
Accepted for 1st IEEE Annual Conference on Pervasive Computing and Communications (PerCom 2003),
March 2003. Please do not redistribute.

Trust for Ubiquitous, Transparent Collaboration

Brian Shand, Nathan Dimmock, Jean Bacon
University of Cambridge Computer Laboratory

JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom
{Firstname.Lastname}@cl.cam.ac.uk

Abstract

In this paper, trust-based recommendations control the
exchange of personal information between handheld com-
puters. Combined with explicit risk analysis, this enables
unobtrusive information exchange, while limiting access to
confidential information. This is illustrated with applica-
tions such as personal address books and electronic diaries.
Recommendations associate categories with data and with
each other, with degrees of trust belief and disbelief. Since
categories also in turn confer privileges and restrict actions,
they are analogous to rôles in a Rôle-Based Access Con-
trol system, while principals represent their trust policies in
recommendations. Participants first compute their trust in
information, by combining their own trust assumptions with
others’ policies. Actions are then moderated by a risk as-
sessment, which weighs up costs and benefits, including the
cost of the user’s time, before deciding whether to allow or
forbid the information exchange, or ask for help. By unify-
ing trust assessments and access control, participants can
take calculated risks to automatically yet safely share their
personal information.

1 Introduction

In this paper, we present a trust and risk framework, to
facilitate secure collaboration in ubiquitous and pervasive
computer systems, while minimising the need for human
intervention.

Ubiquitous computing needs trust between participants
in order to support collaborative tasks, such as arranging
meetings, while protecting sensitive information used in the
collaboration. At the same time, security measures must
be proportional to the risk involved to allow the interaction
between devices to be as automated as possible.

For example, consider a business meeting with repre-
sentatives from two companies. To schedule a follow-up
meeting, the attendees would like to find a time that suits
everyone, with the help of electronic diaries and calendars.

However, depending on the trust between the companies,
they might not want to disclose their detailed movements to
each other.

Instead, the members of each company might decide to
find potential meeting times among themselves, then share
only this aggregate information between the companies.
This paper proposes trust and risk models to help automate
interactions of this sort, making the computations as unob-
trusive as possible while still respecting participants’ trust
beliefs.

2 Trust infrastructure

Mutual trust is crucial for ubiquitous devices, which
must share information and work together to present an un-
obtrusive interface [6] to their users.

Our trust framework uses a homogeneous recommenda-
tion system, to allow users to share and exchange privi-
leged information. This information can include conven-
tional data such as personal contacts and calendar entries,
and also trust beliefs about principals.

For example, Alice might give a telephone number to
Bob, together with recommendations that it is her telephone
number and that it be considered privileged business infor-
mation. This is illustrated in figure 1(a). Alice signs i to
certify that she is the origin of the information and also

Alice’s
PDA

Bob’s
PDA

i,R,R’

i = {Phone #}Alice

R’ = {Rec(i,business,t’)}Alice

R = {Rec(i,Alice,t)}Alice

(a) Alice sends Bob her
work phone number.

Bob’s
 PDA

Charlie’s
 PDA

i,R,R’’

R’’ = {Rec(i,work,t’’)}Bob

Blank

(b) Some time later, Bob for-
wards Alice’s number to Charlie.

Figure 1. Recommendations in action.

1

Accepted for 1st IEEE Annual Conference on Pervasive Computing and Communications (PerCom 2003),
March 2003. Please do not redistribute.

signs her recommendations to allow the recipient to eval-
uate their relevance using Alice’s trust-rating. t represents
Alice’s trust in her recommendation, that is, how much con-
fidence she has in it. Later, Bob forwards Alice’s number to
Charlie (figure 1(b)), along with her recommendation that
it is her number (R) and Bob’s recommendation that it is
her “work” number (R′′) in which he has trust t′′. He could
also forward Alice’s original recommendation R′ that it her
“business” number if he wished to, but he has chosen not
to in this case as the transmission link is expensive and he
thinks Charlie will find his recommendation more useful.

Existing trust models for pervasive computing typically
represent trust using a security policy which explicitly per-
mits or prohibits actions [5]. These policies are not well
suited to dynamic environments, in which participants have
only partial trustworthiness, and trust assessments must
constantly change. To avoid this, Abdul-Rahman and oth-
ers [2] have also proposed explicit recommendation sys-
tems, but with only very simple trust values. In our work,
we use recommendations to control the flow of informa-
tion, as well as for access control; we are also able to
combine our more complex recommendations consistently,
by formally ordering recommendations according to infor-
mation content. This gives us a well-founded approach
to trust management decisions, which is suitable for dis-
tributed computing applications.

Principals in our framework can also be associated
with categories using the recommendation system, and be-
ing a member of a category may confer certain access
control capabilities. Bob might send a recommendation
{Alice,work, t1}Bob to himself, that recommends Alice as
a member of category “work” with trust t1.

Principals and information are thus associated with cate-
gories using the recommendation system. Each item might
have more than one recommendation, whether from differ-
ent principals or for different categories. The trust model
assesses the importance of an item (with respect to a cate-
gory) by combining all the pertinent recommendations.

In the example above, the importance of displaying
Alice’s telephone number in Charlie’s work category would
depend on the degree to which Alice recommended the
number, Bob recommended the number as a “work” num-
ber and Charlie’s trust in Bob as a business acquaintance.
Furthermore, Bob would not pass on the number automati-
cally to Charlie; his PDA only sends the number because it
knows Charlie is a trusted business acquaintance.

The use of categories to assign access privileges is dis-
cussed in more detail in section 3. First, the following sec-
tion extends the example to show how recommendations
give structure to data.

2.1 Phone book example

A phone book exchange service illustrates the need for
and advantages of trust-based information exchange for
ubiquitous computing. Users of handheld computers cur-
rently exchange contact details laboriously on a one-to-one
basis. Furthermore, there is no associated trust informa-
tion, so users cannot recommend to whom the information
should be redistributed — for example, private and business
numbers are usually redistributed together.

In this section, we show how our trust and risk frame-
work can make this service more transparent for users,
while preserving the privacy of personal information.

The phone book database consists of many items, each
with associated recommendations. These may be signed to
prove their authenticity, using a public key infrastructure.

Accessing and displaying information

Each information item has a unique identity, depending on
the author and a secure hash of the contents; any reference
to an item uses this identity. As a result, recommenda-
tions about an item will cease to apply if the contents are
changed. In the case of a phone book, these contents might
be a name, a phone number or an address.

123456

{Rec(123456,Alice_id,t’)}
Bob_id

{Rec(123456,Alice_id,t)}Alice_id

987654"Alice Smith"

{Rec("A..S..",Alice_id,t)}
Alice_id

Alice_id

{Rec(Alice_ID,Bus., t)}
Owner

90%100%
100%

{Rec(987654,Alice_id,t)}
Bob_id

{Rec(987654,cell,t’’)}Charlie_id
{Rec(123456,work,t’’)}

Alice_id

work

100%

home

80%

{Rec(987654,home,t’)}
Bob_id

cell

20%

Figure 2. Each piece of information is stored
separately and links between them are deter-
mined by the trust model.

Figure 2 illustrates how Charlie uses the trust model
to display Alice’s phone book information in the example
above. When Charlie searches his phone book for “Alice”,
he finds the entry for Alice’s name, ranked according to the
strength of its recommendations. If he views that entry, he
is presented with the linked information too, again weighted
by importance. Very unimportant entries might not be dis-
played at all, according to a threshold set by Charlie.

In contrast, consider David, Charlie’s colleague who is
allowed to view business information in Charlie’s phone

2

Accepted for 1st IEEE Annual Conference on Pervasive Computing and Communications (PerCom 2003),
March 2003. Please do not redistribute.

book, but nothing personal. If David views Alice’s infor-
mation there, he is presented with the restricted view shown
in figure 3. Furthermore, the importance of links might be
different, if David had other knowledge of Alice, such as an
old work number that is now out of date, as illustrated here.

123456

{Rec(123456,Alice_id,t’)}
Bob_id

{Rec(123456,Alice_id,t)}Alice_id

Alice_id

{Rec(Alice_ID,Bus., t)}
Owner

100%50%

{Rec(123456,work,t’’)}
Alice_id

work

100%

"Alice Smith"

{Rec("A..S..",Alice_id,t)}
Alice_id

50%

100%

345678

{Rec(345678,Alice_id,t)}Alice_id
{Rec(345678,work,t’)}

Alice_id

Figure 3. David receives a different view on
Charlie’s information about Alice, plus ad-
ditional information from his own database
(shown as dashed lines).

2.2 User privacy

When Alice gives her phone number to Bob, she trusts
him not to redistribute it to people she would not want to
know her telephone number. However, Bob must then re-
alise that Alice has given him her direct line number instead
of the switchboard and not pass it on indiscriminately. In
our example in figure 1, Alice’s recommendation R states
that she recommends that Bob treat this as business infor-
mation and not a public number.

We believe that many security systems fail because of
their high administrative overhead — passwords on post-
it notes attached to monitors for example, because proper
user-account administration is considered to be too much
work — and so we aim to create a security mechanism suit-
able for use in the pervasive computing environment where
human intervention is a valuable resource [6], yet due to the
nature of the data involved, security remains important.

The following section shows how rôles and categories
can be structured to preserve the meaning of recommenda-
tions. This ensures that user privacy is better protected in
automated information transfers, by unifying trust assess-
ments with access control.

3 Categories and rôles

Information exchange is restricted with the help of cate-
gories, arranged in a partial order. These categories restrict

the distribution of information, and the actions of principals,
and are analogous to rôles in a Rôle-Based Access Control
system [3].

We extend traditional RBAC rôles by associating a trust
assessment with each category assignment. Users of the
system can then combine a risk assessment, together with
their trust in the information, to decide whether or not it
should be used or displayed. For example, the risk of dis-
playing an incorrect telephone number might depend on the
cost of the user’s time when attempting to use it. Con-
versely, if the number is not displayed (or is shown as less
important), the risk is that the user might not find it even
though it is correct.

Each category has a list of privileges associated with it;
these are action and category pairs which can be used by
principals associated with the category. The overall trust
assessment of an entity is thus a mapping from action and
category pairs to primitive trust values. These trust assess-
ments and the contribution of other recommendations are
formally expressed as a local policy function [4], defined in
section 4.3, analogously to Weeks’ proposal for formalising
access control system policies [9].

Categories are arranged in a natural privilege hierarchy:
when category c0 extends the privileges of another c1, we
write c0 ⊃ c1. Figure 4 illustrates a typical hierarchy, where
the top category> contains the owner of the PDA, cn repre-
sent user defined categories such as immediate family, busi-
ness colleagues, business contacts, friends and relatives. A
are acquaintances, people known to the owner, but not cat-
egorised, and S are strangers.

> (owner)

c0

c1

c2 c3 c4

A

S

⊥ (empty)

Super-User

Privileged

Group

Public

Figure 4. Example of a category hierarchy.

The diagram also shows another important feature of our
framework, from a human interaction perspective. We have
divided the categories into bands; these bands dictate the ex-
tra privileges granted to categories within them. This makes
it far more convenient for users to manage their trust poli-

3

Accepted for 1st IEEE Annual Conference on Pervasive Computing and Communications (PerCom 2003),
March 2003. Please do not redistribute.

cies, simply by moving categories within their trust lattice.
For example, categories in the “Group” band can conven-
tionally recommend that members may write data to their
own categories and those below them, and read data below
them.

The banding of categories allows user privileges to be
easily and intuitively assigned. However, if necessary the
banding may be overridden, by explicitly associating extra
permissions with categories or users.

Formally, these bands are a partition of the privileges of
the system. For example, if p(c) represents the privileges
of category or band c, then p(Group) = (p(c2) ∪ p(c3) ∪
p(c4))\ p(S), the marginal privileges accrued by categories
within the band.

The category bands also have a second function: they
facilitate information exchange, by providing a common
framework for expressing category meaning between de-
vices, even devices with otherwise different categories.

This allows recommendations between devices to be
made in terms of category bands. As long as users attribute
similar meanings to these bands — encouraged by band
privileges — then information transferred between devices
will automatically be restricted to the appropriate band, un-
less there is an explicit user override. This is particularly
useful if different collaborating users assign the same cat-
egory to different bands, to avoid accidental disclosure of
sensitive information.

3.1 Categories in calendars

The same framework can also be used for calendar in-
formation. In the phone book we had read and write capa-
bilities for viewing, inserting and updating phone numbers.
When a principal attempts to read a particular time-slot, the
information returned will depend on their location in the
hierarchy of categories in relation to the category of the ap-
pointment. All appointments have a projection into cate-
gories lower in the hierarchy, although not into ⊥. This has
the effect that a principal who does not have read permis-
sion for an appointment sees the lower category projection
that the time is busy, tentative or free but not the details of
any appointments. Because appointments are not projected
into ⊥, principals in sufficiently low categories (such as S
in figure 4) do not see anything at all and can learn no infor-
mation about the owner’s schedule.

Write permission to a category is the ability to make an
appointment in that category, and categories could be used
to determine the default response to an appointment made
in a free slot (for example: “automatically accept all ap-
pointments made by principals who are members of cate-
gory PhD-Supervisor”).

4 Trust Computation

Participants compute their trust in information, by com-
bining their own trust assumptions with others’ recommen-
dations. This section outlines the structure of these rec-
ommendations, and the formulae which compose them to-
gether.

Although we present our framework for a particular
ubiquitous computing application, we believe that its use
extends to all recommendation-based systems, particularly
those operating in mobile environments, where communi-
cation is limited and unreliable.

4.1 Recommendations

Recommendations associate one permission with an-
other in our trust framework. By treating the identities of
actors, categories and data entries as permissions, we can
use a homogeneous recommendation structure for privilege
assignment and for restricting the flow of information. In
practice, these permissions are associated with the public
and private keys of each actor and category.

The permissions
�

linked by recommendations are the
following:

Actor Permissions � are used to identify people (and their
aliases), such as “Alice” or “asa21”.

Category Permissions � represent membership of a cate-
gory such as “business”.

Data Entry Permissions � refer to address book entries,
including telephone numbers and names in our first ap-
plication.

Action Permissions
�

A = {Read,Wri te}× � allow the
holder to read or write data in a particular category.

Link Permissions
�

L = {Link}×(� ∪ �) are used when
data is written, to recommend that it be associated with
a category or an actor.

We limit which permissions may be linked, allowing only
the combinations shown in table 1. Recommendations are
then combined transitively to determine effective trust val-
ues, discounted according to the permissions the recom-
menders hold.

For example, assume that Alice recommends that Bob
should be a member of category “business” with trust t1,
that is {Rec(Bob, business, t1)}Alice . If a user trusts Alice
as a member of “business”, then Bob will be considered
a member too. Furthermore, if the user also recommends
that “business” acquaintances can read data from category
“strangers”, then the trust will be transferred and Bob will
be allowed to read data associated with strangers too.

Each recommendation thus links one permission to an-
other, with a certain degree of trust according to the recom-

4

Accepted for 1st IEEE Annual Conference on Pervasive Computing and Communications (PerCom 2003),
March 2003. Please do not redistribute.

From To � � � � A � L
� � � �

� �
� �

� A
� L

Table 1. Acceptable recommendations.

mender. Next, we present the structure of these trust values,
before showing how they are combined to make decisions.

4.2 Trust Values

In our framework, each trust value consists of a
(belief, disbelief) pair, representing the weight of evidence
for and against a particular trust assignment, with belief +
disbelief ≤ 1. This can be compared to Jøsang’s logic of un-
certain probabilities, based on the Dempster-Shafer theory
of evidence [7].

No information is represented by (0,0), while (1,0) and
(0,1) represent certain belief and disbelief respectively. We
order these trust values according to trustworthiness by
defining (b1, d1) � (b2, d2) iff (b1 ≤ b2) and (d2 ≤ d1),
which forms a lattice on our trust domain Tb.

However, there is also a second natural ordering, accord-
ing to information, where (b1, d1) v (b2, d2) iff (b1 ≤ b2)

and (d1≤ d2), which we will use in combining recommen-
dations below [4].

4.3 Policy Functions

Users must combine their own recommendations with
others’ to assess trust. This is achieved by forming a policy
function for each principal’s recommendations; these policy
functions are then combined to reach the appropriate trust
conclusions.

Each policy function denotes the trust each principal
places in others’ trust information; Polx(T, y, z) is the de-
gree to which principal x believes y should hold permission
z, if everyone else’s trust assignments are given in T .

This combines x’s own recommendations with recom-
mendations by others x trusts. Let dx(y, z) summarise x’s
recommendations, with dx(y, z) = t if there is a recommen-
dation {Rec(y, z, t)}x , and (0,0) otherwise. (Newer recom-
mendations are assumed to supersede older ones.)

Two sorts of recommendations are transitively com-
bined:
• those where x associates y with p, and p with z, and
• those where x gives p permission z, and p recom-

mends y for z.

This is summed up in the policy function

Polx (T, y, z) =
⊕{ ⋃

p∈ 	
dx(y, p)⊗ T (x, p, z)

∪
⋃

p∈ 	
dx(p, z)⊗ T (p, y, z)

∪ dx(y, z)
}

(1)

where

Polx : (
 →(
 →(
 →Tb))) → (
 →(
 →Tb)) (2)

(b, d)⊗ (e, f) =
{
(0, 0) if b ≤ d
(e

k ,
f
k) otherwise

with k = max
(e

b−d ,
f

b−d ,1
)

(3)

We also define
⊕

X i to combine a number of recommenda-
tions monotonically, by averaging their belief and disbelief
components respectively. The number of recommendations
considered remains constant while computing a particular
trust assessment, so this operation is monotonic.

For example, given three recommendations (0.2, 0),
(0.25, 0.5) and (0.36, 0.4) as shown in figure 5, the com-
pound recommendation deduced by

⊕
is (0.27, 0.3).

0 1
(0.27,0.3)

[]
[]

[]

(0.2,0)

(0.25,0.5)

(0.36,0.4)

][

combine to form

Figure 5. Combination of recommendations.

Finally, all the policy functions are considered, to allow
a principal to make a reasoned trust deduction which takes
into account others’ recommendations. This is achieved by
finding the least fixed point of all the policy functions com-
bined, with respect to the partial order v— corresponding
to the least specific trust assignments justified by the avail-
able recommendations. Since ⊗ and ⊕ are suitably mono-
tone, the policy functions Polx are monotone too, and so
this fixed point exists.

We have presented policy functions as a well-founded
mechanism for deducing trust values by combining rec-
ommendations. Recommendations are combined transi-
tively, which allows certain permissions to entail others, and
trusted acquaintances can delegate their permissions to oth-
ers.

The resulting trust values guide decision making in our
application, with the help of the risk assessments outlined
in section 6. First, however, we consider implementation
issues in resource-poor and vulnerably connected devices
in ubiquitous computing environments.

5

Accepted for 1st IEEE Annual Conference on Pervasive Computing and Communications (PerCom 2003),
March 2003. Please do not redistribute.

5 Implementation issues

Trust management through recommendations is well
suited to mobile and distributed applications, since rec-
ommendations conveniently factorise and encapsulate trust
policy.

This is particularly important for vulnerably connected
nodes such as PDAs, which must store the relevant compo-
nents of others’ policy locally, for use when disconnected.
Transferring only a few recommendations from a trust pol-
icy is justified in our application, since extra recommenda-
tions correspond to additional trust information in our par-
tial order. Therefore using a subset of a policy corresponds
to weaker policy assertions, and the resulting trust decision
will also be weaker.

However, locally-cached policies must be kept up to date
in order to be used appropriately. We therefore propose to
assign time stamps and validity periods to recommendations
which are then refreshed automatically each time devices
interact, to remove any burden on the owner to ensure their
local cache is not about to expire before embarking on a pe-
riod of extended disconnection. If a recommendation does
expire, using out of date policy may be preferable to no
knowledge at all. The principal danger of outdated infor-
mation is that a person may no longer deserve the privileges
that they once had, for example someone who has been fired
from the company, and so old trust policy that says some-
thing negative about a principal cannot cause our security to
be compromised.

Our solution is to scale down expired positive informa-
tion before it is used in the trust-model. There are also con-
siderations of storage space on resource-limited devices and
their capabilities to cache sufficient amounts of policy, but
that is a topic still under investigation.

Recommendation systems often suffer from issues of
long trust chains, because the meaning of “trust” changes
with depth in the chain — in PKI a principal who is
trusted to recommend other good recommenders must also
be trusted to be a good signer [1]. This is not a major prob-
lem for us as, in general, we believe people categorise the
people they know according to the type of trust they place in
them: close friends are clearly highly trusted; “business col-
leagues” do not try to sabotage each other’s list of contacts
but would not usually have access to personal numbers; and
so on. People within a single category may have different
levels of trust placed in them, but partial belief in category
membership caters for this. When necessary, we also al-
low exceptions to be made; the owner of the PDA can fine
tune their policies, via the recommendation system, to cus-
tomize individual users’ permissions. However we believe
that it is this modelling of human intuitions of trust (includ-
ing the overloading of the meaning of the term) that makes
our system so powerful while still being easy to use.

6 Risk assessment and decision making

As stated in the introduction, we believe security mea-
sures must be proportional and appropriate for the risk in-
volved: a user may happily distribute a business card to
strangers to advertise their business, but may be quite care-
ful as to whom they give their mobile phone number.

In the same way that a principal’s position in the category
hierarchy (figure 4) assigns it a permission, the position of
a piece of data implicitly gives it a value that can be used
to assess the risk of an operation involving it: the higher in
the hierarchy, the greater the value. We define the risk of
an operation as being the sum of the risks of all the possible
outcomes of that operation, where the risk of an outcome
is a function of the likelihood and impact of that outcome.
This is in line with existing literature on risk management,
such as [8] and we take the view that the impact of an out-
come is the worst-case cost to the user should that outcome
occur. This cost will be a combination of two factors: the
seriousness of the outcome itself and the value of the data
involved.

request

response

push

Bob Alice

4

1

2

3

Figure 6. Possible interactions between two
PDA users.

In the address book scenario, two users may interact in
two different ways as shown in figure 6. Either Bob may
request a number from Alice, or she may try to send Bob
information, unsolicited. Before either side takes part in an
interaction, there is a decision to be made (shown as the
numbers 1 to 4 in figure 6). Those decisions are as follows.

1. Request: Bob wishes to ask Alice’s PDA for a tele-
phone number. As far as Bob is concerned, the pos-
sible outcomes from interacting with Alice are (in in-
creasing order of impact):

• he obtains the number he wanted and it is correct;
• he obtains the number he wanted but it is incor-

rect (e.g. out of date);
• he does not obtain the number he wanted.

2. Response: Alice receives Bob’s request and must de-
cide what access to her address book she is prepared to
give him. From Alice’s point of view, the possible out-
comes of giving Bob access to an entry in her address
book are:

6

Accepted for 1st IEEE Annual Conference on Pervasive Computing and Communications (PerCom 2003),
March 2003. Please do not redistribute.

• Bob obtains the number he wanted;
• Bob obtains the number, but misinterprets or ig-

nores the attached recommendations and redis-
tributes it indiscriminately.

3. Push-Number: Alice wishes to automatically send her
number to certain PDAs she comes into contact with.
For example she may have recently changed her home
telephone number and wishes to inform all the friends
she meets, but not business colleagues. Her PDA must
decide whether to automatically send the number to
Bob; the possible outcomes for Alice are (again in in-
creasing order of impact):

• Bob stores the number and respects Alice’s ac-
companying recommendations on redistribution;
• Bob discards the number;
• Bob stores the number but ignores the accompa-

nying recommendations on redistribution.

4. Receive-Number: Alice wishes to send Bob some in-
formation. Bob must decide what to do with the re-
ceived information. The possible outcomes from his
point of view are:

• Bob finds it useful;
• Bob finds the information unhelpful or incorrect;
• Alice attempts a denial of service attack against

Bob’s PDA by sending many numbers, aiming to
fill its storage space or saturate its connectivity.

As stated above, the risk of an outcome is a function of
the worst case cost in the event of the outcome occurring,
and the probability of that the outcome will occur, which
is solely dependent on the principal(s) involved. Using the
idea that trust is a measure of how well an actor is known,
it is possible to assign a probability to each outcome.

We will now consider one trust-decision, Response, in
more detail.

6.1 Deciding whether to participate

When Bob asks Alice for a number from her address
book, in access control terms, she must decide whether to
grant him read permission on that number or not. The aim
of our model is to make this decision as automatic as pos-
sible, but obviously in some situations the correct response
will be unclear so the PDA may then attract Alice’s atten-
tion and ask for her guidance. However, the cost of Alice’s
time to give that guidance must also be factored into the de-
cision, so our cost-benefit analysis must take into account
the benefit from helping someone by giving them a number,
the worst-case cost of giving a number to an inappropriate
person and the cost of asking the owner for guidance.

This section begins with an informal justification of our
risk analysis equations, which are then validated formally
with the equivalent cost-benefit functions.

In order to decide whether a principal p, has read access
to a phone number, n, we have to consider all the categories
to which n and p are linked. n is considered to be linked to
a category if the trust-model has a greater belief than disbe-
lief in the link. For each category, c′ to which n is linked,
we consider p to be a member of the category c for which
the product of valc and (b − d) is greatest, where valc is
the user-assigned value of a category c which has read per-
mission on c′ and b, d are the PDA’s belief and disbelief,
respectively, that p is a member of c.

Effectively we have now reduced the access control de-
cision to whether p is a sufficiently strong member of c to
be able to read c′. Using the variable (b−d) as a measure
of the strength of p’s membership of c, there are three pos-
sible answers to the question: Yes, No and Ask owner for
guidance as illustrated in figure 7. How should these parti-
tion boundaries (x and y in the diagram) be determined?

-1 0 x y +1
No Ask YesNo

Figure 7. Number line showing how partitions
of (b− d) in membership of a category lead to
a decision.

It is logical that if disbelief in membership is greater than
belief then p is not a member of c and so the region from
-1 to 0 must be No. The answer must be Yes if the value of
the data is significantly lower than the value placed in the
principal, which leads to:

y = max
(
valc′ − valread

valc
, 0
)

where valc is the user-assigned value of category c which
represents the maximum benefit from trusting p with n, and
valc′ is the user-assigned value of category c′ which repre-
sents the potential cost of p ignoring our recommendations
and redistributing n indiscriminately. valread is the fixed
benefit of allowing someone to read a number, with which
the owner can customize how helpful they wish to be to oth-
ers: the higher the value of valread , the more likely they are
to let someone they do not know very well read a number.

The position of x must offset the value of helping the
person against the cost in time to the owner for disturbing
them. Therefore:

x = min
(

CT − valread

valc
, y
)

where CT is the cost to the owner of being asked for guid-
ance, a user-specified constant value.

7

Accepted for 1st IEEE Annual Conference on Pervasive Computing and Communications (PerCom 2003),
March 2003. Please do not redistribute.

These equations can be reformulated as benefit func-
tions, that perform a risk analysis of costs and benefits to
reach a decision.

Benefityes(b−d,valc,valc′) = valc.(b−d)−
max (valc′−valread, 0)

Benefitask(b−d, valc) = valc.(b−d)−CT+valread

Benefitno(b−d) = −valc.(b−d)

The term valc.(b− d) is the expected benefit of trusting
p and so it follows that the benefit of saying No is the ex-
pected benefit of not trusting p. In the Benefityes equation
the term max

(
valc′−valread , 0

)
cannot be less than 0 since

benefit of saying “Yes” cannot be greater than the benefit of
trusting p, even for really unimportant data items.

Using these equations, the decision is then answered by:

Answer = if Benefitno ≥ 0 then “No”
else if Benefityes > 0 then “Yes”
else if Benefitask > 0 then “Ask”
else “No”

6.2 Deciding what to display

There is one other operation where the trust-model is in-
voked, and that is choosing what to display to the owner of
the PDA when he or she wishes to view some information.
Suppose Alice wishes to view Bob’s number. She searches
for his name and the PDA finds ten telephone numbers that
are linked to him with varying degrees of strength. Since
ten numbers will not fit onto the PDA display at one time,
they are displayed in an order given by the product of the
strength of the trust-model’s belief they belong in a category
(b−d), and the value of that category. The interface is de-
signed to allow the user to give feedback on which number
they were looking for and how successful they were at us-
ing it. This means that if Alice tries to use a number which
is, for example, out of date, she can click a button next to it
and the system takes this to be a recommendation from her
(which is implicitly highly trusted) that this number is not
Bob’s and updates its trust values accordingly.

Alternatively, Alice might browse entries by address
book category. These could be ordered either convention-
ally (alphabetically), or by the degree of category member-
ship. Again, the interface allows feedback for incorrect en-
tries, in the form of extra recommendations.

7 Conclusions

We have outlined a framework for an unobtrusive and
mostly automated security model for ubiquitous devices,

using a system of trust-evaluated recommendations. We
have applied this to our prototypical examples, a phone
book and an appointment diary although we believe it is
applicable to all recommendation-based systems, especially
ones in mobile environments. Further work includes a user
acceptance and evaluation study of our assumptions regard-
ing the reuse of the natural organisation of a user’s address
book to assign access permissions, and the detection of un-
trustworthy principals by examining the source(s) of infor-
mation found in other people’s PDAs.

These studies will further validate our recommendation
framework, and its unification of personal trust with access
control for ubiquitous computing applications.

Acknowledgment

This work has been inspired and supported by the EU-
funded SECURE project (IST-2001-32486), part of the EU
Global Computing initiative. The authors would like to ac-
knowledge the very helpful interaction we have had with
all the members of the project consortium, and especially
BRICS, at Århus, Denmark, for helping to formally ground
our trust model.

References

[1] A. Abdul-Rahman. Problems with trusting recommenders
to recommend arbitrarily deep chains, Mar. 1998. [Online].
Available: http://www.cs.ucl.ac.uk/staff/F.
AbdulRahman/docs/levnprob.html.

[2] A. Abdul-Rahman and S. Hailes. Supporting trust in virtual
communities. In Hawaii International Conference on System
Sciences 33, pp. 1769–1777, 2000.

[3] J. Bacon, K. Moody, and W. Yao. Access control and trust in
the use of widely distributed services. In Proceedings Mid-
dleware 2001, Lecture Notes in Computer Science 2218, pp.
295–310, 2001.

[4] M. Carbone, O. Danvy, I. Damgaard, K. Krukow, A. Møller,
J. B. Nielsen, and M. Nielsen. A model for trust, Dec. 2002.
EU Project SECURE IST-2001-32486 Deliverable 1.1.

[5] T. Finin, A. Joshi, L. Kagal, O. Ratsimore, V. Korolev, and
H. Chen. Information agents for mobile and embedded de-
vices. Lecture Notes in Computer Science, 2182:264–286,
2001.

[6] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.
Project Aura: Towards distraction-free pervasive computing.
IEEE Pervasive Computing, 1(2):22–31, 2002.

[7] A. Jøsang. A logic for uncertain probabilities. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems, 9(3):279–311, June 2001.

[8] G. Stoneburner, A. Goguen, and A. Feringa. Risk manage-
ment guide for IT systems. Technical Report SP800-30, Na-
tional Institute for Science and Technology, Jan. 2002.

[9] S. Weeks. Understanding trust management systems. In IEEE
Symposium on Security and Privacy, pp. 94–105, 2001.

8

