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Abstract. The importance of risk in trust-based systems is well established. This
paper presents a novel model of risk and decision-making based on economic
theory. Use of the model is illustrated by way of a collaborative spam detection
application.

1 Introduction and Background

Autonomous decision-making is an increasingly popular application of Trust Manage-
ment systems. This is particularly true for security and access control in emerging fields
such as pervasive and autonomic computing, where existing techniques are seen as in-
adequate. However, trust in itself is an abstract concept and, in order to take a decision,
how much trust is required must be balanced against other factors. These are normally
quantified as the risk of the various courses of action available to a decision-maker.

Proposition 1. Trust is unnecessary unless there is something at risk.

1.1 What is Risk?

Previously the SECURE project [1] has explored risk [2] as being a combination of two
components, likelihood and impact. Economists take an alternative approach, defining
it as a special type of uncertainty [3].

Risk applies to situations when one is unsure of the outcome, but the odds are known.
Uncertainty applies to situations when one is unsure of the outcome and the odds are

unknown.

When interacting with autonomous agents in a global computing environment the
uncertainty in the outcome is usually due to uncertainty as to the future behaviour of the
other agents. Computational trust models of evidence and reputation ultimately allow
this uncertainty about potential actions be transformed into risk, and consequently the
uncertain situation can be reasoned about as a risky one, using trust-based decision
engines such as SECURE [1].
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1.2 Decision-Making under Uncertainty in Economics

Hirshleifer’s state-preference theory [4] aims to reduce choice under uncertainty to a
conventional choice problem by changing the commodity structure appropriately. Thus
preferences are formed over state-contingent commodity-bundles or, if we assume the
commodity is currency, then state-payoff bundles. To use Hirshleifer’s classic illustra-
tion, “ice cream when it is raining” is a different commodity from “ice cream when it
is sunny”.

Given a suitable formulation of the situation, the von Neumann-Morgenstern (vNM)
expected utility rule ([5], see below) can then be applied to choose the best course of ac-
tion given our beliefs about which state is likely to obtain. This approach fits nicely with
the concept of Trust-Based Access Control (TBAC) used in the SECURE project [6],
since it allows for reasoning about outcomes where a number of different states could
obtain.

1.3 Suitability of the Expected Utility Theory for TBAC

Extensive experimental research has resulted in many concluding that the expected util-
ity theory is not an accurate model of how humans make decisions, and much debate
on this subject continues [7]. We feel that the psychological side of this debate — such
as the supposition that humans do not meet the criteria for being rational1 agents, and
issues of the way in which the problem is framed [8] — is irrelevant to our model. We
are looking to build autonomous agents, not artificially intelligent ones. [7] details a
number of phenomena that are not well-modelled by the vNM utility rule, but since no
unified model for all the phenomena described by [7] has yet been found, for simplicity
we shall restrict our initial experiments to using the vNM rule.

2 A Trust-Based Access Control Model for SECURE

The state-preference model has the following five components:

– a set of acts available (X) to the decision-maker;
– a set of (mutually exclusive) states available to Nature (S);
– a consequence function, c(x, ς), showing outcomes under all possible combinations

of acts and states2;
– a probability function, π(ς), expressing the decision-maker’s trust beliefs;
– an elementary-utility function (or preference scaling function), v(c) measuring the

desirability of the different possible consequences.

The von Neumann-Morgenstern theory then gives the utility of each act, x ∈ X as:

U(x) ≡
∑

ς∈S
πςv(cx,ς)

1 that is, will act to maximise their personal utility
2 NB: ς is used to denote elements of S to avoid clashing with the existing SECURE terminology

of using s as part of an (s, i, c) trust-triple.
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2.1 Defining Preference using Utility

Previous models of risk have expressed preference over outcomes in the form of mon-
etary costs and benefits. This approach has been criticised as being inappropriate be-
cause in many situations financial valuation is difficult or impossible. In this new model
the abstract metric of (economic) utility is used. This represents money adjusted for
time-effects (such as inflation and interest) and relative wealth, thereby overcoming the
drawbacks associated with using actual money.

Whilst [9] observes that economists have proved that there is no meaningful mea-
sure of utility, the following definition from page 73 of [9], seems well-suited to our
purposes:

Definition 1. A real-valued function of consequences, v, is a utility if and only if f ≤ g
(i.e. g is preferred to f ) is equivalent to v(f) ≤ v(g), provided f and g are both with
probability one confined to a finite set of consequences.

We note that the concept of monetary costs and benefits satisfies this definition,
which could be useful in applications where financial considerations are already present,
for example the e-purse scenario outlined in [1].

2.2 Access Control Policy

A simple access control policy would be to choose any act, a ∈ A where:

A =
{
a | a ∈ X ∧ U(a) = max

X
[U(x)]

}

If |A| > 1 then we choose the action a′ ∈ A with the smallest variance of utility.
Unfortunately this model does not yet address the problem of reasoning about the

uncertainty and information content of trust-values. Intuitively a person will not feel
confident in taking a course of action based upon a decision about which they have too
little information. The quantity of the information required to satisfy them that this is
the correct course of action will depend on their risk-aversity, and therefore must be
encoded as part of the person’s policy. Therefore we allow the policy-writer to set a
lower-bound l for the number of bits of information known about the chosen action a,
in order for it to be executed. If this check fails, then the system may test other actions
in the set A or fall back to a pre-defined, “default” action.

2.3 Integration with the SECURE Trust Model

While this model is designed to be used with any suitable trust metric, we will now
summarise how it is expected to integrate with the SECURE Trust Model [10]. This trust
model provides for a principal to compute a set of beliefs about the likely outcome of
interacting with another principal. Outcomes are defined in event structures and beliefs
have the form (s, i, c) where s is the number of pieces of evidence supporting that
outcome, c is the number of pieces of evidence contradicting that outcome, and i is
the number of inconclusive pieces of evidence. By defining a mapping from the event
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structure of outcomes, E, to the states of Nature, S, it is trivial to compute a similar
mapping from the set of beliefs in (s, i, c) form to a set of π(ς).

Entity Recognition (ER) also plays an important part in the SECURE model and the
required level of confidence in the recognition of a principal should be determined by
the risk associated with the decision. Intuitively, if an entity is incorrectly recognised,
then the estimates for π(ς) are likely to be completely invalid. One way of represent-
ing this in the model would be to use the confidence in entity recognition to scale the
measure of information the decision is based upon — the decision to perform act a is
known to be based upon trust-values of the form (s, i, c) and since states are mutually
exclusive,

∑
S π(ς) = 1, ∀ς ∈ S, s + i + c = I , which is the quantity of information,

upon which the decision is based. This is then reduced in magnitude by the probabil-
ity of incorrect entity recognition, (1− per) before being compared to the information
threshold l, described above.

An alternative method would be to perform a second risk analysis using the state-
preference approach, once the set A has been determined. In this second analysis there
would be just two states, {entity recognised correctly, entity recognised incorrectly}
and the acts would be A plus a fall back act for the eventuality that the risk of mis-
recognition is too high to take any of the acts in A.

3 Selection under uncertainty as a decision problem

One of the weaknesses of the current SECURE trust model is that it is optimised for
yes/no style decisions. For example, making a selection, such as choosing the best prin-
cipal (or principals) from which to request a service, is very inefficient. This new model
may be used to make a selection in the following way:

– The set of acts available (X) to the selector is equal to the set of potential service
providers, P , or the power-set of P if combinations of providers are to be consid-
ered.

– The set of (mutually exclusive) states available to Nature (S). Each state repre-
sents whether each particular principal was “good” or “bad”. For example, ς1 =
{p1}, ς2 = {p1, p2} means that only p1 satisfied us in state ς1, while in state ς2, p1

and p2 satisfy us, and so on.
– The consequence function, c(x, ς), showing outcomes under all possible combi-

nations of acts and states — so P × S in the simple case where X = P . Good
consequences, (xi, ςj) are those where pi ∈ ςj .

– The probability function, π(ς), expressing the user’s beliefs.
– The elementary-utility function (or preference scaling function) v(c), measuring

the desirability of the different possible consequences — so those that are “good”
consequences, as mentioned above, have higher utility than those that are “bad”.
This function could also encode constraints such as a budget.
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4 Example Application: Spam Detection

4.1 Risk Analysis of Spam Filtering

When considering whether an e-mail is spam or not, the decision-maker must decide
whether to mark a message as spam or allow it to pass into the inbox. The situation can
therefore be modelled as follows:

– The set of acts available to the decision-maker is X = {mark, pass}.
– The set of (mutually exclusive) states available to Nature is S = {spam, notspam}.
– The consequence function, c(x, ς) with example utilities for each consequence

shown (where E is a parameter that allows the sensitivity of the filter to be ad-
justed):

X/S spam notspam
mark 1 -E
pass 0 0

– The probability function, π(ς), expressing the decision-maker’s beliefs in whether
the message is spam or not. How this is determined is discussed below.

4.2 Collaborative Spam Detection

Determining the belief function, π(ς), is difficult when dealing with spam. The lack of
reliable authentication mechanisms in Internet e-mail makes forgery of existing identi-
ties and the creation of new ones too easy. This makes it difficult to make trust assess-
ments about the sender of a message. An alternative mechanism, described in [11], uses
a peer-to-peer (p2p) collaborative network to detect spam. It takes the view that, since
identifying spam is an AI problem that can never be entirely solved using rule-based
systems, even advanced ones based on Bayesian inference, the best method of identi-
fying spam is still a human. Therefore the first human to identify a spam publishes a
hash of the message to a p2p network and then each member of that network compares
their incoming e-mail with the published hashes, as shown in figure 1. A trust and risk
analysis is used to determine whether to mark the message as spam or allow it to con-
tinue into the user’s inbox, given the opinion of other trusted nodes on the p2p network.
Since spam e-mails increasingly have added random noise to try to defeat filters, fuzzy
signature algorithms such as Nilsimsa[12] must be used to generate the fingerprint.

p1,p3,p10,p12 say "spam"

fingerprint of incoming e−mail

p2p network client

Fig. 1. Overview of the operation of a Collaborative Spam Detector
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4.3 Trust and Identity

For simplicity each principal is represented by a public key so entity-recognition does
not have a large role to play in the current implementation of this application.

In the trust model, each client locally stores a (sj , ij , cj) triple for each principal,
pj , indicating how much they trust their judgement. sj is the number of times they have
given a correct opinion on whether an e-mail is spam or not, cj is the number of times
they have incorrectly described an e-mail and ij is the number of opinions received that
have yet to be confirmed as correct or incorrect.

The probability that a mail is spam given that pj says it is spam is then given by:

ρj = p(spam|pj) =
sj

sj + cj

The probability that a mail is spam given that pj says it is not spam is given by:

ρj = p(spam|pj) =
cj

sj + cj

The information from each principal is then weighted, based upon the number of pre-
vious interactions we have had with them and using a weighted-mean, to determine an
overall probability of whether a message is spam or not:

p(spam) =
w1ρ1 + w2ρ2 + ...+ wjρj∑

wj

wherewj = sj+cj . Information from principals with wj below the information thresh-
old, l, is ignored.

When the owner of the system reads their mail they give feedback to the system as
to whether or not it made the correct decision. This may be implemented implicitly by
monitoring how the user deals with the e-mail (such as moving it to a certain folder), or
an explicit feedback channel exclusively for correcting errors (as used in [11]).

Once a message has been verified by the human operator of the system, the (s, i, c)
triples for each principal that published an opinion are updated.

4.4 Recommendations

If there is insufficient information (as determined by the information threshold, l) in
the local trust database about principal Alice who offers an opinion on a particular e-
mail, then the trust engine may also query the p2p network for recommendations from
other principals about their experiences with Alice. To avoid problems with second-
hand information and loops, only information from direct experiences is published, in
the form of (s, i, c) triples.

Clearly, naı̈vely trusting recommendations from other p2p users is dangerous. In
order to incorporate these recommendations into the probability calculation, they are
first discounted [13], using the belief in the principal’s recommendation integrity; they
are then averaged over all principals who supplied a recommendation, before being
added to any local trust information.
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Recommendation integrity (also known as “meta-trust”) is calculated using the con-
cept of semantic distance from [14]. Received recommendations are stored in a cache
and then, after a certain number of interactions with the subject of the recommendation
have taken place (arbitrarily chosen as five in the initial prototype), the value of the
(newly obtained) local observed trust value is compared with the received trust value.
The main difficulty here is that the information content of the received value is likely to
be far higher than the experience value. The two trust values are therefore normalised,
giving (where info = s+ i+ c):

(
so

infoo
,
io

infoo
,
co

infoo

)
,

(
sr

infor
,
ir

infor
,
cr

infor

)

The recommendation integrity,RI , is then given by the ratio:

so
infoo

:
sr

infor

We observe that if RI < 1 then the recommendations tend to be better than the be-
haviour we experience, and so any recommendation should be scaled down accord-
ingly. In contrast, if RI > 1 then the recommendations are more negative than our
observations indicate. Note, we do not scale up in this instance as this would allow an
attacker to manipulate trust values by giving negative recommendations about those it
wished to make appear more trustworthy. Instead we observe that anyone who is guilty
of “bad-mouthing” another principal is unlikely to be very trustworthy at all and ignore
any recommendation they may give if RI > 2.

TheRI for a recommender is calculated at most once per recommendation received
to ensure that principals are not overly penalised if the principal they recommend sub-
sequently changes their behaviour. Since principals are likely to make many recom-
mendations, the RI value for a principal is an average over all recommendations that
principal makes.

4.5 Evaluation

A comprehensive evaluation of this application has been undertaken, using both ana-
lytical and empirical approaches. Unfortunately space constraints preclude any detailed
discussion here. The approach was threat-based, analysing what type of behaviour in-
dividual attackers might use to influence decisions, and simulation was then used to
determine how these individual behaviours would interact at a system-wide level.

The results indicated that the attackers operating in isolation were quickly identified
and ignored and so their best strategy was to co-operate in a co-ordinated manner. To
mitigate the Sybil Attack [15], policies were used that forced principals to supply more
correct than incorrect information in order to be able to affect decisions.

5 Research Context and Conclusions

This paper has presented a novel model of risk and trust-based access control based
on the economic theory of decision-making under uncertainty. This model has been
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evaluated through the implementation of a p2p collaborative spam detection application
which demonstrated its effectiveness.

This work builds on the authors’ experiences of developing and using the SECURE
risk model [2], which whilst being flexible and expressive was found to have a number
of weaknesses in practical deployment. Jøsang and Presti [16] also use the expected
utility theory to model agent risk aversity, but their model concentrates on using risk
to deduce trust rather than for access control. Further work could involve integrating
our approach with Jøsang and Presti’s, and an investigation of more complex expected
utility functions.
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