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Abstract. For large-scale distributed applications such as internet-wide
or ubiquitous systems, event-based communication is an effective messag-
ing mechanism between components. In order to handle the large volume
of events in such systems, composite event detection enables application
components to express interest in the occurrence of complex patterns of
events. In this paper, we introduce a general composite event detection
framework that can be added on top of existing middleware architectures
— as demonstrated in our implementation over JMS. We argue that the
framework is flexible, expressive, and easy to implement. Based on finite
state automata extended with a rich time model and support for pa-
rameterisation, it provides a decomposable core language for composite
event specification, so that composite event detection can be distributed
throughout the system. We discuss the issues associated with automatic
distribution of composite event expressions. Finally, tests of our compos-
ite event system over JMS show reduced bandwidth consumption and a
low notification delay for composite events.

1 Introduction

Event-based communication has become a new paradigm for building large-scale
distributed systems. It has the advantages of loosely coupling communication
partners, being extremely scalable, and providing a simple application program-
ming model. In event-based systems, events are the basic communication mech-
anism. An event can be seen as a notification that something of interest has
occurred within the system. Components either act as event sources and publish
new events, or event sinks and subscribe to events by providing a specification
of events that are of interest to them. A publish/subscribe (pub/sub) communi-
cation layer [1] is then responsible for disseminating events; for efficiency, it can
often also filter events by topic or content, according to client specifications.

Many existing pub/sub systems [2–4] restrict subscriptions to single events
only and thus lack the ability to express interest in the occurrence of patterns
of events. However, especially in large-scale applications, event sinks may be
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Fig. 1. A publish/subscribe system in a corporate network

overwhelmed by the vast number of primitive, low-level events, and would benefit
from a higher-level view. Such a higher-level view is given by composite events
(CE) that are published when an event pattern occurs. To date, it is usually
left to the event sink to implement a detector for composite events making it
unnecessarily complex and error-prone.

In this paper, we address the problem by proposing a general framework for
composite event detection that works on top of a range of pub/sub systems. This
framework includes a generic language for specifying composite events and CE
detectors that can detect composite events in a distributed way.

The paper is organised as follows: Section 2 motivates the necessity of com-
posite event detection in large-scale distributed systems. After related work
(Sect. 3), we discuss prerequisites of the detection framework (Sect. 4) such as
the pub/sub infrastructure requirements, the time model and the event model.
The CE detectors and the associated core language are presented in Sect. 5, and
Sect. 6 discusses distributed detection. In Sect. 7, we present our implementation
over JMS, and evaluate its performance. The paper finishes with an introduction
to higher-level specification languages (Sect. 8) and conclusions (Sect. 9).

2 Motivation

Large-scale event systems need to support CE detection, in order to quickly
and efficiently notify their clients of new, relevant information in the network.
This is particularly important for widely distributed systems where bandwidth
is limited and components are loosely coupled. In such systems, distributed CE
detection can improve efficiency and robustness.

For example, consider a large corporate network which connects disparate
information systems, illustrated in Fig. 1. The computer system at one site might
use the network to notify a supplier that more raw materials were required. At
the same time, the sales department might notify all plants of projected regional
demand for each product, in order to guide production. Finally, management
might want to be informed of all orders over � 10 000 from new clients, or of
plants increasing production when demand was falling.
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Fig. 2. An Active Office environment

In a small company, simple point-to-point messaging between departments
would be sufficient. However, this would require considerable administration in a
larger organisation, as each information producer would need a list of all intended
recipients. A pub/sub system would reduce this overhead, allowing more flexible
communication and easier bootstrapping of the system.

Nevertheless, without CE detection, many messages would still be sent unnec-
essarily, because specific event combinations or patterns could not be expressed
by recipients. Instead, in the example above, management would have to be noti-
fied independently of all large orders and of all new clients. Furthermore, reuse of
common subexpressions would be impossible, if for example both management
and accounting were interested in orders over � 10 000.

For reliability and efficiency, each CE detector should be distributed near to
its event sources. Otherwise, if one site’s connection to the rest of the network
failed, local notification of composite events might fail unnecessarily. Besides,
sending these events off-site for detection would have been a waste of bandwidth,
if all relevant events were known to be locally produced.

Just as a general purpose pub/sub system supports flexible messaging, so
too can a generic CE framework extend this support. Therefore, this paper pro-
poses a general purpose middleware system for CE detection, independent of
the specific underlying pub/sub infrastructure. By making CE detection closely
interoperate with the underlying communication infrastructure, we obtain a sys-
tem that is more efficient than an ad hoc implementation of CE detectors at the
application level.

2.1 Application Scenario: The Active Office

The Active Office is a computerised building which is aware of its inhabitants’
behaviour (cf. Fig. 2). Workers wear Active Bats [5] to inform the building of
their movements at least once a minute. Other sensors monitor doors, office tem-
peratures, electronic whiteboard usage, and lighting. A content-based pub/sub
system is used so that applications can be notified of specific events, such as
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‘location events where Peter is seen in room FE04’. We used the following two
application scenarios to test our CE detection framework:

Scenario 1. The building services manager wants to know about temperature
events under 15 � in an occupied room.

Scenario 2. Jean wants the list of participants and the electronic whiteboard
contents of any meeting she attended to be sent to her wireless PDA, but only if
she does not login to the workstation in her office within 5 min of the meeting.

There are many advantages of using a CE middleware for services in an
Active Office, instead of (or perhaps as well as) offering predefined composite
subscriptions on dedicated servers. The most important are the flexibility with
which recipients can compose personal subscriptions, and the ease with which
composite patterns can be reused and distributed close to event sources. The
cost of establishing this network of CE detection broker nodes is then offset by
the simplicity of configuring it for new CE subscriptions.

3 Related Work

Historically, composite event detection first arose in the context of triggers in
active databases. Early languages for specifying composite events follow the
Event-Condition-Action (ECA) model and resemble database query algebras
with an expressive, yet complex syntax. In general, the detection process is not
distributed.

In the Ode object database [6], composite events are specified with a regular-
expression-like language and detected using finite state automata (FSA). Equiv-
alence between the CE language and regular expressions is shown. Since a com-
posite event has a single timestamp of the last event that led to its detection, a
total event order is created that makes it difficult to deal with clock synchroni-
sation issues. The pure FSAs do not support parameterised events.

CE detectors based on Petri Nets are used in the SAMOS database [7].
Coloured Petri Nets can represent concurrent behaviour and manage complex
data such as event parameters during detection. However, even for simple expres-
sions, they quickly become complicated. SAMOS does not support distribution
and has a simple time model that is not suitable for distributed systems.

The motivation for Snoop [8] was to design an expressive CE specification
language with powerful temporal support. A CE detector is a tree that reflects
the structure of the event expression. Its nodes implement language operators
and conform to a particular consumption policy. A consumption policy influ-
ences the semantics of an operator by resolving which events are consumed from
the event history in case of ambiguity. For example, under a recent policy only
the most recently occurring event is considered; others are ignored. Detection
propagates up the tree with the leaves of the tree being primitive event detec-
tors. A disadvantage is that the nodes are essentially Turing-complete making it
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difficult to formalise their semantics and to reason about their behaviour. The
use of consumption policies can be non-intuitive and operator-dependent.

In [9], Schwiderski presents a distributed CE architecture based on the 2g-
precedence model for monitoring distributed systems. This model makes strong
assumptions about the clock granularity in the system and thus does not scale
to large, loosely-coupled distributed systems. The language and the detection
algorithm used are similar to Snoop and suffer from the same shortcomings. It
addresses the issue of events being delayed during transport by evaluation poli-
cies : asynchronous evaluation enables a detector to consume an event as soon as
it arrives sometimes leading to incorrect detection, whereas synchronous evalu-
ation forces a detector to delay evaluation until all earlier events have arrived,
and assumes a heartbeat infrastructure. Although detection is distributed, no
decision on the efficient placement of detectors in the network is made.

The GEM system [10] has a rule-based event monitoring language. It follows
a tree-based detection approach and assumes a total time order. Communication
latency is handled by annotating rules with tolerable delays. Such an approach
is not feasible in an environment with unpredictable delays.

Research efforts in ubiquitous computing have led to CE languages that are
intuitive to use in environments such as the Active Office. The work by Hay-
ton [11] on composite events in the Cambridge Event Architecture (CEA) [12] is
similar to ours in the sense that it defines a language that non-programmers can
use to specify occurrences of interest. Hayton uses push-down FSAs to handle
parameterised events. However, the language itself can become non-intuitive as
the semantics of some operators is not obvious. Even though detectors can use
composite events as their input, distributed detection is not dealt with explicitly.
As in previous work, scalar timestamps are used.

Distributed pub/sub architectures such as Hermes [4], Gryphon [3, 13], and
Siena [2] only provide parameterised primitive events and leave the task of CE
detection to the application programmer. Siena supports restricted event pat-
terns, but it does not define a complete pattern language.

In our CE detection framework, we adopt the interval timestamp model in-
troduced in [14]. The partial order of timestamps in a distributed system is
made explicit by having timestamps associated with an uncertainty interval. A
CORBA-based detection architecture is presented in [14] that implements this
time model. The notion of event stability is defined in order to handle commu-
nication delays. We extend this to cope with delays in wide-area systems.

4 Design and Architecture

The CE detectors in our framework recognise concurrent patterns of simpler
events, generating a composite event whenever a match is found. The component
layers of our detection architecture are illustrated in Fig. 3: Distributed CE
detectors are compiled from expressions in our core CE language. Patterns can
be specified using higher-level languages, which are first translated into the core
CE language before compilation and execution.
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The CE framework relies on and interacts with the underlying event system,
in order to detect complex patterns of events. This section outlines the prereq-
uisites for this interaction: an interface to a pub/sub infrastructure, and formal
models of events and time. Given these prerequisites, the full expressive power
of our CE languages can be used.

4.1 Publish/Subscribe Infrastructure Support

One of our design goals was to keep the CE detection framework strictly sepa-
rated from the pub/sub infrastructure used. The interface to the event system
(Fig. 4) makes only minimal assumptions about the functionality supported al-
lowing our framework to be deployed on a large variety of pub/sub systems. Our
current test-bed uses the Java Message Service (JMS) [15], but other pub/sub
systems could equally be used: earlier work was based on Hermes [4], a dis-
tributed event-based middleware architecture, and CORBA Events would also
be suitable.

In addition to the time and event model described below, the underlying
pub/sub system needs to support (1) publication of primitive events by event
sources, (2) subscription to these events by event sinks, and (3) relaying of events
from sources to sinks. Many systems also filter events en route for efficiency; our
CE framework uses this if available, but no particular publication or subscription
model is assumed. Our event model uses the abstraction of a describable event
set as an atom for CE detection. If the pub/sub system supports content-based
filtering, a describable event set will be defined by a parameterised filtering
expression. In a topic-based system, it will conform to a certain event type only.

In particular, the pub/sub system does not need to be aware of CE types.
As illustrated in Fig. 4, application event sources submit CE subscriptions to
the CE detection layer. Any composite events that are then detected by a CE
detector are published to the pub/sub system disguised as primitive events. It is
then the responsibility of the pub/sub system to disseminate these encapsulated
CE occurrences to all interested event sources. The same mechanism is used for
the communication between distributed event detectors (cf. Sect. 6).
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4.2 Composite Event Detection Framework

The Java interface to the CE detection service, presented to applications, is
shown below in part. Applications may use this for all event services, or contact
the underlying pub/sub infrastructure directly for primitive event subscriptions.

public interface DistCEDServiceInf {

public void registerCEType(CEType type, CEPublisherInf publisher);

public void unregisterCEType(CEType type, CEPublisherInf publisher);

public CEInf createCE(CEType ceType);

public CEType createCEType(String typeName);

public void publish(CEInf ce, CEPublisherInf publisher);

public void subscribe(CEType type, CESubscriberInf subscriber,

CEQoSInf qos, CESubscriberCallbackInf callback);

public void unsubscribe(CEType type, CESubscriberInf subscriber);

}

Before an event type can be published it must be registered with the CE
detection service so that e.g. an appropriate type/topic is created in the under-
lying pub/sub system. After that, a new event instance can be created using
the createCE method. The publish method will pass the publication down to
the pub/sub system. A call to subscribe subscribes to primitive or composite
events. A CE subscription may trigger the instantiation of new CE detectors.

Time Model. Each event in our framework has an associated timestamp, de-
noting when it occurred. In a large-scale system, it may often be impossible to
decide which of two events occurred first. Therefore we assume that there is a
partial order relation on timestamps ‘<’, showing which events definitively oc-
curred before others. This is extended to a total order ‘≺’, using a tie-breaker
convention (see App. A) allowing events to be treated as a well ordered sequence
of symbols for detection.

This may be illustrated using a two-part interval timestamp for events, rather
than a single conventional timestamp. These interval timestamps are used implic-
itly throughout the rest of the paper. They can represent the clock uncertainty
of a distributed time service such as NTP, and also the time interval associated
with a composite event. The intervals can factor in the estimated receiver-specific
delay on receiving UTC, including radio transmission lag or network delays.

Figure 5 illustrates three interval timestamps t1, t2 and t3. Here, t1 < t2,
t1 < t3 but t2 ≮ t3 and t3 ≮ t2. On the other hand, using the total order,
t1 ≺ t2 ≺ t3; these operators are formally defined in App. A.
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Event Model. Events provide notification of observations in a distributed sys-
tem. Primitive events represent observations from outside the event system,
while composite events represent patterns of events. The constituents of a com-
posite event may be primitive events, or other, simpler composite events. Despite
this distinction, all events are treated homogeneously; we assume only that events
have timestamps, and can be consistently ordered for each subscriber (e.g. by
interval timestamp, source IP address and local event generation count).

In an Active Office [5], primitive events might be ‘The door opens’ and ‘Peter
is seen in the room’. Similarly, ‘The door opens, then Peter is seen in the room’
could be a composite event. Thus event sequences, of interleaved primitive and
composite events, can be used to formalise the detection of composite events
(cf. App. A). Furthermore, our event ordering still supports distributed detec-
tion, since each CE detector’s subscription is used to sequence only the events
needed for its composite event pattern.

5 Composite Event Detection

The CE detectors in our framework are simple automata, with a regular struc-
ture. Unlike conventional FSAs, these automata provide support for a rich time
model and parameterisation, as well as the ability to detect concurrent event pat-
terns. A novel language is used to express these patterns; this core CE language
can then be compiled into automata for matching.

Distribution support is important for communication efficiency; Section 6
discusses how each pattern may be factorised into subexpressions. These subex-
pressions can then be matched independently on distributed nodes — these
mobile detectors were discussed in an earlier paper [16]. Patterns may also be
more intuitively defined using higher-level specification languages, described in
Sect. 8. However, this is only a matter of convenience, not expressiveness; any
patterns described in a higher-level language are first translated into the core
CE language, before being compiled into automata. Figure 3 illustrates the re-
lationship between these different aspects of the CE framework.

For example, in Scenario 1, the building services manager subscribes to tem-
perature events under 15 � in an occupied room. (For simplicity, we consider
the movement, door and temperature events of only a single room, although
multiple rooms could be represented in a single CE expression using parameter-
isation. We also prefilter the PersonEvents, limiting repeat notifications to one
per minute.) We consider a room to be occupied if it has exhibited movement or
door events within the last 5 min. In our core CE language, we might represent
the primitive events (as exposed by JMS) using:

– [PersonEvent(location=’Office FE02’)]
– [DoorEvent(location=’Office FE02’)]
– [TempEvent(location=’Office FE02’ AND temp<15)]

Scenario 1 could be written (using [Pers(f1)], [Door(f1)], [Temp(f2)] for
the expressions above, for brevity) as: ([Pers(f1)] | [Door(f1)], [Temp(f2)])t=5 min.
This would be compiled into the following automaton, for use as a detector:
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We based our core language and automata on regular expressions and FSAs
for a number of reasons. Firstly, their expressive power is well understood, but
they require only limited, predictable resource usage, and are thus a safer tool for
distributed detection than a more general language. Still, they are powerful, and
are frequently used for pattern detection and matching. Furthermore, regular
expressions may also easily be factorised into subexpressions, for distributed de-
tection of independent expressions. Finally, we felt that it would be more sensible
to extend the commonly accepted regular expression operators with necessary
additions, rather than arbitrarily define new operators, with the concomitant
risks of redundancy or incompleteness. Our core CE language and automata
therefore only minimally extend regular expressions and FSAs, to allow tempo-
ral relationships, input filtering, and parallel detection to be expressed.

5.1 Composite Event Detectors

The automata which detect composite events contain a finite number of states
and state transitions, but each state also maintains the timing information of the
previous symbol detected. In a given state, the automaton decides when to make
the transition to another state by considering new input symbols only from a
per state describable subset of the global event input sequence I (cf. App. A.2).

Structure of Automata. Our automata have two types of state: ordinary and
generative. A generative state causes a new event to be created, either a compos-
ite of the events matched so far (with a specified type), or an instantaneous time
event in the future (with a freshly allocated local identity). The timestamp of
the composite event will start at the earliest start time of the constituent events,
and end at the latest end time. A time event may be used later in the automa-
ton, to progress or fail after a given timeout (cf. App. A.2). Each state has an
input domain of describable events, the family of events it can match. When in
a given state, the automaton processes only those new events that lie within the
state’s domain. The diagram below shows four states: an initial (ordinary) state,
an ordinary state, a generative state for a composite event of type ‘A;B’, and a
generative state for a time event. The input domains are Σ0 . . . Σ3.

S0

Σ0

Initial State

Σ1

Ordinary State

A;B

Σ2

Generative State

T1

Σ3

Gen. Time State

(1 min)

Each state can have any number of outward transitions. There are two types
of transition: strong and weak, which can match events which strongly or weakly
follow the previously detected event. These correspond to the partial and total
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event orderings ‘<’ and ‘≺’ respectively. Each transition has a describable family
of events attached, any of which will cause it to be taken.

New events in the input domain of a state but not in any transitions will
cause the match to fail. These new events must strongly follow the previous
event if all outgoing transitions are strong, or weakly follow otherwise. If there
are two or more matching transitions, they will be followed nondeterministically.
When a state with no outgoing transitions is reached, an event is generated
if it is generative, then the machine (or the current nondeterministic branch)
immediately terminates. The diagram below illustrates both strong and weak
state transitions. If a, b, c are the events which matched A, B and C, then a < b
and b ≺ c. Furthermore, b ∈ B is the first event in the input stream IΣ1 for
which a < b. Similar constraints apply to c.

S1

Σ1

S2

Σ2

S3
A B C

Limitations of Automata. The extended automata address many of the dis-
advantages of standard FSAs. Firstly, temporal support is provided by explicit
event timestamps and special timer events. Concurrent events are also supported;
the following automaton generates a new event when composite events C1, C2∈D
occur in parallel within 1 min of each other. C1 might represent ‘Peter is seen
in the building but not in his office’ and C2 ‘Peter’s phone rings’. The resulting
event could be used to divert the call to wherever Peter was last seen.

S0

T1

C2 ∪ {T1}

(1 min)

T2

C1 ∪ {T2}
(1 min)

C1

C2

C2

C1

Conventional FSAs have other limitations too. Most importantly, they cannot
handle event interrelationships such as event parameterisation. For example, to
detect how long each door in a building is left open, a mechanism is needed
for expressing free parameters which apply the same expression to all rooms:
detect opening (x) followed by closing(x). Our framework can resolve this issue
by filtering on the CE attributes of all opening and closing event pairs as soon as
they are detected, reporting only matching pairs. This is still efficient, since the
unnecessary composites are discarded as soon as they are detected, and every
possible pairing would have been considered.

Finally, when nondeterministic FSAs are made deterministic, the number of
states can grow exponentially. Although our automata potentially exhibit this
behaviour, it does not happen in practice: since distribution takes place at the
level of CE expressions (see Sect. 5.2), not automata, resolution to deterministic
automata is not required; instead, a list of active states is held. Furthermore, in
typical composite expressions this list is usually short, since distributed detection
makes parallel detection of independent subexpressions the norm.

Formal Definition of Automata. Each automaton consists of a set of states
S, state domains aS : S → D, and strong and weak transition domains aTS , aTW :
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S × S → D. There is also a start state S0 ∈ S. Finally, G ⊆ S × (T ] D) defines
the generative states (an extension of accepting states) and their actions.

The current state of an automaton is C ⊆ S × T × P(E) where T is the set
of possible timestamps. In other words, the current state consists of a number
of triples, each representing a state, a timestamp, and a list of detected events.
From the perspective of the automaton, the list of events is opaque, except that
extra detected events may be added to it, when a transition is made.

5.2 Core Composite Event Language

A CE language allows expression of CE patterns. In this section, we introduce
our core CE language, which can easily be compiled into automata, but is still
human readable, and outline its grammar. This language also defines the level
at which subexpressions are chosen for distributed detection. App. B contains
the transformation from expressions into automata, and gives precise operator
semantics. The operators of the core CE language extend those found in regular
languages, namely concatenation, alternation, and iteration, with operators for
timing control, parallelisation, and weak/strong event sequencing. In contrast
with other CE languages, we avoided redundant operators to simplify analysis.

Atoms. [A,B,C, · · · ⊆ Σ0]. Atoms detect individual events in the input
stream. Here, only events in A∪B ∪C ∪ . . . will be successfully matched. Other
events in Σ0 will cause a failed detection, and events outside Σ0 will be ignored.
We abbreviate negation using [¬E⊆Σ] for [Σ\E ⊆ Σ], and also write [E] instead
of [E⊆E]. (Negation ensures any other events in Σ will stop the detection, such
as timeouts or stopper events.)

Concatenation. C1C2. Detects expression C1 weakly followed by C2.
Sequence. C1; C2. This detects expression C1 strongly followed by C2. Thus

C1 and C2 must not overlap in a sequence, but they may in a concatenation.
Iteration. C ∗1 . Detects any number of occurrences of expression C1. If C1

detects a symbol which causes it to fail, then C ∗1 will fail too. (So [A][A ⊆
{A,B}]∗[C] would match input AAC but not AABC.)

Alternation. C1 | C2. This expression will match if either C1 or C2 is matched.
Timing. (C1, C2)T1=timespec. The timing operator detects event combinations

within, or not within, a given interval. The second expression C2 can then use
T1 in its event specification.

Parallelisation. C1 ‖ C2. Parallelisation detects two composite events in par-
allel, and succeeds only if both are detected. Unlike alternation, any order is
allowed, and the events may overlap in time.

The following examples illustrate the use of the core CE language to describe
composite events. Let B be the events corresponding to ‘Brian enters the room’,
let P be ‘Peter enters the room’, and let A be ‘anyone enters the room’.

1. Brian enters the room followed by Peter: [B]; [P ]
2. Brian enters the room before Peter: [B⊆{B,P}]
3. Brian enters and Peter follows within an hour: ([B], [P ⊆{P, T1}])T1=1 h

4. Someone else enters the room when Brian is away: [B] [¬B⊆A] [B]
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6 Distributed Detection

In a large-scale distributed application, events are published at geographically
dispersed sites. A centralised CE detector would have to subscribe to all prim-
itive events that are part of a CE expression in order to detect occurrences of
composite events. This could become a bottleneck and a single point of failure.

Instead, our framework provides a mechanism for distributing CE detectors.
Detectors can be installed at various locations in the network and cooperate
with each other. This cooperation is achieved by decomposing CE expressions
stated in the core language into subexpressions that are then detected by de-
tectors running at different nodes. Figure 6 shows an example of a network of
cooperating CE detectors. The detectors are located close to event sources that
publish events at a high rate, thus requiring high-bandwidth links. After CE
detection, bandwidth consumption is reduced since composite events occur less
frequently. Composite events are then sent to remote event sinks over a low-
bandwidth, wide-area network. No CE detector is overwhelmed by the rate of
primitive events, as it subscribes to at most two event sources.

The main difficulty when distributing detectors is to decide on their optimal
placement within the system. This is complicated by the fact that the reasons
for distributing detectors are potentially conflicting. For example, to minimise
bandwidth usage, existing detectors should be reused for subexpressions as much
as possible — even between applications, if this is appropriate. However, if mini-
mum latency is required, detectors should be replicated at various regions in the
network which leads to higher bandwidth consumption. As a result, an optimal
solution must be a trade-off that takes the static and dynamic characteristics of
the system and the requirements of the application into account.

In our framework, mobile CE detectors (Sect. 6.1) detect composite events
in a distributed fashion. A distribution policy (Sect. 6.2) ensures that detec-
tors are installed at sensible locations and specifies a policy for their movement
and behaviour during their lifetime. Network delays that can lead to incorrect
detection are addressed by a detection policy (Sect. 6.3).

6.1 Mobile Composite Event Detectors

We introduce the concept of a mobile composite event detector to add distributed
detection to our framework. A mobile CE detector is an agent-like entity encap-
sulating an automaton that detects an expression from our core language. It
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subscribes to event sources to receive event input streams and publishes the
composite events detected by the automaton. The detector is capable of mov-
ing from one location to another in the network. This assumes the existence of
a logical overlay network of nodes that supports the migration of components.
Consequently, our work is built on top of a network of event brokers, for exam-
ple corresponding to Hermes brokers or JMS nodes, where each event broker is
capable of running one or more mobile detectors.

Whenever a CE subscription is added and no detector for this expression
can be found in the system, a new mobile CE detector is created at an existing
broker. It can carry out a number of actions: the detector can factorise the CE
expression along its abstract syntax tree and delegate detection of subexpressions
to other (already existing) detectors. For this, it can instantiate new detectors if
it needs to reduce its own load. It can migrate to another node in the network
that is for example closer to the event sources that it has subscribed to. Finally,
the detector can destroy itself once it is no longer required.

Consider the Active Office application scenario introduced in Sect. 2.1. Let
B be the event type corresponding to ‘Brian enters the room’, let P be ‘Peter
enters the room’, and let M be ‘a meeting takes place in the room’. A user
is interested in occurrences of ‘Brian enters the room followed by Peter’. The
corresponding mobile CE detector C1 for the expression [B];[P ] is shown below.

S0

{B} {P}

B;P

B P

C1

S0

{[B]; [P ],M}

C1|M
[B]; [P ],M

C2

[B];[P ]

When another user subscribes to occurrences of the composite event ‘Brian
enters the room followed by Peter or a meeting takes place’, this new expression
([B];[P ])|M can be rewritten as C1|M . Therefore, the new detector C2 can reuse
the existing detector C1 by subscribing to [B];[P ]. The communication between
the two detectors happens exclusively through the underlying pub/sub system.

6.2 Distribution Policy

The behaviour of a mobile CE detector with respect to its actions is governed by
a distribution policy — a set of heuristics to be followed by the detector. Several
dimensions are addressed by a distribution policy:

(1) The location of mobile CE detectors must be determined. On the one
hand, bandwidth usage can be reduced by moving detectors close to event
sources. Primitive events that constitute a composite event may be of inter-
est only to the CE detector and should therefore not be widely disseminated
throughout the entire system unnecessarily. On the other hand, CE detectors
should be close to application components that subscribe to them to improve
reliability and detection delay. (2) The degree of decomposition and distribution
must be stated in the policy (with optional hints from the application). When-
ever a new CE subscription is created, existing detectors for this subexpression
should be reused to save bandwidth and computational effort. (3) Detectors
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must be replicated since, in a typical system, certain composite events will be
more common than others. Detection for very common composite events should
therefore be shared among several detectors for scalability.

6.3 Detection Policy

In a distributed system, events from different event sources travel along separate
network routes to a mobile CE detector. Even if we assume that the network
itself does not reorder events, out-of-order arrival of events at the detector can
occur because of the different associated network delays. Whenever a new event
arrives, it has to be inserted at the correct position in the totally-ordered event
input stream before the stream is fed into the automaton.

The problem is to decide when the next event in the event input stream can
be safely consumed by the automaton without risking that an event with an
older timestamp is still being delayed by the network. Premature consumption
could lead to an incorrect detection or non-detection of a composite event. Thus,
each CE subscription is annotated with a detection policy that specifies when a
detector can consume an event from an event input stream.

Best-Effort Detection. A best-effort detection policy states that events
are consumed from event input streams without delay. Whenever an event is
available, it will cause a state transition (or failure) in the automaton. Although
this policy may lead to incorrect detection, it can be applied by applications
that are sensitive to detection delay and are willing to ignore false positives.

Guaranteed Detection. Under a guaranteed detection policy, an event is
consumed from an event input stream only once it has become stable1 [14]. The
consumption of only stable events ensures that no spurious composite events are
detected. A detector knows that an event is stable after another event with a
later timestamp from the same event source has been inserted in the event input
stream. An event source that does not publish events at a high enough frequency
can publish dummy heartbeat events that are used to ‘flush the network’.

In an asynchronous distributed system, a guaranteed detection policy po-
tentially introduces an unbounded delay at the detector. For instance, an event
source might fail or decide not to cooperate by not sending heartbeat events. To
avoid this problem, we are currently investigating a probabilistic stability metric.
As opposed to a simple binary stability measure, a detector attempts to model
the probability that a particular event in an event input stream is stable and
the event is only consumed if its stability metric is above a certain threshold.

7 Implementation using JMS

This section describes the implementation and performance results of our CE
framework over JMS using JORAM [17], an open-source implementation of the

1 An event is stable if there is no other event with an earlier timestamp in the system
that should be part of this event input stream and should thus be consumed instead.
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Fig. 7. Implementation of Scenario 2 using the CE framework

JMS API. Application programs can then publish and subscribe to compos-
ite events using the DistCEDServiceInf interface, presented in Sect. 4.1, that is
provided by the event brokers in the system. In the pub/sub messaging model
supported by JMS, a publisher registers a topic with a particular JMS provider,
such as a JORAM or J2EE server. Whenever a message is published on the
topic, topic subscribers are notified by the JMS provider via a callback mecha-
nism. Content-based filtering on the fields in the message header is supported.

Although a JMS provider can be a distributed service, most current imple-
mentations are centralised, though they may provide redundancy through repli-
cation and clustering. Thus, clients may need to connect to several providers,
such as a local and a remote message server. Therefore, the binding of our CE
framework to JMS does not assume that all events (primitive or composite)
have a single JMS provider. Instead, our implementation uses a JNDI directory
to look up the JMS server for a particular topic. For composite events, we use
this to ensure that we establish only a single CE detector for a given CE type,
since all such detectors will produce the same events. Since the directory may
itself be distributed, this does not imply unnecessary centralisation.

To support automatic distribution of CE detection, all event brokers sub-
scribe to a common administration topic (DistCEDAdminTopic) that is hosted by
an admin JMS server. When a new CE expression needs to be detected, the event
brokers collectively decide how and where to instantiate the mobile CE detector
(i.e. the expression’s automata), and register the locations of newly created de-
tectors with the JNDI directory. In the following experiments, the distribution
policy is a simple choice function derived from the hash of the CE type name,
although we are investigating the more complex policies outlined in Sect. 6.2.

7.1 Evaluation and Results

To test the CE framework implementation on JMS, we simulated the Active
Office Scenario 2 described in Sect. 2.1. The movement of people was treated as
a Markov process, with a probability matrix describing the likely movements in
each time interval. We used the office layout shown in Fig. 2 with 9 rooms and
15 occupants. Eight of the occupants were classed as residents, predisposed to
use the offices, while the remainder were visitors preferring the meeting rooms.
The event sinks in the scenario were PDAs connected by an (expensive) wireless
link with limited bandwidth. The goals of the experiment were to minimise the
usage of that link and to achieve a low notification delay for composite events.
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The CE subscription C that was presented to our CE framework as the sub-
scription submitted by the event sinks was as follows:

C ≡ ([C1(f1)] , [T1] ⊆ {T1, Login(f2)})T1=5 min (1)

C1 ≡ [Boardon] [[Pers(f3)] [Pers(f3)]∗ [Boardoff] ⊆ {Pers(f3), Boardoff}] (2)

where f1−3 are JMS filter expressions that are omitted for brevity. Figure 7
shows how the detection of C was distributed over two event brokers by the CE
framework. The detector CED 2 was responsible for the subexpression C1. All the
primitive events that it subscribed to and the resulting composite events were
located on the server JMS 2. CED2 then detected the complete expression C and
output its composite events to a different server JMS 1.

We compared our CE framework (CE) against a JMS-only solution (PE), in
which the wireless PDAs subscribed to all the primitive events and performed
the CE detection themselves in an ad hoc manner. Figure 8 shows the total data
transferred over the wireless and wired networks with a changing number of
subscribers. As expected, there is a small overhead when using our CE framework
for a single subscriber. However, as the number of subscribers increases, less data
needs to be sent over the wireless network because CE detectors can be reused.
For 6 subscribers, our CE framework generates 53% of the total traffic generated
by the primitive ad hoc solution, and only 8% of the wireless traffic. Note that
the traffic over the wired network stays roughly constant as it is mainly caused
by primitive event sources sending messages to the JMS servers.

The additional notification delay introduced by our CE framework is small.
The plot in Fig. 9 shows the distribution of delay that it takes for a subscriber
to be notified of an occurrence of C after the composite event logically happened
in the system, i.e. its last primitive event was published. The notification delay
stays below 220 ms and is fairly constant during the course of the experiment.

8 Further Work: Higher-Level Specification Languages

When designing a language for the specification of composite events for ubiq-
uitous applications, two conflicting requirements arise: Primarily, the language
should facilitate the implementation of efficient detectors and be decomposable
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for distributed detection, i.e. the language should be optimised to be machine-
processable. On the other hand, the syntax and semantics of the CE language
should be clean and intuitive so that it is human-processable. Therefore, we intro-
duce the idea of higher-level specification languages for humans to express com-
posite events in a natural and domain-dependent way. These languages are then
compiled down into our automata. Whereas our core CE language is optimised
for machine detection, the higher-level languages focus on CE specification by
end users or programmers. The following are three examples for such languages:

The Pretty Language. The ‘pretty’ language has a verbose syntax similar
to many current rule-based specification languages. It does not have a mini-
mal set of operators. CE specifications in the pretty language, such as ‘Event A’

followed by ‘Event B’ within ‘1 h’ resemble English language statements mak-
ing it easier for non-programmers to express composite events.

Programming Language Binding. A binding of composite events to a
programming language such as C++ or Java attempts to hide CE specifica-
tion by integrating it into the programming language making its usage easier for
programmers. This can be achieved with a sequence of method calls on event ob-
jects that build a CE expression: eventA.after(eventB.repeated(3)) At runtime,
these method calls are translated into a core CE language expression.

Graphical Composition. In the Active Office, users may interact with the
system at runtime by specifying its behaviour with rules based on composite
events such as ‘Turn off the office light after 7pm’. A graphical composition
tool could be used that is based on a simple model that is familiar to users.
For instance, CE streams could be visualised as water flows in pipes allowing
different types of piping to be composed to build composite events.

9 Conclusions

In a world with many mobile entities and complex, internet-based applications,
events will become the dominant communication paradigm. CE detection in
these large-scale systems provides a means of managing the complexity of a vast
number of events. We consider our work as a first step to face this challenge, by
providing novel scalable middleware services such as generic CE detection.

In this paper, we have presented a general CE detection framework as an
extension of an existing pub/sub middleware. The framework assumes a realis-
tic, interval-based time model and its event model makes few assumptions about
the pub/sub communication infrastructure employed. Our CE detectors are an
easily-implementable extension of conventional FSAs. They can handle times-
tamps, concurrent events, and come with a core CE language that is expres-
sive and decomposable. Higher-level specification languages can provide more
domain-specific ways to specify composite events. The abstraction of mobile CE
detectors allows distributed CE detection, making the framework more scalable
and robust. We introduced the concept of distribution and detection policies
that control the distributed behaviour of detectors. Finally, the implementation
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of our CE framework over JMS demonstrates that it can improve performance
in a real pub/sub application, compared to client-side JMS subscriptions.

In further work, we plan to extend our simulation environment to experiment
with various distribution policies and determine how these depend on the appli-
cation, the distribution of event flows, the location of event sources and event
sinks, and the topology of the network.
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A Appendix: Formalising the Time and Event Models

A.1 Definition of Interval Timestamps

This appendix formalises our notion of an interval timestamp, while App. A.2
presents our model of the event subscriptions available to the CE service, in
terms of describable events and event input sequences.

Conventional timestamps are often inappropriate for distributed event sys-
tems. In a distributed system, node clocks may have unknown jitter within a
known synchronisation distance. As a result, if two nodes detect events A and
B respectively, it may be impossible to decide which occurred first. An interval
timestamp, consisting of a start time and an end time, can make this ambiguity
explicit, yet remains consistent with the physical time order of the events [14].

Let t = [tl; th] be an interval time stamp with start and end times tl and th

(tl ≤ th). We define the order relations < and ≺ and union operator ∪ as:

t1 < t2 , th1 < tl2 (3)

t1 ≺ t2 , (th1 < th2 ) ∨ (th1 = th2 ∧ tl1<tl2) (4)

t1 ∪ t2 , [min(tl1, t
l
2); max(th1 , t

h
2 )] (5)

A.2 Formalising Describable Events and Input Sequences

Users of event systems subscribe for notification of relevant events. Our CE
detectors use the same subscription mechanism to describe which events they
need to receive. In a sense, therefore, subscriptions (and the associated filter
expressions) represent the atomic input streams available to CE detectors.

Let E = {e1, e2, . . . } be the space of possible events in the system. Each event
e has timestamp T (e), and a unique identifier u(e) ordered by ‘<’. We write et11
to show T (e1)= t1. Events are then ordered, consistently with their timestamps:

∀e1, e2 ∈ E, e1 < e2 , T (e1) < T (e2) (6)

e1 ≺ e2 , (T (e1)≺T (e2)) ∨ (T (e1)=T (e2) ∧ u(e1)<u(e2)) (7)

The space of events may be further categorised. The special empty event ε ∈ E is
always detected. Time events ET ⊆E are made to occur at a given future instant
or after a certain interval, when timers expire. With instantaneous timestamps
(tl = th), they help detect composite events with time restrictions. If not sup-
ported by the pub/sub infrastructure, CE detectors can generate them as needed.

Event systems often allow us to differentiate types of event, by subscribing to
subspaces of the event space E, e.g. ‘events where a door opens’, or ‘events where
FE04’s door opens’. These sets of events are denoted by an upper case letters:
E,A,B. (In pub/sub systems, these are often called event types.) Individual
event instances, on the other hand, take lower case letters: e1, e2, a, b.

Subscriptions also need certain properties, to be useful for CE detection. For
example, if subscriptions A and B are valid, then it should be possible to detect
events matching both or either of the subscriptions, A∩B or A∪B. (If this is not
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supported by the underlying event framework, it can be simulated by detectors,
if the event input streams are well ordered together under the total order ≺.)

There should be a maximal subscription ED, of all events that can be matched.
There is also a subscription to detect any predefined, matchable event alone (and
the special empty event ε is always matched); see (8) below. Finally, CE detectors
should also be able to detect events matching one subscription but not another.

Each subscription can be associated with the set of events that would match
it. The theoretical collection of all of these subscription sets is the family of
describable event sets D ⊆ P(E). This is a special collection of subsets of E:
those which can be detected within the CE framework. D is closed under finite
union, finite intersection and element complementing relative to ED :

Let ED =
⋃

E∈D
E. Then ED ∈ D, ε ∈ ED, and ∀e ∈ ED, {e, ε} ∈ D (8)

The automata which detect composite events need to be able to treat in-
coming events as a well ordered stream, in order to match sequential patterns
of events. By totally ordering events with ‘≺’ this can be achieved, resulting in
the global event input sequence I = (e1, e2, e3, . . . ), where en ≺ en+1 ∀n ∈ N.

However, not all events are relevant to all patterns, or at all stages of a
particular pattern. Describable event sets provide partial views of the input
events, selecting subsequences of I . Thus CE detectors can restrict their view
of the input sequence to only the relevant symbols. For example, if E ∈ D then
IE = (eE1 , eE2 , eE3 , . . . ) denotes the subsequence consisting of elements of E.

B Appendix: Generating Composite Event Detectors

This appendix details how expressions in our core CE language are transformed
into CE detection automata, as outlined in Sect. 5.2. The grammatical com-
ponents of our core language are listed below, with corresponding automata.

Atoms. [A,B, · · · ⊆ Σ0]. Atoms detect individual events in the input stream.
The resulting automaton considers an input stream of all events that are elements
of Σ0. Any input event in A∪B∪. . . will be successfully detected; an event in Σ0

but not in A∪B∪. . . is a failure which stops expression matching (cf. Fig. 10(a)).
Negation. [¬E ⊆ Σ] , [Σ\E ⊆ Σ]. Trivial Input. [E] , [E ⊆ E].
Concatenation. C1C2. Detects expression C1 weakly followed by C2. In the di-

agram, the shaded boxes are automata matching C1 and C2. An empty transition
is then added for each generative state of C1 or C2, and those states become or-
dinary (cf. Fig. 10(b)). If C1 or C2’s detection were distributed, each submachine
could be replaced by a single transition. Removing empty transitions2 gives:

S0
C1 C2

C1C2

2 Outgoing transitions from the second submachine’s start state inherit the strength
or weakness of the empty transition, but keep their original labellings.
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Σ0

E1, E2, E3, . . .
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S0 S0 S0

C1 C2
εε εC1 C2

C1;C2

(c) Sequence

S0 S0
ε

ε

C1

(d) Iteration

S0

S0

S0

ε

ε

ε

ε

C2

C1
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(e) Alternation
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Σ0∪{T1}Σ1∪{T1}

C1 C2
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T1

(f) Timing

S0

C1‖C2C1

C2

C2

C1

S0 S0

C1 C2

(g) Parallelisation

Fig. 10. Composite event detectors

Sequence. C1; C2. This detects C1 strongly followed by C2. Thus C1 and C2
must not overlap in a sequence, but they may in a concatenation (cf. Fig. 10(c)).

Iteration. C ∗1 . Detects any number of occurrences of expression C1. If C1 de-
tects a symbol which causes it to fail, then the composite machine C ∗1 stops de-
tecting iterations — even when C1 is distributed to another node (cf. Fig. 10(d)).

Alternation. C1 | C2. This expression will match if either C1 or C2 is matched
by the input stream. This may result in nondeterminism for the number of input
symbols which are matched by both C1 and C2 (cf. Fig. 10(e)).

Timing. (C1, C2)T1=timespec. The timing operator can be used to detect event
combinations within, or not within, a given interval. In the above expression,
event T1 will be generated at a certain time after C1 is detected — either a relative
time, such as a minute later, or an absolute time. The second expression C2 may
then use T1 as an event specification, in detecting composite events. Furthermore,
C2 is extended so that all states include T1 in their input domain. For distribution
or reuse, the modified C2 detector is treated as distinct from the original, and it
should be on the same node as the (C1, C2)T1 detector (cf. Fig. 10(f)).

Parallelisation. C1 ‖ C2. This can be used to detect composite expressions C1

and C2 in parallel. The diagram assumes that separate detectors for C1 and C2 al-
ready exist. They must be separate, to maintain the two independent timestamps
needed for proper order restrictions on the two input sequences (cf. Fig. 10(g)).


