
Transactions in Content-Based Publish/Subscribe Middleware

Luis Vargas∗ Lauri I. W. Pesonen∗ Ehud Gudes† Jean Bacon∗
∗University of Cambridge, Computer Laboratory{firstname.lastname}@cl.cam.ac.uk

†Ben-Gurion University, Computer Science Department ehud@cs.bgu.ac.il

Abstract

Content-based publish/subscribe provides a flexible commu-
nication model for component interoperation in large-scale en-
vironments. In process support systems and other applications
that follow an event-based architectural style, the definition of
dependencies between interacting components and the notion
of all-or-nothing semantics are often needed to ensure reliable
inter-component task execution. In this paper we introducepu-
blish/subscribe (P/S) transactions as an abstraction to support
these needs in content-based publish/subscribe middleware. A
P/S transaction demarcates within an atomic unit-of-work,the
production, delivery, and processing of a number of related
asynchronous event notifications. A transaction service, pro-
vided by the middleware, realises P/S transactions to support
the transactional execution of processes on behalf of applica-
tions.

1. Introduction
Middleware provides application-independent connectivity

for component integration in distributed and heterogeneous en-
vironments. As software systems continue to be distributed
over ever-increasing scales, transcending traditional geograph-
ical and organisational boundaries, the demands placed upon
the supporting middleware infrastructure increase. Pub-
lish/subscribe [5] has emerged as a popular communication
model to face the challenges imposed by component interop-
eration in large-scale environments. Built around the notion of
an event, i.e. a happening of interest in the system, the model
encompasses the mediated dissemination of information, via
events (messages), between sets of event publishers and event
subscribers. Its interaction pattern particularly suits the con-
struction of systems that must react to situations of interest and
which exhibit many-to-many interactions.

In publish/subscribe as implemented by Message-Oriented-
Middleware (MOM), e.g. MQSeries [10] or the Java Message
Service [18], clients publish and receive messages on a particu-
lar topic, via a message provider. Scalability is realised by dis-
tributing the set of topics across a number of message providers
or by means of providers clustering. A different communica-
tion approach is the one taken by content-based publish/subs-
cribe [16] middleware such as Gryphon [17] or Hermes [15]. In
these, subscribers, connected by a network of brokers to pub-
lishers, specify sets of filters on the content of events. Thepu-
blish/subscribe middleware is then in charge of routing events
from publishers to the relevant subscribers across the network.
High scalability is then achieved by distributing the event-filter
matching process between a large number of brokers.

Transactions [6] are a commonly used approach to model
and build reliable, fault-tolerant systems. A transactionpro-
vides a unit of reliable execution that atomically bracketsa
number of operations ensuring that all or none are carried out.
Often, communication middleware is extended to support trans-
actional semantics to make it easier for the programmer to write
and deploy reliable applications [14]. Rather than interacting
directly with involved resources (e.g. database systems) and
developing transaction management functions, applications are
built on top of the middleware. The transaction-aware middle-
ware provides the abstractions that allow the programmer to
focus on business logic instead of low-level transaction control.

In the case of MOM, a notion of transaction exists that
allows the definition of message groups for atomic publica-
tion/consumption. MOM transactions however can not demar-
cate, for a set of messages, the outcomes and effects of their
publication and consumption within the same transaction. As
no dependencies can be enforced between the publisher and the
consumer(s) of a message, reliable component interaction re-
lies on a series of direct transactions, each between a compo-
nent (publisher or consumer) and a message provider. Com-
plex coordination logic may thus be required by applications
in order to deal with different transactional failure cases[19]
(e.g. due to unsuccessful processing of a message). Projects
such as X2TS [13] or D-Spheres [20], have thus studied the
integration of messaging and transactions to provide more flex-
ible MOM transactional support. However, to our knowledge,
no published work exists on the integration of transaction pro-
cessing over content-based publish/subscribe middleware. We
believe that such a middleware, targeted to the scalable inter-
operation of components in large-scale environments, should
provide transactional support to applications, if it aims to be
robust and widely applicable.

1.1. Motivation

A variety of process enactment and workflow management
systems [12] are event-driven and exhibit a publish/subscribe
style of communication. In these systems, components register
their interest in specific situations originating from other com-
ponents, and react to them according to some business process
logic. For example, in process support systems [8, 4], clients
instantiating activities from a common process, subscribeand
react to change status events on that process, produced by other
clients or by a process manager. To achieve the reliable and
recoverable execution of tasks, often, these systems must intro-
duce the notion of atomicity of operations (activities) andthe
enforcement of dependencies between interacting components
[8, 11]. These systems are closed, in the sense that, they extend



existing process-enactment architectures with special exception
and recovery mechanisms to model transactional requirements
(e.g. according to a workflow language specification), rather
than providing transactional event-services per-se as a function
of the underlying middleware.

Figure 1. Event-based process enactment

Consider a collaborative workflow that integrates a number
of heterogeneous components in a distributed system. Com-
ponents in the system are only connected via a publish/subs-
cribe middleware as depicted in Fig. 1. Each component is
autonomous and maintains its own separate resources (e.g.
databases) and business logic. Suppose a process to sched-
ule meetings is to be defined where sets of invitation messages
(i.e. meeting events) are (content-based) routed from publish-
ers to subscribers, according to their stated interests (subscrip-
tions). In response to an invitation, a subset of all the re-
cipients will accept it and acknowledge it, updating the pro-
cess’ distributed information record (e.g. the various partici-
pants’ databases S1, S2,.., Sn), booking the required resources
at the initiator (database P), and finally confirming the meet-
ing. Different requirements could constrain the meeting, e.g.
to a minimum/maximum number of participants or to include
those considered vital. If the process is to be executed in anall-
or-nothing manner, a transaction model is required that allows
the publication, delivery, and processing of events to comprise
an atomic unit-of-work. Such a unit-of-work should thus inter-
relate the transactional contexts of the interacting components
and enforce the required dependencies between them. We ar-
gue that such component-to-component reliability (and associ-
ated coordination) is not the responsibility of application devel-
opers and should instead be provided as an extended offering
of the publish/subscribe communication middleware. In this
paper we propose the use of publish/subscribe (P/S) transac-
tions to support this offering in content-based publish/subscribe
middleware, via a transaction service. Applications wherethe
provision of publish/subscribe transactional services isuseful
range from general event-based process enactment systems to
collaborative workflow management systems.

1.2. Contributions

In this paper we make the following contributions:

• We introduce P/S transactions as a new type of transaction
context that interrelates the execution of clients in a publish/
subscribe system by means of event publication, delivery,
and processing operations. We discuss their failure model
and combined use of 2-phase commit and compensation.

• We discuss a protocol that realises the execution of P/S
transactions. The protocol accounts for the dynamic enlist-
ment of participants in transactions that are advertised inthe
publish/subscribe system, and supports both compensatable
and non-compensatable clients in the same transaction.

• We describe the architecture and programming interface of
a transaction service that supports P/S transactions. We
discuss the implementation of such a service in Hermes, a
locally developed content-based publish/subscribe middle-
ware. The service provides applications with the transac-
tional execution of processes, allowing developers to focus
on business logic rather than low-level transaction control.

2. Background
In this Section we establish the background on publish/subs-

cribe as well as transactions in the middleware context.

2.1. Publish/Subscribe

Publish/subscribe [5] has emerged as a popular communi-
cation paradigm for large-scale distributed systems. In the
publish/subscribe abstraction an event consumer subscribes to
events of interest. Independently of any consumer, an event
producer publishes events. If the event published by the pro-
ducer matches the consumer’s subscription, that event is asyn-
chronously delivered to the consumer. This interaction is facili-
tated by a publish/subscribe middleware. The publish/subscribe
middleware might be centralised as a single event broker node,
or it might be decentralised as a network of broker nodes. Tra-
ditionally publish/subscribe middleware comes in two flavours:
topic-basedand content-based. In topic-based publish/subs-
cribe, events are published under a topic and event consumers
subscribe to that topic in order to receive those events. Topic-
based subscriptions do not support filtering of events, i.e.the
consumer will receive all events published on the given topic.
In content-based publish/subscribe the subscription includes
a filter expression which is applied to each published event.
Events with content that matches the filter expression are de-
livered to the consumer.

In this paper we focus on the provision of transactional ser-
vices in content-based publish/subscribe middleware. In partic-
ular, we discuss the Hermes Transaction Service (HTS), a tran-
saction service for the Hermes [15] middleware. We believe
however that the ideas presented here can easily be extendedto
other content-based publish/subscribe middleware, as well as
to the more specific case of topic-based publish/subscribe.The
main assumptions we make on the publish/subscribe middle-
ware are reliable event delivery (i.e. a published message will
eventually be delivered to the current subscribers) and a reply
capability (i.e. a consumer is able to reply to the producer of
an event). Reliable event delivery in a publish/subscribe sys-
tem can be achieved via an event store-and-forward approach
as in MQSeries [10] or by maintaining a knowledge model be-



tween publishers and subscribers with persistent storage at the
publisher-side as in Gryphon [3]. Replies in a publish/subscribe
system can be implemented in different ways [9]. The simplest
option is to piggyback events with the location informationof
the event producer (e.g. a brokerID in the broker network) so
that a consumer can reply to it directly. Another option is to
log an event delivery at the intermediate brokers in the pro-
ducer/consumer path and forward replies from consumers to
the producer across the reverse delivery paths of the event.

2.2. Transactions

Transactions [6] are a commonly employed approach to
model and build reliable, fault-tolerant systems. In a database
system, an ACID (atomic, consistent, isolated, durable) tran-
saction brackets a number of operations into an atomic unit-of-
work, the execution of which transforms a database from one
consistent state to another. To account for the reliable andato-
mic execution of operations in distributed scenarios, a number
of architectures and communication paradigms have been ex-
tended to support transactional semantics [2, 14]. Of particular
relevance to this paper aretransactional messagingas provided
by message-oriented-middleware (MOM) anddistributed tran-
sactionsas provided by transaction processing (TP-) monitors.

In transactional messaging, aunit-of-workin MQSeries [10]
or a transacted sessionin JMS [18], is used to group a set of
messages for their atomic sending and receiving from/to a mes-
sage provider. From the sender’s perspective, messages sent in
a transaction are cached by the message provider and forwarded
to consumers only after the sender’s transaction commits. If a
failure occurs or a rollback is issued by the sender, the mes-
sages are discarded. In the case of a receive, messages in a
transaction are held by the message provider until the receiver
issues a commit on its receive transaction. If a failure occurs or
a rollback is issued by the receiver, the provider will attempt to
redeliver the messages. This flexible mode of operation decou-
ples the contexts of execution of senders and receivers. How-
ever, as messages are published only after the sender’s transac-
tion commit and because transactions take place only between
a message provider and a client (sender or receiver), no depen-
dencies can be structured between the sending of a message and
the outcome of the message’s processing. In particular, it is not
possible to make the outcome of a client’s transaction that sends
messages as part of some application process, dependent on the
outcome of the delivery and processing of those messages by
the set of recipients that participate in the process.

Distributed transactions, unlike ACID transactions and
transactional messaging, focus on the atomicity of operations
across multiple resources (e.g. database systems), ensuring that
they all commit or abort according to the transaction outcome.
This requires a TP-monitor to maintain a list of participating
resources and to direct the execution of an atomic commitment
protocol such astwo-phase commit(2PC). The goal is to ensure
the atomicity of operations. Any concurrency and durability
concerns with respect to the transaction outcome are left tothe
participating resources.

For integrating messaging with distributed transactions,cur-
rent distributed transaction models only support the definition

of message provider (MP)-integrating transactions, i.e. inte-
grating a message provider as a resource in a distributed tran-
saction. Here, message transmission or reception can be in-
cluded in the transactional context of a client, together with
other operations (e.g. database updates). Clients then interact
with each other, via MOM, using a series of direct sender-to-
MP and MP-to-receiver transactions for each recipient of a par-
ticular message. As in transactional messaging, no way ex-
ists to include within the same transaction, the receivers’con-
sumption process for messages published inside the transaction.
Because no dependencies between the producer and the con-
sumers of messages can be defined and enforced by the middle-
ware, applications must implement potentially complex logic
for coordinating the effects and outcomes of message deliv-
ery and processing operations, and for returning to a consistent
state in case of failures [19].

3. P/S Transactions
We define a publish/subscribe (P/S) transaction as a new

type of transaction where the contexts of execution of a set of
transactional clients are interrelated by means of event publica-
tion, delivery, and processing operations. Two types of clients
are involved: one event publisher and one or more event sub-
scribers. The P/S transaction demarcates within an atomic unit-
of-work: 1) a process triggering one or more events at a pu-
blisher, 2) the set of triggered events and 3) a set of processes
that are executed by the consumption of these events at the sub-
scribers. The P/S transaction either succeeds or fails as a whole
(see Section 3.1), making the outcome of the unit-of-work and
the effects of the processing of enclosed events mutually de-
pendent. As (un)successful event consumption determines a
P/S transaction’s outcome, events are published with immedi-
ate visibility (i.e. before the triggering processes commit). Ex-
ternalising event publishers’ computations in this way allows
parallel activity in the system, as multiple subscribers can pro-
cess events in the transaction at the same time. To deal with
possibledirty reads(i.e. the consumption of events which trig-
gering processes later abort) at the subscribers, the effects of
processed events reflecting these computations can be revoked
according to 2PC processing or compensated (see Section 3.2).
For simplicity through the rest of the paper we will refer to a
P/S transaction simply as a transaction.

3.1. Failure Model.

Within a transaction, every event carries the transaction con-
text and thus it defines (with the rest of events in the transac-
tion) its atomicity. The transaction’s outcome (success orfail-
ure) is thus affected by the outcome of the publisher’s triggering
process and the outcome of every contained event. We distin-
guish between two types of events:protocol and application
events, and define the outcome for individual events across two
dimensions:deliveryandprocessing. The first type of events
corresponds to middleware-level events used to realise thetran-
saction protocol described in Section 4. The second type are
application-defined events used to convey any information be-
tween clients in the publish/subscribe system. If a transaction
succeeds then all (protocol and application) events published as
result of the transaction have been both successfully delivered



and processed by the set of relevant subscribers (i.e. thosepar-
ticipating in the transaction). Correspondingly, if the delivery
or processing of any event fails, the transaction is aborted.

How event delivery failures are detected is closely relatedto
the type of reliability mechanism used by the publish/subscribe
middleware. In general, the evaluation of an event delivery’s
outcome describes a “worrying-parent-model” [20]: if no ac-
knowledgement by a recipient is received after some scope in
time, the event is declared as failed. For example, in Gryphon,
errors in the delivery of an event (e.g. due to a broker crash or
a link outage) are detected by the lack of recipients’ acknowl-
edgements at intermediate brokers in the event delivery path
and propagated to the publisher. In the context of a transac-
tion, different conditions could be associated with the unsuc-
cessful delivery of an event: the transaction could be immedi-
ately aborted orn delivery attempts could be made before abort-
ing it. In Section 5.6 we discuss how we deal with the detection
of failed protocol and application events in a transaction.

Event processing failures are caused bysystemandappli-
cation exceptions. System exceptions range from an invalid
pointer (e.g. NULL) operation to a database connection that
cannot be obtained. Application exceptions are user-defined ex-
ceptions thrown after unexpected business logic situations (e.g
a lookup method cannot find an object). While some of these
exceptions will require a client to immediately abort a transac-
tion, others can be handled transparently by the client. Foran
event, we thus consider its processing unsuccessful if any un-
handled (system or application) exception is thrown while it is
processed. We also provide clients with a declarative method
(see Section 5.3) to explicitly abort a running transaction.

3.2. 2PC and Compensation

We distinguish two ways of dealing with dirty reads (and
reactions) by event consumers. One is to require atomic com-
mitment using two-phase commit (2PC), so that the triggering
process at an event publisher is allowed to commit only after
the triggered process at every relevant subscriber is prepared
to commit and vice versa. However, relating clients by ato-
mic commitment may sometimes not be desirable. One reason
is that, with 2PC, a client exposes transaction control to other
clients. If a client votes OK in response to apreparerequest,
the client has to be able to commit its local processing (e.g.
hold locks) until instructed otherwise by the transaction man-
ager. Another reason is that transactions may be long-running
because of long-lived business logic, delayed human input,etc.
With 2PC, a client cannot commit until the global transaction
can commit. Thus, a fast client may be forced to wait for a
slow client. Another (optimistic) way of dealing with dirtyno-
tification reads is compensation [7]. Using compensation asa
recovery mechanism allows the triggered process at each sub-
scriber to commit unilaterally without waiting for the transac-
tion manager’s decision, with the promise that its effect can
be semantically cancelled afterwards, via a local compensating
process. Compensation is a generally accepted mechanism to
deal with failures, fundamental to extended transaction models
and workflow systems [12]. However, not all operations are
compensatable. For example, processes involving real (pivot)

actions are sometimes non-compensatable [6]. In addition,for
some clients, the cost of executing a compensating process may
outweigh the costs of participating in a 2PC protocol. For these
reasons we adopt a model followingflexible transactions[1],
to accommodate both compensatable and non-compensatable
clients within the same transaction. In a flexible transaction, the
processes of participating compensatable clients are allowed to
commit before the global transaction commits, while the com-
mitment of processes of non-compensatable clients must wait
for a global decision. When a decision is reached to abort the
transaction, the processes in progress and the processes ofnon-
compensatable clients waiting for a global decision are rolled-
back, while the committed processes of compensatable clients
are locally compensated.

4. Transaction Protocol
A transaction consists of three phases: 1) acensus phasefor

registering the set of subscribers participating in the transaction,
2) a transaction phaseconsisting of events published as a sin-
gle transaction by a transaction manager on behalf of an event
publisher, and 3) acommitment phasewhich is used to either
commit or abort the transaction among the transaction manager
and the participant clients.

4.1. Census Phase

The semantic imposed by a P/S transaction requires that par-
ticipants of a transaction are known by the transaction manager
before the start of the transaction phase. Furthermore, we need
to guarantee that only those subscribers that are accepted as par-
ticipants of a transaction can act (e.g. vote) upon it. This is the
purpose of the census phase.

In this phase, a transaction manager advertises a new tran-
saction, on behalf of a publisher, by publishing acensus event
with the name of the transaction (e.g. “meeting”), a unique tran-
saction identifier (tx id), and other optional attributes describing
the transaction (e.g. “subject” and “time”). Subscribers have
registered their interest incensus events where the name and
attributes match a transaction that they are interested in.As part
of a registration each subscriber also locally specifies a (non-)
compensatable client type. Thecensus event is then delivered
to all subscribers with the appropriate registrations, informing
them of the tx id of a new transaction.

We rely on the use of pseudonyms andhash-based set mem-
bershipsto build authenticated groups of transaction partici-
pants. The basic idea is to verify membership in a group of tran-
saction participants, rather than identifying individualmembers
for a transaction. We assume that 1) subscribers can generate
a globally unique pseudonymp for every transaction they par-
ticipate in, and 2) the transaction manager and all subscribers
know the same one-way hash functionH .

Subscribers who are interested in taking part in a transac-
tion reply to its relatedcensus event with acensus reply
event that contains: 1) the tx id, 2) a randomly generated
pseudonymp, and optionally, 3) the subscriber’s identity (e.g.
public key). Notice that the subscriber’s (non-) compensatable
client type is not included in this event, as the abort mecha-
nism used by a subscriber is only of self-relevance. Based on
the subscribers’ replies the transaction manager will forma list



of pseudonymsl(tx id) = [p1, p2, .., pn] for the subscribers
interested in tx id. At some point in time the transaction man-
ager must decide to stop waiting for more participation replies
from the subscribers. This decision might be based on a time-
out, on the number of replies received, or on conditions defined
by the publisher who initiated the transaction. e.g. a transac-
tion manager might wait for replies for 30 seconds or 10 sub-
scribers, or it might wait for specific participants. The nonde-
terminism of the census phase makes it necessary to inform the
subscribers of the list of of accepted participants. For this, at
the end of the census phase, the transaction manager will: 1)
compute the hashH of every pseudonymp in l(tx id) into the
list Hl(tx id) = [H(p1),H(p2), ..,H(pn)] and 2) publish a
2PC event withstate=begin containingHl(tx id).

On receipt of this event, each subscriber will verify its mem-
bership in the transaction by computing the hashH of its
pseudonymp, and verifying its existence inHl(tx id). No-
tice that, asH is one-way, no pseudonym can be extracted
from the published list, allowing only subscribers accepted as
participants of a transaction to act upon it. Also, the use of
pseudonyms allows subscribers to remain anonymous in pro-
cesses that don’t require disclosing the participants’ identities.
Having verified its membership in the transaction, the sub-
scriber will then subscribe to events with the given tx id in order
to receive events related to this specific transaction.

We leave publishers to define thescopeof transactions as
private or public. In a private transaction, events published
as part of the transaction are delivered only to the participants
determined in the census phase. Contrarily, events published
in a public transaction are dispatched not only to the transac-
tion participants but also to every subscriber who has specified
a subscription matching the event content. This allows non-
participant subscribers to still receive events of interest while
consuming them in their own separate execution contexts.

4.2. Transaction Phase

In the transaction phase the transaction manager publishes
events, on behalf of a publisher, inside the transactional context
created in the census phase. Published events are tagged with
1) the tx id, 2) the transaction manager’s contact information,
3) a public/private flag, and 4) a sequence number. This allows
us at the subscriber-side to: 1) relate event consumption toa
particular transaction, 2) reply to the transaction manager ac-
cording to the transaction protocol, 3) not forward events from
private transactions to a subscriber who is not a participant,
and 4) detect delivery failures for application events in the tran-
saction. Subscribers are able to reply to each published event
with an abort event2PC reply(vote=abort). I.e. if an
event causes an error at one of the subscribers that would cause
the subscriber to vote abort in the commitment phase, the sub-
scriber is able to vote abort immediately. This allows the tran-
saction manager to abort the transaction immediately without
wasting time and resources in publishing the remaining trans-
actional events and going through the commitment phase.

4.3. Commitment Phase

The transaction manager ends the transaction by initiating
the commitment phase on behalf of the publisher. As inflex-

ible transactions, this phase consists of a vote among the par-
ticipating subscribers deciding whether to commit or abortthe
transaction. For this, the transaction manager publishes a2PC
event withstate= prepare, the tx id, and the last sequence
number published in the transaction. The subscribers vote by
replying to this event with a2PC reply(vote=commit) or
a 2PC reply(vote=abort) event. While compensatable
clients are allowed to commit at this time, non-compensatable
clients must wait for a global decision on the transaction. The
transaction manager publishes the result of the vote as a2PC
event withstate=commit/abort depending on the results
of the vote. Votes from subscribers that are not in the list of
participants are silently ignored. The participating clients are
responsible for committing or aborting the transaction accord-
ing to the voting result. Aborting, depending on the subscriber’s
client type, will involve either rolling back or compensating any
work done as part of the transaction.

5. Transaction Service
The idea of publish/subscribe transactions is supported by

a transaction service. In this section we first describe Hermes
and then we discuss the architecture and service support offered
by HTS, its transaction service. HTS realises the transaction
protocol described in the previous Section while supporting:
• explicit transaction demarcation at the publisher side.

• automatic transaction context propagation, via event notifi-
cations published with immediate visibility.

• census handling functions to support dynamic groups of tran-
saction participants.

• implicit transaction demarcation at the subscriber side.

• automatic management of involved resources.

• support for compensation mechanisms.

5.1. Hermes

Hermes [15] is a distributed, content-based pub-
lish/subscribe event-based middleware built on a peer-to-peer
routing substrate. A distributed event-based system imple-
mented on Hermes, depicted in Figure 2, consists of two kinds
of components:event brokersandevent clients.

Figure 2. Hermes event-based system

Event brokers form an application-level overlay network
that propagates events. Event clients (publishers or sub-
scribers) use the services provided by the publish/subscribe
broker network to communicate. For this they connect to a
local broker, which then becomespublisher-hosting (PHB),
subscriber-hosting (SHB), or both. Brokers without connected



clients are calledintermediate brokers. Before publishing an
event, a publisher must advertise the associated event type. As
a result of this action, routing state from the publisher towards
an intermediate broker, known as therendezvous broker, is cre-
ated. The address of this broker is computed from the event
type name using a distributed hash table (DHT) algorithm. Sub-
scribers specify their interests in (a subset of) these event types,
via content-based subscriptions. Reverse path forwardingof
subscriptions, towards the corresponding rendezvous broker
and any related advertisements are used to create event dissem-
ination trees from publishers to subscribers. Event notifications
are delivered in FIFO order with respect to each publisher.

5.2. Architecture

HTS introduces an additional layer of abstraction above the
standard Hermes middleware to provide an integrated view of
transaction and event notification services for transactional ap-
plication development. The different HTS components at the
publisher and subscriber-side are depicted in Figure 3. Thede-
ployment of these components is discussed in Section 6.3.

A publisher request aTxManager to begin, commit or
abort a transaction, via aPSTransaction object. As
part of the context associated with the transaction, the pu-
blisher can publish one or more events and access local re-
sources (see Section 5.4). TheTxEngine component of the
TxManager orchestrates the execution of the transaction pro-
tocol. For this, it uses the services of two other components,
theCensusCoordinator and theTxEventPublisher.
The first establishes censuses for new transactions according
to the publisher’s conditions. The latter attaches the transac-
tion context to events received from thepublisher or gener-
ated by thetxEngine in response to transaction state changes
(e.g. prepare/abort). It piggybacks to each event: the tx id, the
TxManager’s contact information, a public/private flag, and
a sequence number. Events are then passed to theHermes
connector to publish them in the publish/subscribe broker
network. A persistentlog is used by theTxEngine to store:
the tx id, information about publisher’s accessed resources, the
list of transaction participants, and the state of the transaction.

A subscriber registers his interest in participating as a (non-
) compensatable client in a transaction with theTxEvent-
Subscriber component, via aregistration object. Ac-
cording to this registration, theTxEventSubscriber is in
charge of 1) setting an appropriate subscription on the corre-
spondingcensus event in the publish/subscribe broker net-
work, via thePSConnector, 2) replying to acensus event
using a randomly generated pseudonym, and 3) subscribing to
transaction-related events for those transactions the subscriber
joins. TheTxEventSubscriber thus allows a subscriber to
participate in specific transactions without having to dealwith
low-level details such as pseudonyms and the tx id.

At the subscriber, all events are received through the
Hermes connector. From these, those carrying a transac-
tion context are pushed to theTxEventGuard. The func-
tions of this component are: 1) to log the participation of a
subscriber in a transaction and 2) to verify that events frompri-
vate transactions are pushed forward only if the subscriberpar-

ticipates in the transaction. Events from theTxEventGuard
are subsequently passed to theTxEventDispatcher. For
each event this component will then establish the appropriate
transaction context for a consumption process to run (accord-
ing to the registration), associating its execution’s thread with
the tx id of the running transaction. For compensation purposes
(See Section 5.5), consumption of events on behalf of the tran-
saction is logged by theTxEventDispatcher. Implicit ac-
cess to the transaction’s context is made available throughthe
TxCallback interface and used to locally register resources
or abort a running transaction. The current state of a transaction
is accessed and updated via theTxStateHandler compo-
nent, according to 1) the outcome of the delivery and consump-
tion processes for events in the transaction and 2) the reception
of transaction status events published by theTxManager. Fi-
nally, theTxCompensator is in charge of executing compen-
sating processes to undo the effects of a failed transaction. A
persistentlog is used to store information about those transac-
tions the subscriber joins. For each transaction we store: the tx
id, information about accessed resources, the state of the tran-
saction, and the set of consumed events.

5.3. Application Programming Interface (API)

The purpose of the transaction service’s API is to allow the
publication and consumption processes of events to be demar-
cated within a transaction. In general, developers implementing
publish/subscribe applications that handle specific eventtypes
need the definition of these event types at development time.
The use of transactions also requires that event types published
as part of a transaction are known. The definition of a transac-
tion then includes: 1) the definition of acensus event type
TxType used to advertise the transaction and 2) the definition
of each event typeevType published in the transaction.

With the proposed API, publishers explicitly demarcate the
scope of transactions that are advertised via census events. On
receipt of acensus event, a subscriber can decide whether to
join a transaction; in which case, the consumption process for
any received events within the transaction is implicitly consid-
ered as part of the transaction. The API of HTS for both types
of publish/subscribe clients is presented in Tables 1 and 2.

advertise(TxType)
t = new PSTransaction(TxType)
t.begin(txType, scope, conditions)
t.publish(evType)
t.registerresource(resource)
t.commit(), t.abort()

Table 1. HTS publisher API

A publisher usesadvertise to state its intention to pub-
lish transactions of a certain typeTxType, whereTxType is
defined by a name (e.g. “meeting”) and a set of application-
defined attributes that describe the transaction (e.g. subject,
date, time). The publisher starts a new transaction by: 1) cre-
ating aPSTransaction object associated with an already
advertised transaction type and 2) requesting the transaction
manager to start a transaction instance of this type (e.g. meet-
ing[“DSOnline”, “15/03/06”, “15:00”]) usingbegin. The



Figure 3. HTS architecture

publisher specifies with the request the scope of the transac-
tion (i.e. public/private) and a set of census conditions (e.g.
min 10 and max 20 participants). As part of the transac-
tion, the publisher can publish one or more events of the same
or different typeevType usingpublish and register local
resources (e.g. databases), viaregister resource. De-
pending on the application scenario, events published in the
transaction could just extend the information conveyed in the
census event or provide a basis for structuring interrelated
data (e.g. acensus event change[processID] followed by mul-
tiple changeDetail[componentID, changeDescription] events).
Finally, a publisher requests the transaction manager to commit
or abort a transaction usingcommit or abort.

r = Registration(clientType, TxType, filter, censuscallback)
r.addHandler(evType, evTcallback)
r.addCompensationHandler(evType, evTc callback)
r.execute()
CensusCallback.join()
TxCallback.registerresource(resource)
TxCallback.setAbort()

Table 2. HTS subscriber API

Subscribers specify their interest in a particular transaction
typeTxType (e.g. “meeting”), via aregistration. A reg-
istration is created by specifying a (non-) compensatable client
type, an optional filter on the content ofTxType (e.g. sub-
ject=“DSOnline”), and a callback classcensus callback
implementing theCensusCallback interface. It is in this
callback that census events for transactions of interest will
be delivered, and where the subscriber programatically re-
quests to join a transaction, via thejoin method. As part
of the registration, handlers for the different event typespub-
lished within the transaction are specified usingaddHandler.
Each handler specifies an event typeevType and a call-
back classevT callback implementingTxCallback. It
is within this callback, that events of the specified type will
be processed as part of the transaction associated with the
registration. Compensatable clients should also specify,us-
ing addCompensationHandler, a compensating func-
tion evT c callback to undo the effects of events of type
evType that are processed as part of the transaction. Finally,
the registration is activated usingexecute.

Contrary to the explicit transaction demarcation used by the
publisher, the scope of a transaction at the subscriber is implic-
itly defined by the set of registeredevT callbacks. That is,

the start and end of each callback triggered in response to an
event mark the boundaries of the execution context that is asso-
ciated with the running transaction. Implicit access to this con-
text is made available through theTxCallback interface and
used to register local resources, viaregister resource.
For each individual event, we consider its consumption suc-
cessful if its triggered callback returns without errors. An un-
handled exception within the callback will immediately roll-
back the transaction at the subscriber and send an abort voteto
the transaction manager. We also provide asetAbortmethod
that a subscriber can use to declaratively abort the transaction.

5.4. Resources Support

As part of a transaction, middleware clients (publishers
and subscribers) are expected to interact with local resources
(e.g. database systems). We provide clients with there-
gister resource method to enlist a resource in a running
transaction. While at the publisherregister resource
is supplied by thePSTransaction object, at the sub-
scriber it is supported via theTxCallback interface. Calling
register resource results in the transaction service log-
ging, at the client, the fact that a resource was used as part of
the transaction. This association, as well as status information
about the resource (e.g.is prepared) are maintained during
the lifetime of the transaction. The transaction service atthe
client-side can be seen as an interposed coordinator between a
local resource used by a client and the transaction manager.In-
stead of having every resource directly involved with the tran-
saction manager, at each client the transaction service merely
collects votes from locally involved resources and passes agen-
eral decision to the transaction manager, which then decides on
the overall outcome of the transaction. Afterwards, the transac-
tion manager sends the commit/abort decision to the participant
clients, so that at each client, the transaction service commits,
rollbacks, or compensates work on the involved resources.

We expect that clients interact with different resources, via
standard (e.g.XA [21]) adapters. In our current prototype,
we incorporate an XA-enabled data adapter to integrate Post-
greSQL database systems as recoverable resources in a tran-
saction. The XA specification defines an interface that allows
work executed on a resource to be associated with a transac-
tion that can be prepared and committed or rolled-back accord-
ing to 2PC. Through the adapter, operations on a PostgreSQL
database are associated with the tx id of the current transaction.
Isolation of operations in the transaction with regards to other



database operations is a responsibility of the database. Atthe
commitment phase, the database is asked to prepare the work
associated with tx id for commit. If the prepare fails for anyrea-
son, the transaction service is informed via the adapter, rolling
back any work done at the client as part of tx id and sending an
abort vote to the transaction manager. Finally, when a decision
from the transaction manager is received, work associated with
tx id in the database is committed, rolled-back, or compensated
by the transaction service.

5.5. Compensation

In the case that a transaction fails, recovery for events pro-
cessed as part of the transaction must be performed at each
compensatable subscriber. Compensation relies on the ideathat
for some task executed as part of a transaction, a correspond-
ing compensation task can be designed. While compensation
tasks are expected to be locally defined by a developer, accord-
ing to the application semantics, the middleware must support
the mechanisms for doing so. For compensation purposes, HTS
provides clients with 1) automatic logging of events consumed
as part of a transaction and 2) the possibility of defining a com-
pensating (callback) function for each event type in the transac-
tion. The set of compensation functions defined by a client for
a transaction constitute the transaction’s compensation task.

Figure 4. HTS compensation process

The compensation process, depicted in figure 4, works as
follows. After a subscriber receives a2PC(state=abort)
event for the transaction tx id, theTxCompensator compo-
nent will inspect the locallog and execute, for each event
evi consumed in tx id, a defined compensating function
evT c callback. Compensating functions are selected ac-
cording to each event type and executed in the inverse consump-
tion order of events. As part of the compensation process, up-
dates to local resources may be required, e.g. to undo commit-
ted operations on a database. Ensuring the idempotency of this
process requires that these updates are performed atomically.
For a single resource this is enforced by theTxCompensator
using a local transaction. If multiple resources must be updated,
theTxCompensator creates a new transaction and associate
all updates on these resources with it. Atomic commitment be-
tween the resources is driven by theTxCompensator using
standard 2PC. In both cases, the execution of the compensation
process remains local and does not involve theTxManager.

5.6. Failure Detection and Recovery

The failure model introduced by publish/subscribe transac-
tions requires that the failed delivery of events publishedas a
result of a transaction are identified. Even if the publish/subs-

cribe middleware provides reliable delivery, an event could take
an arbitrarily long time to arrive at its destination, e.g. due to
communication failures. For this reason we introduce addi-
tional mechanisms to deal with the detection of failures in the
delivery of 1) protocol and application events published bythe
TxManager and 2) reply events sent by the transaction service
at the subscriber-side.

At the transaction level, we identify failures in the delivery
of application events by making theTxEventPublisher
piggyback sequence numbers to published events and ef-
fecting a subscriber-side verification at commit time. For
this, theTxEventPublisher includes in the transaction’s
2PC(state=prepare) event, the last sequence number in
the set of published application events. Upon detecting a miss-
ing event, theTxStateHandler at the subscriber will roll-
back its local work and vote abort on the transaction.

In traditional distributed transactions, a common approach
to achieve eventual progress in the case of lost protocol mes-
sages is to let participants query each other about the current
state of the transaction [2]. In publish/subscribe transactions
however participants’ contact information is not made available
to each other nor to theTxManager. i.e. all communication
between parties in the system is is not direct but via the publish/
subscribe middleware using events. To deal with the detection
of failed protocol events we leverage the functionality of the
publish/subscribe middleware as follows: At the subscriber we
feed timeouts to theTxStateHandler component. If for a
running transaction, the timeout for an expected protocol event
is exceeded, theTxStateHandler will publish a2PC event
with the corresponding tx id andstate=in doubt cu-
rrent state; where current state is the subscriber’ state
at the time of the timeout. Possible in-doubt states are:cen-
sus: the subscriber has requested participation in the transac-
tion and is waiting for a2PC(state=begin) event. tran-
saction: the subscriber is in the transaction phase and is wait-
ing for a 2PC(state=prepare) event. commitment: the
subscriber is in the commitment phase and is waiting for
a 2PC(state=commit/abort) event. After other sub-
scribers taking part in the transaction receive the event, their
local TxStateHandler will check whether it has informa-
tion concerning the in-doubt state; in which case, it will re-
ply to the in-doubt subscriber’s2PC event with a2PC reply
event enclosing the relevant state information (e.g. the partic-
ipants list for the census state or the transaction’s outcome
for commitment phase). After any reply is received, the
TxStateHandler of the in-doubt subscriber will act accord-
ingly. Notice that this mechanism also allows participantsto
overcome blocking in the case that theTxManager fails after
publishing a2PC(state=commit/ abort) event.

At the TxManager we must deal with the failed deliv-
ery of reply events at the commitment phase. Note that a
failed reply event at the census phase will only result in the
related subscriber not taking part in the transaction. Although
a failed abort reply in the transaction phase will result in un-
necessary work done, an abort outcome will still be deter-
mined by having the subscriber reply his vote at the commit-
ment phase. We must also consider that the execution of some



subscribers’ processes may not have completed by the time the
publisher’scommit call is issued. For this, we feed time-
outs to theTxEngine for reception of replies. If within a
timeout one or more reply events are not received in response
to a2PC(state=prepare] event, the publisher’scommit
call will raise anUncheckedTransactionBehaviour
exception. The publisher can then decide to either abort the
transaction at this time, or wait and retry at the next timeout.

6. Implementation

The transaction service can be implemented either a) at the
client-side, as a library on top of the publish/subscribe service
offered by a publish/subscribe middleware, or b) at the service
side, as an additional middleware service alongside the publish/
subscribe service. Both approaches, depicted in Fig. 5, have
their advantages and disadvantages.

(a) Client-side (b) Service-side

Figure 5. Implementation approaches

6.1. Client-Side Implementation

A client-side implementation of the transaction service con-
sists of a layer between the publish/subscribe API and the ap-
plication. The application is free to access both the publish/
subscribe and the transaction service APIs (tx API). The tran-
saction service then relies purely on the services exportedby
the publish/subscribe API:publish andsubscribe. This
allows us to extend the transaction service to any existing pu-
blish/subscribe middleware.

From an application’s point of view it is important that both
transactional and non-transactional events are identical. I.e. an
application should be able to use any event type both inside and
outside transactions. Therefore the tx API cannot use a specific
attribute for storing the tx id in an event. In order to attacha
tx id to an event the tx API will have to wrap the event inside
an instance of another event type which defines an attribute for
the tx id. We can define a global event type,TxWrapper, to
wrap events published by an application inside a transaction.
The wrapper type consists of two attributes: the tx id and the
wrapped event. The transaction service at the publisher-side
receives an event from the application, wraps it inside a new
instance ofTxWrapper, and sets the tx id attribute to the id
of the current transaction. At the subscriber end the tx API
unwraps the event and delivers it to an application that has sub-
scribed to the given transaction based on the tx id. The down-
side of the wrapping approach is twofold: 1) non-transactional
subscribers will not see the wrapped event, and 2) in a DHT-
based publish/subscribe system, like Hermes, all transactional
events will be routed through the samerendezvousbroker.

6.2. Service-Side Implementation

By implementing the transaction service at the service-side,
i.e. as an additional offering of the publish/subscribe middle-
ware, we are not limited to using the basic publish/subscribe
API. This allows the transaction service to addmeta-attributes
to published events. That is, the publish/subscribe service can
add an attribute to an event which is not part of the event type.
At the subscriber end the transaction service will then remove
that attribute before delivering the event to a subscriber’s pro-
cess. The tx id can thus be added to an event as a meta-attribute.
At the publish/subscribe service level this means that we are
dealing with the published event instead of a wrapper. There-
fore this implementation approach does not suffer from any of
the disadvantages of the client-side implementation: 1) events
can be delivered to both transactional (based on the tx id) and
non-transactional (based on the event content) subscribers, and
2) events will be routed though the rendezvous broker of the
event’s type. The obvious downside is that changes to the ex-
isting publish/subscribe system are required.

6.3. HTS Implementation

We have implemented the HTS architecture (see Sec-
tion 5.2) following a service-side approach. In our currentpro-
totype, we realise the propagation of transaction context with
published events at the local broker of a Hermes publisher
(PHB), via theTxEventPublisher component. In addi-
tion, at this broker we have located the other two components
of theTxManager (i.e. theCensusCoordinator and the
TxEngine). These three components interact, as part of the
Hermes service’s process at the broker, to provide transactional
services to the publisher. Separating transaction management
functions from the publisher is appealing as: 1) we are able
to detect crashes in the publisher’s process at theTxManager
(using periodicheartbeats), so that, if a transaction’s outcome
has not been defined, we can immediately abort it; and 2)
we can instantiate transaction coordination functions at brokers
that are part of a trusted domain, rather than at possibly un-
trusted clients.

At the subscriber-side, we have located the
TxEventGuard at the local broker of a subscriber (SHB).
Through this component we: 1) realise the functionality
of private transactions by discarding events from private
transactions that a subscriber does not participate in; and2)
detect crashes in a subscriber’s process, so that, if no voteon
a transaction has been generated by the subscriber, an abort
vote can immediately be sent to theTxManager. The rest
of components (TxEventHandler, TxStateHandler,
TxEventDispatcher, and TxCompensator) provide
functionality that requires close interaction with the subscriber
application’s process. We have thus colocated them with the
subscriber, as part of the services exported by Hermes.

7. Related Work
The provision of middleware-mediated messaging systems

that are transaction aware has been a recent subject of study.
In [19], the shortcomings of MP-integrating transactions were
identified. Message deliveryandmessage processingtransac-



tions were suggested as alternative integration strategies. Their
focus was on integrating distributed object requests with MOM
within the same client transaction. Publish/subscribe transac-
tions share some of the general considerations taken by these
strategies, most notably sending messages at any point in a tran-
saction. Our focus is however on the reliable execution of pro-
cesses in a publish/subscribe system. Two projects are of par-
ticular relevance to this paper: the DAOS project and its X2TS
prototype [13], and the Dependency-Spheres service [20].

The X2TS prototype integrates the CORBA Object Transac-
tion Service (OTS) and the CORBA Notification Service to pro-
vide transactional services above TIB/Rendezvous, a multicast-
enabled messaging middleware. X2TS, as HTS, provides im-
plicit context propagation with messages. Atomic message
grouping is however not supported. Different visibilitiesfor
a message with regards to a transaction (e.g. on commit) can
be configured at the consumer-level. This is enforced by pub-
lishing all messages with immediate visibility, like HTS, but
caching them at the consumer until the specified time. Atomic
commitment is handled by OTS via 2PC with no support for
extended transactional mechanisms such as compensation. Im-
plemented on top of a message bus architecture, X2TS is based
on topic-based addressing. Subdividing the message space into
topics may lead to subscribers having to filter messages from
general topics, or to the creation of large message hierarchies.

The Dependency-Spheres service focuses on operationally
grouping distributed object transactions with transactional mes-
saging. The prototype is realised as an additional layer above
the Java Transaction Service (JTS) and MQSeries. While JTS’
2PC is used to drive the commit of transactional objects, com-
pensation messages are sent to cancel enqueued messages of
failed transactions. Descriptive consumer-to-producer depen-
dencies can be defined using conditions on the delivery and
processing of particular messages. Dependency-Spheres pro-
vides a flexible integration model for transactions above exist-
ing MOM. However, with no support for distributed message-
routing decisions, the producer-consumer interaction model is
point-to-point, statically defined across a number of message
queues that act as intermediators.

8. Conclusions

A major challenge of large-scale cooperative information
systems is the reliable interoperation of heterogeneous and au-
tonomous components. Content-based publish/subscribe mid-
dleware helps in facing part of this challenge by providing
a flexible communication model between publisher and sub-
scriber components. In this paper we have introduced publish/
subscribe (P/S) transactions as an abstraction to support the
reliability needs of applications that involve componentscon-
nected via a content-based publish/subscribe middleware.A
P/S transaction demarcates, within an atomic unit-of-work, the
production, delivery, and processing of a number of related
asynchronous event notifications. P/S transactions are realised
by a transaction service provided by the middleware. The ser-
vice is in charge of enforcing the required dependencies be-
tween the transactional contexts of interacting components and
ensuring the atomicity of operations. This allows application

developers to focus on business logic instead of component-to-
component reliability (and associated coordination) and low-
level transaction control. Applications where the provision of
publish/subscribe transactional services is useful rangefrom
general event-based process enactment systems to collaborative
workflow management systems.

Acknowledgements. Luis Vargas is supported by CONACYT.
Lauri Pesonen is supported by EPSRC (GR/T28164).

References
[1] W. Litwin A. Elmagarmid, Y. Leu and M. Rusinkiewicz. A Mul-

tidatabase Transaction Model for InterBase. InProc. of the 16th
Int. Conf. on Very Large Data Bases, 1990.

[2] P. Bernstein and E. Newcomer.Principles of Transaction Process-
ing. Morgan Kaufmann, 1997.

[3] S. Bhola, R. Strom, S. Bagchi, Y. Zhao, and J. Auerbach. Exactly-
once Delivery in a Content-based Publish-Subscribe System. In
Proc. of the 2002 Int. Conf. on Dependable Systems and Networks,
pages 7–16, 2002.

[4] C. Collet, G. Vargas-Solar, and H. Grazziotin-Ribeiro. Open Ac-
tive Services for Data-Intensive Distributed Applications. In Int.
Database Engineering and Application Symposium, pages 349–
359, 2000.

[5] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The Many
Faces of Publish/Subscribe.ACM Computing Surveys, 35(2):114–
131, 2003.

[6] J. Gray and A. Reuter, editors.Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1992.

[7] E. Levy H. Korth and A. Silberschatz. A formal Approach to
Recovery by Compensating Transactions. InProc. of the 1991
ACM SIGMOD Int. Conf. on Management of Data, 1991.

[8] C. Hagen and G. Alonso. Beyond the Black Box: Event-based
Inter-Process Communication in Process Support Systems. In
Proc. of the 19th Int. Conf. on Distributed Computing Systems,
pages 450–457, 1999.

[9] J. Hill, J. Knight, A. Crickenberger, and R. Honhard. Publish and
Subscribe with Reply. Technical report, University of Virginia,
2002.

[10] IBM. WebSphere MQ Application Programming Guide 6.0, 2005.
[11] N. Krishnakumar and A. Sheth. Managing Heterogeneous Multi-

system Tasks to Support Enterprise-Wide Operations.Distributed
and Parallel Databases, 3(2):155–186, 1995.

[12] F. Leyman and D. Roller.Production workflow: concepts and
techniques. Prentice-Hall, 2000.

[13] C. Liebig, M. Malva, and A. Buchmann. Integrating Notifications
and Transactions: Concepts and X2TS Prototype. InProc. of the
2nd Int. Workshop on Engineering Distributed Objects, volume
1999, pages 194–214. Springer-Verlag LNCS, 2001.

[14] Q. H. Mahmound, editor.Middleware for Communications. Wi-
ley, 2004.

[15] P. Pietzuch.Hermes: A Scalable Event-Based Middleware. PhD
thesis, University of Cambridge, 2004.

[16] D. Rosenblum and A. Wolf. A Design Framework for Internet-
Scale Event Observation and Notification. InProc. of the Sixth
European Software Engineering Conf., pages 344–360. Springer–
Verlag, 1997.

[17] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller,
B. Mukherjee, D. Sturman, and M. Ward. Gryphon: An Infor-
mation Flow Based Approach to Message Brokering. InProc. of
Int. Symposium on Software Reliability Engineering ’98, 1998.

[18] Sun Microsystems.Java Message Service Specification 1.1, 2002.
[19] S. Tai and I. Rovellou. Strategies for Integrating Messaging and

Distributed Object Transactions. InProc. of Middleware 2000,
volume 1795, pages 308–330. Springer-Verlag LNCS, 2000.

[20] S. Tai, A. Totok, T. Mikalsen, and I. Rouvellou. Dependency-
Spheres: A Global Transaction Context for Distributed Objects
and Messages. InProc. of the 5th Int. Enterprise Distributed Ob-
ject Computing Conf., pages 105–115. IEEE Press, 2001.

[21] X/Open.Distributed Transaction Processing Ref. 3, 1996.


