
SPS: A Middleware for Multi-User Sensor Systems

Salman Taherian and Jean Bacon
University of Cambridge

Computer Laboratory
JJ Thomson Avenue,

Cambridge, CB3 0FD, UK
{st344,jmb}@cl.cam.ac.uk

ABSTRACT
With the increased realisation of the benefits of studying en-
vironmental data, sensor networks are rapidly scaling in size,
heterogeneity of data, and applications. In this paper, we
present a State-based Publish/Subscribe (SPS) framework
for sensor systems with many distributed and independent
application clients. SPS provides a state-based informa-
tion deduction model that is suited to many classes of sen-
sor network applications. State Maintenance Components
(SMCs) are introduced that are simple in operation, flexible
in placement, and decomposable for distributed processing.
Publish/Subscribe communication forms the core messag-
ing component of the framework. SPS uses the decoupling
feature of Pub/Sub and extends this across the SMCs to
support a more flexible and dynamic system structure. Our
evaluation, using real sensor data, shows that SPS is expres-
sive in capturing conditions, and scalable in performance.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems

Keywords
Sensor networks, middleware, states, publish/subscribe

1. INTRODUCTION
As benefits of studying environmental data become more

apparent, applications of sensor networks evolve beyond tasks
of data collection and passive monitoring. Future applica-
tions are expected to operate over larger and more heteroge-
neous sensor networks, with interests that involve detection
of conditions, situations, and contexts. Large scale deploy-
ment of application-specific networks become less likely, and
the concurrent operation of applications over a shared infras-
tructure is promoted by economical costs and availability of
data. Applications, in these systems, vary in number, and
often operate independently.

While related work has explored more efficient mecha-
nisms of transporting data from sources to sinks (e.g. [5]),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MPAC 2007, November 26-30, 2007 Newport Beach, CA, USA
Copyright 2007 ACM 978-1-59593-930-2/07/11 ...$5.00.

and developed suitable programming models for sensor de-
vices (e.g. [6]), little has been done in the context of large-
scale multi-user sensor systems. These systems are char-
acterized by their sheer scale, ad hoc infrastructure, and
multi-application setting. Application clients are often en-
closed within the network, and dynamically emerge as a re-
sult of new findings, evolving needs, and feasibilities. These
systems demand frameworks that allow for more flexible sys-
tem structures.

In this work we support heterogeneous and distributed ap-
plications, that have diverse high-level interests. Our frame-
work decouples applications from the sensor devices, and
processes sensor data internally to capture conditions, situa-
tions, or contexts of interest, using the notion of state. SMCs
are introduced that are simple in operation, but expressive in
capturing conditions. They can be decomposed, replicated,
and positioned flexibly in the system to reduce costs. SMCs
extract knowledge from an Information Space (InfoS), that
pre-processes data and provides a rich interface to the avail-
able knowledge in the system. The extracted knowledge is
then examined against predicates for conditions of interest.

SPS supports sensors, actuators, and application clients
through a unified Publish/Subscribe (Pub/Sub) interface,
and uses the Pub/Sub communication paradigm for its net-
work-wide messaging. The use of a Pub/Sub communica-
tion paradigm allows SPS to leverage from previous work
and offers easy integration with existing Pub/Sub systems.
SPS inherits its scalability, decentralization, and decoupling
from the Pub/Sub component. As a result, sensors, actu-
ators, applications, and SMCs can be transparently added,
replaced, upgraded, moved, or removed (when redundant),
without affecting other clients or the information processing
mechanism.

We also realised that the stateless nature of Publish/Sub-
scribe communication restricts its expressiveness for knowl-
edge acquisition by the SMCs. The proposed InfoS model
addresses this shortcoming, independently of the Pub/Sub,
and enhances condition capturing through knowledge stor-
age, and pre-processing for SMCs.

In the next section, we highlight a motivating case-study
that illustrates the system characteristics. Section 3 pro-
vides an overview of our middleware, with an introduction to
SPS’s information-based elements, events and SMCs. Mid-
dleware component interactions and operations are detailed
in section 4. Section 5 presents an application scenario that
is simulated and evaluated in terms of processing overheads,
storage requirements, and induced network-level communi-
cations. Concluding remarks are made in section 7.

2. MOTIVATION
For the purpose of this study, we focused on a smart trans-

portation system, composed of heterogeneous sensor devices
on urban streets. The choice was motivated by the availabil-
ity of real sensor data, and the scale reflects the size that
we envisage for future sensor systems. We believe there are
many other sensor systems that exhibit similar characteris-
tics to those outlined below.

A smart transportation system consists of many infor-
mation producing (sensor) devices, including but not lim-
ited to the inductive loop sensors, speed cameras, ANPRs,
GPS devices, and traffic light signals. Its ad hoc feature
means that the sensors and actuators are not deployed and
interconnected statically, or at once, but are progressively
deployed and changed over time. Redundant deployments
and frequent failures further complicate the system’s struc-
ture. At the application layer, the system is a multi-user
sensor system, that serves many independent and heteroge-
neous application clients, concurrently. As a result, any pro-
posed system solution should regard the system as an ad hoc
and dynamic environment, and account for nondeterministic
changes in users, applications, and the infrastructure.

Diverse application interests demand a generic data struc-
ture and information processing model, that can aid many
applications with their rich data requirements. An examina-
tion of the user interests revealed that very few (if any) relate
to the raw sensor data. Instead, user interests often relate
to high-level information, such as traffic congestion, jour-
ney times, nearest taxi ranks, which could only be realised
when data from multiple (possibly heterogeneous) sources
are aggregated and evaluated in a specific manner. Despite
the independence of the application clients, we also realised
that many interests may be similar or overlap (e.g. two in-
dependent users may be interested in traffic congestion in
the same area). The overlap of interest is most likely when
familiar conditions, situations, or contexts are involved.

In this paper, we focus on traffic congestion phenomena,
which we detect, internally, using our framework. Our source
data is obtained from SCOOT[12]. We define traffic con-
gestion as a condition signaled by the mutual occurrence of
“high road occupancy”and“slow vehicle speeds”on the same
road. The first condition is deduced from the inductive loop
sensor data, and the latter is deduced from the speed camera
readings. The condition lasts until the speed of the moving
vehicles exceeds a given threshold value (15MpH). In our
evaluation, we have augmented this condition by associating
a notion of proximity to the user’s interest – users subscribe
to the traffic congestion conditions that are located within 2
road-junction distances of their present location. This intro-
duces dynamic interests that vary in time, and depend on
users’ movements and locations. The proposed framework,
detailed in the next section, detects such complex conditions
using low-cost distributed processing.

3. State-based Publish/Subscribe
SPS is a State-based Publish/Subscribe framework that

supports its clients, comprising sensors, actuators, applica-
tions, controllers, and etc., through a uniform Pub/Sub in-
terface. Clients may hold one or more of the Pub/Sub roles.
An information producing client is called a publisher, and a
consuming one is called a subscriber. This communication
paradigm is also extended across the internal information-

notify
(events)

adv./
publish

notify
(events)

adv./
publish

subscribe/
SMC spec.

subscribe/
SMC spec.

Sensors

InfoSSMCs

request | register

reply | notify

State−based Publish/Subscribe

Apps/Controllers

Actuators

Figure 1: SPS Architec-
ture

SMC
TrafficCongestion

adv./
publish

adv./
publish

notify
(events)SMC spec.

subscribe/

SPS

JourneyPlannerApp

InductiveLoop Car

Figure 2: Case-study
Overview

capturing elements, SMCs. For example, an SMC that de-
tects “road traffic congestion” acts as a subscriber to the
sensor (inductive loop and speed camera) data, and as a pub-
lisher to those interested in the traffic information. SMCs
are user-defined expressions that capture momentary or last-
ing conditions using the notion of state.

SPS provides an expressive information processing model,
while using a stateless Pub/Sub paradigm for messaging.
More importantly, it supports a flexible and dynamic system
structure through the decoupling of clients (by the Pub/Sub)
and the decoupling of the data (by the InfoS).

3.1 Architecture
The SPS comprises a middleware layer that resides on all

nodes. This is shown as a rectangular component in figure 1.
Every node may also hold zero or more other components,
depending on its resources, hardware accessories, and appli-
cation roles. We have depicted interactions corresponding
to the conventional Pub/Sub roles for the commonly known
clients in figure 1 (sensors are publishers, actuators are sub-
scribers, and applications/controllers may be both).

The solid arrows indicate interactions that are bound to
local nodes. Clients strictly communicate with their local
SPS component. The communication is via a rich Pub/Sub
interface that is detailed later in §4.1. There are also inter-
actions between SMCs and InfoS components, that are in-
ternal to the SPS and constitute the high-level information
deduction core of the framework. InfoS components contain
the knowledge that is available to SPS, and SMCs capture
high-level information from this available knowledge.

Figure 2 shows the architectural diagram corresponding to
the traffic congestion detection example. There are nodes
with the depicted sensor components that connect to the
SPS and publish events. A TrafficCongestion SMC, defined
by the JourneyPlannerApp client, detects traffic congestion
conditions from the available knowledge. The dashed arrows
reflect information flow that could be across the network (i.e.
the TrafficCongestion SMC may reside on a node remote to
the sensor or application clients). Information flow, in SPS,
is by means of event notifications, formally described below.

3.2 Event Notifications
Event notifications are asynchronous messages, compris-

ing a set of attribute/value pairs that describe informa-
tion, either introduced to or captured within SPS. Some
attributes are static, others are topic-related. The static
attributes are as follows.

Name labels the information contained in the event. It has
two fields, the topic (major) name and a minor name.

Time is the event notification’s timestamp at the publisher.
Also viewed as the event occurrence’s timestamp.

Location is the geographical location of the event’s occur-
rence. This may be different from the geographical
location of the event’s publisher.

Class describes the temporal significance of the information
contained in the event notification. It may be momen-
tary (atomic), signal a condition initiation (ingress),
or signify the termination of a condition (egress).

The topic-related attributes may hold arbitrary names.
However, for the sake of discussion, we label these as value1,
value2, and . . . ; each holding a numerical/textual value that
is understood relative to the event name.

3.3 State Maintenance Component (SMC)
SMCs are the information processing elements of SPS.

They capture conditions or contexts of interest through the
notion of state. They may capture lasting or momentary
conditions, and are expressed as follows.

• SMC <name>: {<data-elements>}
[<entrance predicate> | <SMC attr. computations>

♦ <exit predicate> | <SMC attr. computations>]

SMC names also hold two fields, a major and a minor.
The major is the significant part of the name, and labels the
information that the SMC captures. The minor name is used
to distinguish between SMCs with a common major name.
These relate to the discussed event notification names.

Predicates are boolean expressions that examine some user-
defined conditions over the attained knowledge in SPS. The
knowledge is queried by Data Elements (DEs). The DEs re-
solve into Knowledge Points (KPs), when examined against
the local InfoS. Predicates, subsequently, evaluate the KPs
for condition occurrence (initiation) or termination. The
TrafficCongestion SMC is specified below.

• SMC TrafficCongestion: {A=InductiveLoop.agg[

30s,avg] ; B=Car.agg[1m,avg] ; C=local.local.local}
[(A.value1>2.5) && (B.value1<7) && (A.location==

B.location) | value1=B.value1 ♦ (B.value1>15) &&

(C.location==B.location) | value1=B.value1]

The three DEs (A, B, and C) extract information that
corresponds to the “average road occupancy over the last
30 seconds”, “average vehicle speed in the last minute”, and
the “previously published SMC event”, respectively. The
entrance predicate is composed of three boolean expressions
that ensure high road occupancy, slow moving speed, and oc-
currence of the previous two phenomena on the same road,
respectively. The exit predicate detects the end of the traf-
fic congestion condition, and is evaluated after the entrance
predicate is satisfied. It is composed of two boolean expres-
sions that examine the speed of the moving vehicles and en-
sure that the examining speeds relate to the captured traffic
congestion. The first topic-related SMC attribute (value1)
is set to the speed of the moving vehicles on the road, as we
feel this measure best indicates the degree of congestion.

Each SMC holds a status-bit that indicates its status (ac-
tive or inactive). This is manipulated to reflect the state
transitions. When the appropriate predicate is satisfied, the
status-bit is toggled, and the SMC attributes are computed.
A set of attributes (matching that of the event notification’s
static attributes) is also computed internally following every
state transition (see §4.2). The resulting values may be en-
veloped into an event notification, that is referred to as an

SMC event. SMC events can transport the captured knowl-
edge to others, such as the JourneyPlannerApp clients.

4. SPS INTERNALS
Figure 3 shows the internals of the SPS middleware: the

Pub/Sub, InfoS manager, and SMC manager components.

SPS, as a resource-
aware middleware
framework, classifies
nodes into three
classes: micro nodes,
macro nodes, and
power nodes. Mi-
cro nodes possess
the least resources,
perhaps only to
perform sensing or
actuation in their
local environments.
The SPS framework

manager

SMC manager

InfoS

SMCs

subscribe/

SMC spec.

SMC spec.

request/
register

reply/notify

subscribe

adv./
publish

Subscribe
Publish/

adv./
publish

notify
(events)

notify
(events)

InfoS

Figure 3: SPS internals

is basic for these nodes, comprising just the Pub/Sub com-
ponent. Nodes with some storage and computational re-
sources (macro nodes) hold all three components. These
nodes can house InfoS and SMCs that deduce higher level
information. Finally, power nodes possess sufficient compu-
tational resources to decompose SMCs (discussed later in
§4.2). The Pub/Sub is the only network-aware component
of the architecture, that interacts with its peers to dissemi-
nate events across the network. The SMC manager publishes
SMC events, and the InfoS manager subscribes to event top-
ics of interest. These components are detailed below.

4.1 Publish/Subscribe
Our work uses Pub/Sub[4] to leverage from previous work

and achieve scalability and decoupling of event clients. This
decoupling and the unified Pub/Sub interface allows for a
dynamic system structure, in which SPS clients and SMCs
may transparently change, switch roles, or adopt multiple
roles in respect of different event clients in the system.

We have chosen Quad-PubSub[13], a location-based Pub-
lish/Subscribe for wireless sensor networks, as our Pub/Sub
component. The location-awareness of Quad-PubSub en-
hances the value of data, and reflects the following.

• Events have associated locations (location-stamps for
events’ occurrences).

• Advertisements specify bounding regions for publish-
able events’ locations.

• Subscriptions may filter events by topic and location
(region of interest).

In addition to the conventional Advertise, Subscribe, and
Publish operations, the Quad-PubSub, in SPS, is augmented
with the SMC specification and placement services. Given
an SMC definition, the protocol checks the registered pub-
lishers and discards the SMC if an equivalent SMC1 is regis-
tered. Otherwise, a suitable host is found and the SMC def-
inition is dispatched to its SMC manager. The SMC name
and DEs are used to place the SMC close to its source data,
or on nodes which already host similar SMCs. This place-
ment policy aims to reduce messaging costs.

1Two SMCs are equivalent, if their names and DEs match.

4.2 SMC Manager
The SMC manager stores and evaluates SMCs. It acquires

input information from the local InfoS component, and eval-
uates SMCs for condition initiations and/or terminations.
SMCs with the explicit “true” exit predicate capture mo-
mentary conditions and produce atomic SMC events, oth-
erwise they capture lasting conditions and produce ingress
and egress SMC events accordingly.

SMC specifications, that are received from the Pub/Sub
component, may be registered, deferred, or decomposed (only
at the power nodes). SMC registration involves the alloca-
tion of limited storage space for the SMC and the adver-
tisement of publishable SMC events to the Pub/Sub com-
ponent2. Deferral is done when the SMC manager lacks
sufficient resources to house a new SMC, or when the SMC
specification is decomposed into simpler SMCs. SMCs can
be decomposed along the predicates and/or the DEs. For
example, the fore-mentioned TrafficCongestion SMC may
be decomposed, along the predicates, as follows.

• SMC TrafficCongestion: {A=IL High ; B=Car Slow

; C=local.local.local ; D=Car Slow.egress} [A && B

&& (A.location==B.location) | value1=B.value1 ♦
D && (C.location==D.location) | value1=D.value1]

• SMC IL High: {A=InductiveLoop.agg[30s,avg] ;

B=local.local.local} [(A.value1>2.5)

♦ (A.value1<=1.5) && (B.location==A.location)]

• SMC Car Slow: {A=Car.agg[1m,avg] ;

B=local.local.local} [(A.value1<7) |
value1=A.value1 ♦ (A.value1>15) &&

(B.location==A.location) | value1=A.value1]

Intermediate IL High and Car Slow SMCs are introduced,
which capture the pre-requisite conditions independently.
This decomposition decouples the TrafficCongestion SMC
from the primitive InductiveLoop and Car event notifica-
tions, that may be high rate and expensive in processing.

SMC evaluations may be periodic or trigger-based. The
SMC manager can periodically dispatch the DEs to the InfoS
component for KP acquisitions (request/reply), or (in the
case of available storage space) register DEs at the InfoS
component for KP notifications (register/notify). KPs con-
form to the semantics of the event notifications, and are
often retrieved in sets (e.g. the Car.agg[1m,avg] DE results
in a set of KPs, that each correspond to a last-minute aver-
age speed reading at a distinct speed camera sensor). SMC
predicates are examined until one or more satisfying KP-
combinations are found. Evaluation policies are governed
by the DE parameters, details of which are omitted due to
space limitations.

When an SMC predicate is satisfied the status-bit is tog-
gled, and the SMC attributes are computed or adopted from
the most recent KP, as the topic-related attributes of the
SMC event. The static attributes are assigned according to
the SMC name, satisfied predicate, and the time and loca-
tion of the most recent KP in the satisfying combination.

4.3 Information Space (InfoS) Manager
InfoS is a knowledge container, that is used by the local

SMCs to deduce high-level information. The SMC manager
expresses knowledge of interest through DEs, and the InfoS
manager, in turn, subscribes to event notifications to receive
this knowledge globally. The InfoS offers an expressive, yet

2SMC advertisements help to discover and share SMCs.

simple, knowledge querying mechanism (via DEs), that is
otherwise unattainable in stateless Pub/Sub systems. In
this design, events are stored on demand, and knowledge is
shared among the SMCs.

The InfoS serves three purposes. Firstly, it pairs the re-
lated ingress and egress events, and offers rich, condition-
based information to the SMCs. As such the TrafficConges-
tion SMC can evaluate conditions as simply as evaluating
boolean A(=IL High) and B(=Car Slow) DEs. Secondly,
it abstracts correlated data through aggregations. This re-
sults in individual aggregated data that eases computations
and provides data transparency for the SMC manager. For
example, when examining the “average speed of the cars in
the last minute”, the SMC manager is no longer concerned
with the aggregation of an indeterminate number of Car
event notifications, but is simply supplied with a single ag-
gregated value (KP) which abstracts the fine-grained speed
readings in the last minute. This abstraction could further
be investigated to supply approximations or modeled data
when fine-grained data is unavailable or erroneous. Thirdly,
knowledge storage and consistency concerns are decoupled
from the SMC manager. This provides a clean separation of
roles for the InfoS and SMC managers.

In the current implementation of SPS, the InfoS is mod-
eled as a multi-dimensional indexed structure. The dimen-
sions match the static attributes of the event notifications,
and points in this space contain knowledge in the form of
tuples that hold topic-related attribute/value pairs. DEs
query the InfoS by means of selecting and processing knowl-
edge along each dimension of the InfoS. For example, the
Car.agg[1m,avg] DE selects the ‘Car’ value on the name
dimension, selects and averages values on the last unit (i.e.
[-1,0]) of the time dimension, selects the entire range for the
location (default), and the ‘ingress’ value for the class di-
mension (default). The knowledge confined in the defined
space resolves to a set of KPs, that reflect the last-minute’s
average speed readings, for each knowledge-contained loca-
tion in the entire system. SMC decomposition along the
DEs (mentioned in §4.2) allows this SMC to be decomposed
into SMCs that represent smaller regions.

Delayed processing, with roll-back capabilities, is used for
knowledge consistency. SMCs are evaluated with respect to
delayed timelines that are transparent to them. The delay
maximizes the receipt of related events (knowledge), that is
used for the selection and processing of knowledge for SMCs.

5. EVALUATION
The proposed framework has been implemented on Jist/

Swans[3]. The following sections describe the application
settings, and the performance evaluation of SPS.

5.1 Application: Journey Planner
The discussed journey planner application was used to

evaluate the correctness of SPS. The condition of inter-
est was complicated, as follows. The JourneyPlannerApp
clients subscribed to the TrafficCongestionNear event topic,
whose SMC captures nearby traffic congestion (situated within
the 2 road-junction distance of the user’s present location.
The corresponding SMC is expressed as follows.

• SMC TrafficCongestionNear: {A=TrafficCongestion

; B=User.local.local} [abs(A.location - B.location)

<= 2 | value1=A.value1 ♦ (true)]

The A DE extracts traffic congestion information, and
the B extracts the locally published user information. The
TrafficCongestion SMC is as before (see §3.3). Details of
sensor clients are given below.

• Inductive Loop sensors, with periodic reports on road-
segment occupancies (continuous InductiveLoop (IL)
event notifications at 1Hz).

• Speed Measurements3, reporting on the speed of the
passing cars on the road (discrete, but potentially high-
volume, Car (C) event notifications).

• Location sensors, indicating the current location of the
simulated users (continuous User events at 1Hz).

A grid-like road network was simulated and two-dimensional
road coordinates were used for the location attribute of the
events. We examined sixty roads, each equipped with a
single inductive loop and speed measuring sensor. In addi-
tion to these (120) sensor devices, 300 network nodes were
introduced to ensure wireless network connectivity in the
simulation environment. Five hundred mobile users were
simulated, who benefitted from the journey planner appli-
cation, local to their nodes.

A high-level view of
the system, follow-
ing SMC decompo-
sition (along predi-
cates), is shown in
figure 4. We pro-
cessed twenty (20)
hours of real data,
relating to two dis-
tinct days, 1st July,
2006, 1AM –9PM for
Sim1, and 6th April,
2006, 1AM –9PM for
Sim2. Table 1 out-
lines the simulation
results (including

notify
(events)

TCN

subscribe/
SMC spec.

adv./
publish

adv./
publish

adv./
publish

CarInductiveLoop

SPS

IL_High

TC

Car_Slow

User

JourneyPlannerApp

Figure 4: Sys. Overview

SMC counts after the geographical (DE) decompositions).

5.2 Processing
The processing complexity of SPS relates to the cost of

SMC evaluation. SMCs are evaluated when their corre-
sponding KPs are updated. Hence, received events, at InfoS,
can trigger SMC evaluations and induce processing costs.
Table 1 shows that the SPS has lowered the number of re-
ceived events through SMC decompositions along the geo-
graphical space (DEs). The max. received events, for the
TrafficCongestion SMC evaluations, is lowered from 1616
(Sim1) and 3580 (Sim2) to 236 and 701 events, respectively.
These figures are 14.6% and 19.5% of the 1616 and 3580,
the sum of InductiveLoop High and Car Slow events.

The processing complexity of all SMC predicates was O(n),
except for the TrafficCongestion SMC predicates. This means
that an incoming event at most triggered a single KP-com-
bination examination. The maximum observed processing
complexities, for the TrafficCongestion SMC predicates, were
6n (Sim1) and 8n (Sim2). This means that, at worst-case,
SPS was observed to evaluate 6 KP-combinations (Sim1)
and 8 KP-combinations (Sim2), when one event was received
at the TrafficCongestion SMC’s local InfoS.

3inferred from a secondary stream of raw SCOOT data

Statistics Sim1 Sim2
Annotations 1/7/06 6/4/06
Number of SMCs and Clients

Client – User 500 500
Client – InductiveLoop (IL) 60 60
Client – Car 60 60
SMC – IL High 60 60
SMC – Car Slow 60 60
SMC – TrafficCongestion (TC) 16 16
SMC – TrafficCongestionNear(TCN) 500 500
Client – JourneyPlannerApp (JPA) 500 500
Client Subscriptions 500 500
journey planner applications

Resolved Subscriptions 1652 1652
(including InfoS Subscriptions)

Max Subscriptions per node 2 2
InfoS subscriptions for TrafficCongestion

and TrafficCongestionNear SMCs

Decomposed SMC types 4 4
IL High, Car Slow, TC and TCN

Decomposed and Distributed SMCs 636 636
Max SMC allocation per node 1 1
Max Events stored per InfoS 37 30
Car events

Max Events stored per InfoS for the
TC SMC evaluation

14 22

paired IL High, Car Slow, and Traffic-

Congestion events

Max received input Events for the
TrafficCongestion SMC

236 701

Max Predicate Evaluations per re-
ceived Event Notification

24 60

TrafficCongestion predicate evaluations

Event Publications by Clients 5121454 5276714
IL, Car, and User Events

Total Event Notifications (ENs) 5127270 5287694
published Events (including SMC ENs)

Events Disseminated (ED) 1784 3876
Events Disseminated within the Network

Events Delivered to Subscribers 4032 7104
TCN Events to JPA Clients

Number of ENs for each Event Topic

User 3.6e+7 3.6e+7
Car 800954 956214
InductiveLoop 4.32e+6 4.32e+6
Car Slow 774 1042
IL High 842 2538
TrafficCongestion 168 296
TrafficCongestionNear 4032 7104

Table 1: Simulation Results

5.3 Storage
SMCs and events are the two main elements that require

storage in SPS. Table 1 shows that SMC distribution has
resulted in a maximum of one SMC allocation per node in
the network. It also shows that a total of 636 SMCs served
the 500 mobile users. From these 636 SMCs, 136 SMCs were
shared and collaboratively deduced traffic congestion infor-
mation for the entire system. This sharing was achieved by
the Pub/Sub component which discarded duplicate SMCs,
and interconnected independent subscribers with overlap-
ping interests to the same SMCs (publishers). Hence, over-
lap of interests was used to save storage space, and avoid
duplicate processing costs.

The highest number of events stored at any InfoS related
to the knowledge stored for the Car Slow SMCs. The high-
est numbers of Car events stored for deducing the aggrega-
tion information were 37 (Sim1) and 30 (Sim2). These fig-
ures exclude any compressions or functional optimizations
that can further reduce this storage requirement. Similarly,

the highest numbers of events stored for the TrafficConges-
tion SMCs were 11 and 16 events for Sim1 and Sim2, re-
spectively. This indicates that the aforementioned 236 and
701 input events (in section 5.2) were continuously updating
and overriding 11 and 16 storage points in the InfoS.

5.4 Communications
Communication costs are often measured by the total en-

ergy used to deliver events across the network. This largely
depends on the network structure and the performance of
the adopted Pub/Sub protocol. Nevertheless, since the dis-
tribution of SMCs impacts the formation of Pub/Sub links,
we have measured this cost by examining the “number of
event notifications that were disseminated in the network”.

Table 1 shows that out of the 5121454 (Sim1) and 5276714
(Sim2) event notifications published in the system, only 2348
and 5229 events were disseminated in the network. This
means that a substantial portion of the published events
(99.95% for Sim1, and 99.9% for Sim2) were processed lo-
cally. InductiveLoop High, Car Slow and TrafficCongestion-
Near are three SMCs which localized the processing of high-
rate InductiveLoop, Car and User event notifications, re-
spectively. These localizations were achieved when the SMCs
were fully decomposed over the network space (SMC decom-
positions along the DEs).

6. RELATED WORK
SPS is not the first framework to use the notion of state

for sensor systems. Several [11, 6, 8, 1] have been designed
before, offering the expressiveness of states to the sensor net-
work applications. These are mainly based on the principles
of Finite State Machines (FSMs), and describe the internal
state of a program in sensor networks. They are predomi-
nantly “state-oriented programming models”, in which one
or more user applications can be modelled and programmed
over sensor devices. Other works use the notion of state to
reflect knowledge about the real-world. Examples include
[14] where lasting conditions are captured over correlated
events, and [11] where high-level information is deduced
from primitive state events. In [11], primitive state events
are drawn to a centralized server, where expressive state
predicates are evaluated. In this design, high-level states
are tightly coupled with low-level states. Our work uses a
similar notion of state, but offers SMCs that are simpler
in operation, and decomposable for distributed processing.
Furthermore, SMCs are decoupled from each other, allowing
for easy integration and replacement of SMCs.

Composite Event (CE) frameworks [10, 9, 2, 7], are also
related, as they often use Pub/Sub for messaging. They
extract high-level information through patterns of event oc-
currences, that when satisfied are enveloped as individual
composite events. Event occurrences, in sensor networks,
may indicate much the same information as others occurring
in nearby space and time. Previous work [14, 11] has argued
for the suitability and expressiveness of states against event
patterns for sensor networks. SPS explicitly decouples event
occurrences from SMCs, using an InfoS model, which also
provides primitive aggregations over similar events. Con-
ditions, in SPS, are evaluated using the knowledge that is
contained within the event notifications. This allows for
more expressive specification of conditions, and enables a
condition-based events storage policy.

7. CONCLUSION
In this paper, we proposed State-based Publish/Subscribe

(SPS), for sensor systems with many distributed and inde-
pendent application clients. SPS processes data internally
and leverages from the Pub/Sub communication paradigm.
It supports a flexible and dynamic system structure through
the decoupling of clients (by the Pub/Sub component) and
the decoupling of data (by the InfoS component). Localized
processing and information sharing, achieved by SMC de-
composition and the Pub/Sub component, were also shown
to greatly reduce costs, demonstrating SPS’s scalability.

8. REFERENCES
[1] T. Abdelzaher, B. Blum, D. Evans, J. George, S. George,

L. Gu, T. He, C. Huang, P. Nagaraddi, S. Son, P. Sorokin,
J. Stankovic, and A. Wood. Envirotrack: Towards an
environmental computing paradigm for distributed sensor
networks. In Proc. of 24th International Conference on
Distributed Computing Systems (ICDCS), Tokyo, Japan,
Mar. 2004.

[2] A. Adi and O. Etzion. Amit - the situation manager. The
VLDB Journal, 13(2):177–203, 2004.

[3] R. Barr, Z. J. Haas, and R. van Renesse. Scalable wireless
ad hoc network simulation. Handbook on Theoretical and
Algorithmic Aspect of Sensor, Ad hoc Wireless, and
Peer-to-Peer Networks, pages 297–311, 2005.

[4] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe. ACM
Comput. Surv., 35(2):114–131, 2003.

[5] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann,
and F. Silva. Directed diffusion for wireless sensor
networking. IEEE/ACM Trans. Netw., 11(1):2–16, 2003.

[6] O. Kasten and K. Römer. Beyond event handlers:
Programming wireless sensors with attributed state
machines. In The Fourth International Conference on
Information Processing in Sensor Networks (IPSN), pages
45–52, Los Angeles, USA, Apr. 2005.

[7] S. Li, S. H. Son, and J. A. Stankovic. Event detection
services using data service middleware in distributed sensor
networks. In F. Zhao and L. J. Guibas, editors, IPSN,
volume 2634 of Lecture Notes in Computer Science, pages
502–517. Springer, 2003.

[8] J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao. State-centric
programming for sensor-actuator network systems. IEEE
Pervasive Computing, 02(4):50–62, Oct-Dec 2003.

[9] D. Moreto and M. Endler. Evaluating composite events
using shared trees. IEE Proceedings - Software,
148(1):1–10, 2001.

[10] P. R. Pietzuch, B. Shand, and J. Bacon. Composite event
detection as a generic middleware extension. IEEE
Network, 18(1):44–55, 2004.

[11] K. Römer and F. Mattern. Event-based systems for
detecting real-world states with sensor networks: A critical
analysis. In DEST Workshop on Signal Processing in
Sensor Networks at ISSNIP, pages 389–395, Melbourne,
Australia, Dec. 2004.

[12] SCOOT. http://www.scoot-utc.com.

[13] S. Taherian and J. Bacon. A publish/subscribe protocol for
resource-awareness in wireless sensor networks. In
Proceedings of the International Workshop on Localized
Algorithms and Protocols for Wireless Sensor Networks
(LOCALGOS’07), pages 27–38, Santa Fe, USA, June 2007.

[14] S. Taherian and J. Bacon. State-filters for enhanced

filtering in sensor-based publish/subscribe systems. In

Proceedings of the International Workshop on Data

Intensive Sensor Networks (DISN’07), Mannheim,

Germany, May 2007.

