Reconfigurable Middleware for High Availability
Sensor Systems

David Ingram

University of Cambridge Computer Laboratory
15 JJ Thompson Avenue, Cambridge, CB3 OFD, United Kingdom

davi d. i ngram@! . cam ac. uk

ABSTRACT

In this paper we consider the problem of sharing data c<eby
sensors worldwide amongst different applications. We $amuthe
increasingly large collection of powerful sensor nodeschtiiave
full-time connections to the Internet, and describe a ithisted ar-
chitecture capable of flexibly sharing these data strearhg. sb-
lution must operate reliably and continuously despite tivafigu-
ration changes and failures. We draw on event-based systeths
present the component middleware we have implemented éor pr
cessing and distributing sensor data. A key aspect is itpastip
for third-party remapping between components in order &patb
topology changes. We also show that it is able to rapidlymége
ure itself when failures occur.

1. INTRODUCTION

Many pervasive computing applications are made possibtbdy
widespread availability of computation, networking ands®s.
Without sensors we can create useful networked systemsufor h
mans to interact with directly (such as the web), but withsses
we can go further by observing and controlling the environine

Embedded networked computers with sensing capabilities ha
great potential. Application domains include environna¢nton-
itoring (pollution, weather, agricultural), security sgms, factory
automation, supply chain monitoring and smart buildings.the
TIME [1] (Transport Information Monitoring Environmentjggect
we are primarily concerned with road traffic monitoring, ugb
similar design principles apply to other sensor-basecdeayst To
meet the communication needs of large-scale sensor systems
general, we have designed and constructed an event-baddt&mi
ware, PIRATES.

A key objective of the TIME project is to enable sharing ofsen
sor data amongst different applications. Historicallytegss have
been vertically structured, with physical sensors (whigh@stly
to deploy) attached to dedicated networks (also expensiyg)ly-
ing a single application run by the organisation which ihsth
them, with a user-base limited to their employees or subsrsi
only. Within the traffic monitoring domain, isolated applions

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyuies prior specific
permission and/or a fee.

DEBS’09,July 6-9, Nashville, TN, USA.

Copyright 2009 ACM X-XXXXX-000-0/00/0004 ...$10.00.

might show car park occupancy on entry to a city, or display bu
arrival times at bus stops. Such data could be used widelyihot
real time information systems and for historical analydfsdata
sharing can be achieved, we can step closer to a planet-eide s
sor network, in the same way that the web provides a plangg-wi
document repository.

A great deal of existing sensor network research targetsires-
constrained wireless sensor nets. While this style of aystay
sometimes be all that is possible, such as in remote areastieh
environments, realistic applications based on such tdobpdy
no means dominate sensor-based systems. For a large agasincr
ing class of applications, including TIME, it is realistic &ssume
that permanent power and network connections are availapéet
from occasional failures). Sensors typically have eitha@iract
connection to the Internet or are represented by a proxy eirnth
ternet which is a single hop away from the sensor. This apptie
urban or even rural areas in developed countries. We sleaéfibre
assume that power and network infrastructure covers thesiod
our system.

We also observe the communications convergence torwards IP
and the Internet. Our middleware is therefore aimed at data p
cessing within the network, output and dissemination tent§,
and also data collection in some cases (for example, mobdags
with attached sensors which typically appear via a gatewgaya
ternet nodes themselves, and have relatively frequensadoea
power source).

1.1 Characteristics of the data and network

Sensor data is typically emitted as a continuous strearsingri
from periodic sampling at the sensor. Polling and variasie sam-
pling are less common, due to the simplicity of sensor de@igyst
of which are “black boxes”) and the lack of a back channel. Ad-
ditionally, “pull” models do not work very well when severap-
plications are using the same sensor. Stream handlingrsftine
very important.

The data streams from sensors are processed in various ways.

There may be multiple levels of filtering, for example to clea
up noisy data, supply missing information, calculate aistiator
anonymise to respect privacy. Pipes which reformat the (@alzp-
tors) are extremely common, and required whenever two ®yste
with different data formats are connected together.

In addition to data processing pipelines, we may wish toquerf
sensor fusion, which requires merging different streamrsetam-
ple to correlate output from two sensors. We also requireofen
connections, for example when distributing streams toelamgm-
bers of consumers. There may be different classes of us#r,asu
subscribers, the general public, or emergency services.

Pipeline processing as well as stream merging and fan-gut su
gest that a pluggable component-based design is requireddy-
namic nature of large sensor-based systems means thatseteso
be added or removed frequently; it should also be possildlesimn
new applications with previously unanticipated data rezpients
and connect them into the running system. We must there®re b
able to make live topological changes to connections betwem-
ponents.

Stream processing is usually insufficient on its own; mossee
based systems also employ storage components as well asidata
ing and triggers. These interactions require an eventebjaisie-sub
(publish-subscribe) or remote method invocation framéwor

1.2 Threats to continuous operation

Sensor-based systems incorporate a considerable amoumnt of
reliability, which affects the sensors themselves, the maments
that process the data, and the links between them. Nodestiees
to temporary outage for hardware upgrades and maintenance,
when machines are rebooted or disks fill up. Individual congms
are susceptible to crashes, overload or software upgradesi§
or security fixes. Links can be taken down as a result of nétwor
failure, configuration changes or refactoring to increaseacity.
Finally there are threats associated with data format acksrand
staff changes together with lack of documentation.

We wish to construct systems which are reliable in the fa@dlof
the above threats. Bgliability we mean nearly maintenance-free,
24/7 continuous operation. We do not necessarily mean gtesd
delivery of every message (sensor data itself is inherémitymit-
tent).

2. BACKGROUND: EVENT-BASED MIDDLE-

WARE

There is a large body of existing research into messageteden
middleware and event-based systems. Most of this has aligin
been developed in application domains which do not reqére s
sors, such as stock market systems or news feed aggregation.

Historically CORBA provides remote method invocation, wét
language-independent IDL and automatic stub generation.

The CORBA notification service [19] adds a channel-based cen
tralised pub-sub capability, with filtering on the headefsnes-
sages. ICE [13, 10] is a cleaner, more modern design with b wel
developed implementation. This includes a topic-basedgutb
event broker, implemented as a separate server.

Pure pub-sub systems include SCOP, xmiBlaster, Siena aid El
SCOP [22] is a centralised topic-based solution for rapiclbm
scale deployment. Both xmIBlaster [30] and SCOP can alsd sen
messages to specific named clients as well as to topics, bata b
ker intermediary is still used. xmiBlaster uses XML as a ragss
format, with subscriptions in the form of XPath expressitimat
are evaluated against message headers (the body is op&tjie).
[23, 24, 7] and Siena [4] both have full content-based sij$ons,
but message types are restricted to lists of named valuesr than
arbitrary structured objects. Elvinis also notable focasprehen-

sive support of message quenching to reduce the number of mes

sages which are sent. The commercial Elvin product is nodong
supported, however.

D-Bus [6], used for desktop integration, gains flexibilityrinak-
ing the broker optional. Point-to-point messages enablefRkBnd
broker communications provide pub-sub. D-Bus is a single ma
chine solution, hence cannot be applied to distributedesyst but
has the benefit that it is aware of local user identities fareas
control, and is able to start local services on demand.

Java Message Service [25] (JMS) also has point-to-pointedis w
as pub-sub modes. Messages have expiry times, and aredéidcar
if not consumed before then. The pub-sub mode is topic based,
although filtering on the message headers is also possible.

The basic Web Services (WS) stack [27, 28, 16] only provides
simple one-way message exchange. The additional WS-Niiific
specification [17, 18] extends this with brokers for pub-subrac-
tion. Filtering is based on hierarchical topics, and sogignching
is possible.

Hermes [20] and SCRIBE [21] are pub-sub systems layered on
top of distributed hash table (DHT) overlay networks, hesal-
ing the resource discovery problem and providing a scalable
to create a network of brokers. Most systems discussed kera u
naming service for resource discovery instead. Grypho8,[31]
and IBM’s Websphere MQ [12] also use an overlay network, thase
on an algorithm for mapping a logical information flow grapti@
an existing broker network (although this has to be creageatiter
means since a DHT is not used).

A pure event-based middleware is not required to tackleigpers
tent storage, since it can be provided by applications. 1QiRss
with a standard storage solution implemented as a sepavaie c
ponent and we choose to follow the same approach in our system
since this keeps message transfer and storage as separegenso
RUNES [5] and SCOP provide some built-in storage capalilty
means of an auxiliary registry associated with each compuone
Other middleware designs make storage fundamental to t@e IP
mechanism itself. For example, ECT [9] and Muddleware [29]
are based on data spaces in a similar vein to tuple spaces: Mud
dleware uses a memory-mapped hierarchical XML databade wit
persistence, queried by XPath expressions but with “waigst
(observers) effectively enabling pub-sub behaviour.

IrisNet [8] provides a distributed database for sensor.dagdso
has similar goals to our project, since it targets intenmtnected
PC class machines with potentially high bandwidth sensswsh(
as video cameras), rather than motes with limited resouanes
simple sensors.

Gryphon is not built on tuple spaces, but makes storage a first
class concern nonetheless by supporting event historiesplete
logs of messages matching the filter expression) and irgeons
(in which a stream of messages is collapsed to some stateasuc
a derived statistic). An example given by the Gryphon awgther
based on car buyers who wish to subscribe to advertisemettits w
certain search parameters. This triggers an initial dunmpaithing
advertisments currently in the database, followed by wpdaénts
as they occur. The state to be dumped is derived from and aot th
same as the message history, since sold messages revake earl
for-sale entries. Gryphon also recognises the need for aamy-
mon data format changes between components, and hencdgsovi
explicit support for event transformations.

Meier and Cahill [14] present a useful taxonomy of eventeblas
systems, although this does not cover all the dimensionsegd n
to discuss in the present paper.

3. ARCHITECTURE

Our middleware solution for constructing robust sensaelda
systems is called PIRATES (Peer-to-peer ImplementatioRef
configurable Architecture for Typed Event Streams). Thédiak
RATES entity is acomponent There is a direct relationship be-
tween components and processes (i.e. a component is a PERRATE
enabled process), and there may be any number of components r
ning on a given machine. Recall that we shall assume themrese
of power and network connections at each node.

Each component has a numberesidpoints Endpoints on dif-

ferent components are connected togethemapped All commu-
nication between components takes place via mapped engpoin
The basic mechanism is point-to-point; components sendages
to peers directly without requiring an intermediate broker

The architecture is therefore decentralised, apart froesaurce
discovery component (RDC), which acts as the name service. T
RDC is itself implemented as a component, and there may be mor
than one, to avoid central points of failure or to createedéht do-
mains. RDCs may be federated (in which case they exchangg sta
or separate. RDCs typically run at well-known or easily gees
addresses (such as the standard port number on a local mpchin

Most components perform either filtering, merging, storatie
tribution or data mining. Figure 1 shows several exampleppmm
nents from the road traffic monitoring domain, and a possibtef
connections between them.

GPS probe
vehlcle

Numberplale
recogmtlon

Pseudonymlse

Sensor
fault detection

Select
buses
D
—

Road flow
Estimated 7 SPEEdS

ourney
times

7.\

Calculate Queue
congesuon Iengths

Browser
map
- [JOO

Sensor Process Store View

Group
location
service

Mobile
phone

Mob||e
phone

Inductive

Emergency
services

Incident
detecnon

Change data
format

/

Driver
reports

Figure 1: Example components

4. MULTI-MODAL OPERATION

Some kinds of message oriented middleware are more suitable
for certain communications paradigms. For example, remetéod
invocation systems only allow RPC style interactions, whsrElvin,
Gryphon and Muddleware only allow pub-sub (but not RPCs)S,JM
MQ and D-Bus allow pub-sub and also messages addressed to sp
cific targets, but no replies. CORBA, ICE, SCOP, Web Services
and RUNES are more flexible, supporting RPC as well as pub-sub

PIRATES extends this idea by attempting to support all neaso
able forms of communication between each pair of components
We hope that by doing so a single mechanism will suffice for all
of an application’'s communication needs. Figure 2 prese -
tial taxonomy of interaction patterns. We start by obsegutmt in
any pairwise interaction one end must send the first mesdAfge.
assume this is the left-hand peer on the diagram, hence shafir
row is always left-to-right, without loss of generality. diie may or
may not be a reply. If there is no reply, the interaction iseitfin-
ished (one-shot), or the originator may continue sendingsages
(push-stream).

If there is a reply, then again that may conclude busines€jRP
there may be many replies (pull-stream) or the process magieiat

Paradigm: one-shot push-stream rpc conversation | pull-stream
T T T T VR
T ¥\ PR PR
T T ¥\
i PR PEERN
Endpoints: source / sink | source / sink | client/ server | client/server | sink / source

Figure 2: Pairwise interaction patterns

(conversation). More irregular message sequences canebeech
into a conversation by inserting empty acknowledgemensages

as appropriate. This therefore covers all the major typesessage
sequence. Note that a conversation (our name for messages wh
ping-pong back and forth) is not the same as repeating an RPC
interaction many times. In particular, there may be staecated

with it. Web applications need cookies because the webtafédy
provides RPCs, and not conversations.

PIRATES provides all of these interaction types, with theeg
tion of conversations, using four types of endpoint: cliesgrver,
source and sink. Clients must be mapped to servers and sdorce
sinks, but the mapping can be done by either end (e.g. a smage
set up a mapping from itself to a sink, or a sink may map itself t
the source, and likewise for clients and servers). The sesirk
mapping is many-many, and the client-server mapping is many
one. Pub-sub interactions are provided by pull-streams.

Another important distinction is that between a sequenamef
shot messages and a push stream. The latter nslesnsfirst-
class objects for PIRATES, which is not the case with a normal
event broker. The presence of explicit streams makes itiposs
ble for tools to understand when two components are “coedéct
which could not necessarily be determined from a sequensimof
gle events. This allows the stream to be automatically rqeeif
one of the components moves or terminates, for example.

5. WRAPPERS

Other components

---Com

h 1
\ 1
Key ! ' Y Sinks '
— ! BuLsm?ss c Wrapper ., Admin
appings | Prggécss £ [Pipe | Process , Tools
OHE E W WA sources, |
1

Endpoints

_______________ / / t\s_e i

Other components

Figure 3: Parts of a component

Figure 3 shows the structure of a single PIRATES componént. |
consists of the application (business logic) process, lvbimmmu-
nicates over a local pipe (via library calls) withwaiapperprocess
running on the same machine. The wrapper is provided aneis th
same program for all components. It is implemented in C++t, bu
applications may be written in any language for which thediste
a language binding. Bindings are simply ports to the apmtgr
language of the library which talks to the wrapper. The weapp
responsible for maintaining all connections to other congmbs.

As well as increasing portability, the wrapper architeetisrde-
signed to solve a specific problem; namely to make PIRATES de-
centralisedand decoupled. A benefit of a decentralised (peer-to-
peer) architecture is that it avoids bottlenecks causecehbtralised
components in an event broker network. Central event bsoker
the other hand, do provide the important benefit of decogpgi-
ducers from consumers. Without this, every component meest d
with situations where the peers they are connected to stydfiain
or perhaps are not running when the component initialiséss T
leads to tedious error-handling logic in each componenyedkas
complex dependencies affecting the order in which progreams
be started.

Wrappers mitigate this by taking care of all these issuestialb
of their components, just as if there was really a centrakdmo
For example, the business logic does not have to be inforfned i
a producer (source endpoint) they need is not currentlyingnn
instead of an error there will simply be no messages of tha ty
until a suitable source is started, at which point the wrappé
connect to it and start delivering messages.

The functionality provided by the wrapper includes acaogpti
subscriptions from other components, maintaining theoligteers
interested in a particular event source, performing filigaccord-
ing to the subscriptions currently in force and deliveriraifica-
tion messages to subscribers. The business logic part dbhave
to be aware who, if anyone, is listening to the events it emits
hence it can behave just as if there was a central broker.

Effectively, every component automatically includes the{sub
functionality that is normally provided by brokers, but tio¢ mes-
sageaggregation(pooling messages from different sources, before
filtering them via subscriptions). It is still necessary taprdi-
rectly the components which produce the data you need. Beeth
cases where aggregation is essential, PIRATES ships wigha s
rate broker component. This is a very simple program indeests

RATES also follows the object data model, because it is riehel
maps better onto arbitrary programming language datatates:

PIRATES uses a schema language called LITMUS (Language of
Interface Types for Messages in Underlying Streams) tordesc
message formats. Every endpoint has a schema associatei wit
to describe the types of message it handles (client andrsende
points also have a second schema for the format of the repy me
sages). LITMUS is essentially a type system similar to OMG.ID
A summary of LITMUS syntax is shown in Fig. 4, and a sample
message format for an endpoint in Fig. 5.

Older versions of our system encoded messages in XML, with
RELAX-NG [15] as the schema language. RELAX-NG, like XML
Schema [26] language, uses XML itself to express the schémas
like DTDs). We prefer RELAX-NG to XML Schema because it is
terser and more human-readable. The experience we gaved fr
this earlier system suggested that an XML schema languade su
as RELAX-NG was more than adequately powerful, but stilttéeli
verbose. Secondly, it was so expressive that it was difftoute-
strict it to the unambiguous constructs (for mapping ontigpam-
ming language types) that we wanted. Schema languages @de go
at describing document formats, but less suitable as typess.
We also found that the default XML message format consumed to
much bandwidth.

For these reasons PIRATES now uses a binary encoding nativel
for inter-component messages, and the LITMUS IDL. LITMUS
comes with a rich set of primitive types built-in, includimizte-
time and location. These are useful because many sensaseven
have an associated timestamp and position in space. PIRABBS
supports an XML message encoding, which is in fact used for th
library to wrapper link, and can be used to import and exp@s-m
sages from other sources and to disk. Other systems whigiogup
both XML and binary message encodings include Elvin, D-Bus,
IrisNet and Web Services. SCOP only supports XML and CORBA

the wrappers do most of the work. The broker has one source andonly supports binary.

one sink endpoint; it accepts connections from anyone teeit
endpoint, gathers all the messages received on the sinlseaus
them out through the source (via the subscription exprassice
wrapper has received, of course).

The philosophy we use is to avoid intermediaries (brokens) u
less they are actually needed for aggregation. A typica&astr
of sensor data is more efficiently mapped in a point-to-poiah-
ner without a broker — messages which match the filter exipress
travel one hop instead of two; those which don’t match trawel
hops instead of one. Latency is also reduced, and the bettten
component is eliminated. If a single source would become-ove
loaded by clients, additional relay components can prowidéti-
ple levels of fan-out.

Many event-based middleware systems, such as SCOP, xn@Blas
Hermes or Elvin, only allow communication via intermediate-
kers. Systems which offer a choice of point-to-point modeve-
kers include JMS, WS-notification and D-Bus (although thepnadt
provide the decoupling properties we achieve with the weapp

Another function provided by wrappers is to implement a col-
lection of built-in endpoints. These are endpoints which all com-
ponents possess automatically. For example, there istaitveihd-
point which returns a list of the other endpoints supportedhe
component, and another which returns its load statistics.

6. DATA MODEL

The two data models employed by most message oriented mid-

dleware are name-value-type triples (attributes), ortatyi struc-
tured types (objects). Siena and Elvin restrict messagtenbio
attributes, whereas CORBA, ICE, SCOP and JMS use objects. Pl

i nt name dbl nane Integer, Floating point,

fl g name txt nanme Flag (boolean), Text string,
clk nane | oc nane Date and time, Location,
bi n nane Binary data,

[elt] <eltl...eltN> Optional element, Choice,
- x Foo bar Unnamed elt, Comment,
@It Al abel nane Type defn, Type reference,
@fil enane" Import types from file,
nane { eltl ... eltN} Structure,

name (elt) Listofel t,

name (+ elt) Non-empty list,

name (Nelt) Array of N elements,
name < #vall ... #val N > Enumeration,

nanel + ... + nameN Multiple declaration

Figure 4: LITMUS syntax

6.1 Marshalling

PIRATES follows the model of SCOP, in which the basic system
does not automatically generate stubs with marshalling ¢aam
IDL. Instead, library calls are used by the component deesido
perform marshalling and unmarshalling (typically the pesgmer
will encapsulate these within a constructor or other metbivithe
object which holds the data). This is less convenient thaoraatic
stub generation but avoids imposing a build system and machi
generated code on every program. A stub generator couldybe la
ered on top as an optional tool. In contrast, CORBA and ICH bot
employ automatic stub generation. RUNES uses OMG IDL but in

@1 eet
(taxi
{ int nunber

status < #prebook #hired #forhire >
txt destination
clk timestanmp
| oc pl ace
[bininmage] })

Figure 5: Sample endpoint message format, in LITMUS

the manner that PIRATES uses LITMUS: as a type definition lan-
guage without automatic stub generation.

6.2 Type checks

A basic RPC service with automatic stub generation might be
used to compile both a client and server at the same timeg usin
the same IDL. In that case one could be reasonably confident th
the two programs will be compatible, and deploy them witramyt
runtime checks on message format. For any realistic conmpone
based system this is not the case, however. Firstly, conmt®ne
may be built by different people, at different times, on eliéint
systems. There is no guarantee that they have obtainedgthte ri
schema, particularly if it evolves and there are differearsions in
circulation. Secondly, components should not crash if soraele-
liberately uses the incorrect schema. A consequence ofsttigt
components cannot make assumptions about the format of mes

sages they receive from any other component; we need to check.

the types.

One approach would be for the middleware to check the basic
layout, then hand the problem over to the application. Fangle,
if an attribute data model is used then the application viillags
receive an associative array, and can consult it to see ifinexd)
attributes are present. This is tedious for the applicatvater if
there are many things they must check. Instead we would Hi&e t
middleware to check the entire message first; if this checkeseds
the application knows the message contains everythingoitas,
and can omit further error-handling code.

Type checking is a two-stage process. Firstly, the type ef th
incoming message must be established. Secondly, it mus¢-be d
termined if this is acceptable to the receiving endpointththe
attribute data model, the type of the incoming message ikcéxp
With the object model, some type information is heeded hewev
Reasonable approaches would be to make the object striisliyre
self-identifying, or to send a single unique composite tigenti-
fier. Now, all elements in LITMUS are named, so that programsme
can request a data member of a structure by name, such aktheig
rather than a position in the structure, e.g. “4th”. Consedjy
sending full type information would add a great deal of oeed
even 1-bit fields would need an associated text string fon#mee.
For this reason we decided not to send full type information.

The problems with unique type identifiers are how to generate
them, and how to look them up. If a small probability of cadiss
is tolerated, they could be generated with a very large nanalam-
ber (perhaps combined with an initial IP address or timegjabut
a repository is then required to store them. It is also highly
satisfactory that two identical types generated by diffepeople
should have different IDs.

PIRATES solves these problems with two mechanisms: LIT-

text is parsed to normalise it (removing whitespace and cents)
and factoring out dependencies on the order in which suéstgpe
defined, etc). The resulting number takes up very little sp#c

is included in every message which is sent) and allows fasd ty
checks, but is stronger than a unique type ID number. Inqaaati,

if two LITMUS codes match, then with very high probabilityeth
programmers of the two components were working from the same
schema. Useful schemas could be published informally fop€o
erating developers to access using other channels, forp&am
web pages or in documentation or standards. A component-deve
oper includes in their program the LITMUS codes of the typeyt
expect. Since the library only passes validated messagdbs ap-
plication, the developer is then freed from any error chagkif the
code represents a schema containing a meramethey can ma-
nipulate the membédboin the message without any concern that it
might not exist.

Some components, such as the event broker or a bridge, must
accept messages afiytype. These are called polymorphic end-
points. These will be situations in which a polymorphic esidp
receives a LITMUS code it does not recognise. When this hap-
pens, the receiving wrapper suspends processing of thaages
and calls back to a built-in endpoint calledokup_schema on
the sending component, passing the unknown LITMUS code in
question. The other component looks this up in its schemhesac
which is maintained by the wrapper, and replies with thetaxt of
the associated schema. This is immediately added to the aich
the receiving component, to avoid repeated lookups if moge-m
sages of this type are sent in the future. Since all comperamt

this, schemas pass along chains of polymorphic compon@&hts.
invariant is that no component will ever transmit a messadees
not know the full schema for. This makes central schema repos
ries largely unnecessary. It is also possible to createnpmighic
source endpoints and to define new types dynamically.

6.3 Schema evolution

A common characteristic of sensor data formats is that theapge
over time. Often new fields need to be added; in the courserof ou
project we have also encountered situations where the sexmah
existing fields change, such as the introduction of an ealrer In
the former case it is highly desirable that existing datasoomers
continue to function with the stream containing the extralfe.

If this is not the case then a great deal of infrastructuretrhas
updated (probably not all under our control) when we chahge t
message format. Even if this can be achieved, we must eitier h
the data source temporarily or first upgrade the sinks to\dahl
both the old and the new message types, neither of which is par
ticularly attractive. ICE has some support for this withfasets
mechanism; for example a component may simultaneouslyostipp
two facets of an interface, one to deal with the old messamedand
one for the new. PIRATES also allows a component to have multi
ple endpoints with the same name but different message schem
however this is not our method of choice for schema evolubion
component versioning.

The attribute data model neatly avoids the schema evolptiaio-
lem, since new fields will simply never be requested by apfibns
and hence are effectively ignored without disrupting theefadlds.
Elvin is an example of a system which ignores non-addressed a
tributes in this way. Attributes also make it easy to writeefilcom-
ponents which look for a few key values in the message ondy) th
distribute the entire message to other components whidlimdeer-

MUS codes and schema caches. LITMUS codes are a substitute fo stand the full type (for example, we might wish to write a géne

global type ID numbers. They are 48 bit numbers which areuealc
lated as a hash of the full schema itself. Before hashingscthema

filter that selects messages of any type with timestamps éntain
range, or location within a given neighbourhood, and fodithem

to a dedicated regional server for processing).

The object data model (which we use) is more expressive than a
tributes, but does not lend itself so well to schema evatuthost
of the systems with the object data model which support sehem
evolution at all do so by means of a type hierarchy. Examples a
ECT and Hermes. This allows fields to be added by sub-typiag th
original message format. The disadvantage of this is thekplicit
type hierarchy relation must be defined and distributed.

PIRATES is designed to allow schema evolution in future, al-
though this is not yet implemented. The design works by ietax
LITMUS code checking in two ways, called partial matchinglan
sub-tree matching. For example with partial matching, aecog-
nised LITMUS code would trigger a request for the full schéma
the normal way. Once received, the schema can be examined to s

When a component needs to locate another in order to map an
endpoint, it sends map constraintstring to the resource discov-
ery component. This includes fields for component name,cauth
endpoint name, endpoint type, LITMUS code, keywords, publi
key, and component ancestors. All fields are optional apant f
endpoint type and LITMUS code, which are always used to en-
sure the component mapped to is type compatible. The pudjic k
is the only way taguaranteethat a certain component is selected.
Component ancestors are third-parties which a given coegaa
currently mapped to. This provides a way to request a comyone
which is connected to specific others. For example, if thezeveo
standard filter components with the napegeudonymi se, it is
possible to request the one connected to bus data insteld ohie
connected to a car data stream, should pseudonymised knts eve

if it coversthe expected schema. One schema covers another if itbe required. RDCs always reply with a list of all the compdaeen

has the same root, and when overlaid on the other tree icetp§

it apart from an arbitrary number of extra branches (at ardejo
If this is the case then the type would be marked as compatible
the component’s schema cache, and the pruned versionreelite
the application.

6.4 Eventfiltering

Pub-sub middleware allow subscription expressions ofediff
ent generality. The simplest is channel-based (this uséx tihe
CORBA model). The next most general is topic-based subscrip
tion. This is used by ICE, SCOP, WS-natification and SCRIBE.
Going further we may allow filtering on the message contesihgl
special header fields for this purpose; this is the approaidntby
xmiBlaster and newer versions of CORBA. The header is likea d
tionary attached to the main message. JMS allows topicsbase
well as content-header subscription. Finally filtering nb@ydone
on the full message body. This is the technique used by PIFATE
and also by Gryphon, MQ, D-Bus, Siena and Elvin (although the
latter two employ the attribute data model, hence the medsady
is effectively a header itself). PIRATES and MQ both support
topics as well as content-body subscriptions. Figure 6 shaw
content-based subscription in the expression syntax ugedl-b
RATES. There can only be one subscription expression per map
ping between endpoints, but this can be changed at any titvied T
parties can also change subscriptions usingsubscr i be built-
in endpoint.

vehicle? & vehicle/tinestanp > 'startdate’ &
vehicle/timestanp < 'enddate’ &
vehicl e/ speed > '50" &

(vehicl e/ descri ption/col our = '*green’
(vehicl e/ occupants.itens 1&

vehi cl e/ occupant s/ #1 "alice))

Figure 6: Subscription example

7. NAMING

During early PIRATES development, the desire for unambigu-

they know about which fulfill the requirements expressed h®y t
map constraints string.

8. THIRD-PARTY REMAPPING

A large, continuously operating sensor data processintgisys
will have a frequently changing configuration. To suppocore
figuration of the running system, PIRATES providiérd-party-
remapping The mechanism for this is based on three built-in end-
points: map, unnmap anddi vert. Thenmap endpoint accepts
requests to remap the component’s endpoints (change wtiieh o
component[s] they are connected to), and performs thisowttim-
volving the business logic itself. This inversion of comtmakes it
possible for management tools to effect topology changeéven
components, with no special support from applications. exam-
ple, if a component needs to be migrated (to a machine witlemor
resources, for example), or we wish to switch to a differeipidier
for some events, this can be done by remapping the endpiini u
the built-in interface. Tools which employ this techniquaybe
interactive (such as a GUI manager’s control screen, foingetip
maps between components visually using drag-and-drop)ligr f
automated (such as a load balancing tool which moves comgmne
to different machines as required).

The di vert endpoint performs several remaps in one go: it
instructs every other component connected to a particaldpant
to remap to an alternative. A component can therefore be dnove
easily by starting a new version elsewhere, then caltinger t
on all the original’s endpoints to switch any number of déeover
to the new location.

Soon after implementing this we observed thatlatinga com-
ponent in place requires exactly the same mechanism as campo
migration. Often we may produce a new version of a component
with exactly the same interface as before, but fixing someomin
bug, adding features unrelated to IPC, or with increasetbper
mance etc. In this case the third-party remapping is usedistis
tute the running component with the updated one (typicaliying
at a different port on the same machine) without having tp #te
component and with no interruption to service for other comp
nents which depend upon it.

RUNES [5] (Reconfigurable, Ubiquitous, Networked Embedded
Systems) is an existing system which is most similar to our ap

ous component names led to some very awkward naming, such as proach, as it also offers components with dynamic recorditpm

filtered-average-fused-|ocal -bus-data

or daves-t axi - conponent . Of course unique names could
be guaranteed by appending the component developer'slediai
dress, but these would not be very long lived if the develdpea
component changed. To avoid these problems, we do not esquir
component hames to be unique at all, and instead allow a éroad
set of criteria with which to describe and select components

for the interconnections. Endpoints in RUNES are calieerfaces

or receptacles(an interface must be connected to a receptacle).
OMG IDL is used for interface types, but without CORBA-likells
generation; our LITMUS-based approach is very similar ia tb-
spect. The critical differences occur because RUNES ietsrg

at embedded systems. RUNES components may be lightweight,
in which case they can be implemented as passive entitiese(so

code in a chip on a small device) without a separate procels. A
PIRATES components are active, so they can respond to ektern
requests on the built-in endpoints, with the important fienef
third-party control and reflection. This gives a more umifczom-
ponent model.

ECT is another system which allows third-party reconnecta-
beit within a centralised architecture. Gryphon and MQ ahske
connections for you based on an abstract information flowlgra
created by the user. RUNES and Gryphon additionally suppert
terceptors(lightweight filter components), which are transforma-
tions that can be inserted into streams at component ioesfay
third-parties. These may be used for encryption, comprassie-
bugging and gathering statistics etc.

8.1 Automatic reconnection

An important benefit of the wrapper architecture is that when
connection to another component is lost, the wrapper mayngit
to failover to an alternative replica transparently, ortwaitil the
other component is restarted. The application believestthas an
uninterrupted connection. In order to achieve this dedogpthe
wrapper must know the correct thing to do without consultimg
business logic. In simple cases this can be achieved if tappear
re-issues a map request (using the original map constrstitits))
to the RDC. If there is no state associated with ongoing &ut&wns
then any component which satisfies the constraints will deréw
this not the case then the map constraints must have beenunde
specified).

More complex reconnection logic (such as “there must beaat le
two A's connected to every B”) is best implemented by an exter
nal agent, since it requires non-local information. We satth an
agent anapping engingeand it effectively lifts reconnection policy
out of the components’ business logic. Wrappers simply ntejpo
the mapping engine when they have lost a connection. Clyrent
the mapping engine service is also provided by the RDCs, and
hence is also distributed and federated. The problem nohats t
connection policy is present in two places: the initial mapsper-
formed procedurally by the component’s business logic, @amgd
subsequent remapping is performed by the mapping engine.

Our experience with the system has suggested that the neest el
gant solution is for almost all componentsstart unmappedThat
is to say, although the library still provides mapping cadishe ap-
plication, we choose not to use them; all mapping is donehea t
third-party remapping endpoints by the mapping engine.lidap
tions start in an inert state (running, but not receiving awgnts
due to their unmapped endpoints). When they register tmes-p
ence with a RDC, the mapping engine is triggered to perfortiain
maps of their endpoints.

The benefits of this arrangement are that all connectiorcyoli
is held in one place (the mapping engine’s tables), and néne o
it is hardcoded into applications. A distributed applioaticom-
prises the executable components, plus mapping rules foreat-
ing them together. Programs are much more likely to survire c
figuration changes if they do not contain explicit compormearhes
or map constraint strings.

Mapping engines therefore offer significant advantages twae
ditional styles of network programming, as shown in Figure 7

8.2 State migration

During component migration, stateful components museaer
their necessary internal state. Our model assumes thatatteecs
each component which needs to be preserved is purely aduancti
of the messages it has received. State migration is the metile
ity of application logic. Each endpoint emits messageseddggth

1. Message-based conn connect (peer)

if conn.failed() error()
conn. send(message)

conn. cl ose()

publ i sh(topic,

Time coupling
Hardcoded peer
2. Event-based

message)

Time decoupled
Peers must agree topic

3. Mapping engine

endpt = decl are(l ocal nane)
endpt . send(nessage)

Time decoupled
No hardcoding

Mapping rulesq{ (from, to), ... }

Figure 7: Comparison of address specification

sequence numbers so that state checkpoints can be named. The
recent message history can be replayed from any endpoirtis ¢

lar output buffer, provided the configurable message bufferce

has not been exceeded in the time taken to restart the compone
The existence of explicit mappings between componentshege

with sequence numbers allows streams of sensor data to be cor
rectly reconnected, which would not be possible with an gnon
mous publish-subscribe system.

9. MAINTAINABILITY

Systems which rely on central brokers are relatively eagydin-
tain, because the broker can be queried to discover whiehtsli
are running. Maintenance is trickier for decentralisedeys. In
keeping with our philosophy of providing the benefit of a cen-
tralised architecture in a peer-to-peer system, PIRATE®iges
two built-in endpoints to make maintenance easier:
get _net adat aandget _st at us. Anyone can call these given
a component’s address in order to interrogate it.

Theget _met adat a endpoint returns the component’s name,
author, description, keywords and public key. It also ltkes end-
points provided, and for each one provides its name, typk| 8
MUS codes for message and reply types. These can of course be
converted to full schemas wittbokup_schena if necessary. All
of this forms the static metadata associated with the coemton
Self-describing components are good for humans, as wellitas a
mated tools such as mapping GUIs.

The get _st at us endpoint returns the dynamic status of the
component. This includes its address, creator (the uselingiten-
tiated it), instance name, load and latency. For each entjpafor-
mation is also returned on number of messages processppédto
the subscription (if one is enabled), and the list of peeas ¢md-
point is currently connected to. Furthermore for each pestrue-
ture is returned containing the peer component and instzanoes,
endpoint, address, remote subscription and latency (tifidsma-
tion is known to the wrapper, as it is exchanged during thethan
shake which takes place when an endpoint is mapped). RDCs cal
get _st at us periodically on all the components which have reg-
istered with them, as a liveness check.

The list of peers is particularly useful, because it alloaa4 to
crawl the connection graph, like a web spider. In this way tten
in principle discover the topology of the entire distribditgystem
(of course this is not possible to do precisely because itchange
during the sweep). This is the distributed analog of redogst list
of clients from a centralised broker. It is useful for giviagnan-
agement overview of the network, and also for finding comptse
which are not registered with any of the local RDCs.

10. IMPLEMENTATION

10.1 Concurrency model

The wrapper must process many connections simultaneoodly a
without blocking as a result of network delays. Our impletaen
tion uses a single-threaded wrapper which performs all/@oin-
blocking mode, and never blocks. It employs a state machide a
an abstract message structure to record partially prodesss-
sages. We believe this approach is less susceptible to mency
problems than a multi-threaded wrapper.

10.2 Integration

Applications typically employ a number of different libres (for
example, to present a GUI), so the PIRATES library must ctexi
with others. Any library which delivers events has sevelalices
for integration with the program’s event loop: it may be pass
(so the application can manage the event loop), capture #ie m
thread of control for itself, use callbacks or create nevedds
or processes. Clearly capturing the main thread of consrolot
a very polite solution, and callbacks lead to serious caecay
problems. SCOP is passive and hence very unobtrusive, leowev
PIRATES needs to respond to requests on built-in endpoiitts w
out help from the application, hence must have an activathoé
control.

The solution we have adopted is to make the wrapper a sepa-
rate process, and integrate the library closely with natieggram-
ming language I/O. All the library calls in the API use a blik
mode of operation, because that is less error-prone forlaeve
ers than callbacks. In the C++ binding, the file descript@sdu
to communicate with each endpoint are exposed so that the pro
grammer can add these to an existegl ect loop, and hence
avoid blocking as well as merge PIRATES with other networét an
file-based 1/0O. Alternatively, developers may write muitreaded
components. Concurrency control is unnecessary provitedds
manipulate different endpoints; each endpoint has a dextigape
to the wrapper and the wrapper itself does not block. New end-
points may be created whilst the component is running, sovaise
may make clones of an endpoint for use by worker threads.

10.3 API

Our primary concern for the implementation, and indeed the d
sign, has been to create an exceptionally simple API. Thisthel
approach taken by our earlier system, SCOP, and also by;Elvin
in both cases the libraries have been widely used as a reBylt.
contrast CORBA has rather complicated APIs. A middleware is
not well served by a complex API, since programmers needre co
centrate on their business logic and not the glue code. The ba
sic list of primitives provided by the library consists «ft art ,
subscri be,map,enit,rpc,rcv,reply,unmap,i smapped
andst op. Each of these take only a few parameters. For example,
Fig. 8 shows complete, compilable code for an event broker-co
ponent (the actual broker we use is marginally more compdak a
also includes configuration code to change the port number).

10.4 Portability

In common with other middleware such as ICE, RUNES, xml-
Blaster and D-Bus, PIRATES is designed for easy portabibty
different languages. Its native language is C/C++, sincstmother
languages are higher level and hence easier to port to. SEldvas
easy portability via a thin language-specific library, anthi@er
event broker which is written once in C++. With PIRATES we
wanted to achieve the same effect, hence the wrapper was-impl
mented as a process rather than a thread (if it were a threadid

#i ncl ude <pirates. h>

voi d mai nl oop()

{
sconponent *com snessage *nNsg;
sendpoi nt *pub_ep, *out_ep; snode *sn;
const char xcode = "FFFFFFFFFFFF";

com = new sconponent (" broker");

pub_ep = com >add_endpoi nt (" publish",
Endpoi nt Si nk, code);

out _ep = com >add_endpoi nt ("notify",
Endpoi nt Sour ce, code);

com >start("broker.cpt");

whi | e(1)

nmsg = pub_ep->rcv();
sn = nsg->tree;
printf("Received tree:\n"); sn->dunp();
out _ep->em t(sn, NULL, nsg->hc);
del ete nsQ;
}
}

Figure 8: Component code example: Broker

have to be ported to different languages, but as a procegstanl
library must be converted).

Our experience with SCOP suggested that even with a thin li-
brary layer, keeping the different language bindings syomised
was a lot of work. They were easy to port initially, but thevitable
change requests often did not get applied at once to all fugsdi
due to the difficulty of switching languages in the middle aésk.
For this reason we wanted the PIRATES library to be even grinn
if possible. Unfortunately, PIRATES includes a rich typetsyn,
which SCOP does not; the library would have to understarg] thi
and hence we realised would not be thin at all. For example, in
order to encode messages for transmission across the ptphe to
wrapper, the library would require marshalling and unmaltsig
code, and an appropriate LITMUS schema, which relies in doarn
the LITMUS parsing code.

Our solution was to defer all type checking and schema psaces
ing to the wrapper. The messages sent across the pipe aralirot v
dated, and hence cannot be transmitted properly using thpaxt
binary encoding. Instead, we use the XML import/exportliaes.
The extra bandwidth is not a major problem because the Vibrar
to wrapper connection is just a local pipe and does not ciuss t
network. Constructs which are syntactically identical ML for
example lists and structures, or missing optional elemeamnésdis-
ambiguated on receipt by the wrapper, which does have atwess
the proper schema.

10.5 Modularity

The PIRATES component wrapper is a considerable piece of
software (15,000 lines of code) upon which all componenpedd.
Consequently it is important to consider which featuresemsen-
tial to the core middleware, and which can be separated. Modu
ity also allows pieces of the system to be replaced by altema
versions.

We have two mechanisms at our disposal to achieve modularity
layering and components (vertical vs horizontal sepanatid-or
example, PIRATES uses a separate layer for its marshaltidg.c

Splitting functionality into separate components prosiescel-
lent isolation since it runs in a different process. PIRATE®S

The benefit of doing this is that it avoids the need to emplay tw
separate middleware for many types of application.

separate components for the RDC and the Event Broker. The RDC PIRATES has only one choice of type system. Simpler types of

program could be replaced, which allows for a pluggable nsene
vice. Message persistence is also pluggable, since PIRAEES
fers this to other components. Finally, we have made theltopo
ogy connection logic (automatic component start, autasraton-
nection, failover, migration, replicas and load balantipigggable
with mapping engines. Currently the mapping engine is segpl
by the RDC, but this could be separated if required (it is ptsssi-
ble to ignore the built-in mapping engine by not requestimgzer-
sistent components or persistent maps, and to implemeist@ng
mapping service instead, since the built-in remapping eimtipare
publicly accessible).

11. EVALUATION

11.1 TIME project deployment
Within the TIME project we are using PIRATES to distribute

data from a number of sensor types. The length of queues at the.

traffic lights at major junctions around the city is reportey a
SCOOT[11] system, and the position of buses is tracked WRS G
units mounted on each roof. Weather conditions are measyred
our own weather station and pollution data is fetched fromra-n
ber of sensors around the city. We also monitor the occupahcy

the city centre car parks. To supplement the SCOOT data on one

major road we are using an infra-red sensor attached to glashp
which counts vehicles from their heat signatures. We ame s
perimenting with acoustic sensors, automatic numberpategni-
tion (ANPR) and a data feed from the railway station ticketieas.

All of the data sources we have used fit the model of direct con-
nection to the Internet, and each source is represented dybn

RATES component. For example, aggregation of the SCOOT data

from the 37 monitored junctions around the city takes plaithiw
the SCOOT hardware before it is collected by PIRATES. Irutiiei
sensors are prone to failure as well as the aggregate sttselfy i
so the SCOQT data is discontinuous.

We decided to store all sensor data for future processirga§e
is handled by a generic stream persistence compospst, si st ,
which can be attached to any stream. It creates an eventyhisto

in an SQL database on disk. Each event is logged together with

its timestamp and associated LITMUS code, so that they dfre se
identifying if the schema changes during the observed iyista
second database table stores all observed schemas withdhe-
sponding LITMUS codessper si st provides an RPC endpoint
for replaying events between a specified pair of timestamps.

Output is directed both to periodically generated statibpeges
and interactive Java applets, which provide statisticdltstrate
the city’s current and historical traffic states. We have enase of
aggregation in a number of ways, for example comparing SCOOT
data with the bus GPS traces to predict waiting times at gddj
and using the infra-red camera to validate the other data.

11.2 Design choices

We now consider the major design choices made during creatio
of the middleware, and evaluate their success (or otheywise

The decision to use an object data model rather than tuples al
lows for rich data expression, at the expense of more diffsmiiema
evolution and partial message processing (for example hiaider
to extract and filter on timestamps buried inside a complgeaip

We choose to integrate RPC and event style communication,
which has made the middleware significantly more complitate
as their needs inside the implementation are somewhatetiffe

data such as binary, plain text or name-value pairs caralisvbe
represented within the rich type system using appropridieraas,
hence a separate “content type” field for messages is urssges

In retrospect not making the type system entirely optioaal i
SCOP) was a mistake, since there is no way to avoid paying the
complexity cost for components which do not need it.

Another weakness of the current implementation is the ldck o
a pluggable transport layer (only TCP is offered). Many ey,
such as xmiBlaster, ICE, Twisted, Siena, WS-notificaticth Btvin
allow a choice of transport (TCP, UDP, HTTP, e-mail etc). @xx
perience suggests that more attention should be paid tolardgiu
in the future.

Allowing subscriptions to filter on the full content of megea
seems a fully justified design choice. Point to point comroatidn
has also improved latency and eliminated bottlenecks &gsoc
with unnecessary event brokers.

The lack of any built-in topology setup has ensured that HIR2

is policy free, atthe expense of a reliance on RDCs. In theéuve
envisage the equivalent of search engines, using the tppalis-
covery built-in endpoints in order to explore the comporspdce.
This could add the same ease of use to a relatively unstagttur
distributed sensor system as conventional search enginfes the
web.

A success at the implementation level was the non-blockattyér
than multi-threaded) approach to concurrency. We also rmade
notable mistakes. The first was choosing C++ as the native lan
guage rather than Java; this has made the wrapper unnelgessar
complex. The second was making the wrapper a process ratrer t
a thread. The benefit of increased portability to differamigluage
bindings was probably outweighed by the additional comipfex
and overhead added by the wrapper to library communication p
tocol.

The most powerful design choice we have made was the decision
to allow third-party reconfiguration of the inter-compohemap-
pings. This has been very successful and instrumental éaavall
ing the middleware to adapt to the changing requirementsi®f t
project.

11.3 Performance

The scalability of PIRATES depends on the topology of the-con
nections between components, which is not mandated by tthe mi
dleware itself. Higher level policies are expected to avmittle-
necks and instantiate a suitable number of broker compsriént
necessary. The performance of the middleware itself muséether
be predictable in order for such capacity planning to takeel

Component performance tests were carried out on a liverayste
running on a network of 1.8 Ghz Transtec SENYO 600 mini-PCs
using Linux. Figure 9 shows the round trip time (RTT) of RPCs
with payload sizes of 100 bytes or 10 Kbytes, as the load on the
machine increases. The load consists of between 0 and 2lepara
components, each sending 100 messages per second. For small
message sizes the RTT starts at 2ms and is not greatly effegte
load, rising to a maximum of 5ms. For larger messages the RTT
starts at 45ms, rises as the load on the machine increasds due
contention for the CPU, then falls back almost to the sameeval
as the OS scheduler starts to prioritise the measured ca@npan
favour of the heavy background load.

Figure 10 shows the round trip time of RPCs in the presence of
crosstalk messages: in this case between 0 and 20 other eompo
nents are each sending 100 messages per secondgartteend-

140 T T

100 bytes
10000 bytes

120 | k

RTT (ms)

60 |- e
40 1

20 B

1
10
Parallel Components

20

Figure 9: RTT vs load (other components)

350 T T

T
10000 bytes remote
10000 bytes local
100 bytes local
100 bytes remote

300

RTT (ms)

20
Crosstalk Components

Figure 10: RTT vs load (same component)

point that is being used for the latency measurements. €his t
the PIRATES wrapper’s ability to keep up with incoming resfise
rather than the OS kernel. Both local (same machine) andteemo
(LAN) scenarios are tested.

Due to the increasing queue lengths at the endpoint, respons
times increase approximately linearly with the degree o$stalk.
Interestingly the remote case starts with a RTT of 4ms (coatpa
with 2ms for the local case) due to the extra network latehay,
ultimately wins for small messages because the CPU loackis th
shared between two machines. For large message sizes the-RTT
creases superlinearly as the bandwidth starts to satheatetwork
link (10 Mbit/s).

11.4 Failure recovery

The RDCs maintain a set gersistent component&hich must
remain operational at all times. If one of these exits for @ason,
an attempt is made to automatically restart it. Suitabldap
ments are located to satisfy the original component spatiific
in the form of map constraints; thus the replacement may b& on
different machine or a different program as long as it presithe
same service. Once the replacement has registered, théngapp
engine repairs its links to peer components.

The table in Figure 11 shows the time taken for persistentcom

ponents to restart and begin communicating in differeffaisce-
narios. The first column is the restart time for a single thitem-
ponent, the second is the average restart time should tepccom
nents fail simultaneously.

Situation One failure Ten failures
Component deregisters 77 ms 330 ms
Connected component crashe90 ms 700 ms
Isolated component crashes | 5 secs 50 secs
Host machine reboots 2 mins 2 mins

Figure 11: Persistent component restart times

The quickest recovery occurs if the failed component[d grece-
fully, deregistering themselves with the RDC. If they crasthout
deregistering and are not currently mapped to any other ooerg,
recovery takes at least five seconds because this is thdtdéefaai
period at which the RDC pings components to check they dte sti
alive. Fortunately this case is rare in practice — companarg not
much use if they don’t communicate, and hence are usuallypathp
to at least one peer. In this case distributed failure dietectper-
ates, and the peer component reports to the RDC immedidizty t
it has lost contact. This allows the failed component to lséarted
almost as quickly as if it had deregistered gracefully.

The most common multiple-failure case in which no mapped
peers remain alive is when a machine hosting several compone
reboots; in this case all the components are restarted imategd
once the host has recovered.

12. CONCLUSION

As part of the TIME project on transport monitoring, we have
designed and implemented PIRATES, a middleware for praugss
streams of data from sensors within a conventional, poweetd
work. The architecture uses wrappers which are both deadeed
and decoupled, and hence combines the advantages of peeeito
and central event broker solutions. It is multi-modal, satipg
events, RPCs and streams. Communication may be pointitb-po
or via intermediate brokers. We use an object data model with
content-based subscriptions and fast type checking usschema
hash called a LITMUS code.

An advantage over traditional solutions is the comprelvensi
support for third-party remapping. We have found that tbises
many common problems encountered whilst managing a contin-
uously running and evolving large-scale sensor-basedrireton
system. Reflection and topology discovery are also provigetie
wrappers. The implementation is portable and has a ligigiwei
API; it can be downloaded frorhtt p: //ww. srcf.ucam
or g/ ~dm 1000/ pi r at es. Currently it runs on Linux and Mac
Os.

Acknowledgements: The author would like to thank the other
partners in the TIME project, and the EPSRC for their support

13. REFERENCES

[1] Jean Bacon, Alastair Beresford, David Evans, David &ngr
Niki Trigoni, Alexandre Guitton, and Antonios Skordylis.
Time: An open platform for capturing, processing and
delivering transport-related data. fifth IEEE Consumer
Communications and Networking Conference, CCNC 2008,
Session on Sensor Networks in Intelligent Transportation
Systemgslas Vegas, Nevada, US, January 2008.

[2] Guruduth Banavar, Marc Kaplan, Kelly Shaw, Robert Strom
Daniel Sturman, and Wei Tao. A case for message oriented
middleware. InProceedings of DISC1999.

[3] Guruduth Banavar, Marc Kaplan, Kelly Shaw, Robert Strom
Daniel Sturman, and Wei Tao. Information flow based event
distribution middleware. IMiddleware Workshop at the
International Conference on Distributed Computing System
1999.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Interfaces
and algorithms for a wide-area event notification service.
Technical Report CU-CS-888-99, Department of Computer
Science, University of Colorado, May 2000.

[5] Paolo Costa, Geoff Coulson, Cecilia Mascolo, Gian Bietr

infrastructure. Ir8rd International Workshop on Networked

Group CommunicatignJCL, London, Novermber 2001.

SCOP home page.

http://ww. srcf.ucam or g/ ~dm 1000/ scop.

Bill Segall and David Arnold. Elvin has left the buildin A

publish/subscribe notification service with quenching. In

Proceedings AUUGY9Brisbane, Australia, September 1997.

Bill Segall, David Arnold, Julian Boot, Michael Hencsem,

and Ted Phelps. Content based routing with Elvin4. In

Proceedings AUUG2ICanberra, Australia, June 2000.

[25] Sun Microsystemslava Message Service Specification 1.1
April 2002.

[26] W3C RecommendatiorXML SchemaOctober 2004.

[22]

(23]

[24]

Picco, and Stefanos Zachariadis. The RUNES middleware: A [27] w3C RecommendatiofSOAP version 1,2April 2007.

reconfigurable component-based approach to networked
embedded systems. Rroceedings of the 16th IEEE
International Symposium on Personal Indoor and Mobile
Radio Communication8erlin, September 2005.

[6] D-Bus home page.
http://dbus. freedesktop.org/.

[7] Geraldine Fitzpatrick, Simon Kaplan, Tim Mansfield, D&v
Arnold, and Bill Segall. Supporting public availability @n
accessibility with Elvin: Experiences and reflections. In
Computer Supported Cooperative Wovklume 11.
Springer, 2002.

[8] Phillip B. Gibbons, Brad Karp, Yan Ke, Suman Nath, and
Srinivasan Seshan. IrisNet: An architecture for a worldewi
sensor web. IPervasive Computingrolume 2. IEEE,
October 2003.

[9] C. Greenhalgh, S. Izadi, J. Mathrick, J. Humble, and

| Taylor. ECT: A toolkit to support rapid construction of

ubicomp environments. I0biSys 2004.

Michi Henning. A new approach to object-oriented

middleware. Innternet ComputinglEEE, January 2004.

P. Hunt, D. Robertson, R. Bretherton, and R. Winton.

[10]

[11]

SCOOT - a traffic responsive method of coordinating signals.
Technical Report 1014, Transport Research Laboratory, UK,

1981.

IBM WebSphere MQ home pagbt t p:

[/ ww. i bm conl soft war e/ i ntegration/ wny/.

Internet Communications Engine home page.

http://ww. zeroc. coni .

René Meier and Vinny Cabhill. Taxonomy of distributed

event-based programming systemsThe Computer

Journal pages 602—-626. British Computer Society, June

2005.

[15] OASIS RELAX NG Technical Committee®ELAX NG
SpecificationDecember 2001.

[16] OASIS StandardJniversal Description, Discovery and
Integration (UDDI) Version 3.0.20ctober 2004.

[17] OASIS Standard/VS-BaseNotification 1.®ctober 2006.

[18] OASIS StandardwS-BrokeredNotification 1. ®ctober
2006.

[19] Object Management Grouplotification Service
Specification, version 1,Dctober 2004.

[20] Peter R. Pietzuch and Jean M. Bacon. Hermes: A distibut
event-based middleware architecturePhoc. of the 1st Int.
Workshop on Distributed Event-Based Systevienna,
Austria, July 2002.

[21] A. Rowstron, A-M. Kermarrec, M. Castro, and P. Druschel
SCRIBE: The design of a large-scale event notification

[12]
[13]

[14]

[28] W3C RecommendatioW/eb Services Description Language
(WSDL) V2.0June 2007.

[29] Daniel Wagner and Dieter Schmalstieg. Muddleware for
prototyping mixed reality multiuser games.|BEE Virtual
Reality ConferenceCharlotte NC, USA, March 2007.

[30] xmIBlaster home page.
http://ww. xm bl aster. org/.

[31] Yuanyuan Zhao and Rob Strom. Exploiting event stream
interpretation in publish-subscribe systemsPhnciples of
Distributed Computing2001.

