Transactionsin Content-Based Publish/Subscribe Middleware

Luis Vargas Lauril. W. Pesonenh Ehud Gudes Jean Bacon
*University of Cambridge, Computer Laboratoryfirsthame.lastnanje@cl.cam.ac.uk
fBen-Gurion University, Computer Science Department ehusl@c.ac.il

Abstract Transactions [6] are a commonly used approach to model
and build reliable, fault-tolerant systems. A transacto-
Content-based publish/subscribe provides a flexible commu yides a unit of reliable execution that atomically brackats
nication model for component interoperation in large-gcah- number of operations ensuring that all or none are carrigd ou
vironments. In process support systems and other appiesti Often, communication middleware is extended to suppanstra
that follow an event-based architectural Style, the debtnibf actional semantics to make it easier for the programmer'ﬂ@wr
dependencies between interacting components and thennotio gng deploy reliable applications [14]. Rather than intérac
of all-or-nothing semantics are often needed to ensurabéi gjrectly with involved resources (e.g. database systemsd) a
inter-component task execution. In this paper we introduee developing transaction management functions, applicsiase
blish/subscribe (P/S) transactions as an abstraction fzpsut built on top of the middleware. The transaction-aware neeld|
these needs in content-based publish/subscribe middéewlar \are provides the abstractions that allow the programmer to
P/S transaction demarcates within an atomic unit-of-wélle, focus on business logic instead of low-level transactiartred.
production, delivery, and processing of a number of related | the case of MOM, a notion of transaction exists that
asynchronous event notifications. A transaction serviee; p zllows the definition of message groups for atomic publica-
vided by the middleware, realises P/S transactions to sppo tion/consumption. MOM transactions however can not demar-
the transactional execution of processes on behalf of eppli cate, for a set of messages, the outcomes and effects of their

tions. publication and consumption within the same transaction. A
_ no dependencies can be enforced between the publisherend th
1. Introduction consumer(s) of a message, reliable component interaation r

Middleware provides application-independent connetivi lies on a s_erles of direct transactions, each betwee_n a compo
nent (publisher or consumer) and a message provider. Com-

for component integration in distributed and heterogesenu N . . S
vironments. As software systems continue to be distributed plex coordination logic may thus be required by applicasion

over ever-increasing scales, transcending traditionadjgeph- in order to deal with different transactional failure ca$&3]

. o . .g. due to unsuccessful processing of a message). Rroject
ical and organisational boundaries, the demands placed upo (e.g .
the supporting middleware infrastructure increase. Pub- such as X2TS [13] or D-Spheres [20], have thus studied the

lish/subscribe [5] has emerged as a popular communication?ntegr"’1ti0n of messaging and transactions to provide mexe i

model to face the challenges imposed by component interop-Ible Ml?I_Mhtansacktlon.altsuppt?lrt._ I—t|owe\t/.er, tof (t)ur kno¥yledge,
eration in large-scale environments. Built around thearotf no publisned work exists on the Integration of fransactit p

an event, i.e. a happening of interest in the system, the modecesjsing over content-pased publish/subscribe middlevWag
encompasses the mediated dissemination of informatian, vi belleve_ that such a mlddle_ware, targeted to _the scalale-int
events (messages), between sets of event publishers amtd eveopergtlon of components n Iarge-scgle .e”"'m.”me'.“s’ Ishou
subscribers. Its interaction pattern particularly sults ton- provide tran;actlonal s_upport to applications, if it aimsbe
struction of systems that must react to situations of irstesiad robust and widely applicable.

which exhibit many-to-many interactions.

In publish/subscribe as implemented by Message-Oriented-
Middleware (MOM), e.g. MQSeries [10] or the Java Message A variety of process enactment and workflow management
Service [18], clients publish and receive messages on gpart systems [12] are event-driven and exhibit a publish/suibscr
lar topic, via a message provider. Scalability is realisgdlis- style of communication. In these systems, componentstezgis
tributing the set of topics across a number of message peowid their interest in specific situations originating from atleem-
or by means of providers clustering. A different communica- ponents, and react to them according to some business proces
tion approach is the one taken by content-based publist/sub logic. For example, in process support systems [8, 4], tdien
cribe [16] middleware such as Gryphon [17] or Hermes [15]. In instantiating activities from a common process, subscaibe
these, subscribers, connected by a network of brokers te pub react to change status events on that process, producetdsy ot
lishers, specify sets of filters on the content of events. dire clients or by a process manager. To achieve the reliable and
blish/subscribe middleware is then in charge of routingése recoverable execution of tasks, often, these systems mtust i
from publishers to the relevant subscribers across thearktw duce the notion of atomicity of operations (activities) ahd
High scalability is then achieved by distributing the evéiter enforcement of dependencies between interacting comp®nen
matching process between a large number of brokers. [8, 11]. These systems are closed, in the sense that, theydext

1.1. Motivation

existing process-enactment architectures with speccpion
and recovery mechanisms to model transactional requiresmen
(e.g. according to a workflow language specification), nathe

We introduce P/S transactions as a new type of transaction
context that interrelates the execution of clients in a ishil
subscribe system by means of event publication, delivery,

than providing transactional event-services per-se asgtifin
of the underlying middleware.

Publisher . P/S Subl Sub2 Sub3
middleware
' \\ " T \\ T \ T 1

and processing operations. We discuss their failure model
and combined use of 2-phase commit and compensation.

e We discuss a protocol that realises the execution of P/S
transactions. The protocol accounts for the dynamic enlist
ment of participants in transactions that are advertiseten
publish/subscribe system, and supports both compenesatabl
and non-compensatable clients in the same transaction.

e We describe the architecture and programming interface of
a transaction service that supports P/S transactions. We
discuss the implementation of such a service in Hermes, a
locally developed content-based publish/subscribe raidd|
ware. The service provides applications with the transac-
tional execution of processes, allowing developers to $ocu
on business logic rather than low-level transaction contro

- o i (. -

1

| meeting | notify

triggeréd
process
N . | N . N i N B

notify |

triggering
! process

triggeréd
| process

2. Background

In this Section we establish the background on publish/subs
cribe as well as transactions in the middleware context.

Transactional ~ Transactional Transactional
context context context

Transactional
context

Figure 1. Event-based process enactment

Consider a collaborative workflow that.integrates a number 2 1. Publish/Subscribe
of heterogeneous components in a distributed system. Com-) _ .
ponents in the system are only connected via a publish/subs- Publish/subscribe [5] has emerged as a popular communi-
cribe middleware as depicted in Fig. 1. Each component is cation paradigm for large-scale distributed systems. & th
autonomous and maintains its own separate resources (eld?ubhsh/supscrlbe abstraction an event consumer sulesctib
databases) and business logic. Suppose a process to scheflYents of interest. Independently of any consumer, an event
ule meetings is to be defined where sets of invitation message Producer publishes events. IT the event published by the pro
(i.e. meeting events) are (content-based) routed fromigubl ducer matches the consumer’s subscription, that evenyis as

ers to subscribers, according to their stated interestss(sip- ~ chronously delivered to the consumer. This interactioaeslit
tions). In response to an invitation, a subset of all the re- {@t€d by a publish/subscribe middleware. The publishisikes

cipients will accept it and acknowledge it, updating the-pro miqldleware might be cgntralised as a single event brokeenod
cess' distributed information record (e.g. the varioustipar or it might be decentralised as a network of broker nodes: Tra
pants’ databases S1, S2..., Sn), booking the requiredneeou ditionally publish/subscribe middleware comes in two flang

at the initiator (database P), and finally confirming the meet (OPic-basedand content-based In topic-based publish/subs-
ing. Different requirements could constrain the meeting, e cribe, events are published under a topic and event consumer
to a minimum/maximum number of participants or to include subscribe to that topic in order to receive those eventsicTop
those considered vital. If the process is to be executed allan ~ 0ased subscriptions do not support filtering of events the.
or-nothing manner, a transaction model is required thawail ~ COnsumer will receive all events published on the givendopi
the publication, delivery, and processing of events to aisap " content-based publish/subscribe the subscriptionufes

an atomic unit-of-work. Such a unit-of-work should thussint @ filter expression which is applied to each published event.
relate the transactional contexts of the interacting camepts Events with content that matches the filter expression are de
and enforce the required dependencies between them. We afivered to the consumer. N ,

gue that such component-to-component reliability (andaiss " this paper we focus on the provision of transactional ser-
ated coordination) is not the responsibility of applicatitevel- Vices in content-based publish/subscribe middlewareattigy
opers and should instead be provided as an extended offering/la" We discuss the Hermes Transaction Service (HTS)na tra
of the publish/subscribe communication middleware. Irs thi Saction service for the Hermes [15] middleware. We believe
paper we propose the use of publish/subscribe (P/S) transachowever that the ideas pre_sented he_re can easily be extemded
tions to support this offering in content-based publish&uibe other content-ba;gd publ|sh/sqbscr|be mldd!eware, akagel
middleware, via a transaction service. Applications wiere t© the more specific case of topic-based publish/subscfibe.
provision of publish/subscribe transactional serviceassful main assumphons we malfe on Fhe publ|sh/subscrlbe mlddle-
range from general event-based process enactment systems Vare are reliable event delivery (i.e. a published messatje w

collaborative workflow management systems. eventually be delivered to the current subscribers) angly re
capability (i.e. a consumer is able to reply to the produder o

an event). Reliable event delivery in a publish/subscrije s
tem can be achieved via an event store-and-forward approach
as in MQSeries [10] or by maintaining a knowledge model be-

1.2. Contributions

In this paper we make the following contributions:

tween publishers and subscribers with persistent storatieea
publisher-side as in Gryphon [3]. Replies in a publish/subg

of message provider (MP)-integrating transactipn. inte-
grating a message provider as a resource in a distributad tra

system can be implemented in different ways [9]. The simiples saction. Here, message transmission or reception can be in-

option is to piggyback events with the location informatimn

cluded in the transactional context of a client, togethethwi

the event producer (e.g. a brokerID in the broker network) so other operations (e.g. database updates). Clients theraatt

that a consumer can reply to it directly. Another option is to

log an event delivery at the intermediate brokers in the pro-

with each other, via MOM, using a series of direct sender-to-
MP and MP-to-receiver transactions for each recipient aira p

ducer/consumer path and forward replies from consumers toticular message. As in transactional messaging, no way ex-

the producer across the reverse delivery paths of the event.

2.2. Transactions

ists to include within the same transaction, the receivers'-
sumption process for messages published inside the ttémsac
Because no dependencies between the producer and the con-
sumers of messages can be defined and enforced by the middle-

Transactions [6] are a commonly employed approach t0yare applications must implement potentially complexidog

model and build reliable, fault-tolerant systems. In a Hase
system, an ACID (atomic, consistent, isolated, durable)-tr
saction brackets a number of operations into an atomicafnit-

work, the execution of which transforms a database from one

consistent state to another. To account for the reliablesamd
mic execution of operations in distributed scenarios, almem

for coordinating the effects and outcomes of message deliv-
ery and processing operations, and for returning to a ctamgis
state in case of failures [19].

3. P/S Transactions
We define a publish/subscribe (P/S) transaction as a new

of architectures and communication paradigms have been exyype of transaction where the contexts of execution of a et o

tended to support transactional semantics [2, 14]. Of @aer

relevance to this paper am@nsactional messaginas provided

by message-oriented-middleware (MOM) atistributed tran-

sactionsas provided by transaction processing (TP-) monitors.
In transactional messaginguyait-of-workin MQSeries [10]

or atransacted sessioim JMS [18], is used to group a set of

messages for their atomic sending and receiving from/tos me

sage provider. From the sender’s perspective, messagem sen

atransaction are cached by the message provider and fad/ard

to consumers only after the sender’s transaction comnfiis. |

transactional clients are interrelated by means of evelliga+

tion, delivery, and processing operations. Two types ats

are involved: one event publisher and one or more event sub-
scribers. The P/S transaction demarcates within an atoniic u
of-work: 1) a process triggering one or more events at a pu-
blisher, 2) the set of triggered events and 3) a set of presess
that are executed by the consumption of these events atlthe su
scribers. The P/S transaction either succeeds or fails dobew
(see Section 3.1), making the outcome of the unit-of-wortk an
the effects of the processing of enclosed events mutualy de

failure occurs or a roliback is issued by the sender, the mes-pendent. As (un)successful event consumption determines a
sages are discarded. In the case of a receive, messages in@g transaction’s outcome, events are published with invmed

transaction are held by the message provider until the vecei
issues a commit on its receive transaction. If a failure czou
arollback is issued by the receiver, the provider will aféto
redeliver the messages. This flexible mode of operationueco

ate visibility (i.e. before the triggering processes corynix-
ternalising event publishers’ computations in this waypa
parallel activity in the system, as multiple subscribens peo-
cess events in the transaction at the same time. To deal with

ples the contexts of execution of senders and receivers.- How possibledirty reads(i.e. the consumption of events which trig-

ever, as messages are published only after the sendessatran

gering processes later abort) at the subscribers, thetgftéc

tion commit and because transactions take place only betwee processed events reflecting these computations can beegbvok

a message provider and a client (sender or receiver), nadepe

according to 2PC processing or compensated (see Sectipn 3.2

dencies can be structured between the sending of a message argor simplicity through the rest of the paper we will refer to a

the outcome of the message’s processing. In particularnioi
possible to make the outcome of a client’s transaction #rads

messages as part of some application process, dependést on t

P/S transaction simply as a transaction.
3.1. Failure Model.

outcome of the delivery and processing of those messages by Within a transaction, every event carries the transaction ¢

the set of recipients that participate in the process.

Distributed transactions, unlike ACID transactions and
transactional messaging, focus on the atomicity of opamati
across multiple resources (e.g. database systems), eg $oait
they all commit or abort according to the transaction outeom
This requires a TP-monitor to maintain a list of participati

text and thus it defines (with the rest of events in the transac
tion) its atomicity. The transaction’s outcome (succesfaibr

ure) is thus affected by the outcome of the publisher’s gigg
process and the outcome of every contained event. We distin-
guish between two types of eventgrotocol and application
events, and define the outcome for individual events acress t

resources and to direct the execution of an atomic commitmen dimensions:deliveryand processing The first type of events

protocol such asvo-phase comm{RPC). The goal is to ensure
the atomicity of operations. Any concurrency and durapilit
concerns with respect to the transaction outcome are léfiteto
participating resources.

For integrating messaging with distributed transacticos;,
rent distributed transaction models only support the dadimi

corresponds to middleware-level events used to realisgahe
saction protocol described in Section 4. The second type are
application-defined events used to convey any informat®n b
tween clients in the publish/subscribe system. If a tratisac
succeeds then all (protocol and application) events phxdigs
result of the transaction have been both successfully elelil

and processed by the set of relevant subscribers (i.e. ffavse actions are sometimes non-compensatable [6]. In additon,
ticipating in the transaction). Correspondingly, if thdidery some clients, the cost of executing a compensating procags m
or processing of any event fails, the transaction is aborted outweigh the costs of participating in a 2PC protocol. Festh
How event delivery failures are detected is closely relaved reasons we adopt a model followitfigxible transaction$1],
the type of reliability mechanism used by the publish/stibsc to accommodate both compensatable and non-compensatable
middleware. In general, the evaluation of an event deligery clients within the same transaction. In a flexible transexctihe
outcome describes a “worrying-parent-model” [20]: if ne ac processes of participating compensatable clients are@tldo
knowledgement by a recipient is received after some scope incommit before the global transaction commits, while the com
time, the event is declared as failed. For example, in Grgpho mitment of processes of non-compensatable clients must wai
errors in the delivery of an event (e.g. due to a broker crash o for a global decision. When a decision is reached to abort the
a link outage) are detected by the lack of recipients’ ackhow transaction, the processes in progress and the processes-of
edgements at intermediate brokers in the event deliverly pat compensatable clients waiting for a global decision arkedel
and propagated to the publisher. In the context of a transac-back, while the committed processes of compensatabletglien
tion, different conditions could be associated with theusas are locally compensated.
cessful delivery of an event: the transaction could be inimed .
ately aborted on delivery attempts could be made before abort- 4. Transaction Protocol
ing it. In Section 5.6 we discuss how we deal with the detectio A transaction consists of three phases: tgasus phaser
of failed protocol and application events in a transaction. registering the set of subscribers participating in thegeetion,
Event processing failures are causeddygtemand appli- 2) atransaction phaseonsisting of events published as a sin-
cation exceptions System exceptions range from an invalid gle transaction by a transaction manager on behalf of anteven
pointer (e.g. NULL) operation to a database connection that publisher, and 3) @ommitment phasehich is used to either
cannot be obtained. Application exceptions are user-dére commit or abort the transaction among the transaction nemag
ceptions thrown after unexpected business logic situat{erg and the participant clients.
a Iookqp method cgnnot find an (.)bject).. While some of these 4 1 census Phase
exceptions will require a client to immediately abort a sac- o))
tion, others can be handled transparently by the client.afor ~__1Ne semanticimposed by a P/S transaction requires that par-
event, we thus consider its processing unsuccessful if any u ficipants of a transaction are known by the transaction mena
handled (system or application) exception is thrown whiie i before the start of the transaction phase. Furthermore egd n
processed. We also provide clients with a declarative mietho 0 guarantee thatonly those subscribers that are accepped-a

(see Section 5.3) to explicitly abort a running transaction ticipants of a transaction can act (e.g. vote) upon it. Thibe
purpose of the census phase.

In this phase, a transaction manager advertises a new tran-
saction, on behalf of a publisher, by publishingensus event

We distinguish two ways of dealing with dirty reads (and with the name of the transaction (e.g. “meeting”), a unigaa-t
reactions) by event consumers. One is to require atomic com-saction identifier (tx id), and other optional attributescléing
mitment using two-phase commit (2PC), so that the triggerin the transaction (e.g. “subject” and “time”). Subscribeavén
process at an event publisher is allowed to commit only after registered their interest inensus events where the name and
the triggered process at every relevant subscriber is pedpa attributes match a transaction that they are interesteispart
to commit and vice versa. However, relating clients by ato- of a registration each subscriber also locally specifiesoa-{n
mic commitment may sometimes not be desirable. One reasorcompensatable client type. Thensus eventis then delivered
is that, with 2PC, a client exposes transaction control keeot to all subscribers with the appropriate registrationspinfing
clients. If a client votes OK in response tgeeparerequest, them of the tx id of a new transaction.
the client has to be able to commit its local processing (e.g. We rely on the use of pseudonyms drash-based set mem-
hold locks) until instructed otherwise by the transactioanm bershipsto build authenticated groups of transaction partici-
ager. Another reason is that transactions may be long4ngnni pants. The basic idea is to verify membership in a group oftra
because of long-lived business logic, delayed human impeit, saction participants, rather than identifying individaambers
With 2PC, a client cannot commit until the global transattio for a transaction. We assume that 1) subscribers can generat
can commit. Thus, a fast client may be forced to wait for a a globally unique pseudonymfor every transaction they par-
slow client. Another (optimistic) way of dealing with dirtyo- ticipate in, and 2) the transaction manager and all subssrib
tification reads is compensation [7]. Using compensatioa as know the same one-way hash functifin
recovery mechanism allows the triggered process at each sub Subscribers who are interested in taking part in a transac-
scriber to commit unilaterally without waiting for the trsarc- tion reply to its related ensus event with acensus_r epl y
tion manager’s decision, with the promise that its effeat ca event that contains: 1) the tx id, 2) a randomly generated
be semantically cancelled afterwards, via a local comgengsa pseudonynp, and optionally, 3) the subscriber’s identity (e.g.
process. Compensation is a generally accepted mechanism tpublic key). Notice that the subscriber’s (non-) compeaiskat
deal with failures, fundamental to extended transactiodet® client type is not included in this event, as the abort mecha-
and workflow systems [12]. However, not all operations are nism used by a subscriber is only of self-relevance. Based on
compensatable. For example, processes involving phab the subscribers’ replies the transaction manager will farist

3.2. 2PC and Compensation

of pseudonyms(txid) = [p1,ps,..,pn] for the subscribers ible transactionsthis phase consists of a vote among the par-
interested in tx id. At some point in time the transaction man ticipating subscribers deciding whether to commit or albioet
ager must decide to stop waiting for more participationiespl transaction. For this, the transaction manager publist&#RC
from the subscribers. This decision might be based on a time-event withst at e= pr epar e, the tx id, and the last sequence
out, on the number of replies received, or on conditions @dfin number published in the transaction. The subscribers wte b
by the publisher who initiated the transaction. e.g. a ans replying to this event with @PC.r epl y(vot e=conmi t) or
tion manager might wait for replies for 30 seconds or 10 sub- a 2PC_r epl y(vot e=abort) event. While compensatable
scribers, or it might wait for specific participants. The den clients are allowed to commit at this time, non-compendatab
terminism of the census phase makes it necessary to infam th clients must wait for a global decision on the transactiohe T
subscribers of the list of of accepted participants. Fas,tht transaction manager publishes the result of the vote 2BG
the end of the census phase, the transaction manager will: 1event withst at e=conmi t / abort depending on the results
compute the hasH of every pseudonym in [(tz id) into the of the vote. Votes from subscribers that are not in the list of
list Hi(txid) = [H(p1), H(p2),.., H(p,)] and 2) publish a participants are silently ignored. The participating ctieare

2PCevent withst at e=begi n containingH!(tz id). responsible for committing or aborting the transactioncade

On receipt of this event, each subscriber will verify its mem ing to the voting result. Aborting, depending on the sultmr's
bership in the transaction by computing the hdshof its client type, will involve either rolling back or compengagiany
pseudonyny, and verifying its existence i (tx id). No- work done as part of the transaction.

tice that, asH is one-way, no pseudonym can be extracted . .
from the published list, allowing only subscribers accepts - 1T ansaction Service

participants of a transaction to act upon it. Also, the use of The idea of publish/subscribe transactions is supported by
pseudonyms allows subscribers to remain anonymous in pro-3 transaction service. In this section we first describe srm
cesses that don't require disclosing the participantsitities. and then we discuss the architecture and service supperedff
Having verified its membership in the transaction, the sub- phy HTS its transaction service. HTS realises the transacti
to receive events related to this specific transaction. e explicit transaction demarcation at the publisher side.

We leave publishers to define tilseopeof transactions as —
private or public. In a private transaction, events pulish e automatic transaction context propagation, via evenfinoti
: ' cations published with immediate visibility.

as part of the transaction are delivered only to the paditip)) i

determined in the census phase. Contrarily, events pealish ® C€nsus handling functions to support dynamic groups of tran
in a public transaction are dispatched not only to the transa ~ S&ction participants.

tion participants but also to every subscriber who has §igeci ~ ® implicit transaction demarcation at the subscriber side.
a subscription matching the event content. This allows non- e automatic management of involved resources.
participant subscribers to still receive events of intevelsile e support for compensation mechanisms.

consuming them in their own separate execution contexts.
) 5.1. Hermes
4.2. Transaction Phase) o
Hermes [15] is a distributed, content-based pub-

In the transaction phas_e the _tra_nsaction manager publishegsh/subscribe event-based middleware built on a pe@et-
events, on behalf of a publisher, inside the transactiooratiext “routing substrate. A distributed event-based system imple

created in the census phase. Published events are tagged Witnented on Hermes, depicted in Figure 2, consists of two kinds
1) the tx id, 2) the transaction manager's contact inforomati ¢ componentsevent brokersandevent clients

3) a public/private flag, and 4) a sequence number. This allow
us at the subscriber-side to: 1) relate event consumptian to @ g Event broker
®Rendezvous broker

particular transaction, 2) reply to the transaction manage
cording to the transaction protocol, 3) not forward eventsf
@ Event publisher
Event subscriber

private transactions to a subscriber who is not a parti¢jpan

and 4) detect delivery failures for application events i titan-
saction. Subscribers are able to reply to each publishext eve P

with an abort even2PC.r epl y(vot e=abort). le. if an l‘/
event causes an error at one of the subscribers that wouse: cau 9
the subscriber to vote abort in the commitment phase, the sub

scriber is able to vote abort immediately. This allows tlanir

saction manager to abort the transaction immediately witho

wasting time and resources in publishing the remainingstran Event brokers form an application-level overlay network

actional events and going through the commitment phase. ~ that propagates events. Event clienmlflishersor sub-
scriberg use the services provided by the publish/subscribe

broker network to communicate. For this they connect to a
The transaction manager ends the transaction by initiatinglocal broker, which then becomgsublisher-hosting (PHB)
the commitment phase on behalf of the publisher. Afigr- subscriber-hosting (SHBYr both. Brokers without connected

Figure 2. Hermes event-based system

4.3. Commitment Phase

clients are calledntermediate brokers Before publishing an
event, a publisher must advertise the associated event Age
a result of this action, routing state from the publisheraods
an intermediate broker, known as ttendezvous brokers cre-

ticipates in the transaction. Events from ffeEvent Guar d
are subsequently passed to fheEvent Di spat cher. For
each event this component will then establish the apprtpria
transaction context for a consumption process to run (@ecor

ated. The address of this broker is computed from the eventing to the registration), associating its execution’s #arevith

type name using a distributed hash table (DHT) algorithni-Su
scribers specify their interests in (a subset of) thesetdypss,
via content-based subscriptions. Reverse path forwardfng
subscriptions, towards the corresponding rendezvousebrok
and any related advertisements are used to create eveatrdiss
ination trees from publishers to subscribers. Event natiibms
are delivered in FIFO order with respect to each publisher.

5.2. Architecture

the tx id of the running transaction. For compensation psego
(See Section 5.5), consumption of events on behalf of thme tra
saction is logged by th&xEvent Di spat cher . Implicit ac-
cess to the transaction’s context is made available throlgh
TxCal | back interface and used to locally register resources
or abort a running transaction. The current state of a tictisa

is accessed and updated via fheSt at eHandl er compo-
nent, according to 1) the outcome of the delivery and consump
tion processes for events in the transaction and 2) the tiecep
of transaction status events published by Théanager . Fi-

HTS introduces an additional layer of abstraction above the nally, theTx Compensat or is in charge of executing compen-
standard Hermes middleware to provide an integrated view of sating processes to undo the effects of a failed transacfion

transaction and event notification services for transaetiap-

persistent og is used to store information about those transac-

plication development. The different HTS components at the {jong the subscriber joins. For each transaction we stbgett

publisher and subscriber-side are depicted in Figure 3.dERe

ployment of these components is discussed in Section 6.3.
A publisher request &xManager to begin, commit or

abort a transaction, via ®STransacti on object. As

part of the context associated with the transaction, the pu-
blisher can publish one or more events and access local re-

sources (see Section 5.4). ThrEngi ne component of the

id, information about accessed resources, the state ofahe t
saction, and the set of consumed events.

5.3. Application Programming I nterface (API)

The purpose of the transaction service’s API is to allow the
publication and consumption processes of events to be demar

TxManager orchestrates the execution of the transaction pro- cated within a transaction. In general, developers imptemg
tocol. For this, it uses the services of two other components publish/subscribe applications that handle specific etygrés

the CensusCoor di nat or and theTxEvent Publ i sher.
The first establishes censuses for new transactions aogordi
to the publisher’'s conditions. The latter attaches thestan
tion context to events received from thabl i sher or gener-

need the definition of these event types at development time.
The use of transactions also requires that event typesghuli

as part of a transaction are known. The definition of a transac
tion then includes: 1) the definition of@ensus event type

ated by the xEngi ne in response to transaction state changes TxType used to advertise the transaction and 2) the definition

(e.g. prepare/abort). It piggybacks to each event: the,tthiel
TxManager 's contact information, a public/private flag, and
a sequence number. Events are then passed tbidhees
connect or to publish them in the publish/subscribe broker
network. A persistent og is used by the'xEngi ne to store:
the tx id, information about publisher’s accessed resajrite
list of transaction participants, and the state of the @atisn.

A subscriber registers his interest in participating asan{n
) compensatable client in a transaction with theEvent -
Subscri ber component, viaaegi st rati on object. Ac-
cording to this registration, thExEvent Subscri ber is in
charge of 1) setting an appropriate subscription on theeeorr
spondingcensus event in the publish/subscribe broker net-
work, via thePSConnect or, 2) replying to acensus event

using a randomly generated pseudonym, and 3) subscribing to

transaction-related events for those transactions thecsiber
joins. TheTxEvent Subscri ber thus allows a subscriber to
participate in specific transactions without having to deih
low-level details such as pseudonyms and the tx id.

of each event typevType published in the transaction.

With the proposed API, publishers explicitly demarcate the
scope of transactions that are advertised via census events
receipt of acensus event, a subscriber can decide whether to
join a transaction; in which case, the consumption process f
any received events within the transaction is implicitiysial-
ered as part of the transaction. The API of HTS for both types
of publish/subscribe clients is presented in Tables 1 and 2.

advertise(TxType)

t = new PSTransaction(TxType)
t.begin(txType, scope, conditions)
t.publish(evType)
t.registerresource(resource)
t.commit(), t.abort()

Table 1. HTS publisher API

A publisher usesdverti se to state its intention to pub-
lish transactions of a certain tydxType, whereTxType is
defined by a name (e.g. “meeting”) and a set of application-

At the subscriber, all events are received through the defined attributes that describe the transaction (e.g.estjbj

Her mes connect or. From these, those carrying a transac-

tion context are pushed to thexEvent Guar d. The func-

date, time). The publisher starts a new transaction by: &) cr
ating aPSTr ansact i on object associated with an already

tions of this component are: 1) to log the participation of a advertised transaction type and 2) requesting the traiosact

subscriber in a transaction and 2) to verify that events fpoim
vate transactions are pushed forward only if the subscpber

manager to start a transaction instance of this type (e.gt-me
ing[“DSOnline”, “15/03/06", “15:00"]) usingbegi n. The

Publisher PHB SHB Subscriber

PSTransaction © TxEvent o Registration

Census | [x] [; .
begin @ | | Coordinator ‘8 ,8 Subscriber register
publish =) I = = :
register_resource T 1| TxEvent |5 Pl:l:b/kSUb 5 | TxState Tx
commit/rollback & [Publisher [19 roker) Handler Compensator
0 network b w
- s e
triggeri o o} tri d
o TxCallback
TxManager register_resource
setRollback

Figure 3. HTS architecture

publisher specifies with the request the scope of the transacthe start and end of each callback triggered in response to an
tion (i.e. public/private) and a set of census conditiong.(e event mark the boundaries of the execution context thatis-as
min 10 and max 20 participants). As part of the transac- ciated with the running transaction. Implicit access ts tton-
tion, the publisher can publish one or more events of the sametext is made available through thaCal | back interface and

or different typeevType usingpubl i sh and register local used to register local resources, viagi st er _r esour ce.
resources (e.g. databases), viagi st er _r esour ce. De- For each individual event, we consider its consumption suc-
pending on the application scenario, events published én th cessful if its triggered callback returns without errorsn An-
transaction could just extend the information conveyechimt handled exception within the callback will immediatelyl¥ol
census event or provide a basis for structuring interrelated back the transaction at the subscriber and send an abortosote
data (e.g. @ensus event change[processiD] followed by mul- the transaction manager. We also provideea Abor t method
tiple changeDetail[componentID, changeDescription]nésie that a subscriber can use to declaratively abort the trainsac
Finally, a publisher requests the transaction managerrowo

or abort a transaction usirgpnmi t orabort . 5:4. Resources Support

r = Registration(clientType, TXType, filter, censeallback) As part .of a transaction, mido!leware cl?ents (publishers
raddHandler(evType, evEallback) and subscribers) are expected to interact with local ressur
raddCompensationHandler(evType, evEallback) (e.g. database systems). We provide clients with riee
r.execute() gi ster resource method to f—)nllst a resource in a running
CensusCallback.join() transaction. While at the publlsljelegl ster.resource
TxCallback.registeresource(resource) is supplied by thePSTransacti on object, at the sub-

TxCallback.setAbort() scrit_)er it is supported viath’éanI | back interface. Cglling
- regi st er _r esour ce results in the transaction service log-
Table 2. HTS subscriber AP ging, at the client, the fact that a resource was used as part 0
Subscribers specify their interest in a particular tratisac the transaction. This association, as well as status irdtiom
typeTxType (e.g. “meeting”), via a egi strati on. Areg- about the resource (e.igs _pr epar ed) are maintained during
istration is created by specifying a (non-) compensataidetc the lifetime of the transaction. The transaction servic¢hat
type, an optional filter on the content 3k Type (e.g. sub- client-side can be seen as an interposed coordinator betwee
ject="DSOnline”), and a callback clagensus_cal | back local resource used by a client and the transaction mankger.
implementing theCensusCal | back interface. It is in this stead of having every resource directly involved with trantr
callback that census events for transactions of intereit wi saction manager, at each client the transaction servicelyner
be delivered, and where the subscriber programatically re-collects votes from locally involved resources and passgsia
quests to join a transaction, via th@i n method. As part eral decision to the transaction manager, which then decide

of the registration, handlers for the different event typeb- the overall outcome of the transaction. Afterwards, thedes-
lished within the transaction are specified usiaigiHandl er . tion manager sends the commit/abort decision to the ppainti
Each handler specifies an event typeType and a call- clients, so that at each client, the transaction servicenaiten
back clasevT_cal | back implementingTxCal | back. It rollbacks, or compensates work on the involved resources.
is within this callback, that events of the specified typel wil We expect that clients interact with different resourcea, v

be processed as part of the transaction associated with th&tandard (e.gXA [21]) adapters. In our current prototype,
registration. Compensatable clients should also spea#y, we incorporate an XA-enabled data adapter to integrate- Post
ing addConpensati onHandl er, a compensating func- greSQL database systems as recoverable resources in a tran-
tion evT_c_cal | back to undo the effects of events of type saction. The XA specification defines an interface that alow
evType that are processed as part of the transaction. Finally, work executed on a resource to be associated with a transac-
the registration is activated usiexecut e. tion that can be prepared and committed or rolled-back @ecor
Contrary to the explicit transaction demarcation used ky th ing to 2PC. Through the adapter, operations on a PostgreSQL
publisher, the scope of a transaction at the subscribergdm database are associated with the tx id of the current tréinsac
itly defined by the set of registered/ T_cal | backs. That s, Isolation of operations in the transaction with regardsttteo

database operations is a responsibility of the databasé¢heAt

cribe middleware provides reliable delivery, an event ddake

commitment phase, the database is asked to prepare the workn arbitrarily long time to arrive at its destination, e.gedo

associated with tx id for commit. If the prepare fails for aeg-
son, the transaction service is informed via the adapt#ingo

communication failures. For this reason we introduce addi-
tional mechanisms to deal with the detection of failureshia t

back any work done at the client as part of tx id and sending andelivery of 1) protocol and application events publishedmsy

abort vote to the transaction manager. Finally, when a @tecis
from the transaction manager is received, work associattd w
tx id in the database is committed, rolled-back, or compeusa
by the transaction service.

5.5. Compensation
In the case that a transaction fails, recovery for events pro

TxManager and 2) reply events sent by the transaction service
at the subscriber-side.

At the transaction level, we identify failures in the deliye
of application events by making thExEvent Publ i sher
piggyback sequence numbers to published events and ef-
fecting a subscriber-side verification at commit time. For
this, theTxEvent Publ i sher includes in the transaction’s

cessed as part of the transaction must be performed at eaclgpc(st at e=pr epar e) event, the last sequence number in

compensatable subscriber. Compensation relies on thétidea

the set of published application events. Upon detectingsas-mi

for some task executed as part of a transaction, a corresponding event, theTx St at eHandl er at the subscriber will roll-
ing compensation task can be designed. While compensatiomack its local work and vote abort on the transaction.

tasks are expected to be locally defined by a developer, é&ccor

In traditional distributed transactions, a common apphoac

ing to the application semantics, the middleware must sippo o achieve eventual progress in the case of lost protocot mes
the mechanisms for doing so. For compensation purposes, HT%ages is to let participants query each other about therdurre

provides clients with 1) automatic logging of events consdm
as part of a transaction and 2) the possibility of definingra-co
pensating (callback) function for each event type in thedsa-
tion. The set of compensation functions defined by a client fo
a transaction constitute the transaction’s compensadisk t

event consumption log

evl: evTypel ev2: evTypel ev3: evTypez xid
X i
atti:vali, att:valz|atti:valy, attz:valz| atti:vali, attz:valz, atts:vals
”””””””””””””””” *‘* TxCompensator
evTi_c_(> —
= 'd_d_ evT_c_callba evT2_c_callback
pu |c//v§(') co:} public void deliver(e public void deliver(evType) {
}) // do compensal // do compensation
}

compensation task
Figure 4. HTS compensation process

state of the transaction [2]. In publish/subscribe tratisas
however participants’ contact information is not made ladé

to each other nor to th&Manager . i.e. all communication
between parties in the system is is not direct but via theighibl
subscribe middleware using events. To deal with the detecti
of failed protocol events we leverage the functionality loé t
publish/subscribe middleware as follows: At the subscribe
feed timeouts to th@x St at eHandl er component. If for a
running transaction, the timeout for an expected protoeehe

is exceeded, th&x St at eHandl er will publish a2PC event
with the corresponding tx id andt at e=i n_.doubt _cu-
rrent st at e; where currentstateis the subscriber’ state
at the time of the timeout. Possible in-doubt states asmn-
sus the subscriber has requested participation in the transac
tion and is waiting for 2PC(st at e=begi n) event. tran-
saction the subscriber is in the transaction phase and is wait-

The compensation process, depicted in figure 4, works asing for a 2PC(st at e=pr epar e) event. commitment the

follows. After a subscriber receives2PC(st at e=abort)
event for the transaction tx id, tiexConpensat or compo-
nent will inspect the local og and execute, for each event
evi consumed in tx id, a defined compensating function
evT_c_cal | back. Compensating functions are selected ac-
cording to each event type and executed in the inverse cqmsum

subscriber is in the commitment phase and is waiting for
a 2PC(st at e=commi t / abort) event. After other sub-
scribers taking part in the transaction receive the evdret t
local TxSt at eHand! er will check whether it has informa-
tion concerning the in-doubt state; in which case, it wil re
ply to the in-doubt subscriber2PC event with &2PC.r epl y

tion order of events. As part of the compensation process, up event enclosing the relevant state information (e.g. thtigea
dates to local resources may be required, e.g. to undo cemmitipants list for the census state or the transaction’s ouecom

ted operations on a database. Ensuring the idempotencisof th for commitment phase).

process requires that these updates are performed atbmical
For a single resource this is enforced by TheConpensat or
using a local transaction. If multiple resources must beatgd

After any reply is received, the
TxSt at eHandl er of the in-doubt subscriber will act accord-
ingly. Notice that this mechanism also allows participatots
overcome blocking in the case that fheManager fails after

theTxConpensat or creates a new transaction and associate publishing a2PC(st at e=conmi t/ abort) event.

all updates on these resources with it. Atomic commitment be
tween the resources is driven by tlirConpensat or using
standard 2PC. In both cases, the execution of the compensati
process remains local and does not involveTrR&Bnager .

5.6. Failure Detection and Recovery

The failure model introduced by publish/subscribe transac
tions requires that the failed delivery of events publishsca
result of a transaction are identified. Even if the publishts

At the TxManager we must deal with the failed deliv-
ery of reply events at the commitment phase. Note that a
failed reply event at the census phase will only result in the
related subscriber not taking part in the transaction. @lth
a failed abort reply in the transaction phase will result im u
necessary work done, an abort outcome will still be deter-
mined by having the subscriber reply his vote at the commit-
ment phase. We must also consider that the execution of some

subscribers’ processes may not have completed by the tiene th 6.2. Service-Side I mplementation
publisherscommi t call is issued. For this, we feed time-
outs to theTxEngi ne for reception of replies. If within a
timeout one or more reply events are not received in respons
to a2PC(st at e=pr epar e] event, the publishersomni t

call will raise anUncheckedTransacti onBehavi our
exception. The publisher can then decide to either abort the
transaction at this time, or wait and retry at the next timteou

By implementing the transaction service at the service;sid
i.e. as an additional offering of the publish/subscribe dfed
eWare, we are not limited to using the basic publish/subscrib
API. This allows the transaction service to addta-attributes
to published events. That is, the publish/subscribe semén
add an attribute to an event which is not part of the event.type
At the subscriber end the transaction service will then nesno
that attribute before delivering the event to a subscribpro-
6. Implementation cess. The txid can thus be added to an event as a meta-attribut
At the publish/subscribe service level this means that vee ar
The transaction service can be implemented either a) at thedealing with the published event instead of a wrapper. TFhere
client-side, as a library on top of the publish/subscrib&ise fore this implementation approach does not suffer from any o
offered by a publish/subscribe middleware, or b) at theiserv the disadvantages of the client-side implementation: &t
side, as an additional middleware service alongside théghiib can be delivered to both transactional (based on the tx id) an
subscribe service. Both approaches, depicted in Fig. % hav non-transactional (based on the event content) subssyiaed
their advantages and disadvantages. 2) events will be routed though the rendezvous broker of the
event’s type. The obvious downside is that changes to the ex-

APP Brok - . . .
isting publish/subscribe system are required.

:
TX API oS ap || Tx ami i A0 6.3. HTS Implementation
P/S APl PIS AP : Tx API We have implemented the HTS architecture (see Sec-
1 i] L} T tion 5.2) following a service-side approach. In our currerd-
(&) Client-side (b) Service-side totype, we realise the propagation of transaction contett w

published events at the local broker of a Hermes publisher
(PHB), via theTxEvent Publ i sher component. In addi-
tion, at this broker we have located the other two components
of the TxManager (i.e. theCensusCoor di nat or and the
TXEngi ne). These three components interact, as part of the

A client-side implementation of the transaction service-co ~Hermes service's process at the broker, to provide traiuset
sists of a layer between the publish/subscribe API and the ap Services to the publisher. Separating transaction maneigem
plication. The application is free to access both the phblis functions from the publisher is appealing as: 1) we are able
subscribe and the transaction service APIs (tx API). The-tra !0 detect crashes in the publisher's process afittianager
saction service then relies purely on the services expdiged ~ (using periodicheartbeaty so that, if a transaction’s outcome

the publish/subscribe APpubl i sh andsubscri be. This has not been defined, we can immediately abort it; and 2)
allows us to extend the transaction service to any existing p We can instantiate transaction coordination functionsakdrs

Figure 5. Implementation approaches

6.1. Client-Side | mplementation

blish/subscribe middleware. that are part of a trusted domain, rather than at possibly un-
From an application’s point of view it is important that both trusted clients. . .
transactional and non-transactional events are identigalan At the subscriber-side, we have located the

application should be able to use any event type both inside a TXEvent Guard at the local broker of a subscriber (SHB).
outside transactions. Therefore the tx API cannot use dfgpec Through this component we: 1) realise the functionality
attribute for storing the tx id in an event. In order to attach Of private transactions by discarding events from private
tx id to an event the tx API will have to wrap the event inside transactions that a subscriber does not participate in; 2)nd

an instance of another event type which defines an attriloute f detect crashes in a subscriber’s process, so that, if noarote

the tx id. We can define a global event tyi&W apper , to a transaction has been generated by the subscriber, an abort
wrap events published by an application inside a transactio Vote can immediately be sent to tieManager. The rest

The wrapper type consists of two attributes: the tx id and the of components TxEvent Handl er, TxStat eHandl er,
wrapped event. The transaction service at the publiskier-si TXEvent Di spat cher, and TxConpensat or) provide
instance ofTxW apper , and sets the tx id attribute to the id application’s process. We have thus colocated them with the
of the current transaction. At the subscriber end the tx AP| Subscriber, as part of the services exported by Hermes.
unwraps the event and delivers it to an application that bas s

scribed to the given transaction based on the tx id. The down-7' Related Work
side of the wrapping approach is twofold: 1) non-transatio The provision of middleware-mediated messaging systems
subscribers will not see the wrapped event, and 2) in a DHT- that are transaction aware has been a recent subject of. study
based publish/subscribe system, like Hermes, all traivseadt In [19], the shortcomings of MP-integrating transactionsrev
events will be routed through the samemdezvousroker. identified. Message deliverand message processingansac-

tions were suggested as alternative integration strategieeir developers to focus on business logic instead of compadieent-
focus was on integrating distributed object requests withNVi component reliability (and associated coordination) am- |
within the same client transaction. Publish/subscribasaa- level transaction control. Applications where the prowisbf
tions share some of the general considerations taken bg thes publish/subscribe transactional services is useful ranga
strategies, most notably sending messages at any pointin-at general event-based process enactment systems to caligbor
saction. Our focus is however on the reliable execution of pr workflow management systems.
cesses ina publish/sgbscribe. system. Two projects a}rerof pa Acknowledgements. Luis Vargas is supported by CONACYT.
ticular relevance to this paper: the DAOS project a_nd its 2T Lauri Pesonen is supported by EPSRC (GR/T28164).
prototype [13], and the Dependency-Spheres service [20].

The X2TS prototype integrates the CORBA Object Transac- REfErences
tion Service (OTS) and the CORBA Notification Service to pro- [1] w. Litwin A. EImagarmid, Y. Leu and M. Rusinkiewicz. A Mul-
vide transactional services above TIB/Rendezvous, a castti tidatabase Transaction Model for InterBase.Phoc. of the 16th
enabled messaging middleware. X2TS, as HTS, provides im- __ nt- Conf. on Very Large Data Basek990.

plicit context propagation with messages. Atomic message [2] iF;igB_e,\%sr;e;ﬂ i’;%ﬁﬁgﬁr\{v Clogrgfmc'ples of Transaction Process-
grouping is however not supported. Different visibilitites [3] S.Bhola, R. Strom, S. Bagchi, Y. Zhao, and J. Auerbach. fixac

a message with regards to a transaction (e.g. on commit) can once Delivery in a Content-based Publish-Subscribe System. In
be configured at the consumer-level. This is enforced by pub- S;%‘;-Sogt_hlefszgg%ém- Cont. on Dependable Systems and Networks
Ilsth all messages with |mmed|§1te VISIbI|It'y., Ilk(=T HTtb _ [4] C. Collet, G. Vargas-Solar, and H. Grazziotin-Ribeiroped Ac-
caching them at the consumer until the specified time. Atomic tive Services for Data-Intensive Distributed Applications.Irit.
commitment is handled by OTS via 2PC with no support for ggéag%%% Engineering and Application Symposipages 349—

extended transactional mechanisms such as compensa_non. I [5] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. Thay
plemented on top of a message bus architecture, X2TS is based™ Faces of Publish/SubscribaCM Computing Survey85(2):114—
on topic-based addressing. Subdividing the message space i 131, 2003.

topics may lead to subscribers having to filter messages from [6] J. Gray and A. Reuter, editorSransaction Processing: Concepts
general topics, or to the creation of large message hieigsch and TechniquesMorgan Kaufmann, 1992.

. - 7] E. Levy H. Korth and A. Silberschatz. A formal Approach to
The Dependency-Spheres service focuses on operatlonally[] Recovgry by Compensating Transactions. Pioc. of ﬁf’e 1991

grouping distributed object transactions with transawtiones- ACM SIGMOD Int. Conf. on Management of Da1®991.

saging. The prototype is realised as an additional layevebo [8] C. Hagen and G. Alonso. Beyond the Black Box: Event-based

the Java Transaction Service (JTS) and MQSeries. While JTS' ~ Inter-Process Communication in Process Support Systems. In
. . . - . Proc. of the 19th Int. Conf. on Distributed Computing Systems

2PC is used to drive the commit of transactional objects,-com pages 450-457, 1999.

pensation messages are sent to cancel enqueued messages] J. Hill, J. Knight, A. Crickenberger, and R. Honhard. Pshland

failed transactions. Descriptive consumer-to-producsenh- ggggcribe with Reply. Technical report, University of Virgin

d(ra:ccelizir?anofbea?tie(?unlglc’j nﬂzggacggdlg%nser?ge;hce _dsehr\]/eemzsanrd[lo] IBM. WebSphere MQ Application Programming Guide, @005.
p 9 p ges. p y-op P [11] N. Krishnakumar and A. Sheth. Managing HeterogeneougiMul

vides a flexible integration model for transactions abovistex system Tasks to Support Enterprise-Wide Operati@istributed
ing MOM. However, with no support for distributed message- and Parallel Databases3(2):155-186, 1995.
routing decisions, the producer-consumer interactionehtel ~ [12] F. Leyman and D. Roller.Production workflow: concepts and

D . . techniquesPrentice-Hall, 2000.
point-to-point, statically defined across a number of mgssa [13] C. Liebig, M. Malva, and A. Buchmann. Integrating Notiftions

queues that act as intermediators. and Transactions: Concepts and X2TS PrototypePrbe. of the
2nd Int. Workshop on Engineering Distributed Objeatslume
; 1999, pages 194-214. Springer-Verlag LNCS, 2001.
8. Conclusions [14] Q. H. Mahmound, editorMiddleware for Communicationswi-
A major challenge of large-scale cooperative information ley, 2004.

- . . . [15] P. Pietzuch.Hermes: A Scalable Event-Based MiddlewalRhD
systems is the reliable interoperation of heterogeneodsan thesis, University of Cambridge, 2004.

tonomous components. Content-based publish/subscriée mi 1] p. Rosenblum and A. Wolf. A Design Framework for Interet-

dleware helps in facing part of this challenge by providing Scale Event Observation and Notification. Froc. of the Sixth
a flexible communication model between publisher and sub- \E/grrg%eiggS?oftware Engineering Cardfages 344-360. Springer—
scrlber.components. Inthls paper we have m_troduced dublis [17] R. Stom, G. Banavar, T. Chandra, M. Kaplan, K. Miller,
subscribe (P/S) transactions as an abstraction to suppert t B. Mukherjee, D. Sturman, and M. Ward. Gryphon: An Infor-
reliability needs of applications that involve componects- mation Flow Based Approach to Message BrokeringPrac. of

: ; : ; Int. Symposium on Software Reliability Engineering, '2898.
nected via a content-based publish/subscribe middleware.
P [18] Sun Microsystemslava Message Service Specification 2002.

P/S transaction demarcates, within an atomic unit-of-ytrk . . ; .

. . . [19] S. Tai and I. Rovellou. Strategies for Integrating Messggnd
production, delivery, an_d_ processing of a number Of related Distributed Object Transactions. roc. of Middleware 2000
asynchronous event notifications. P/S transactions aliseda volume 1795, pages 308-330. Springer-Verlag LNCS, 2000.
by a transaction service provided by the middleware. The ser [20] g g’ai, A. Zongkb'l'l. #Aikalsert], anCd I.tR(;vaelllg!J-t _Eipgngxgﬂ .

. [P : . - _ pnheres: opal lransaction Context for Distrioute JeCLS
vice is in charge (?f enforcing the r_equ'req dependencies be and Messages. IRroc. of the 5th Int. Enterprise Distributed Ob-
tween the transactional contexts of interacting companant ject Computing Confpages 105-115. IEEE Press, 2001.

ensuring the atomicity of operations. This allows applaat [21] X/Open.Distributed Transaction Processing Ref.1996.

