interaction between event repositories for the purpose of replication

or merging of event histories.
• support evolving event types through schema versioning. Allow operations to be

carried out on events with schema that are no longer current, i.e. have evolved to
a different specification.

• allow multiple applications to access it simultaneously, and preserve the view of
each individual application by distinguishing between the event information each
is aware of and can carry out operations on. Ensure that such a view is consistent
to each application – i.e. it only sees coming out of the repository what it
deposited in the first instance.

It is difficult to satisfy these conflicting requirements with a single monolithic
architecture. Any general-purpose solution must be flexible and dynamic in its
composition, so that it can be adapted to the specific requirements of any one
application.

6.2 Architecture overview

 105

6.2 Architecture overview

This section proposes a specific design for an event repository that addresses the
functional requirements listed in Section 6.1. In order to offer the flexibility required
of a general-purpose event repository, the architecture proposed is functionally
divided into what are termed the repository server component and the repository client
component.

In essence, every instance of an event repository consists of several distributed
components working concurrently and co-operatively, primarily a number of
repository clients and a repository server. While the server component of the architecture
is kept as generic as possible to be of use in different scenarios with diverging
requirements, a repository client can be tailored to be highly specific to an
application. The actual storage and retrieval functionality of the event repository is
supplied by the repository server.

The aim behind the design of this architecture is to provide a core set of generic
services coupled with highly and easily tailored components, so that the whole can

Event RepositoryEvent Repository

PhysicalPhysical
StorageStorage

Client Client
InterfaceInterface

ServerServer
InterfaceInterface

Application Application
InterfaceInterface

Repository Repository
ServerServer

Repository Repository
ClientClient

LogLog
ManagerManager

SchemaSchema
RepositoryRepository

ClientClient
Event ReferencesEvent References

Storage Storage
ModuleModule

ServiceService
ModuleModule

Replay Replay
EngineEngine

ResultResult
CacheCache

Query Query
ProcessingProcessing

ModuleModule

Figure 6.1
The structure of an event repository

Chapter 6 - The Repository Architecture

 106

provide the required facilities without compromising on performance. Figure 6.1
illustrates this functional arrangement. The functional modules identified within this
figure are described in Sections 6.3 and 6.4.

The distinction between a repository client and a repository server is conceptual,
and within some applications, it is possible to integrate the two components into one
software entity. One such case is the embedding of an event repository within an
HERALD event source or event client, as described in Chapter 4.

Figure 6.2 suggests some application domains that can be interfaced to the event
repository through the defining of a custom repository client. These are distributed
applications built with HERALD or some other similar general-purpose event
notification infrastructure, conventional databases through an ODBC or JDBC™
bridge, and wide-area message-driven systems.

Section 6.3 will now describe the functionality encompassed within the repository
client, while Section 6.4 then discusses the internal structure of the repository’s
server component and the issues relating to event storage and retrieval within its
modules.

6.3 Repository clients

A repository client component acts as the application writer’s interface to the event
repository. While the repository server component is generic for all applications and
event types, the repository client can be highly specialised and tailored for the
particular application being serviced. The client interfaces with the server through an

ConventionalConventional
DatabaseDatabase

ApplicationApplication

WebWeb--based messaging based messaging
applicationapplication

RepositoryRepository
ClientClient

HHERALDERALD Event ClientEvent Client

RepositoryRepository
ClientClient

RepositoryRepository
ClientClient

RepositoryRepository
ClientClient

Messaging Messaging Transport Transport
InterfaceInterfaceJDBC/ODBC JDBC/ODBC BridgeBridge

RepositoryRepository
ServerServer

Event RepositoryEvent Repository

Remote event sourcesRemote event sources

Remote event clientsRemote event clients

HHERALDERALD Event Event
SourceSource

Figure 6.2
Interfacing to the event repository through customisable clients

6.3 Repository clients

 107

Application-Programming-Interface driven through remote-method-invocation.
Through this interface, it can instruct the repository server to create a new event
view for it, pass it event schema, deposit event streams, configure storage and archive
parameters, and pass TEQL queries that return events to or initiate event replays into
it.

6.3.1 The nature of repository clients

When an event repository is embedded into a HERALD event client, the event client
implements the client-side of the repository. The client registers interest with one or
more event sources in order to obtain the particular events to be stored. The events
notified and stored can be of different types with differing schema, and will reflect
the specific registration templates the client will have made with those event sources.
Figure 6.3 shows some examples of this usage within a HERALD environment.

The repository server requires an event type’s scheme before it can accept any
instances of that event. A HERALD client can obtain event instances’ schema from
their respective sources and pass them on to the server. A client that is interfacing
with another messaging infrastructure, however, might need to obtain the scheme in
a different manner. In particular, if event messages within that infrastructure are self-
describing (for example, using XML), the client has to extract and generate an event
scheme from the messages, and define a range of types against which messages can
be identified.

As schema versioning is supported, the scheme supplied must also be qualified
with the version identifier of that event type. This structured version identifier is
particular to the repository’s server and client components, and is consistent with the
schema versioning model used in the rest of HERALD. When the repository client is
interacting with alternative infrastructures, it needs to configure the schema itself.

Since the repository endorses the ODMG data model, it may therefore be
necessary for the client to carry out type mapping if the type space of the messaging
environment being used is different. This would have to be a bi-directional mapping.

For applications that are not part of an event notification infrastructure, the
repository client acts as an interface wrapper to the repository’s functionality. Since
such applications tend to be more tightly coupled than the more dynamic
applications within event-driven infrastructures, it is likely that a client could be
written that ‘knows’ the structure of the application being supported. This means it
would be aware of the format of any internal messaging information it uses and of
the whereabouts of the sources and sinks of such information. The repository client
would therefore be able to define the schema of the data to be captured, and supply
it to the repository’s server component; as well as carry out any bi-directional
mapping required to format the data. The client would then interact with the
application’s centralised or distributed components in whatever proprietary manner is
required, be it through remote method invocation, messaging, or through an object
request broker. Examples of such applications tend to be specialised environments

Chapter 6 - The Repository Architecture

 108

like fault-tolerant infrastructures, thin-client applications (see the case-study in
Section 7.4), and federated and distributed databases.

In this latter case, given that the number of processes are known and there is
more symmetric interaction, the repository client would also be able to implement
mechanisms that enforce global causal ordering of events. Using vector clocks the
application could implement a global logical time, which the repository could map to
real time once it has ordered the events being received. The best way to carry this out
is to provide a sliding temporal window of observation at the client, into which
incoming events are placed until delayed messages can be received, then deposited
into the event store in the right order. With logical ordering, however, events’
temporal separation is lost.

In case of a HERALD application, event timestamps correspond to real time at the
originating source, since the linear increase in size of a logical timestamp with the
number of event components makes vector clocks unacceptable, and given the lack
of global application structure, probably simply not possible. Therefore, the
application has to assume the presence of an external clock synchronisation protocol
like NTP. Nevertheless, if the application is sufficiently dispersed over a wide-area,
network delays might need to be taken into account. In this case, the HERALD client
might also have to insert a sliding temporal window of observation between its
receiving events and depositing them, setting the length of the window to be such
that network delays can be accommodated. Since HERALD timestamps reflect real time,
once event exit the observation window correctly ordered, they can be deposited into
the repository with the original relative separation as they occurred.

RepositoryRepository
ClientClient

HERALDHERALD Event ClientEvent Client

RepositoryRepository
ServerServer

Event Event
RepositoryRepository

ComponentComponent

HERALDHERALD Event SourceEvent Source

HHERALDERALD Event Event
FederatorFederator

Event Event
RegistrationRegistration

Event Event
NotificationsNotifications

HERALDHERALD Event SourceEvent Source

HERALDHERALD Event SourceEvent Source

HERALDHERALD Event ClientEvent Client

Event Event
RegistrationsRegistrations

Event NotificationsEvent Notifications

RulesRules

Registration inRegistration in
Composite EventComposite Event

HERALDHERALD Event SourceEvent Source
HERALDHERALD Event SourceEvent Source

Figure 6.3
Examples of the event repository interfacing with a HERALD

event source and a HERALD federator.

6.3 Repository clients

 109

The issues highlighted in this discussion: event schemes; type mapping;
countering unsynchronised clocks and network delays; are representative of a host of
application specific issues that do not apply globally and are thus addressed within
the repository clients provided by applications.

6.3.2 Event handling

Each repository client sees a segregated view of the event information stored within
the repository server. When a repository client first communicates with a repository
server, it is allocated a special client identifier and an authentication key, which it
must then present whenever it re-establishes communication with the server. This
ensures that only the client that has stored specific event information, or a specific
view of that event information, can retrieve it. Once the client starts getting event
notifications from the event sources it had previously interacted with, it then opens a
stream connection to the server and deposits those event instances.

The client defines sessions with which to tag the event instances being deposited.
As discussed in Section 5.2.5, an event instance may belong to one or more
conceptual sessions, and a session can contain within it events of all types. The
advantage of defining sessions is primarily evident when it comes to retrieval or
replay of events, as the client may then restrict its retrieval expressions and queries to
the context of a session. Therefore, a session is essentially an index whose semantics
are determined by the application.

When querying the event data, the client can request the creation of new sessions
that present some higher-level interpreted view of the event history. These sessions
are known as derived sessions. They differ from regular sessions in that they can be
modified and built up gradually. Derived sessions are persistent until the client asks
for them to be deleted.

6.3.3 Interfacing with the repository server

A client can have multiple simultaneous connections to the repository server,
enabling it to pass in multiple event types concurrently. It can also be depositing and
retrieving event information from the server simultaneously, although the concept of
present time, i.e. “now”, would be continuously changing as more events are
deposited by it into the repository. This is of relevance in open-ended correct-time
replay operations, where the term correct-time denotes an event replay at the same
temporal speed as the original event depositing. The client therefore acts as both the
input and output interface of the event information stored in the repository and
belonging to an application, a user, or their agent.

A repository’s client and server components can be co-located within one
execution space, or can be located on different machines, in which case they interact
through a remote-method invocation interface.

As already mentioned, when a repository client first opens a connection to a
repository server, the server creates a repository view for that client. All the operations

Chapter 6 - The Repository Architecture

 110

invoked on the server by the client will apply only to that segregated view of the
event information stored in the event repository. The client packages TEQL queries
and replay requests within method invocations and passes these on to the repository
server, which then responds according to the query. In case of a replay request the
server will establish a stream connection with the client and start passing it the event
instances forming part of that replay. The direction in time and relative speed of the
event replay depends on the parameters passed within the TEQL query. It is possible
for a client to terminate such a replay at any moment.

Outside of a messaging environment, an application might need to extract the
event information stored in the repository in a more conventional way. A client can
interact with the repository server through standard OQL. Through this interface,
the repository appears as a read-only database where events are represented as
records in the relational sense. This technique is particularly suitable for extracting
events from the event repository and transferring them to a conventional database
for further archiving or analysis.

6.3.3 Creating clients

Writing a new client to support the event storage and retrieval requirements of an
application or event infrastructure has to be straightforward. In the prototype
implementation of the event repository, the essential repository client’s functionality
is provided through a package of C++ or Java™ classes. These enable a client to be
written very rapidly and the application writer can then focus on tailoring the client
to the requirements of the application. The remainder of the functionality of the
client within the event/messaging infrastructure depends on the application.

Within a HERALD infrastructure, the client can present itself to the application’s
distributed active components as an event source by integrating within it the event
source libraries (as shown in Figure 6.4). If desired, this configuration can be used to
abstract away the whole event repository functionality in the guise of an event source
that initiates event instance notifications from its event store based on some

RepositoryRepository
ServerServerEvent Event

RepositoryRepository

PastPast
EventsEvents

Notifications to Notifications to
registered clientsregistered clients

ApplicationApplication

RepositoryRepository
ClientClient

HHERALDERALD Event Event
SourceSource

Figure 6.4

An application that carries out analysis on event histories can interface with a
HERALD infrastructure by exporting an event source interface

6.4 Repository server

 111

application criteria. Likewise, the client can be a HERALD federator by implementing an
event client interface, an action injection interface, and a rules module; an event
gateway by supporting both the event source and client interfaces; or even a broker by
integrating the brokerage processes. Each HERALD interface being like a pluggable
building block implies that several permutations are available to the application
writer. One can thus integrate event repository functionality within an application in
a variety of ways, both implicitly and explicitly.

As described in Chapter 4, each HERALD event source can optionally integrate an
event repository within it, as the source libraries define a repository client within
them. The purpose of this client, if enabled, is to capture each event occurring at
that source, so that in addition to real-time notification of that event to registered
clients, a persistent copy can be retained. The enabling of this feature allows that
event source to support a number of registration policies requiring persistence. This
is illustrated in Figure 6.5.

In similar fashion, HERALD event clients can also embed an event store in order
to retain a history of the events they consume.

6.4 Repository server

The repository server is the generic part of the repository architecture. While the
client can be customised according to the interface requirements of the application
domain it is addressing, the server remains largely unmodified. It can, however still
be customised by enabling or disabling a number of functional modules within it.

There are three primary conceptual modules within the repository server:
• the service or interfacing layer, which handles communications with the repository’s

application clients and allocates resources like spawning handling threads,

RepositoryRepository
Client/ServerClient/Server

Event Event
RepositoryRepository

Device /Device /
SoftwareSoftware

ComponentComponent
HHERALDERALD
Event Event
SourceSource

Event Event
TriggersTriggers

Live Live
EventsEvents

PastPast
EventsEvents

Notifications to Notifications to
registered clientsregistered clients

Figure 6.5
Embedding an event repository within

an event source.

Chapter 6 - The Repository Architecture

 112

• the temporal query processing engine, which parses, breaks-up, optimises and
executes temporal queries in TEQL,

• and the storage layer or database sub-system.

Although there are numerous possible architectures for integrating these modules
within this server side of an event repository that satisfy the functional requirements
listed in Section 6.1, two broad approaches can be distinguished: layered, and built-in.

The next two sub-sections discuss the general architecture of the repository
server, while the following sections discuss several specific issues involved in
implementing the modules making up the repository server.

6.4.1 Designing a storage architecture

There are two approaches to providing the service required of an event repository:
the layered approach, and the built-in approach. These will now be discussed in turn,
and a synopsis is then given. Figure 6.6 illustrates these two approaches.

The layered architecture model
In a layered architecture, all event aware components reside in a module built on top
of a conventional database system. This architecture can also be described as a loosely
coupled system, since temporal query processing is completely separated from the
database system. In this approach, temporal operations, such as those proposed in
Chapter 5, need to be defined in terms of the query language supported by the
underlying database, this probably being OQL or SQL92/SQL3. Likewise, all
storage and retrieval operations are carried out through the database management
system’s query interface. Events need to be mapped to relational records or objects,
depending on the nature of the database management system used. Higher level
event-oriented functionality like event type inheritance, schema versioning, and event
sessions, need to be explicitly defined using tables and views. Replay of event streams
requires running an appropriate OQL/SQL query to identify the data that will

Conventional Conventional
RDBMS RDBMS

/ OODBMS/ OODBMS

SQL / OQLSQL / OQL

CustomCustom
Storage Storage
EngineEngine

Storage subStorage sub--systemsystem Storage subStorage sub--systemsystem

Event Query Event Query
ProcessingProcessing

Client Servicing Client Servicing
ModuleModule

Client Servicing Client Servicing
ModuleModule

Event Query Event Query
ProcessingProcessing

Layered architecture Built-in architecure

Figure 6.6
The layered approach (left) and the built-in approach (right).

6.4 Repository server

 113

participate in the replay, buffering that retrieved event data in memory, and then
notifying the event instances with the same temporal separation as defined by their
timestamps from that buffer.

The advantages of a layered architecture are:
• A conventional database system can be converted into an event repository

without modifying the database system at all.
• The conventional database system abstracts away all the underlying storage

complexity such as transaction management, lock management, indexing, storage
management, and fault-tolerance (although this may be unnecessary overhead).

• Organisations often have significant material and human resources invested in
maintaining and running one or more database management systems.
Considerable investment, experience in its use, and trust in the database’s
dependability, can offset performance and functional considerations.

The disadvantages of a layered architecture are:
• There is potential for poor performance, since substantial communication

overhead may be required between the module that provides temporal querying
and the database system.

• Since there is no direct access to the storage subsystems of the conventional
database system, all event temporal functionality needs to be mapped to the
database’s query/command interface. Some operations will therefore require
substantial temporary memory buffers to execute.

• Since the event temporal functionality module cannot interact with the
subsystems of the conventional database system (such as the transaction
manager, lock manager, etc.), certain features that require access to these
subsystems may not be supported (such as concurrency control for simultaneous
insertion of event streams).

• The conventional database might not be able to perform fast enough to cope
with high-speed writing of event instances into its storage system. The standard
overhead of heavyweight database functionality, like transaction management,
affects performance even when such capability is not required.

The built-in architecture model
In a built-in architecture, all event temporal functionality components become part
of the database system itself. This architecture can be achieved by modifying an
existing conventional database, by using a database system toolkit for conventional
features while adding temporal event functionality, or by building an entire event
repository from scratch. A built-in architecture can be termed the tightly coupled
approach, since temporal event retrieval operations and processing are directly
integrated into the database system. In this approach, the underlying storage can be
directly tailored to the structure of event information. The storage can be optimised
for the specific nature of event data. Due to its historical value, such data need not
be modified once stored (although it may be archived). Indexing of the event data is

Chapter 6 - The Repository Architecture

 114

carried out based on the timestamps of the event data and according to the real-
world timeline represented by the stored events. The temporal rule processor
evaluates rule conditions and locates event sequences by performing operations
directly on the database. It is possible for the rule processor to exploit the underlying
storage arrangement of the data and the database system’s query evaluation facilities.

The advantages and disadvantages of a built-in architecture are exactly the
converse of those for a layered architecture. The advantages are:
• The database storage subsystem can be extensively tailored to support the

specific nature of event information and the temporal queries that may be carried
out on it.

• Event sequence identification, pattern matching, filtering and replay can be
performed efficiently since they occur directly within the database system.

• Access to database subsystems allows implementation of sophisticated features
for rule evaluation, concurrency control, archiving and error-recovery.

• Conventional database functionality that is not required and that would incur an
unnecessary overhead can be disabled or removed completely.

The disadvantages are:
• The implementation effort can be substantial and may require modifying existing

code at best, or writing a complete underlying database system.
• If different conventional database systems are converted into an event repository,

it is likely that differences between the conventional database systems will carry
over into the event-oriented components.

Synopsis
In the layered approach to building an event repository, it is possible to use a
conventional database management system for the actual low-level storage of event
instances. The most significant advantage of this approach, as illustrated in the
previous discussion, is the ease of implementation. This approach, however, ignores
the specific nature of the data being stored.

The ideal design is one that is tailored for capture of high volumes of multiple
streams of relatively small data objects that need not be modified as they are to
constitute a historical record. This renders most of the functionality of conventional
database management systems irrelevant, and experiments [Nel98] indicate that even
high performance commercial databases struggle to cope with the high-volume of
event deposit required of an event repository service. Within distributed debugging
systems, where there is considerable experience in event tracing, simple logs are still
the preferred means of storing events persistently.

Having discussed the possible architectural approaches to providing the
functionality required by an event repository, it is evident that a tightly coupled
approach meets the primary performance requirement considerably better than a
loosely coupled approach based around a conventional database management engine.
It is possible that with very fast hardware this performance issue may become

6.4 Repository server

 115

academic, but computing trends indicate that although the hardware may become
increasingly more powerful, it is likely that data throughput requirements will
similarly increase.

Sections 6.4.2– 6.4.4 illustrate the functionality of the main conceptual modules
of an event repository within the context of a tightly coupled built-in architectural
model.

6.4.2 Service module

The first modular layer of the repository server is the Service Module. This module
receives command queries and event streams from the repository clients. In this
communication model, instructions and queries are packaged as parameters and
passed as messages from repository clients to the Service Module. This allows the
Service Module to prioritise operations and allocate threads. This module carries
out authentication of the repository clients, allocates and establishes client identifiers
for denoting each client’s view of the repository, and transparently tags each
command query with this identifier.

In order to be able to handle multiple repository clients concurrently, the
prototype implementation of the Service Module allocates a thread to handle each
client, and that thread can then spawn further threads to handle simultaneous
connections with different command queries from that client. This enables multiple
input and output streams to be handled concurrently. Output operations are given
lower priority than event input operations.

6.4.3 Query processing module

The Query Processing module analyses incoming queries and according to their
nature, input or output, allocates resources appropriately. Command queries can be
categorised as follows:
• Command operations; e.g. establish a client/server relationship and obtain an access

key, define an event type and specify its scheme, add an updated version of a
type’s scheme, set archival and storage thresholds, configure the size of the result
cache, make derived sessions persistent, flush all indices and events pertaining to
the client.

• Deposit operations, deposit an event instance into the repository or open a typed
channel for continuous deposit of multiple event instances.

• TEQL retrieval queries; e.g. locate composite event patterns, locate event intervals,
identify temporal spans, locate individual events according to some temporal
criteria. It is the nature of TEQL queries that most retrieval operations do not
return a definite result, but rather a set of results matching the criteria specified
in the query. Therefore, TEQL ‘retrieve’ queries return a structure that contains a
series of results matching the query. The result sets can contain primitive events,
composite events, or intervals. A reference identifier is attached to each result set

Chapter 6 - The Repository Architecture

 116

since these are retained in memory for some time, in case the same set of data is
to be reused in a subsequent replay or retrieve.

• TEQL replay queries; e.g. locate some temporal interval whose end-points are
denoted by some temporal value or event timestamp, and replay the events that
occurred within its timeframe (or all types, of some type, or with some more
specific filtering applied) at the original replay speed or some fraction/multiple
of it. These open an output stream that has to be handled by an application-
defined handler method in the repository client.

• Referenced data replay queries; these are not TEQL invoked queries but rather a
method-invoked replay where a result reference is passed as parameter. This
reference identifies a set of events, or an interval, that were the result of an
earlier TEQL retrieve query.

• OQL-only standard queries, for these operations the event repository appears as a
read-only conventional database.

The query layer identifies each query or command, and checks it for correctness. If it
is a TEQL query it is parsed and validated. The query is then executed and the results
sent to the repository client through the Service Module. A result could be a batch
of events, or a stream of events from the Replay Engine.

The Replay Engine buffers a resulting set of primitive or composite events, and
replays them out at the same temporal separation as denoted by their timestamps.

The Result Cache retains the most recent query results in case further queries
are to be executed on them, as well as the most recent queries’ syntax. This is most
useful in applications where a retrieve is first carried out, and then the user is allowed
to select some sequence of events for replay from the set of sequences returned by
the query. Obtaining the sequence from the Result Cache is more efficient than re-
evaluating the original query. Result sets returned to the repository client are tagged
with a reference that can be quoted in TEQL queries in order to force retrieval from
the cache. If the data has expired, the query syntax is retrieved and re-executed.

Both the Replay Engine and the Result Cache can be disabled upon creation
of an event repository, in which case some functionality will be disabled. This will
trigger error notifications to the client should their services be requested.

Whether the query layer implements TEQL queries directly by interfacing with the
storage sub-system (discussed next), or by mapping TEQL queries to SQL/OQL,
depends on the choice of the storage sub-system and on the query interface it
provides. For the prototype implementation of the event repository a custom storage
sub-system was developed. Interacting with this involves interfacing to a log
management module.

6.4.4 Storage module

This section proceeds from the observations made in the synopsis of Section 6.4.1.
It further qualifies those observations by identifying in detail the storage

6.4 Repository server

 117

requirements of the storage component of an event repository, and then presenting
a custom log-based design to address these requirements.

Storage requirements
Based on the discussion in the preceding chapters, the functional requirements of the
storage component of an event repository can be summarised as:
• High performance writing – The storage system needs to be able to support and

handle the writing of several hundred events per second, where the events can be
of different types (of differing and evolving schema).

• Performance and redundancy vs storage – These have a higher priority than volume of
storage. Trends over the last ten to fifteen years indicate that while storage
capacity on magnetic and optical media keeps doubling periodically and
decreasing in cost simultaneously, access speed and data throughput have
improved only slightly (in relative terms).

• Event depositing and archiving – Event instances are always deposited into storage
and not modified thereafter. As the store cannot grow indefinitely, archiving of
earlier events needs to be provided.

• Event retrieval – Access is required to each stored event instance and to stored
sequences of events in order of storage timestamp. The sequence can consist of
event instances of the same type or different types.

• Appropriate fault-tolerance – Should the machine crash, or a disk block failure occur,
minimal event loss will occur and existing logs are not damaged.

These requirements differ from those traditionally bounding a relational or object-
oriented database. This fact has been recognised in several projects looking at
retaining events relating to process behaviour for distributed systems debugging
[Han88, Tsa83, IYS86, LS90, NX93], where logs of event traces are the preferred
approach due to the high-speed of writing they permit.

Storage system configuration
In order to address the requirements listed above, a log-oriented storage system is
proposed for storing event instances.

The system consists of a Log Manager that handles the underlying storage log
files. Event instances are categorised by their type, and distinct types are stored
within different logs. This enables keeping all the entries in a log to the same size.
Logs are duplicated for reasons of fault-tolerance and consist of several ‘page’ files,
each containing an atomic number of event instance entries. The log duplicates are
written to alternate disks if available. Multiple threads handle concurrent writing of
multiple logs.

Writing only involves opening one page file from an event type log, and the write
is duplexed to the mirror of that page file. An event type log page is buffered in
memory until it is full, at which point both the primary and secondary log page files
are closed. All but the last event instance can be read without locking, and the last

Chapter 6 - The Repository Architecture

 118

event instance cannot be read while it is being updated. A lock protects this write
operation.

Session indices are stored in a similar fashion, with index entries identifying the
event instance type, and its relative position within the appropriate log. Session
indices are generated in real-time during logging of event instances, and the same
locking constraints apply to them as to event instance logs.

A Schema Repository retains all the event schema of the event types currently
deposited into the event repository, as well as the schemas of any derived composite
events referenced by derived sessions. In addition, a Client Event Reference is
retained for each repository client. This details the repository view that applies to
that client, including the event streams and sessions it has access to, and references
schema of all its event types. When a repository client establishes a connection with
the repository server, this data is read into memory.

Log Manager
The Log Manager (see Figure 6.7) provides a clean and protected interface to the
underlying log files. It abstracts the details of multiple log pages, duplexing, locking,
and archiving to tertiary storage. It carries out fault tolerance through the use of
‘careful writes’.

It keeps track of the segregated event information space according to the
repository clients, allocates logs for each event type version within that information
space, and generates a number of index files for accessing the event instances within
that log. The log is partitioned into log pages, and each log page is uniquely
identified.

The Log Manager maps the event logs into a growing collection of sequential
files provided by the operating system, the file system, and the archive system. As a
log fills one file, another is allocated. The size of files represents a compromise
between performance and fault-tolerance. It is faster to work with larger files, but
they are more likely to get corrupted. The archive system is needed because event
logs grow without bound, therefore, in general, and based on the repository client’s
preferences, only recent events are kept online.

The Log Manager maintains a storage structure table that details all the log
tables, their composition into log pages, and mapping to physical operating system
files. It also reflects their mirrored duplicates. When log pages are archived to slower
disk devices, it amends its physical location entities to reflect that access of these
tables has to be carried out through the Archive Manager. Since events are ordered
according to their timestamps within the event logs (and log pages), the structure
table also contains the temporal interval covered within each log page. This
information is important in assistance of fast access to an event by its timestamp, or
by its temporal relationship to other events or event sequences.

During a query, the Log Manager handles opening of physical files and the
granularity of the locking to be used. By default, the Log Manager reads in event
instance entries and opens page files optimistically. This is of most relevance when

6.4 Repository server

 119

some of the events to be retrieved occur in old and currently archived log pages, as
real-time de-archiving is a slow operation.

Naming
An important module within the storage sub-system is the Naming Manager. The
purpose of this module is to define the physical mapping of event log tables and
their log pages to actual physical files, and define the names of those files.

Indexing
Since the storage architecture is optimised for rapid writing, read performance is
primarily achieved through indexing.

All events are stored sequentially in the same order as they are received by the
event repository. This is termed the deposit timestamp, and is different from the creation

Log ManagerLog Manager

ArchiveArchive
ManagerManager

Log for Log for
Event Type AEvent Type A

Log for Log for
Event Type BEvent Type B

Log mirror for Log mirror for
Event Type AEvent Type A

Index for Index for
Session 2Session 2

Index for Index for
Session 1Session 1

Temporal Entry PointsTemporal Entry Points
/ Checkpoints/ Checkpoints

Event A StreamsEvent A Streams Event B StreamsEvent B Streams

Log StructureLog Structure

Figure 6.7
Structure of the storage module, event files, session and temporal indices

Chapter 6 - The Repository Architecture

 120

timestamp, which is a property of all event types set by the event source from where
the event originated. The deposit timestamp is added to the event instance and does
not replace the entry for the creation timestamp. In addition, a unique event entry
number (EEN) is attached to the entry.

Session indices are created in real time while the events are being deposited. Each
entry in a session index consists of a reference to the event the entry points to, with
the reference taking the form of a reference to the event log, the page within the log,
and both the relative position of the event instance relative to the beginning of the
log page as well as the timestamp of the event.

Access by absolute values of real time, as well as by intervals of time, is required
by a number of queries that can be run on the event repository. In order to facilitate
this, the Log Manager’s representative structure contains, apart from physical
information about each log page (like its filename), its temporal entry point; i.e. the
timestamp of the first event instance stored into it. This neatly partitions the event
log for an event type into ordered chunks of time, thus enabling fast read access and
search by timestamp or absolute time value.

Archiving
A sub-module within the storage system is the Archive Manager. This picks old
pages from within event logs and archives them. Two ways of archiving are suggested
in this discussion:
• relocation of old pages to some form of slower storage.

This is likely to involve compression of the pages and relocating to a slower disk,
like a network-mounted file-system.

• moving of older events to a remote event repository.
The operation of archiving is carried out within the Archive Manager by a low
priority thread based on the storage thresholds set by the repository client for which
event information was deposited.

A common type of failure within an event repository could be running out of
disk space. The Archive Manager counters this by periodically monitoring the
amount of free disk space left on the current media, and increasing the priority of its
active archive thread accordingly.

Since sometimes retrieval query operations need to be carried out on event data
in archived files, real-time de-archiving is required. For this reason, the Archive
Manager must reserve an amount of storage space on the local high-speed medium
so that it can fetch and decompress log pages from the archive location and place
them in this ‘buffer’ space.

6.5 Propagation of event histories

There are a number of reasons for why an event history kept at one event repository
might need to be moved elsewhere:

6.5 Propagation of event histories

 121

1. The event repository where the data was captured might be running on a
platform with limited resources, and therefore the repository has been
instantiated with important modules disabled. A remote, fully functional
repository can enable a fully featured analysis of the event data in a way that is
not available at the original event repository. In this case, the whole event view of
the local repository client needs to be propagated to a remote repository server.

2. There might be insufficient storage space on the local repository so event data
has to be archived at a remote event repository. In this case, only events that are
older than an application-defined threshold are propagated.

3. Merging of event traces collected at local event repositories can address the
problem of lack of global time and of excessive network delays. In this scenario,
separate local event sequences are stored on the same machine where they are
generated, using stable unsynchronised clocks. By measuring the rate and offset
of the individual clocks, the timestamps in the event histories are adjusted at a
third remote event repository to reflect a consistent, or global time base. The
adjusted event histories are then merged into an accurate global event history.

In all cases, the repository client’s access key to the view on the repository server
must be transferred to the remote server. The local client then has to propagate this
key to the relevant remote client that intends to access the remote copy of the event
data.

In order to support this, event repository servers provide a History
Propagation Interface. Through this, event repositories can communicate in both
directions.

In cases 1 and 2 above, the propagation is driven by the client at the original
repository. This makes the event repository server communicate with a remote
counterpart, and request of it that it establish a remote event view. It can then
transfer batches of events directly into that view. This bypasses the deposit
timestamping mechanism at the remote server so that the ‘now remote’ history
retains the original deposit timestamp. The remote event view will be appended on
subsequent transfer operations.

In case 3 the propagation is controlled by the client at the third (the remote)
repository. This first needs to get the access key of both the repository clients that
control the local event histories that are to be sent to it. It also needs to determine
the α and β constants for the clock at each local repository. In effect, β adjusts the
rate of the local clock and α corrects for its offset with respect to the clock of the
finished global history. Dietz [Die96] surveys and recommends a number of
algorithms for obtaining these two constants. It then needs to make its event
repository obtain the two event histories and trigger a merge function passing the α
and β constants as parameters. After this operation it can commit the new global
history to a new view of the event data.

Figure 6.8 illustrates these two scenarios; cases 1 and 2 are shown in part A.,
while case 3 is shown (with less detail) in part B.

Chapter 6 - The Repository Architecture

 122

6.6 Summary

This chapter has presented a design for an event repository architecture. This
addresses the requirements of the application domains identified in Chapter 2, and
can be seamlessly integrated with the HERALD event notification infrastructure.

RepositoryRepository
ClientClient A3A3

RepositoryRepository
ServerServer YY

RepositoryRepository
ClientClient AA

RepositoryRepository
ServerServer XX

Application AApplication A

RepositoryRepository
ClientClient BB

RepositoryRepository
ServerServer YYRepositoryRepository

ClientClient A’A’

RepositoryRepository
ServerServer ZZ

RepositoryRepository
ClientClient B’B’

Application BApplication B

History History
Propagation Propagation

InterfaceInterface

Transfer of part or whole Transfer of part or whole
event history event history

as seen by clientas seen by client

Transfer of access Transfer of access
certificatescertificates

Distinct event historiesDistinct event histories
or ‘views’or ‘views’

RepositoryRepository
ClientClient A1A1

RepositoryRepository
ServerServer XX

RepositoryRepository
ClientClient A2A2

RepositoryRepository
ServerServer YY

1. Correct clock offset and drift rate1. Correct clock offset and drift rate
2. MERGE OPERATION2. MERGE OPERATION

A.A.

B.B.

Figure 6.8

A. Propagation to remote event repository controlled by local client
B. Merging of two event histories into one globally ordered one,

controlled by client A3.

6.6 Summary

 123

The functionality required of an event repository was identified, and a specific
design for an event repository that addresses this functionality was illustrated. The
architecture proposed is functionally divided into what are termed the repository server
component and the repository client component. The role and function of these two
components were then described. In particular, approaches to providing the required
storage structure within the server component were highlighted, and a storage design
put forward.

The section concluded by considering the issue of propagation of event histories
in between event repositories.

A prototype of the architecture presented was implemented. This enabled the
architecture to be deployed in a number of scenarios. The prototype, although not as
optimised as could be, easily met the incoming volume of events in these scenarios.
Details of these case studies are given in Chapter 7.

 125

Chapter 7

Experiments
This chapter introduces a prototype implementation of the storage architecture
presented. It discusses some implementation-related issues and then proceeds with
considering some of the ways in which an event storage service can be deployed
within different application domains. It then illustrates four applications that were
used as experimental case-study deployments of the event storage architecture.

These applications were chosen because of the breadth of scope they cover, and
their distinct event storage and retrieval requirements; this being indicative of the
wide-ranging applicability of the event notification and storage solution proposed in
this dissertation. Some of these case-study applications were carried out in
collaboration with other researchers and institutions, and this is indicated in the text
where appropriate.

The experiments illustrated are as follows:
• The automatically generated diary (Section 7.3) illustrates the ease with which

information can be gleaned from several sources and integrated using the event
notification approach. The approach taken in this experiment enables locating
information based on its temporal context, and enable limited analysis of
working activity.

• The thin-client session capture tool (Section 7.4), built on VNC remote access
technology, describes one way of monitoring user activity on a workstation, in
particular their interaction with an application. This allows applications to be
evaluated for the usability of their interfaces and feature-set, as well as assist in
teaching within classroom environments.

• The multi-service network management infrastructure introduced in Section 7.5
addresses the complex issue of managing the various servers that a modern
information provider needs to service scalable customer requirements. The
solution proposed uses multiple event repositories that collect information on
servers and then forward those events to more advanced event stores for analysis.
Therefore, while live events enable service management and administration,
analysis of event histories is employed to determine the effectiveness of
management policies and to guide their evolution.

Chapter 7 - Experiments

 126

• Finally, Section 7.6 describes CURVE, a virtual mobility visualisation and
collaboration tool that allows remote users to visit a virtual replica of a real
building, and view and interact with embodiments of the real users working in
and populating it. As well as enabling review of the interaction of these
real/virtual users, the event capture and storage service deployed also enables
replay of movement of the real users in situations like emergency evacuations.

While not being comprehensive solutions in their own right, these investigations
explored the potential of event storage in various application domains in order to lay
the technological test-bed for more advanced designs that can address the complex
research issues identified in Chapter 2.

7.1 Prototype implementation

Prototype versions of the event repository and of the HERALD messaging
infrastructure were implemented in the course of the investigation. These prototypes
were built as proof-of-concept implementations and support the core functionality
and features proposed in this document. The next two sections provide a brief
synopsis of some implementation related features.

7.1.1 The HERALD event transport

HERALD has been implemented as a set of Java™ class libraries. Java™ was chosen
for its ability to have the same binary code deployed and executed onto
heterogeneous platforms. Two high-level classes, EventClient and EventSource,
embody the functionality of an event source and an event client. By instantiating one of
these classes within their application, developers obtain HERALD event client or event
source capabilities. Various service handlers and multiple threads are launched by the
instantiated objects, which the application code does not have to interact with unless
it wants to. Communication with user code is carried out asynchronously by the user
defining object handlers (that inherit from HERALD interfaces) to be invoked upon
specific occurrences, examples of these being registrations, errors, acknowledgments,
etc. Various modules, such as event storage within the HERALD transport, can be
activated or disabled according to the initialisation parameters passed to the
constructor of the EventSource object. Future revisions of the transport can
increase the options available by adding to the set of policies supported. Since these
are activated through parameter passing, the API would not be modified and current
applications would not require rewriting. This approach allows for evolution of the
libraries while retaining backwards compatibility. The prototype implementation of
HERALD does not use Java™ types for event parameters so as not to tie the transport
and its applications to the Java™ programming language or type system. Instead, the
user calls methods that allow him to insert or retrieve ODMG types that are only
then mapped internally into Java™ types. All other message constituent data is
transferred in between event-components in UTF-standard format. This ensures that

7.1 Prototype implementation

 127

the transport libraries can be ported to other programming languages, and that these
heterogeneous versions would be able to inter-communicate.

The event transport underlying HERALD makes no implicit assumptions as to the
nature of the communications protocol being used, and abstracts the functionality of
the latter through a defined interface. Events and control messages can therefore be
propagated over both connection-less (UDP/IP) and connection-based network
protocols (TCP/IP). Components can choose the transport they wish to employ
dynamically, and can change it during the course of their execution if they so require.

All HERALD structured messages support and communicate the version number
of the libraries that created them, enabling future revisions of the software to be
backwards compatible while elaborating on the communications mechanism.

7.1.2 The event repository

Due to the importance of read-write performance for event storage and retrieval, a
prototype event repository was implemented in the C++ programming language.
This implementation provides for the core functionality required of the architecture
presented in Chapter 6, and the retrieval interface described in Chapter 5. The server
component of the repository is provided as a stand-alone implementation, while the
client-side of the repository is provided in the form of a package of class libraries

RequestsRequests

Acks’Acks’

EventsEvents

EventEvent
RepositoryRepository

TCP/UDP/HTTPTCP/UDP/HTTP

Listening Listening
InterfaceInterface

Incoming Incoming
QueueQueue

Delivery Delivery
Queue/sQueue/s

Message Message
DeliveryDelivery
InterfaceInterface

Ap
pl

ic
at

io
n

/
Ap

pl
ic

at
io

n
/

D
ev

ic
e

In
te

rf
ac

e
D

ev
ic

e
In

te
rf

ac
e

ClientClient
RegistrationsRegistrations

Filtering/Filtering/
Template Template
MatchingMatching

SchemasSchemas

Event Event
SourceSource

ControlControl
MessagesMessages

Message Message
HandlerHandler

SchemasSchemas

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

/ D
ev

ic
e

In
te

rfa
ce

/ D
ev

ic
e

In
te

rfa
ce

EventEvent
RulebaseRulebase

CompositeComposite
EventEvent

DetectionDetection

Event Event
ClientClient

ErrorError
Handler/sHandler/s

EventEvent
TriggersTriggers

MessageMessage
Handler/sHandler/s

ErrorError
Handler/sHandler/s

EventEvent
NotifierNotifier/s/s

ActionsActions
InjectedInjected

Figure 7.1
Structure of a HERALD event source and client

Chapter 7 - Experiments

 128

that an application developer can use to rapidly develop customised repository
clients. These libraries are available in C++ and Java™.

Communication with the server is enforced through client-side libraries, rather
than allowing a programmer to communicate directly with the server, for security
reasons. When a client establishes communication with the server and creates an
event storage session, it receives a certificate that it must present whenever it re-
establishes communication with the server for retrieval.

The server is fully multi-threaded, can handle multiple clients concurrently, and
can be customised through a command line interface to provide (or disable) non-core
modules that affect its performance and memory footprints. The client classes then
determine which of these modules are available in any server instantiation to
dynamically reflect the feature-set available to the application programmer. Typed
and parameterised runtime exceptions are thrown if the developer’s code is made to
attempt invocation of disabled modules.

Each client session is allocated a time stamping thread that timestamps all events
as they are received and buffers them for storage. Buffer sizes are monitored by
another thread and grown dynamically in case the storage thread cannot keep up with
incoming events. The storage threads create a directory to correspond to each client
session, and keep separate log files for each event type and for session indices.
Session indices are maintained in real-time during insertion of the event data.

The repository server maintains a Schema Repository containing the definitions
of all the versions of the event types for which events are stored in it.

TEQL queries can be passed (as string parameters) through to the server
interactively or may be pre-configured within the application code. This is convenient
for when the client only carries out specific queries or presents a pre-configured
graphical user interface with fixed retrieval and replay choices to the user.

Once a TEQL query is parsed and found to be correct, the composite event
system starts accessing the event logs to locate composite sequences. This proceeds
as follows:
• Locate bounding time interval over which the query applies. This may be the

whole event history retained in the event repository, but is rarely so. In practice,
queries are usually bounded within some values of real-time, or from some point
in time until the present.

• Identify the starting event construct of the query, that is, the starting event for
any composite match.

• Locate first starting event within bounding interval and scan from that point
onwards for composite match.

• Depending on the consumption model specified in the query, new searches
branch from the current point in the logs as events matching the composite
sequence are located. These concurrent active searches are known as evaluations,
and for each one a state evaluator is instantiated. The structure of these state
machines is constructed and initialised upon parsing of the TEQL query.

7.2 Deployment Configurations

 129

The evaluation sequence implemented within the prototype is not optimal as it scans
large numbers of event instances where it might be possible to optimise the access
pattern to the data. This aspect is currently being investigated.

The query evaluator always retrieves all the primitive events requested by a query
before returning them to the client. Similarly, event replays are evaluated completely
before replay is initiated to ensure that the replay reflects the correct relative temporal
separation and is not affected by waiting for any evaluation processing. This means
that there can be a substantial pause from the client requesting a replay to the replay
starting. This has been addressed by having the server first return a “query evaluated”
result, upon which the client can then ask the replay to start proper.

For performance reasons, tight coupling between the server and client
components is employed; therefore, by default the client code blocks in anticipation
of server response. Asynchronous operation can be implemented by the developer
by introducing multi-threading in the client-side application.

7.2 Deployment Configurations
Within the case study scenarios, several ways of deploying an event repository

within a distributed environment were explored. The event storage service was
provided:
• as a system wide resource, monitoring all event instances from one or more sources.

An example is a centralised repository instance that captures all movement
sightings from all Active Badges in a domain. Application components can then
interface with it to request a replay or analysis of these movements. The event
repository then injects these active components with the movement events as if
they were happening in real time. In this configuration, the repository can allow
users to request retrieval of past sequences or replays from it according to some
access policy. One such method would be for its interface to impose access lists
on event types. One example case study (see Section 7.6) that uses this
configuration is visualisation of mobility in virtual-reality for review of
emergency evacuations. In this scenario, a centralised event repository injects
events into the mobility visualising component.

• as a user-centred service. A user can instantiate a HERALD storage mediator and
configure it to monitor all event types of interest. It is up to the user (or their
agents) to configure the repository to organise events into sessions of relevance,
which are useful for subsequent retrieval. Such a configuration can be used to
monitor all activities the user or their agents engage in; an example being for
automated diary generation (see Section 7.3). The repository could monitor all
workstation activities in the background, receive notifications from system-wide
services like the user’s movement sightings and use of library facilities, and
monitor their engagement in online collaborative activity.

• as an application-specific service. An active application can instantiate an event
repository and use it for its own requirements. A debugging application can thus

Chapter 7 - Experiments

 130

use the repository to monitor system execution, allow analysis and review of the
resulting trace and then destroy it once it terminates execution. In cooperative
work scenarios, it might be desired not to keep a permanent trace of the
interaction, but nevertheless use the event repository to support disconnected
operation. One way of achieving this is to have the conference management
objects instantiate their own event repositories, use them to provide replay for
participants after reconnection following network partitioning, but then destroy
them and all their event records once the collaboration terminates.

• as a component-specific service. An event repository can be embedded within a
distributed component and be used solely by that component to provide
persistent functionality. As discussed in Chapter 4, embedded event repositories
can enhance the capabilities of event sources and event clients, as well as
federators, brokers and gateways. In this configuration, the conceptual modules
making up the repository can be tightly integrated with the modules of the event
component in order to reduce unnecessary communication overhead.

These deployment scenarios are not mutually exclusive.
An important concern that applies in any scenario where replay is envisaged is

that of feedback. Although one can capture the event messages that integrate an
application, it is not always possible to then simply replay these back into the
application to set its global state the same it has been at some point in the past. The
reason for this is, of course, that in many components, the notification of an event
will cause input/output to be carried out, as well as bring about generation of other
new events that trigger further activity elsewhere. Therefore, replay can only be
successfully carried out when it is possible to distinguish between externally sourced
events, and internally generated events that are causally related to them. Only the
former should be fed back into a replay, and even then, the non-determinism
inherent within loosely coupled execution implies that the application might behave
differently in this second replay. This issue has received prominent attention within
investigations into fault-tolerant distributed systems environments and simulation
[JZ88, SY85, WF92].

7.3 A ‘memory prosthesis’ -like diary
application

A human memory prosthesis diary application was designed and deployed. The diary
application illustrates the ease with which information can be gleaned from several
sources and integrated using the event notification approach.

A ‘human memory prosthesis’, as defined by [LBC+94], denotes an application
that aids memory recollection by supporting searching by temporal context. People
often forget the details of a particular event or activity, but will recall the context of
when that activity took place. Examples of this context are activities that took place

7.3 A ‘memory prosthesis’ -like diary application

 131

before, during, or after the event in question. An automatically generated diary can
serve this role in aiding recollection if it can:

• capture enough information about a user’s daily activities, and

• present a meaningful means of querying the information.

In order to acquire reasonable granularity of information on a user’s activities,
information from both the physical and virtual (digital) dimensions a user works in
was collected.

Users’ physical location and movements were tracked through an Active Badge
system [HH94], where each user wears a personalised infrared badge that transmits a
signal every few seconds. This is picked up by widely deployed sensors throughout
the building. The sensor network was interfaced to by an event source module. This
module retrieved all badge sightings for all members of the department and kept
track of when they changed location. It offered event consumers events pertaining to
a user’s badge sightings (typically every few seconds), clicking of the buttons on the
badge, and movement events, generated only when a user is detected to have changed
location. The Active-Badge Event Source module also encapsulated event storage
functionality. Therefore, it could be interrogated as to the history of movement of
any user.

Software sensors monitored a user’s computer-based activities. In each of the
cases below, a stand-alone component or a wrapper around some application, was
deployed to monitor some software activity (see Figure 7.2). This generated HERALD
events of one or more specific types when important operations are carried out in
software. This experiment was carried out on the Microsoft Windows NT platform.
This illustrated the ease with which HERALD could be used to integrate third-party
independent modules. The monitoring involved:
• Terminal logging-on and logging out – users taking part could install a small sensor

application in their environment that would run when they log in and generate an
event, and likewise generate a log-off event when it is terminated upon shell
closure.

• Application usage – users use a toolbar to launch applications, and this generates
events identifying what applications had been launched and when.

• Document tracking – clicking on a document in the Windows environment
launches the application that is associated with that document for reading or
editing. A document-listing application allowed document opening and generated
events on these operations.

• Telephony – voice-enabled modems allow telephone calls to be made and received
through a personal computer. This conveniently allows a wrapper around the
Windows Telephony API to generate events about telephone activity and the
numbers dialled. Furthermore, calls dialled or received (using caller-ID) can be
matched to people or organisations through interaction with a user’s address
book.

Chapter 7 - Experiments

 132

• Address-book, Email and Personal Organiser (PO) software – comprehensive PO
software suites like Microsoft Outlook 98/2000 integrate a user’s calendar,
task list, contact list, and also double as email interfaces and repositories.
Outlook provides a very comprehensive programming model through which
software can interface with most of its internal modules and monitor their
activity. These wrappers were then made to integrate within the HERALD
framework and issue events on email arrival, dispatch, entering of calendar
appointments, appointment/meeting starting and ending, task creation and
clearing.

• Web browsing. A HERALD aware web proxy was deployed and the user’s web
browsing software was set to divert all its HTTP retrieval operations to it. This
proxy then handled web page retrieval transparently for the user’s browser while
generating events pertaining to the HTML pages being requested.

In this experiment, privacy was ensured by having all the events generated by a user’s
monitoring modules used only by other modules belonging to that user.

The above infrastructure enabled acquisition of sufficient information to be of
use as an automated diary. Events from all the monitors were collected by a User
Monitoring Module, which was also the client segment of an event repository. For
one month, the storage required was of 4-8 megabytes for average use and for

OutgoingPhoneCallOutgoingPhoneCall(Number)(Number)
IncomingPhoneCallIncomingPhoneCall(Number, Person)(Number, Person)

EmailReceivedEmailReceived(Sender, Subject, Reference)(Sender, Subject, Reference)
EmailSentEmailSent(Recipient, Subject, Reference)(Recipient, Subject, Reference)
MakeAppointmentMakeAppointment(Title, Location, Date, Time, Reference)(Title, Location, Date, Time, Reference)
CreateContactCreateContact(Name, Surname, Email, Telephone, Reference)(Name, Surname, Email, Telephone, Reference)
StartAppointmentStartAppointment(Title, Location, Reference)(Title, Location, Reference)
EndAppointmentEndAppointment(Title, Location, Reference)(Title, Location, Reference)
CreateTaskCreateTask(Subject, (Subject, DueDateDueDate, Reference), Reference)
ClearTaskClearTask(Subject, (Subject, DueDateDueDate, Reference), Reference)

URLVisitedURLVisited(URL)(URL)

TerminalLogOnTerminalLogOn()()
TerminalLogOffTerminalLogOff()()

PersonMovementPersonMovement(Person, (Person,
Room, Domain)Room, Domain)

OpenDocumentOpenDocument(Filename, Application)(Filename, Application)

RunAppRunApp(Application)(Application)
CloseAppCloseApp(Application)(Application)

Outlook 98Outlook 98

Logon Logon
MonitorMonitor

WEB ProxyWEB Proxy

TelephonyTelephony
MonitorMonitor

ApplicationApplication
LauncherLauncher

DocumentDocument
OpenerOpener

Active BadgeActive Badge
NetworkNetwork

EventEvent
RepositoryRepository

Diary Browser Diary Browser
And QueryingAnd Querying

Figure 7.2
Collecting and retaining information on a user’s daily activities

7.4 Thin-client activity capture and replay

 133

uncompressed event data.
The user interface attached to the diary application enabled browsing of the raw

data, and then its interpretation at various levels through application of TEQL queries.
Upon entering a TEQL query the user would be presented with a refined view of the
event data, this being the result of the query submitted. Output from multiple
queries could be combined to create new data views, and these could be queried
against in turn.

The following are examples of typical queries one could carry out from the data
captured:
• Show me the document that I edited after I had been to the meeting room where I met Jean

(some day two weeks ago)
• Locate the details of a phone call I made 30 minutes after I received an email from George
• Locate the document I wrote after my appointment at the hairdressers some time last month and

before I saw the Xerox PARC web page
• Show me the documents I edited on the 25th of this month from logging on until 12pm
Although in this application, there is no notion of an integrated workflow from one
component to another in a reactive manner, nevertheless it does demonstrate the
ease with which independent applications can be turned into event sources. It is
envisaged that it would be possible to use the event information collected to study
users’ interactions with each other and with electronic means of obtaining news (like
web-sites and email).

The diary application was found to be useful as a tool for memory recollection,
in particular for locating of documents. A future version detailing collaborative
online sessions integrated with the above event information is being designed. This
would then aid recollection of ideas and of concepts discussed in audio/video
conferences. At present, this would only be available through keeping of video and
audio logs (as in [LN93, LBC+94]) and manual annotation of the records.

7.4 Thin-client activity capture and replay

This thin-client session capture tool illustrated the feasibility of both temporal
searching and replay for playback of computer sessions. This has potential for
interface customisation and studying of human learning patterns.

Thin client platforms are becoming important tools in a number of
environments like the active home, where ubiquitous terminals of low computing
potential can be widely deployed. Likewise, the widespread use of handheld devices
like personal organisers, palm computers and smart mobile phones, with severe
power-consumption constraints (and thus performance restrictions), is bringing
about a revival of client/server computing where as much computation and state
information as possible is moved from the client to the server.

The Virtual Network Computing (VNC) technology from AT&T Laboratories
Cambridge [RSWH98] pushes this thin-client computing model to an extreme by

Chapter 7 - Experiments

 134

moving the execution of applications completely to the server, leaving the client
stateless. Without changing any windowing system, VNC can run on any platform
and breaks it into client/server pieces, namely the VNC server, the VNC client, and
the VNC protocol that connects the previous two (Figure 7.3). The VNC server
executes all the applications and generates the frame buffer. The VNC client displays
the frame buffer and accepts user input.

The server component of VNC captures the desktop of the machine the server
is hosted on. It then forwards this mirror of the desktop to the client component
running elsewhere. The client displays this copy of the desktop through whatever
display or windowing technology is available on the client platform, and allows the
user on the client machine to interact with that desktop as if they were sitting at the
console of that machine. Input devices like the mouse and keyboard can be
controlled, and should another user use the console of the server machine, these
would be shared with the remote user employing VNC. In this way, VNC enables a
machine’s desktop (or user session) to be used remotely in a way analogous to the X
windowing protocol. The difference between VNC and X is that whereas the X
protocol requires heavyweight clients to interpret drawing and display primitives,
VNC carries out all computation at the server, and sends only frame-buffer updates
and display segments to its lightweight client component. This has enabled VNC to
be ported to several platforms and windowing environments, like Windows,
several UNIX flavours, and some hand-held operating systems. VNC also enables
several users to simultaneously view the same desktop and is thus useful for
classroom demonstrations. Inversely, an instructor or a researcher investigating an
application’s usability characteristics can monitor someone else using that application.

In this experiment, carried out in collaboration and documented in [LSBH00] by
Li et al., the event repository developed in the course of this investigation was
employed to capture and store the events sent from the VNC client to the server.
HERALD’s event transport functionality was not employed in this application, as VNC
already uses a proprietary event protocol. The event repository was interfaced to this
event mechanism and VNC through the writing of a VNC proxy module that was
also the repository client component. This proxy server was seamlessly introduced
between the VNC client and the server to intercept and manipulate the message
streams in the VNC session [LSH99] (see illustration in Figure 7.4). Frame buffer
update messages and various event messages that denote user actions (mouse clicks,
window focus operations, entering of text) were retained. In effect, this is equivalent

VNC ServerVNC Server
Frame buffer updatesFrame buffer updates

Client mouse movementsClient mouse movements
and keyboard pressesand keyboard presses

VNC ClientVNC Client

Machine’sMachine’s
desktopdesktop
or useror user

sessionsession

Image ofImage of
remote remote
machine’smachine’s
desktopdesktop
or useror user
sessionsession

VNC ProtocolVNC Protocol

Figure 7.3

The VNC protocol

7.4 Thin-client activity capture and replay

 135

to capturing the user activity input on the VNC desktop, and enables playback of the
whole or part of the session captured. Furthermore, the events serve as indices that
can be queried to locate specific intervals within the user’s activity. This capture and
playback is useful for carrying out usability studies, as well as for the users themselves
to review their activities. The resulting movie allows the reviewing user to view the
captured activity with VCR-like control.

The events stored are used as indices into the frame-buffer updates. Firstly, there
are intentional annotation events, which are indices that users create during a work session
for marking particular time points or segments of activities or points of interest.
These notes are time-stamped by the event repository and act as a temporal index
into the recording. Several activities can be marked in this fashion, like text
highlighting. Other automatically generated indices, termed side-effect events, refer to key
(keyboard entry), pointer (mouse click) and bell (software generated notification)
events. Derived events are produced by automated analysis of detailed multimedia
records. For example, by analysing the frame buffer update messages, the proxy
calculates the size of the frame buffer area that has changed since the last update and
generates events pertaining to it.

In this application, the storage proxy presents a graphical user interface to the
user. There is no requirement for the user to enter queries directly into any query
language. A graphical menu-driven interface allows selection and customisation of a
number of pre-set search, browse, retrieval and playback modes, and the proxy then
translates these into TEQL commands transparently. The events retrieved from the
event repository are then used to look up the appropriate frame buffer updates and
reconstruct thumbnails for browsing or regenerate a session directly.

Frame BufferFrame Buffer
updatesupdates
and full and full

‘checkpoint’‘checkpoint’
framesframes

EventEvent
RepositoryRepository

VNC ServerVNC Server
VNC ClientVNC Client

Event BrowsingEvent Browsing
Frame displayFrame display
and full replayand full replay

Frame buffer Frame buffer
updatesupdates

VNC StorageVNC Storage
ProxyProxy

User activity User activity
eventsevents

EventEvent
QueryingQuerying

FrameFrame
RetrievalRetrieval

Querie
s

Querie
s

Figure 7.4

Inserting a storage proxy with an event repository to
capture user activity

Chapter 7 - Experiments

 136

The retrieval queries available enable the user to locate (1) commands typed in at
the console, (2) text entered into applications, as well as attempt to locate (3) any of
the events captured by their type and by specifying templates for their parameters.
Sequences of these events can be defined and searched for. When matches are
located, the query interface locates and re-builds the display frames corresponding to
when these events took place, and these are displayed in the form of thumbnails. The
user can then choose to view a replay from that thumbnail onwards at the full
original size, and at the same speed of occurrence, or faster.

This case study illustrates how the event repository can be employed with a
proprietary event protocol. In measurements carried out in the context of this
experiment to determine the latency of a retrieval operation, minimal performance
latency was due to the event repository parsing queries. Most of the time was spent
on retrieving the checkpoint image frames and then parsing all the incremental
updates until a frame could be displayed. Increasing the frequency of ‘checkpoint full
frames’ made this value tend towards a minimum figure of two seconds, a fraction of
which is due to querying the repository.

7.5 Active Management of multi-service
networks

This experiment illustrates the use of multiple event repositories working in
collaboration. While live events enable service management and administration,
analysis of event histories is employed to determine the effectiveness of
management policies and to guide their evolution.

The increasing need for rapid introduction of new services and highly
customised service offerings poses additional management challenges for today’s
networks. In order to address this, an investigation into management through event
notification and storage was carried out in collaboration with BT Laboratories
(Martlesham Heath, UK). The outcome of this investigation is described by Marshall
et al. in [MBS+99]. Catering for modern customer service requirements requires the
deployment of several specialised servers: examples being web servers, file servers,
archive servers, e-commerce servers, mail servers, multimedia servers; working
together to provide an integrated multi-service infrastructure. However, the reality of
the marketplace often does not allow tight integration approaches to providing such a
comprehensive solution. In order to be able to utilise third-party off-the-shelf
products, loosely integrated event-driven approaches are feasible and practical. One
powerful technique for providing such a service by a major information service
provider that requires scalability is to group these services into clusters of servers,
each running one or more services. In such a cluster, a number of machines (capable
of being instructed to launch any service required) provide redundant backup in case
of failure or overload, and management servers monitor and analyse the
performance and load factors of the running servers. Gateway servers then act as
bridges between these clusters, and not only propagate management information for

7.5 Active Management of multi-service networks

 137

synchronisation, but also provide auditing and forwarding of client requests in case
of cluster overload. This is shown in Figure 7.5.

The solution proposed as the outcome of this research employs Active
Management (event-driven) based on role-driven policies and Application Layer
Active Networking (ALAN) [FG98]. Information handling problems are avoided
by using a lightweight scalable mechanism for information transfer. An Information
Management System is deployed, which consists of a number of Information
Management Servers (IMS’s), each of which encapsulates an event repository and
captures management information. Events are propagated through HERALD’s event
transport. Thus, each specialised service, like the web server, is attached to an IMS
(most likely running on the same machine), which can extract events from it as well
as inject actions into the server according to events received. For example, an event
generated from the web server indicates its current connection load. The IMS
attached to the Cluster Manager service registers interest in this at a high delivery
priority and can therefore monitor its load, starting another web server if need be.
Similarly, it can send an event to the web server requesting it to stop handling client
requests and shut down (as it might not be needed any longer, or another service is
to be launched on that machine). Auditing servers also register interest in such
events, but at the lowest priority.

The management system controls the services running within the cluster through
an IMS at each network node, each of which is capable of autonomous actions. The
actions to be undertaken at each entity are determined using knowledge that entity
possesses about itself and policies (these being supplied by remote managers) that

Web ServiceWeb Service

Web ServiceWeb Service

Gateway ServiceGateway Service

File ServiceFile Service

EE--commercecommerce
ServiceService

Cluster ManagerCluster Manager

Multimedia ServiceMultimedia Service

FREEFREE

IMSIMS
IMSIMS

IMSIMS

IMSIMS

IMSIMS
IMSIMS

IMSIMS

other clustersother clustersMultiMulti--ServiceService
ClusterCluster

EventsEvents

IMSIMS

Figure 7.5
A multi-service cluster with a deployment

of Information Management Servers with embedded
event repositories

Chapter 7 - Experiments

 138

specify responses to system events. Typically, the local knowledge will consist of
status data on elements controlled by the autonomous entity, and will constrain the
number of policies that are applicable to an event instance. Each entity has a policy,
defined by its administrator, which expresses the local precedence order of the
management roles authorised to provide policies. All of the policies are based on the
work of Sloman et. al. [LS97, Slo94] and allow manager rights (authorisations) and
responsibilities (obligations) to be linked to the managers’ role.

The actions possible include download and execution of management utilities
and other executable programs that may be required but are not already installed.
There are therefore policies (distributed with the programs) that specify the usage
and behaviour of any programs added to the system using the active capability. The
active capability is provided using the techniques discussed in [MCC+97]. Program
policies are associated with the strongest role of the program provider at the entity
where the program is used.

All IMS’s encapsulate event repositories that store and then periodically forward
their data to other more centralised event repositories in the cluster. Therefore, two
types of repositories are employed; lightweight partially functional servers which can
be co-located with any entity, and fully functional servers which will typically be
located at gateway nodes. This arrangement takes advantage of the flexible
architecture employed in the event repository, which enables functional modules to
be disabled; thus balancing the complexity of querying required against the
computational power available at a node. While simple but fast event stores offer a
load balancing and traffic controlling function, fully featured event repositories allow
management information analysis.

Event repositories at most services are therefore cut-down in functionality to
reduce their requirements footprint, with no temporal querying available. These
stores retain their contents for a limited amount of time and space, and forward their
contents to the primary event stores at the cluster gateway IMS’s when the
time/space threshold is approached.

7.6 A ‘mixed-reality’ collaborative environment

The aim of this case-study application (named CURVE - Collaborative Unified Real
and Virtual Environment) was to explore the potential of collaboration between real
and virtual remote users in a common environment. As well as enabling review of
the interaction of these real/virtual users, the event capture and storage service
deployed also enabled replay of movement of the real users in situations like
emergency evacuations. This application explored the feasibility of session playback
to identify dangerous bottlenecks in buildings that could hamper rapid evacuation in
case of an emergency.

In order to achieve this, a real working space (part of the Cambridge Computer
Laboratory) was mirrored in virtual reality (VR), where the VR representation was as
accurate as possible to the real world. This virtual reality model could be accessed

7.6 A ‘mixed-reality’ collaborative environment

 139

through a web page, so it was available from anywhere. Although any user could
download and navigate the virtual world, one was required to register and obtain a
user identifier and password to be able to interact and collaborate with the ‘real
users’. The virtual reality world downloaded is dynamically modified as the user
navigates through it to reflect activity in the real working environment. There are two
aspects to this mirroring of a real environment into virtual-reality – mirroring the
building itself, and mirroring the real users that populate it and their activities.

An accurate virtual reality model of part of the Computer Laboratory was built.
The accuracy is reflected in the representation and dimensions of the building, floor
layout, and rooms; right down to the level of the furnishing and textiles adorning
each room. This enabled an individual familiar with the real building to immediately
feel at home while navigating the virtual space, and thus be able to quickly proceed to
the locations where (s)he wishes to visit or meet people. One of the problems
associated with virtual-reality multi-user environments is the artificial nature of the
worlds they present to users. In this application, this was not really an issue as the
virtual world closely models an existing building. To further emphasise this, real-
world movement is enforced, with active constraints like gravity. For example, to
move up a floor, one has to take the stairs or use the lift. Since the virtual world
created is so accurate in its representation of the real building, it has been used to
visualise replay of users’ movements in situations like emergency evacuations.

Real users were mirrored in the virtual world. When remote users visit a virtual
office they will view avatars representing the real users ‘really’ present in the physical
analogy of that office. Since recognizing someone from their avatar is important,
several avatars are employed to represent people, and in addition, head photographs
(mug shots) are used to customize each individual’s avatar with their face. Knowledge
of a real user’s location and activities is achieved by using information gained from a

CollaborationCollaboration
ComponentsComponents

Web Web
BrowserBrowser

Event InterfaceEvent Interface

T11T11 T12T12

T13T13

T14T14

T15T15

Badge SensorsBadge Sensors
OfficesOffices

VR VR
WorldWorld

EventsEvents
RealReal--users’ users’
movementsmovements

EventsEvents --
Virtual Virtual

viewer’sviewer’s
movementsmovements
and actionsand actions

Event Interface
Event Interface

CURVECURVE
Management Management
ComponentComponent

CorridorCorridor

Foyer
Foyer

Stairs Stairs ��

BadgeBadge
ServerServer

Virtual Visitor
Virtual Visitor N

otifier
N

otifier

Real userReal user

Virtual userVirtual user Real userReal user
location location
detectiondetection

Web Web
useruser

ManagementManagement
ComponentComponent

Ev
en

t I
nt

er
fa

ce
Ev

en
t I

nt
er

fa
ce

EventsEvents
RealReal--users’ users’
movementsmovements

Multimedia Cooperative Multimedia Cooperative
ComponentsComponents

Event RepositoryEvent Repository

Figure 7.6
The CURVE architecture

Chapter 7 - Experiments

 140

number of sources. The Active Badge system [HH94] deployed throughout the real
building enabled monitoring of the location of any individual who wishes it.
Additional information acquired from software components running within an
individual’s desktop environment was employed (see Section 7.2). For example, if a
user was currently logged in at a workstation with no idle time within that office, the
system concludes that (s)he is using that machine. The avatar is then displayed seated
or located next to the VR representation of that machine. If users move from one
location to another, their movement is detected and fed back into the virtual world,
which dynamically generates and displays their avatars moving in between the
corresponding locations.

When virtual users navigated through the virtual world, their movements were
captured and sent back to the Department, where they were then fed into real users’
collaboration software. From the real users’ perspective, they were made aware of
their ‘virtual visitors’ through a software component running on the workstation
nearest to their location (in the same room). This informed users whenever a virtual
user was entering their office, and they could ‘page’ the virtual user. Virtual users can
see other virtual users navigating through the virtual world, and can undertake
interaction with them in a similar fashion to real-world users. Figure 7.6 illustrates the
architecture behind CURVE.

CURVE is built around HERALD. An applet resident in the CURVE ‘access web
page’ interacts with the third-party browsing software that displays the virtual reality
world (defined in VRML97 [ISO97]), and can dynamically modify it and its
constituent objects. From this viewpoint, the application appears as in Figure 7.7.
This applet also monitors activities in the virtual world, like users’ movement and

their interaction with the objects that
make up the world; mapping these to
HERALD events. It therefore acts as both
a HERALD event source and client, and
communicates with other HERALD
components residing at the Computer
Laboratory. The collaboration modules
that can be launched to carry out audio-
video collaboration between users are
also active components. Classes of event
include user interaction events, such as
drawing lines, typing text, clicking on
objects in a video clip, virtual reality
viewpoint movement, and avatar
selection.

CURVE supports the storage and
retrieval of activities, enabling past
sessions to be replayed at a later point, in
whole or in part. It also allows the review
of scenarios involving mobile users, for
example emergency evacuation Figure 7.7

The mobility visualiser.

7.7 Summary

 141

procedures. In this experiment, users’ movements during a fire drill were monitored
and captured by the event repository attached to the Active Badge Event Source.
The event stream captured was then fed back into CURVE, which used it, just as it
would with live data, to visualise individuals’ progress through and out of the
building. This enabled identifying of problem spots within the building, such as
bottlenecks affecting the safe exit of a large number of people. This can be a
valuable tool for an architect to identify design flaws in a building, and assist with
making modifications or providing alternative exits. In the evacuation scenario,
CURVE was not employed as a collaborative environment as such, but its ability to
mirror a real world and its users was used to study that real world during an interval
of interesting activity. The advantage of using a virtual reality mirror over closed-
circuit camera footage is that in the virtual world one can change one’s viewpoint
continuously as opposed to being restrained to viewing from fixed and specific
viewpoints.

In summary, events describing real and virtual users’ movements and activities
were captured over time and stored in an event repository. A replay could then be
initiated from the repository, feeding back the event streams denoting people’s
movements within the building into the virtual reality mirror of it. This could be
done at the same speed as the original time scale, or in faster multiples. The replay
could be made from the beginning of the capture session, or from any temporal point to
any other point. TEQL replay queries could be made interactively into the replay module,
which would then return a set of replay intervals that match the query provided. The
user can then select which replay to carry out, this then being fed into the virtual
reality world.

7.7 Summary

The aim of these case-studies was to explore the potential of event storage in various
application domains having different integration, storage, and retrieval requirements.

The diary application illustrates the ease with which information can be gleaned
from several sources and integrated using the event notification approach. The
approach taken in this experiment enabled locating information based on its
temporal context by applying the principle of human memory. By cross-examining
the event histories pertaining to different users and relating them, this tool could be
the underpinning of an analysis of workflow patterns in the workplace.

The VNC thin-client session capture tool allows applications to be evaluated for
the usability of their interfaces and feature-set, as well as assist in teaching within
classroom environments. This illustrated the feasibility of both temporal searching
and replay for playback of computer sessions. Coupling this with post-session high-
level semantic analysis and a knowledge base (such as that prototyped in Lumiere
[HBHHR98]) has potential for interface customisation and studying of human
learning patterns.

Chapter 7 - Experiments

 142

The multi-service network management infrastructure introduced in Section 7.5
addresses the complex issue of managing the various servers that a modern
information provider needs to service scalable customer requirements. The solution
illustrates the use of multiple event repositories working in collaboration. Therefore,
while live events enable service management and administration, analysis of event
histories is employed to determine the effectiveness of management policies and to
guide their evolution.

Finally, the CURVE tool allows remote users to visit a virtual replica of a real
building, and view and interact with the real users working and populating it. As well
as enabling review of the interaction of these real/virtual users, the event capture
and storage service deployed also enables replay of movement of the real users in
situations like emergency evacuations. This application explored the feasibility of
session playback to identify dangerous bottlenecks in buildings that could hamper
rapid evacuation in case of an emergency.

 143

Chapter 8

Analysis
In order to evaluate the solutions presented in this dissertation, it is useful to recall
the original research aims as documented in Chapter 1. The proposed event storage
solution required provision of:
• a model for representing generic event instances,
• an architecture for seamless integration of the functionality and services of an event storage

repository with different environments,
• a flexible storage service that embeds a high-performance storage paradigm tailored for the

particular nature of event data,
• a powerful interface for retrieval and replay of information from event stores.
Chapter 2 then highlighted a number of application domains where event
notification is recognised as a feasible and powerful communications model, but
where further advances require review and analysis of event histories. These research
issues were therefore addressed with an emphasis towards generic applicability. This
approach can be unsafe as it can lead to elegant solutions that in practice cannot
meet the bespoke requirements of any particular application. In order to avoid this
pitfall, flexibility and customisation was built into the designs themselves. The idea
behind this is that application developers can adopt the above services in order to
built their application while tailoring them to their particular requirements and
constraints.

This chapter provides a synopsis of the features of the service presented and
discusses their merits and shortfalls. Where appropriate, it highlights directions for
future research.

8.1 A model for representing generic event
instances

The event model presented in this dissertation (Chapter 4) offers a generic way of
representing and reasoning about events. In past, event notification systems have
been hampered by providing unstructured event representations that severely limited

Chapter 8 - Analysis

 144

their application outside a few bespoke applications. The model proposed avoids any
application-oriented emphasis in order to avoid this fate. Not only is it
straightforward to map events from all sorts of hardware and software devices to the
event model proposed, but it also becomes possible to use the same event data
generated within one specialised application within another of completely different
scope.

The event model defines a type system for events where event instances belong
to a structured type, whose attributes are of any of the types defined in the Object
Data Management Group’s data types. These strict definitions on the representation,
size and range of types like integers, real values and strings, ensure that the event type
system is not tied down to any particular programming language data model. At the
same time, the ODMG data model provides bindings to the type systems of the
most popular languages, like Java™, C/C++ and Smalltalk, and is very close to the
type system defined by the Object Management Group, the other consortium
relevant for distributed systems design. These factors contribute towards rapid
integration, processing and usage of events within applications across heterogeneous
platforms.

Since events are typed and structured, services can determine precisely what
event information they require and specify fine-granularity filtering, providing for
highly client-focused event notification, with reduced network load and client-side
computation required.

The future of distributed systems lies in dynamic open infrastructures where
application components can be written by different organisations, and can
dynamically join or leave a distributed computation. Components can come and go,
provide services that others can make use of, and scour a system in order to discover
information that they can consume. This scenario precludes tightly coupled
approaches, where event schema are statically propagated using compiled skeleton
files or stubs.

In this model, event instances only contain a reference to their type and their
attributes’ values. It is therefore proposed that event schema, i.e. the structures that
define what is meant by an event type and which collectively make up the event
taxonomy available to an application, are defined at the event sources where the
events are generated, or at local event brokers that have knowledge of the events
available in their domain. From here, they can then be propagated to entities wishing
to consume events of those schema’s types. Self-describing messages in formats like
XML are useful for when an event consumer is interacting with message-based
channels delivering events of different kinds, and is undecided as to what is useful to
it. This is very expensive in terms of network bandwidth, due to the large message
size, and in terms of the filtering and parsing required at the event consumer.
Searching for and obtaining a descriptive scheme once seems to be a more practical
solution, and is particularly effective when coupled with a federated network of event
brokers [BBMS98].

Since event types can inherit properties from other events within an inheritance
tree, applications can structure services around meaningful organisations of event

8.2 An infrastructure for event notification and storage

 145

types. In this way, registration and querying of event data can be carried out on base
types that implicitly encompass event instances from all the sub-types.

In order to further facilitate discovery of information, scheme definitions enclose
textual fields that describe an event type’s purpose, and provide a set of keywords
that can be used for classification and indexing. Likewise, within an event type’s
scheme, each attribute is not only named and typed, but is also tagged with textual
descriptions of the nature of that attribute. Together, these allow for search services
that locate useful information, and support automatic translation of event
taxonomies in between domains. In addition, since schema are versioned, they can
evolve over time without requiring re-compilation of components. Event services
can serve events in the new and old format alongside each other without causing
confusion.

Finally both regular, as well as compound, composite events are implicitly supported.
Registering in a composite event is analogous to registering in a pattern of
occurrence, and enables applications to determine the granularity of events they wish
to see, without losing the ability to see the constituent primitive events if desired.

These capabilities go beyond the provisions of most event and messaging
models, and lead one to conclude that the event model presented can more than
meet the requirements of the application domains listed in Chapter 2. In Chapter 7,
the diary application, the multi-service network management infrastructure, and the
CURVE virtual reality system, all endorsed the event model presented. It adequately
fulfilled their requirements. Furthermore, the model specifies that its structures
themselves all be versioned, ensuring that the core model itself can evolve in
response to emerging requirements.

8.2 An infrastructure for event notification and
storage

The HERALD event notification and storage infrastructure (Chapter 4) provides a
flexible framework for building distributed systems from independent components.
HERALD provides the transport within which to implement and propagate structured
events as defined by the above event model. By not imposing any system-wide
constraints on data propagation and communication, HERALD embraces the loosely
coupled model of interaction that, as argued in Section 8.1, represents the future of
distributed systems and Internet-based software.

HERALD’s underlying philosophy is that by wrapping a small layer of code around
a device or software component, that component can be turned into an active
component. This is a component that can: (1) either generate events that are of
interest to other components, or (2) can register interest and consume events from
other components, or (3) can have actions injected into it. In the third case, an
application-specific federator module can be written that employs declarative rules to
drive injection of actions (triggering of activity) inside one or more non-active
components. This approach enables distributed systems to be rapidly and

Chapter 8 - Analysis

 146

dynamically composed from several applications that were not intended for such
integration. Section 7.3 demonstrates how this capability can be deployed.

The HERALD transport is characterised by its building block approach to
providing specialised event services within an application. Client modules, Source modules,
federator modules, event repositories, brokers, composite event engines and action injection interfaces
can be seamlessly brought together by an application writer to provide a variety of
specialised mediator components. Throughout, a comprehensive event registration
service with a variety of registration policies provides for propagation of event
information as defined by the event model described.

The registration policies supported by HERALD event sources provide clients with
a means to apply several constraints on how events are notified to them. While this
feature-set enables an event source to provide a comprehensive service to its clients,
an application writer can choose to disable several aspects of it. This allows event
sources to be used on platforms where memory, disk, and processor cycles are at a
premium. The reflective nature of the interface that ties together clients and sources
ensures that components can accommodate discovery of service availability and
dynamic change.

Since both event sources and clients can embed event stores, event histories can
be collected at various points within a distributed system. By directly enabling
components to query each other with regards to their event histories, and to request
retrieval of past events and event replays, HERALD provides the same level of access
to event histories as to live notification. This is a novel contribution for a generic
event transport.

8.3 An interface for retrieval and replay of
event information

An event history represents many things in many applications. It can represent a
history of interaction between cooperative applications, a trace of low-level system
events, a sequence of stock prices, a listing of telephone calls from a telephone
exchange, or a detailed record of a user’s interaction with other users and with
his/her digital environment. Chapter 2 gave further examples that indicate the
breadth of domains where a history has uses. Each of these scenarios supports a
number of applications, and within each, there are different requirements as to how
an event history might need to be queried and analysed.

What underlies these applications’ query requirements, however, is the singular
nature of the data they need to process. Event data differs from other datasets in that
it is ordered primarily by time, and analysis of it tends to revolve around looking at
sequences and content over time rather than over relations.

Designing an interface language that addresses these diverse requirements is a
challenge that is hard to meet, and this investigation has attempted to provide one
that makes expressing such querying more straightforward that with conventional

8.3 An interface for retrieval and replay of event information

 147

query languages. TEQL implicitly supports the notion that an event history is a
sequence of data that is ordered by time and is likely to be queried primarily
according to this property. It also provides the groundwork over which advanced
event history analysis can be defined.

The important features of TEQL are as follows:
• Programming flexibility,

Queries can be embedded through command requests that can be programmed
within applications of the repository. While a query language provides more
querying power than can be provided through a fixed application-programming-
interface, the ability to embed queries within program code increases the range
of uses of the interface.

• Intuitive contructs,
The new constructs provided have been carefully selected to reflect their
meaning. Although this does not come close to the clarity of a natural language,
it allows one to express queries that would have been cryptic at best if expressed
in conventional database query languages.

• Conventional querying capability,
Specialised query languages frequently suffer from being very good at addressing
niche queries but unsuitable at general-purpose conventional querying. By
defining TEQL as a superset of OQL, event data can be accessed as with any
ODMG-compliant database management system. In addition, new users of the
language can rapidly learn to use it as it only requires a minor shift of thinking
about the data to devise queries.

• Type-independence and semantic context,
TEQL allows queries to be defined in temporal entities rather than specific
relational structures or typed objects. This implicitly abstracts away the type of an
event, and allows a user to reason over the entire range of events within an event
history. Sessions enable a user to apply a context around related events, and
derived sessions allow one to selectively generate views of the event data in terms
of their semantics rather than their structure.

• Composition of events and derivation of abstract representation,
Multiple instances of patterns of sequential, although not necessarily contiguous,
event occurrences can be located, and turned into composite events. This pattern
recognition function allows one to reduce the granularity of the event
information. In order to represent activities that last for an amount of time,
intervals can be extracted from these composite events, as well as from primitive
events and from real time values. The result sets of several queries, that may
contain selected primitive events, composite events and intervals, can be joined to
create a new derived view of the original event history that reflects some
application-specific higher-level interpretation. These derived views can be made
persistent, queried on themselves, and propagated to remote event repositories.

Chapter 8 - Analysis

 148

• A formalism for temporal entities,
A temporal formalism is defined that clearly lays out the nature of events,
timepoints, intervals, and timelines. It also provides meaningful definitions for
ordering between all these temporal entities.

• Temporal relationships between events, real-time, date and calendar entities.
Finally, TEQL directly endorses the model of real time as the desirable
representation of global time. This controversial approach is required within
emerging loosely coupled architectures of dynamic nature, and is justified by a
number of studies [Die96]. This is reflected in the fact that TEQL maps
timestamps to values of real time, and provides constructs that enable users to
directly relate events to relative intervals of real time, and with respect to real
time absolute values like time, dates, and calendar entities.
The retrieval performance of the prototype implementation of TEQL has not

been empirically evaluated since a study into algorithms for efficient temporal query
evaluation and optimisation was beyond the scope of this document. This is a strong
line for further research. Several aspects of the language indicate that there is scope
for optimisation of query evaluation, and any thorough treatment might suggest a
revised storage and indexing structure. It is an open issue how to balance this
retrieval performance against rapid storage. Using optional off-line generated indices
or persistent views [JMS95] within certain repositories appears to be a promising
approach. Seshadri et al. [SLR94] suggest ways of optimising queries over ordered
sequences that are similar to temporally ordered event data. Although they assume
that a full sequence is available at all times, their algorithms are open to modification
for support segments of complete event data instead.

TEQL also allows partial match queries to be carried out through its template
matching constructs. Partial matches are difficult to optimise in any database,
particularly because even if an index were available for each event attribute, access
would still be far from optimal. Current approaches suggest that multi-dimensional
index structures, like the R-tree [Gut84] and the more optimal R*-tree [BKSS90],
yield the best performance for access of this kind. However, whether creating an R-
tree for each event type is the best approach for optimised template matching within
the event repository is a research issue. In particular, what might reduce the
effectiveness of such an index is the fact that queries in TEQL are usually restricted to
a sequence of events rather than across the whole database. Although this supports
partitioning of the data into smaller more manageable chunks for query evaluation, it
can render an expensive global indexing effort redundant. Therefore, an R-tree that
indexes the whole data set might not be that useful. This suggests that arbitrarily
diving the event data into temporal segments, and providing an R-tree for each
segment might be a better compromise. Queries that range over more than one
temporal segment would then have to access all the R-trees of the segments involved
and merge the result-set.

TEQL could be further enhanced to allow users to define their own calendar with
its calendar entities (I-Times). This would require a formalism for specifying I-Times
such as that proposed by [Ter97].

8.4 A storage service

 149

In conclusion, an exciting area for future research consists of investigating the
possibility that an AI-derived language could be mapped onto TEQL or a revised
version of it. These languages come much closer to natural language expressiveness
that any database query language available.

8.4 A storage service

The structured design proposed for an event repository balances the desire to
provide a generic storage solution against the unavoidable breadth of integration
requirements presented by applications.

Applications that require the use of an event store bring with them constraints
on storage and processing power. They also differ in how they are to interface with
the event repository, and often require dedicated services that are particular to their
function and usage of event histories. For this reason, the repository architecture is
functionally divided into what are termed into a repository server component and a
repository client component. While the server component of the architecture is kept
as generic as possible to provide a core set of functionality, repository clients can be
tailored to be highly specific to an application. The actual storage and retrieval
functionality of the event repository is supplied by the repository server.

A number of repository clients can interface with a repository server. The latter
is composed of a number of modules that provide storage and retrieval services, and
some of them can be disabled if required to reduce resource requirements. Likewise,
the client-side component libraries provide for customisable features like timestamp
mapping, data model translation, and sliding event observation windows that can be
enabled only if required. While any customisation of the server reflects on all its
applications, client specialisation applies only for its application.

The custom storage subsystem makes away with unnecessary conventional
database overhead and applies techniques developed in database transaction log
keeping and event tracing within distributed debugging systems. The log-based
solution provides for very fast storage of incoming event streams, and organises
event data by its type and temporal order. The only performance compromise made
is in real-time generation of session indices and duplexing of log pages. An index of
the temporal intervals represented by log pages is also retained by the Log Manager,
aiding retrieval queries based on temporal separations and values of real time.

In order to evaluate the raw writing performance of the prototype log-based
storage system a number of trials were run. The test environment used consisted of
a repository client and repository server co-located on one machine, with the client
generating events and depositing them into the store. The machine was an Intel
Pentium-II 450Mhz machine with 256Mb RAM, 14GB of EIDE (Mode 4) hard-
drive storage running Redhat Linux 5.2. Events were deposited both through TEQL
queries and directly through the stream connection. Ten thousand events were
deposited by the client, and the total time this operation took was used to work out
the average time required to deposit an event. The result is shown in Table 8.1.

Chapter 8 - Analysis

 150

For the purpose of a comparative evaluation, the same data event data was also
stored into a popular and widely deployed database, Microsoft Access 97. Access
was running on a Windows NT machine of identical specification. The event data
was submitted through the database’s ODBC access interface. These results are
shown in Table 8.2.

Packaging a query, passing it over a local socket, parsing it, and returning an
acknowledgement, adds around 100µs to the deposit of each event.

This overhead is reduced when events are streamed in directly, since it need only
be set up once at the beginning of the event input streaming. In this case, the above
results indicate that on this platform the repository could capture around 4000 events
of size 20bytes (this being normal size for most events) per second before the
storage thread starts running out of bandwidth. It was not possible to isolate the
effects of any write-caching that might have been applied by the operating system or
disk controller, so this result might be artificially good, and might not be applicable
over very long periods of time.

During this measurement, incoming event buffering and queuing were disabled.
With this enabled as per normal operation, the queue would be increased dynamically
to buffer events should disk bandwidth starvation occur. This illustrates that the log-
based storage structure delivers the crucial high-speed event deposit performance.
Furthermore, it is vastly more efficient at this than the Access database.

Finally, the History Propagation Engine provides an application with several
options on how to capture and retain its event histories. It can choose to reduce
network bandwidth by retaining events locally, and only forwarding histories at
periodic intervals. This also enables one to address the issue of unsynchronised
network clocks by merging local event traces at one centralised location in order to
provide a globally ordered history. Application components can also utilise cut-down
event repositories on platforms with scarce resources since they can rely on later
being able to propagate the captured histories to a more potent remote event
repository.

In conclusion, the generic repository architecture addresses the main issues of
flexibility in the face of different application requirements. The prototype

Time to parse deposit query 100µs
Average time to insert 20byte event 264µs

Average time to insert 1K event 600µs

Table 8.1
Performance figures for the Event Repository

Average time to insert 20byte event 35ms

Average time to insert 1K event 45ms

Table 8.2
Performance figures for Microsoft Access 97

8.4 A storage service

 151

implementation indicates that the proposed design delivers appropriate event storage
performance.

 153

Chapter 9

Conclusion
The future of distributed systems lies in dynamic open infrastructures where
applications are composed of loosely coupled independent components. These
dynamically join or leave a distributed computation, and dynamically discover
information about each other and each other’s capabilities. This dissertation has
argued that the lack of a generic model for event representation and notification has
restricted the development of these systems by restricting interoperability and
scalability. Furthermore, in order to empower existing applications and enable novel
solutions, a crucial service within event-driven systems is capture, persistent storage,
and meaningful retrieval of the event information driving these systems.

This dissertation has addressed these issues by contributing:

• a generic and flexible model for representing event types, that allows reasoning
on generic events without being restricted to the scope of the application that
generated or used the events,

• an infrastructure that provides event notification and capture of events at various
conceptual locations within a distributed application,

• an event storage architecture, which can be customised to meet the individual
performance and functional criteria of different applications,

• an interface for retrieval and replay of event information that supports the
notion that event information is temporally ordered, and provides for query
constructs that emphasise this property.

The design proposed was verified through a working implementation and deployed
in a number of application scenarios. These novel applications required state-of-the-
art support that cannot be provided by any other middleware infrastructure.

 155

Bibliography
[4Ti99] 4Tier Software. OpenMOM. http://www.4tier.com, 1999.
[AAEM97] G. Alonso, D. Agrawal, A. El-Abbadi, and C. Mohan. Functionality and

limitations of current workflow management systems. IEEE Expert, 12(5),
1997.

[Abu99] Abuzz. The Beehive System. http://www.abuzz.com, 1999.
[AL95] N. Ackroyd and R. Lorimer. Global Navigation: A GPS User’s Guide. Lloyds’ of

London, 2nd edition, 1995.
[All83] James F. Allen. Maintaining knowledge about temporal intervals.

Communications of the ACM, 26(11):832-843, November 1983.
[All91] James F. Allen. Time and time again: The many ways to represent time.

International Journal Intelligent Systems, 6(4):341-355, July 1991.
[ATT99] AT&T Research Laboratories Cambridge. The smart beverage dispenser.

http://www.uk.research.att.com/cgi-bin/coffee, 1999.
[Bat95] Peter C. Bates. Debugging heterogeneous distributed systems using event-

based models of behaviour. ACM Transactions on Computer Systems, 13(1):1-31,
February 1995.

[BBHM95] Jean Bacon, John Bates, Richard Hayton, and Ken Moody. Using events to
build distributed applications. In Proceedings of the 2nd International Workshop on
Services in Distributed and Network Environments, pages 148-155, Whistler, British
Columbia, USA, 1995.

[BBMS98] John Bates, Jean Bacon, Ken Moody, and Mark D. Spiteri. Using events for
the scalable federation of heterogeneous components. In Proceedings of ACM
SIGOPS European Workshop 1998, pages 58-65, Sintra, Portugal, September
1998.

[BCTW96] Daniel J. Barrett, Lori A. Clarke, Peri L. Tarr, and Alexander E. Wise. A
framework for event-based software integration. ACM Transactions on Software
Engineering and Methodology, 5(4):378-421, October 1996.

[BEM94] N. Belkhatir, J. Estublier, and W. Melo. ADELE-TEMPO: An Environment to
Support Process Modelling and Enaction. Advanced Software Development Series.
John Wiley and Sons, 1994.

Bibliography [Ben99] - [CFS+94]

 156

[Ben99] Richard Bentley. Awareness in work places. Personal communication, 1999.
[BHB96] John Bates, David Halls, and Jean Bacon. A framework to support mobile

users of multimedia applications. Baltzer Mobile Networks and Nomadic
Applications, 1996.

[BHI93] Sara A. Bly, Steve R. Harrison, and Susan Irwin. Media Spaces: Bringing
people together in a video, audio, and computing environment.
Communications of the ACM, 35(1):28-47, January 1993.

[BHS93] Albert N. Badre, Scott E. Hudson, and Paulo J. Santos. An environment to
support user interface evaluation using synchronized video and event trace
recording. Technical Report GIT-GVU-93-16, Graphics, Visualization and
Usability Center, Georgia Institute of Technology, USA, 1993.

[BK95] I. Ben-Shaul and G.E. Kaiser. A Paradigm for Decentralised Process Modeling.
Kluwer Academic, 1995.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider and Bernhard Seeger.
The R*-tree: an efficient and robust access method for points and rectangles.
In Proceedings of the 1990 ACM SIGMOD International Conference on Management
of Data , pages 322–331, 1990.

[BPS99] Tim Bray, Jean Paoli, and C.M. Sperberg-McQueen. Extensible Markup
Language (XML) 1.0. Technical report, World-Wide-Web Consortium,
February 1999.
http://www.w3.org/TR/REC-xml.

[BRS+94] R. Bentley, T. Rodden, T. Sawyer, J. Sommerville, I. Hughes, D. Randall, and
D. Shapiro. Ethnographically informed systems design for air traffic control.
In Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW’94), pages 287-298, 1994.

[BSHB98] John Bates, Mark D. Spiteri, David Halls, and Jean Bacon. Integrating real-
world and computer-supported collaboration in the presence of mobility. In
Proceedings of IEEE seventh International Workshops in Enabling Technologies:
Infrastructure for Collaborative Enterprises (WET ICE 1998), pages 256-261,
Stanford, USA, 1998.

[CB97] R.G.G. Cattell and Douglas K. Barry, editors. The Object Database Standard:
ODMG 2.0. Morgan Kaufmann, 1997.

[CDF98] G. Cugola, E. Di Nitto, and A. Fugetta. Exploiting an event-based
infrastructure to develop complex distributed systems. In Proceedings of the
1998 International Conference on Software Engineering (ICSE ‘98), pages 261-270,
1998.

[CDRW98] Antonio Carzaniga, Elisabetta Di Nitto, David S. Rosenblum, and Alexander
L. Wolf. Issues in supporting event-based architectural styles. In Proceedings of
the Third International Workshop on Software Architecture (ISAW ‘98, pages 17-20,
1998.

[CFS+94] Earl Craighill, Martin Fong, Keith Skinner, Ruth Lang, and Kathryn
Gruenefeldt. SCOOT: An object-oriented toolkit for multimedia
collaboration. In Proceedings of the 2nd ACM Conference on Multimedia, pages 41-
48, 1994.

[CH94] - [EE99] Bibliography

 157

[CH94] Gil Cruz and Ralph Hill. Capturing and playing multimedia events with
STREAMS. In Proceedings of the 2nd ACM Conference on Multimedia, pages 193-
200, San Francisco, CA, USA, 1994.

[CHRW98] A. Cichocki, A. Helal, M. Rusinkiewicz, and D. Woelk. Workflow and Process
Automation: Concepts and Technology. Kluwer Academic Publishers, 1998.

[CJ98] C. Ma and J. Bacon. COBEA: A CORBA-based event architecture. In
Proceedings of the USENIX Conference on Object-Oriented Technologies and Systems,
pages 117-131, June 1998.

[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.K. Kim. Composite
events for active databases: Semantics, contexts and detection. In Proceedings of
the 20th VLDB Conference, pages 606-617, Santiago, Chile, 1994.

[CLFS93] Earl Craighill, Ruth Lang, Martin Fong, and Keith Skinner. CECED: A
system for informal multimedia collaboration. In Proceedings of the 1st ACM
Conference on Multimedia, pages 437-444, 1993.

[CM93] S. Chakravarthy and D. Mishra. Snoop: An expressive event specification
language for active databases. Technical Report UF-CIS-TR-93-007,
University of Florida, USA, 1993.

[CW82] R.S. Curtis and L.D. Wittie. BugNet: A debugging systems for parallel
programming environments. In Proceedings of 3rd International Conference on
Distributed Computing Systems, pages 394-399, Miami, FL USA, October 1982.

[DA96a] Alan Dix and G. Abowd. Delays and temporal incoherence due to mediated
status-status mappings. SIGCHI Bulletin, 2(28):47-49, 1996.

[DA96b] Alan Dix and G. Abowd. Modelling status and event behaviour of interactive
systems. Software Engineering Journal, 6(11):334-346, 1996.

[Day88] U. Dayal. The HiPAC project: Combining active databases and timing
constraints. ACM SIGMOD Record, 17(1):51-70, March 1988.

[DBM98] U. Dayal, A. Buchmann, and D. McCarthy. Rules are objects too: A
knowledge model for an active, object-oriented database system. In Proceedings
of the 2nd Intl. Workshop on Object-Oriented Database Systems, Lecture Notes in
Computer Science 334. Springer, 1998.

[DFAB98] Alan Dix, J. Finlay, G. Abowd, and R. Beale. Human-Computer Interaction.
Prentice-Hall, 2 edition, 1998.

[DFWB98] Nigel Davies, Adrian Friday, Stephen P. Wade, and Gordon S. Blair. An
asynchronous distributed systems platform for heterogeneous environments.
In Proceedings of the eighth ACM SIGOPS European Workshop, pages 66-73,
Sintra, Portugal, 1998.

[Die96] Margaret A. Dietz. Gathering and Using Time Measurements in Distributed Systems.
PhD thesis, Department of Computer Science, Duke University, Durham,
NC USA, 1996.

[Dut99] Amitava Dutta-Roy. Networks for homes. IEEE Spectrum, 36(12):26-33,
December 1999.

[EE99] Guy Eddon and Henry Eddon. Inside COM+ Base Services. Microsoft Press,
September 1999.

Bibliography [FBSC93] - [GKP98]

 158

[FBSC93] L. E. Fahlen, C.G. Brown, O. Stahl and C. Carlsson. A space based model for
user interaction in shared synthetic environments. In Proceedings of the ACM
Conference on Human Factors in Computing, Amsterdam, The Netherlands, April
1993.

[FG98] M. Fry and A. Ghosh. Application Layer Active Networking (ALAN). In
Proceedings of the 4th International Workshop on High Performance Protocol
Architectures (HIPPARCH’98), June 1998.

[Fid91] C.J. Fidge. Logical time in distributed computing systems. IEEE Computer,
24(8):28-33, 1991.

[FM82] M.J. Fischer and A. Michael. Sacrificing serializability to attain high availability
of data in an unreliable network. In Proceedings of the ACM Symposium on
Principle of Database Systems, pages 70-75, 1982.

[FMK+99] Geraldine Fitzpatrick, Tim Mansfield, Simon Kaplan, David Arnold, Ted
Phelps, and Bill Segall. Instrumenting and augmenting the workaday world
with a generic notification service called Elvin. In Proceedings of the 6th European
Conference on Computer Supported Cooperative Work (ECSCW’99), page 431,
Copenhagen, Denmark, September 1999.

[For91] Ray Ford. Non-intrusive real time event capture. In Proceedings of the
ACM/ONR Workshop on Parallel and Distributed Debugging, pages 225-227,
Santa Cruz, CA, USA, May 1991.

[Fro95] D. Frolich. Mobile Personal Communications and Co-operative Working, Chapter:
Requirements for interpersonal information management. Unicom Seminars,
1995.

[Gav92] William W. Gaver. The affordances of Media Spaces for collaboration. In
Proceedings of the ACM 1992 conference on Computer supported cooperative work
Conference CSCW’92, pages 17-23, Toronto, Canada, November 1992.

[GD93] S. Gatziu and K.R. Dittrich. Events in an active object-oriented database
system. In Proceedings of the 1st International Workshop on Rules in Database Systems,
Edinburgh, UK, August 1993.

[Gel85] David Gelernter. Generative communication in Linda. TOPLAS, 7(1):80-112,
January 1985.

[Ger90] C. Gerety. HP SoftBench: A new generation of software development tools.
Hewlett-Packard Journal, 3(41):48-59, June 1990.

[GHS95] D. Georgakopoulos, M. Homick, and A. Sheth. An overview of workflow
management: From process modeling to workflow automation infrastructure.
Distributed and Parallel Databases, 3(2), 1995.

[GJS92] N.H. Gehani, H.V. Jagadish, and O. Shmueli. Composite event specification
in active databases: Model and implementation. In Proceedings of the 18th
VLDB Conference, 1992.

[GKBF98] S. Gatziu, A. Koschel, G.V. Buetzingsloewen, and H. Fritschi. Unbundling
Active functionality. ACM SIGMOD Record, 27(1):35-40, March 1998.

[GKP98] R.E. Gruber, B. Krishnamurthy, and E. Panagos. High-level constructs in the
READY notification system. In ACM SIGOPS European Workshop on Support
for Composing Distributed Applications, September 1998.

[GM95] - [IKG92] Bibliography

 159

[GM95] Ashish Gupta and Indepal Singh Mumick. Maintenance of materialised views:
Problems, techniques, and applications. Data Engineering Bulletin, June 1995.

[GN91] D. Garlan and D. Notkin. VDM Formal Software Development Methods, volume
551 of Lecture Notes in Computer Science, Chapter: Formalising design spaces:
Implicit invocation mechanism, pages 31-44. 1991.

[Gra93] Goetz Graefe. Query evaluation techniques for large databases. ACM
Computing Surveys, 25(2):73-169, 1993.

[GRWB92] Saul Greenberg, Mark Roseman, Dave Webster, and Ralph Bohnet. Human
and technical factors of distributed group drawing tools. Interacting with
Computers, 4(3):364-392, 1992.

[GT98] A. Geppert and D. Tombros. Event-based distributed workflow execution
with EVE. In Proceedings of IFIP International Conference on Distributed Platforms
and Open Distributed Systems (Middleware 1998), Lancaster, UK, September 1998.

[Gut84] A. Guttman. R-trees, a dynamic index structure for spatial searching. In
Proceedings of ACM SIGMOD, International Conference on Management of Data,
pages 47-57, 1984.

[Han88] Jeffrey P. Hansen. Trend analysis and modeling of uni-multi-processor event
logs. Master’s thesis, Carnegie Mellon University, 1988.

[Hay96] Richard Hayton. OASIS: An Open Architecture for Secure Interworking Services.
PhD thesis, University of Cambridge, March 1996.

[HBH+98] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse. The
Lumiere project: Bayesian user modeling for inferring the goals and needs of
software users. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, July 1998.

[HFK95] Nael Hirzalla, Ben Falchuk, and Ahmed Karmouch. A temporal model for
interactive multimedia scenarios. IEEE Multimedia, (3):24-31, Fall 1995.

[HH94] Andy Harter and Andy Hopper. A distributed location system for the Active
office. IEEE Networking, 8(1), January 1994.

[HHH92] M.L. Hammontree, J. Hendrickson, and B.W. Hensley. Integrated data
capture and analysis tools for research and testing on graphical user
interfaces. In Proceedings of CHI’92, 1992.

[HI91] C. Hewitt and J. Inman. Dai betwixt and between: From intelligent agents to
open systems science. IEEE Transactions Syst. Man Cybernet, 21(6):1409-1419,
1991.

[HS92] J.P. Hansen and D.F. Siewiorek. Models for time coalescence in event logs. In
Proceedings of the 22nd Annual International Symposium on Fault-Tolerant Computing
(FTCS ‘92), pages 221-229, Boston, MA, USA, July 1992.

[IBM99] IBM Corporation. MQSeries. http://www.ibm.com/software/ts/mqseries/, 1999.
[IET99] Internet Engineering Task Force - IETF. Mobile IP Internet drafts.

http://www.ietf.org/ids.by.wg/mobileip.html, 1999.
[IKG92] Hiroshi Ishii, Minoru Kobayashi, and Jonathan Grudin. Integration of inter-

personal space and shared workspace: ClearBoard design and experiments. In
CSCW ‘92, Conference proceedings on Computer-supported cooperative work, pages 33-
42, Toronto, Canada, November 1992.

Bibliography [Inp99] - [Lam78]

 160

[Inp99] Inprise Corporation. Entera Enterprise suite.
http://www.inprise.com/entera/, 1999.

[ISO97] ISO/IEC. The Virtual Reality Modeling Language (VRML97), International
standard ISO/IEC 14772-1:1997 edition, 1997.

[ITI98] ITI (NCITS). Information Systems - Database Language - SQL (SQL-92).
Technical Report ANSI X3.135-1992 (R1998), ANSI, 1998.

[IYS86] R.K. Iyer, L.T. Young, and V. Sridhar. Recognition of error symptoms in
large systems. In Proceedings of the 1986 IEEE-ACM Fall Joint Computer
Conference, 1986.

[JDB89] V. Jagannathan, R. Dodhiawala, and L.S. Baum, editors. Blackboard
Architectures and Applications, volume 3 of Perspectives in Artificial Intelligence.
Academic Press, New York, 1989.

[JMS95] H.V. Jagadish, I.S. Mumick, and A. Silberschatz. View maintenance issues in
the chronicle data model. In Proceedings of the 14th conference on Principle of
Database Systems (PODS’95), pages 113-124, San Jose, CA USA, May 1995.

[JS94] H. Jagadish and O. Shmueli. Distributed Object Management, Chapter: Composite
Events in a Distributed Object-Oriented Database. Morgan-Kaufmann, 1994.

[JZ88] David B. Johnson and Willy Zwaenepoel. Recovery in distributed systems
using optimistic message logging and checkpointing. In Proceedings of the 7th
Annual ACM Symposium on Principles of Distributed Computing, 1988.

[KFRC93] R. Kraut, R. Fish, B. Root, and B. Chalfonte. Groupware and Computer Supported
Co-operative Work, Chapter: Informal communication in organisations.
Morgan-Kaufmann, 1993.

[KK97] A. Koschel and R. Kramer. Configurable active functionality for CORBA. In
Proceedings of 11th ECOOP’97 Workshop on CORBA Implementation, Use and
Evaluation, June 1997.

[Kop92] H. Kopetz. Sparse time versus dense time in distributed real-time systems. In
Proceedings of the 12th International Conference on Distributed Computing Systems,
pages 460-467, Yokohama, Japan, June 1992.

[KR95] Balachander Krishnamurthy and David S. Rosenblum. Yeast: A general
purpose event-action system. IEEE Transactions on Software Engineering,
21(10):845-857, October 1995.

[KSP+95] T.L. Kunii, Y. Shinagawa, R.M. Paul, M.F. Khan, and A.A. Khokar. Issues in
storage and retrieval of multimedia data. Multimedia Systems, (3):298-304, 1995.

[Lad86a] P. Ladkin. Primitive units for time specification. In Proceedings of the 5th
National Conference on Artificial Intelligence, pages 354-359, Philadelphia, USA,
August 1986.

[Lad86b] P. Ladkin. Time representation: A taxonomy of interval relations. In
Proceedings of the 5th National Conference on Artificial Intelligence, pages 360-366,
Philadelphia, USA, August 1986.

[Lam78] Leslie Lamport. Time, clocks and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, 1978.

[LBC+94] - [MBS+99] Bibliography

 161

[LBC+94] Mik Lamming, Peter Brown, Kathleen Carter, Margery Eldridge, Mike Flynn,
Gifford Louie, Peter Robinson, and Abigail Sellen. The design of a human
memory prosthesis. The Computer Journal, 37(3):153-163, 1994.

[Lig91] G. Ligozat. On generalized interval calculi. In Proceedings of the 9th National
Conference on Artificial Intelligence, pages 234-240, July 1991.

[LIT91] I. Lee, R.K. Iyer, and D. Tang. Error/failure analysis using event logs from
fault tolerant systems. In 21st International Symposium on Fault-Tolerant Computing
(FTCS-21), pages 10-17. IEEE Computer Society Press, Montreal, Que.,
Canada, 1991.

[LN93] Michael G. Lamming and William M. Newman. Activity-based information
retrieval: Technology in support of personal memory. Technical report,
Xerox Research Centre Europe, 61, Regent Street, Cambridge, UK, 1993.

[Lop99] Diego Lopez De-Ipina. Image recognition techniques for identification of
users and objects. Personal communication, 1999.

[Lov91] L. Lovstrand. Being selectively aware with the Khronika system. In Proceedings
of the 2nd European Conference on Computer Supported Cooperative Work
(ECSCW’91), pages 265-277, Amsterdam, Netherlands, 1991.

[LR85] T.J. LeBlanc and A.D. Robbins. Event-driven monitoring of distributed
systems. In Proceedings of the 5th International Conference on Distributed Computing
Systems, pages 515-522, Denver, CO USA, May 1985.

[LS90] T.Y. Lin and D.P. Siewiorek. Error log analysis: Statistical and heuristic trend
analysis. IEEE Transactions on Reliability, 1990.

[LS97] E. Lupu and M. Sloman. A policy-based role object model. In Proceedings of the
1st IEEE Enterprise Distributed Object Computing Workshop (EDOC’97), 1997.

[LSBH00] Sheng Feng Li, Mark Spiteri, John Bates, and Andy Hopper. Capturing and
indexing computer-based activities with Virtual Network Computing. In
Proceedings of the ACM Symposium on Applied Computing (SAC 2000), Como,
Italy, March 2000.

[LSH99] Sheng Feng Li, Quentin Stafford-Fraser, and Andy Hopper. Applications of
stateless client systems in collaborative enterprises. In Proceedings of the Fourth
International Conference on Enterprise Information Systems (ICEIS’99), Setubal,
Portugal, March 1999.

[MA94] C. Montangero and V. Ambriola. OIKOS: Constructing Process-Centred SDEs.
Advanced Software Development Series. John Wiley and Sons, 1994.

[Ma97] Chaoying Ma. An alarm correlator based on the Cambridge event technology.
Computer Laboratory, University of Cambridge, 1997.

[Mat88] F. Mattern. Virtual time and global states of distributed systems. In Proceedings
of Parallel and Distributed Algorithms, pages 215-226, 1988.

[MBS+99] Ian Marshall, John Bates, Mark D. Spiteri, Chrys Mallia, and L. Velasco.
Active management of multi-service networks. In Colloquium on Control of Next
Generation Networks, IEE Electronics and Communications, London, UK, October
1999.

Bibliography [MCC+97] - [NX93]

 162

[MCC+97] I. Marshall, J. Cowan, J. Crowcroft, M. Fry, A. Ghosh, D. Hutchinson, M.
Sloman, and D. Waddington. Alpine-application level programmable inter-
network environment. BT Technology Journal, April 1997.

[MDL93] S. Menon, P. Dasgupta, and R.J. LeBlanc. Asynchronous event handling in
distributed object-based systems. In Proceedings of the 13th Conference on
Distributed Computing Systems, pages 383-390, Pittsburgh, USA, May 1993.

[MH93] Scott L. Minneman and Steve R. Harrison. Where Were We: Making and
using near-synchronous, pre-narrative video. In Proceedings of the 1st ACM
International Conference on Multimedia (Multimedia 93), pages 207-214, Anaheim,
CA USA, June 1993.

[MHJ+95] Scott Minneman, Steve Harrison, Bill Janssen, Gordon Kurtenback, Thomas
Moran, Bill Smith, and Bill van Melle. A confederation of tools for capturing
and accessing collaborative activity. In Proceedings of the 3rd ACM International
Conference on Multimedia (Multimedia ‘95), pages 523-534, San Francisco, CA
USA, November 1995.

[Mic99a] Microsoft Corporation. Message Queue Server Reviewer’s Guide.
http://www.microsoft.com/ntserver/appservice/techdetails/overview/msmqrevguide.asp,
April 1999.

[Mic99b] Microsoft Corporation. Microsoft Office.
http://www.microsoft.com/office/, 1999.

[Mic99c] Microsoft Corporation. Windows 2000.
http://www.microsoft.com/windows2000/, 1999.

[Mic99d] Microsoft Corporation. Microsoft ODBC.
http://www.microsoft.com/data/odbc/, March 1999.

[Mil91] D.L. Mills. Internet time synchronisation: The network time protocol. IEEE
Transactions on Communications, pages 1482-1492, October 1991.

[MKL95] R.A. Morris, L. Khatib, and G. Ligozat. Generating scenarios from
specifications of repeating events. In Proceedings of International Workshop on
Temporal Representation and Reasoning (TIME 95), pages 41-48, Melbourne, April
1995.

[MR90] N.H. Minski and D. Rozenshtein. Configuration management by consensus:
An application of law-governed systems. In Proceedings of the 4th ACM
SIGSOFT Symposium on Software Development Environments, pages 44-55, 1990.

[MS97] Masoud Mansouri-Samani and Morris Sloman. GEM: A generalised event
monitoring language for distributed systems. IEE/IOP/BCS Distributed
Systems Engineering Journal, 4(2), June 1997.

[MW88] S. Matsuoka and K. Wakita. Using tuple space communication in distributed
object-oriented languages. SIGPLAN Notices, 23(11):276-284, 1988.

[Nel98] Giles J. Nelson. Context-Aware and Location Systems. PhD thesis, University of
Cambridge, January 1998.

[NX93] R.H.B. Netzer and J. Xu. Adaptive message logging for incremental replay of
message-passing programs. In Proceedings of Supercomputing 1993, pages 840-849,
1993.

[OG97] - [Sha89] Bibliography

 163

[OG97] Open Group, editor. DCE 1.2.2 Introduction to OSF DCE. Number Open
Group Product Documentation F201 11/97 in DCE Documentation. Open
Group, 1997.

[OMG97] Object Management Group - OMG. Event Service Specification. Technical
Report formal/97-12-11, 1997. ftp://www.omg.org/pub/docs/formal/97-12-11.pdf.

[OMG98a] Object Management Group - OMG. Notification Service Specification.
Technical Report telecom/98-06-15, 1998. ftp://www.omg.org/pub/docs/telecom/98-
06-15.pdf.

[OMG98b] Object Management Group - OMG. CORBA Messaging Specification - joint
revised submission. Technical report, 1998.

[OMG99] Object Management Group - OMG. The CORBA/IIOP 2.3.1 Specification,
formal/99-10-07 edition, 1999. http://www.omg.com/corba/corbaiiop.html.

[OPSS93] B. Oki, M. Pfuegl, A. Siegel, and D. Skeen. The information bus: An
architecture for extensible distributed systems. In Proceedings of ACM SIGOPS
93, 1993, 1993.

[Ora99] Oracle Corporation. Oracle8i Advanced Queuing.
http://www.oracle.com/database/features/advque.html, 1999.

[PN93] Cherri M. Pancake and Robert H. Netzer. A bibliography of parallel
debuggers. ACM SIGPLAN Notices, (28):169-186, December 1993.

[Pur94] J.M. Purtilo. The Polylith software bus. ACM Transactions on Programming
Language Systems, 16(1):151-174, January 1994.

[RDR98] Devina Ramduny, Alan Dix, and Tom Rodden. Getting to know the design
space for notification servers. In Proceedings of the ACM 1998 conference on
Computer Supported Cooperative Work (CSCW ‘98), page 227, Seattle, WA USA,
November 1998.

[Rei90] S.P. Reiss. Connecting tools using message passing in the FIELD
environment. IEEE Software, 4(7):57-67, July 1990.

[Reu80] A. Reuveni. The Event Based Language and its Multiple Processor Implementations.
PhD thesis, Laboratory for Computer Science, Massachusetts Institute of
Technology, 1980.

[RN96] Daniel Robey and Michael Newman. Sequential patterns in information
systems development: An application of a social process model. ACM
Transactions on Information Systems, 14(1):30-63, January 1996.

[RSWH98] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper. Virtual
Network Computing. IEEE Internet Computing, 2(1), January/February 1998.

[SCT95] Gradimir Starovic, Vinny Cahill, and Brendan Tangney. An event based
object model for distributed programming. In OOIS (Object-Oriented Information
Systems) ‘95, pages 72-86, London, UK, December 1995. Springer-Verlag.

[Sha89] Y.P. Shan. An event driven model-view-controller framework for Smalltalk.
In Proceedings of the Object Oriented Programming Systems and Applications
(OOPSLA’89), pages 347-352, 1989.

Bibliography [SKB+98] - [Ter97]

 164

[SKB+98] Steve Shafer, John Krumm, Barry Brumitt, Brian Meyers, Mary Czerwinski,
and Daniel Robbins. The new EasyLiving Project at Microsoft Research. In
Proceedings of the Joint DARPA/NIST Smart Spaces Workshop, pages 30-31,
Gaithersburg, MA USA, July 1998.

[Slo94] Maurice Sloman. Policy driven management for distributed systems. Journal of
Network and Systems Management, 2(4), 1994.

[SLR94] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. Sequence query
processing. In Proceedings of ACM SIGMOD 1994 International Conference on
Management of Data, 1994.

[Smi84] E.T. Smith. Debugging tools for message-based, communicating processes.
In Proceedings of the 4th International Conference on Distributed Computing Systems,
pages 303-310, San Francisco, CA USA, May 1984.

[SN92] K.J Sullivan and D. Notkin. Reconciling environment integration and
software evolution. ACM Transactions on Software Engineering and Methodology,
1(3):229-268, July 1992.

[Sno93] Richard Snodgrass, editor. Proceedings of the International Workshop on an
Infrastructure for Temporal Databases, Arlington, TX, USA, June 1993.

[Sno95] Richard Snodgrass. The TSQL2 Query Language. Kluwer Academic, 1995.
[Sun97a] Sun Microsystems. Java Remote Method Invocation Specification.

http://java.sun.com/products/jdk/rmi/, 1997.
[Sun97b] Sun Microsystems. The Java Abstract Window Toolkit.

http://java.sun.com/products/jdk/awt/, 1997.
[Sun98] Sun Microsystems. ONC+ Developer’s Guide, 805-4034-10 edition, 1998.
[Sun99a] Sun Microsystems. Java Foundation Classes/Swing.

http://java.sun.com/products/jfc/, 1999.
[Sun99b] Sun Microsystems. JDBC Data Access API.

http://java.sun.com/products/jdbc/, 1999.
[Sun99c] Sun Microsystems. The Java 2.0 Language.

http://java.sun.com/products/jdk/1.2/java2.html, 1999.
[SY85] R.E. Strom and S. Yemini. Optimistic recovery in distributed systems. ACM

Transactions on Computer Systems, 3:204-226, 1985.
[TA87] Kuo-Chung Tai and Sanjiv Ahuja. Reproducible testing of communication

software. In Proceedings of IEEE COMPSAC’87, pages 331-337, 1987.
[Tal98] Talarian Corporation. SmartSockets.

http://www.talarian.com/products/smartsockets/smartsockets.shtml, 1998.
[Tan91] J. C. Tang. Findings from observational studies of collaborative work.

International Journal of Man-Machine Studies, 34:143-160, 1991.
[TCG+93] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors.

Temporal Databases: Theory, Design and Implementation. Benjamin/Cummings,
1993.

[Ter97] Paolo Terenziani. Integrating calendar dates and qualitative temporal
constraints in the treatment of periodic events. IEEE Transactions on Knowledge
and Data Engineering, 9(5):763-783, September/October 1997.

[TGD97] - [WSKS97] Bibliography

 165

[TGD97] D. Tombros, A. Geppert, and K. Dittrich. Semantics of reactive components
in event-driven workflow execution. In Proceedings of the 9th International
Conference on Advanced Information Systems Engineering, June 1997.

[Tib99] Tibco Software Inc. TIB/ActiveEnterprise.
http://www.tibco.com/products/active_enterprise/index.html, 1999.

[TIN96] Telecommunications Information Networking Architecture Consortium -
TINA. TINA Notification Service Description, July 1996.

[Tsa83] Michael M. Tsao. Trend Analysis and Fault Prediction. PhD thesis, Department
of Electrical and Computer Engineering, Carnegie Mellon University, 1983.

[WC96] J. Widom and S. Ceri, editors. Active Database Systems: Triggers and Rules for
Advanced Database Processing. Morgan Kaufmann, 1996.

[WF92] Y.M. Wang and W.K. Fuchs. Optimistic message logging for independent
checkpointing in message-passing systems. In Proceedings of the IEEE
Symposium on Reliable Distributed Systems, pages 147-154, October 1992.

[WFD94] S. Whittaker, D. Frohlich, and O. Daly-Jones. Informal workplace
communication: What is it like and how might we support it? In Proceedings of
Conference on Human Factors in Computing Systems (CHI’94), pages 130-137, 1994.

[Whi96] S. Whittaker. Talking to strangers: An empirical evaluation of factors
underlying electronic collaboration. In Proceedings of the ACM 1996 Conference on
Computer Supported Cooperative Work (CSCW’96), pages 409-418, 1996.

[Wit88] Larry D. Wittie. Debugging distributed c programs by real time replay. In
SIGPLAN/SIGOPS Workshop on Parallel and Distributed Debugging, pages 55-67,
Madison, WI USA, May 1988.

[WJH97] Andy Ward, Alan Jones, and Andy Hopper. A new location technique for the
active office. IEEE Personal Communications, 4(5):42-47, October 1997.

[WMLF98] P. Wyckoff, S.W. McLaughry, T.J. Lehman, and D.A. Ford. T-Spaces. IBM
Systems Journal, pages 454-474, 1998.

[WS96] S. Whittaker and C. Sidner. Email overload: Exploring personal information
management of email. In Proceedings of ACM CHI’96 Conference on Human
Factors in Computing Systems, pages 276-283, 1996.

[WSKS97] S. Whittaker, J. Swanson, J. Kucan, and C. Sidner. TeleNotes managing
lightweight interactions in the desktop. ACM Transactions on Computer-Human
Interaction, 4(2):137-168, 1997.

	Introduction
	1.1 Event noti?cation
	1.2 Applications of event noti?cation
	1.3 The past, the present and the future
	1.4 Storage and retrieval of event information
	1.5 Research issues
	1.6 Dissertation outline

	Applications and Motivations
	2.1 Applications of event noti?cation
	2.2 Application integration and building of distributed systems
	2.2.1 Background requirements
	2.2.2 Event-based integration
	2.2.3 Programming environments
	2.2.4 Applying event storage to distributed systems
	2.2.5 Debugging distributed systems

	2.3 Awareness of working practices
	2.3.1 Enabling functionality through event histories
	2.3.2 Uses of event logging in the literature

	2.4 Computer-supported cooperative work
	Capturing the history of collaboration

	2.5 Other application areas
	2.5.1 Visualisation of mobility
	2.5.2 The Active Home
	2.5.3 Graphical user interfaces and usability studies

	2.6 Conclusion

	Related Event Middleware
	3.1 Distributed application middleware
	3.1.1 The categories of middleware
	3.1.2 Distributed models of coupling

	3.2 Event-based messaging models
	3.3 Event-driven systems
	
	The Cambridge Event Architecture (CEA)
	The Events-Constraints-Objects (ECO) model
	Other event systems

	3.3.1 Event standardisation efforts
	CORBA Event Service
	CORBA Noti?cation Service

	3.3.2 Storage in event systems

	3.4 Message-oriented-middleware
	3.4.1 Core features of MOM
	3.4.2 Publish/Subscribe
	3.4.3 Representative solutions
	IBM MQSeries™ and Integrator
	Microsoft MSMQ
	Oracle8i AQ™
	Talarian SmartSockets™

	3.5 Conclusion

	A Storage-Enabled Event Infrastructure
	4.1 A generic event model
	4.1.1 Event type system
	4.1.2 Event inheritance
	4.1.3 Event schema
	4.1.4 Event evolution

	4.2 Overview of Herald
	4.2.1 Registration templates and policies
	4.2.2 Component communication
	4.2.3 Dynamic nature
	4.2.4 Causality, distributed time, and timestamps
	4.2.5 Federators, action-injection and composition
	4.2.6 Event brokers

	4.3 Applying event storage and retrieval
	4.3.1 Embedding of storage capability within core modules
	Event client module
	Event source module

	4.3.2 Applications of event histories
	Retrieval and replay of past events
	Initialisation and reconstruction of state
	Encapsulation of functionality
	Enhanced support for mobile and disconnected clients

	4.3.3 Storage-enabled event components
	Monitoring Event Source
	Mediator components
	Storage mediators

	4.3.4 Additional applications within message-oriented-middleware

	4.4 Summary

	Querying Event Information
	5.1 The temporal model
	5.2 Querying requirements
	5.2.1 Applications
	5.2.2 The nature of queries on event histories
	5.2.3 Language properties
	5.2.4 Main temporal characteristics
	5.2.5 Event sessions
	5.2.6 Event timestamps

	5.3 Related work
	5.4 The Teql language
	5.4.1 Creating events
	5.4.2 Temporal primitives
	Event templates
	Composite Event templates
	Intervals
	Timepoints

	5.4.3 Amounts of time and calendar entities
	Timepoint-denoted intervals
	Time amounts
	Calendar entities

	5.4.4 Basic operators
	Quali?cation, occurs-before
	Quali?cation, occurs-after
	Composite sequence, followed-by
	Disjunction and conjunction
	Interval operators

	5.4.5 Variable matching
	5.4.6 Parameter contexts
	5.4.7 retrieve and replay
	retrieve
	replay

	5.4.8 Derived sessions
	5.4.9 Teql and OQL

	5.5 Evaluating Teql
	5.6 Summary

	The Repository Architecture
	6.1 Functional requirements
	6.2 Architecture overview
	6.3 Repository clients
	6.3.1 The nature of repository clients
	6.3.2 Event handling
	6.3.3 Interfacing with the repository server
	6.3.3 Creating clients

	6.4 Repository server
	6.4.1 Designing a storage architecture
	The layered architecture model
	The built-in architecture model
	Synopsis

	6.4.2 Service module
	6.4.3 Query processing module
	6.4.4 Storage module
	Storage requirements
	Storage system con?guration
	Log Manager
	Naming
	Indexing
	Archiving

	6.5 Propagation of event histories
	6.6 Summary

	Experiments
	7.1 Prototype implementation
	7.1.1 The Herald event transport
	7.1.2 The event repository

	7.2 Deployment Con?gurations
	7.3 A ‘memory prosthesis’ -like diary application
	7.4 Thin-client activity capture and replay
	7.5 Active Management of multi-service networks
	7.6 A ‘mixed-reality’ collaborative environment
	7.7 Summary

	Analysis
	8.1 A model for representing generic event instances
	8.2 An infrastructure for event noti?cation and storage
	8.3 An interface for retrieval and replay of event information
	8.4 A storage service

	Conclusion
	Bibliography

		2000-01-29T15:14:00+0000
	Cambridge, UK
	Mark D Spiteri
	I am the author of this document

