
Encryption-Enforced Access Control in Dynamic
Multi-Domain Publish/Subscribe Networks

Lauri I.W. Pesonen
University of Cambridge,

Computer Laboratory
JJ Thomson Avenue,

Cambridge, CB3 0FD, UK
{first.last}@cl.cam.ac.uk

David M. Eyers
University of Cambridge,

Computer Laboratory
JJ Thomson Avenue,

Cambridge, CB3 0FD, UK
{first.last}@cl.cam.ac.uk

Jean Bacon
University of Cambridge,

Computer Laboratory
JJ Thomson Avenue,

Cambridge, CB3 0FD, UK
{first.last}@cl.cam.ac.uk

ABSTRACT
Publish/subscribe systems provide an efficient, event-based,
wide-area distributed communications infrastructure. Large
scale publish/subscribe systems are likely to employ compo-
nents of the event transport network owned by cooperating,
but independent organisations. As the number of partici-
pants in the network increases, security becomes an increas-
ing concern. This paper extends previous work to present
and evaluate a secure multi-domain publish/subscribe in-
frastructure that supports and enforces fine-grained access
control over the individual attributes of event types. Key
refresh allows us to ensure forward and backward security
when event brokers join and leave the network. We demon-
strate that the time and space overheads can be minimised
by careful consideration of encryption techniques, and by
the use of caching to decrease unnecessary decryptions. We
show that our approach has a smaller overall communica-
tion overhead than existing approaches for achieving the
same degree of control over security in publish/subscribe
networks.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems—Distributed applications

General Terms
Security, Performance

Keywords
Secure publish/subscribe systems, distributed access con-
trol, administrative domains, attribute encryption

1. INTRODUCTION
Publish/subscribe is well suited as a communication mecha-
nism for building Internet-scale distributed event-driven ap-
plications. Much of its capacity for scale in the number

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’07, June 20-22, 2007 Toronto, Ontario, Canada
Copyright 2007 ACM 978-1-59593-665-3/07/03... $5.00

of participants comes from its decoupling of publishers and
subscribers by placing an asynchronous event delivery ser-
vice between them. In truly Internet-scale publish/subscribe
systems, the event delivery service will include a large set
of interconnected broker nodes spanning a wide geographic
(and thus network) area.

However, publish/subscribe systems that do span a wide ge-
ographic area are likely to also span multiple administrative
domains, be they independent administrative domains inside
a single organisation, multiple independent organisations, or
a combination of the two.

While the communication capabilities of publish/subscribe
systems are well proved, spanning multiple administrative
domains is likely to require addressing security considera-
tions. As security and access control are almost the antithe-
sis of decoupling, relatively little publish/subscribe research
has focused on security so far.

Our overall research aim is to develop Internet-scale pub-
lish/subscribe networks that provide secure, efficient deliv-
ery of events, fault-tolerance and self-healing in the delivery
infrastructure, and a convenient event interface.

In [12] Pesonen et al. propose a multi-domain, capability-
based access control architecture for publish/subscribe sys-
tems. The architecture provides a mechanism for authoris-
ing event clients to publish and subscribe to event types.
The privileges of the client are checked by the local broker
that the client connects to in order to access the publish/
subscribe system. The approach implements access control
at the edge of the broker network and assumes that all bro-
kers can be trusted to enforce the access control policies cor-
rectly. Any malicious, compromised or unauthorised broker
is free to read and write any events that pass through it
on their way from the publishers to the subscribers. This
might be acceptable in a relatively small system deployed
inside a single organisation, but it is not appropriate in a
multi-domain environment in which organisations share a
common infrastructure.

We propose enforcing access control within the broker net-
work by encrypting event content, and that policy dictate
controls over the necessary encryption keys. With encrypted
event content only those brokers that are authorised to ac-

cess the encryption keys are able to access the event content
(i.e. publish, subscribe to, or filter). We effectively move
the enforcement of access control from the brokers to the
encryption key managers.

We expect that access control would need to be enforced
in a multi-domain publish/subscribe system when multi-
ple organisations form a shared publish/subscribe system
yet run multiple independent applications. Access control
might also be needed when a single organisation consists
of multiple sub-domains that deliver confidential data over
the organisation-wide publish/subscribe system. Both cases
require access control because event delivery in a dynamic
publish/subscribe infrastructure based on a shared broker
network may well lead to events being routed through unau-
thorised domains along their paths from publishers to sub-
scribers.

There are two particular benefits to sharing the publish/
subscribe infrastructure, both of which relate to the bro-
ker network. First, sharing brokers will create a physically
larger network that will provide greater geographic reach.
Second, increasing the inter-connectivity of brokers will al-
low the publish/subscribe system to provide higher fault-
tolerance.

Figure 1 shows the multi-domain publish/subscribe network
we use as an example throughout this paper. It is based
on the United Kingdom Police Forces, and we show three
particular sub-domains:

Metropolitan Police Domain. This domain contains a
set of CCTV cameras that publish information about
the movements of vehicles around the London area.
We have included Detective Smith as a subscriber in
this domain.

Congestion Charge Service Domain. The charges that
are levied on the vehicles that have passed through the
London Congestion Charge zone each day are issued
by systems within this domain. The source number-
plate recognition data comes from the cameras in the
Metropolitan Police Domain. The fact that the CCS
are only authorised to read a subset of the vehicle event
data will exercise some of the key features of the en-
forceable publish/subscribe system access control pre-
sented in this paper.

PITO Domain. The Police Information Technology Or-
ganisation (PITO) is the centre from which Police data
standards are managed. It is the event type owner in
this particular scenario.

Encryption protects the confidentiality of events should they
be transported through unauthorised domains. However en-
crypting whole events means unauthorised brokers cannot
make efficient routing decisions.

Our approach is to apply encryption to the individual at-
tributes of events. This way our multi-domain access con-
trol policy works at a finer granularity – publishers and sub-
scribers may be authorised access to a subset of the available

attributes. In cases where non-encrypted events are used
for routing, we can reduce the total number of events sent
through the system without revealing the values of sensitive
attributes.

In our example scenario, the Congestion Charge Service
would only be authorised to read the numberplate field of
vehicle sightings – the location attribute would not be de-
crypted. We thus preserve the privacy of motorists while
still allowing the CCS to do its job using the shared pub-
lish/subscribe infrastructure.

Let us assume that a Metropolitan Police Service detective
is investigating a crime and she is interested in sightings
of a specific vehicle. The detective gets a court order that
authorises her to subscribe to numberplate events of the
specific numberplate related to her case.

Current publish/subscribe access control systems enforce se-
curity at the edge of the broker network where clients con-
nect to it. However this approach will often not be accept-
able in Internet-scale systems. We propose enforcing secu-
rity within the broker network as well as at the edges that
event clients connect to, by encrypting event content. Pub-
lications will be encrypted with their event type specific en-
cryption keys. By controlling access to the encryption keys,
we can control access to the event types. The proposed ap-
proach allows event brokers to route events even when they
have access only to a subset of the potential encryption keys.

We introduce decentralised publish/subscribe systems and
relevant cryptography in Section 2. In Section 3 we present
our model for encrypting event content on both the event
and the attribute level. Section 4 discusses managing en-
cryption keys in multi-domain publish/subscribe systems.
We analytically evaluate the performance of our proposal
in Section 5. Finally Section 6 discusses related work in
securing publish/subscribe systems and Section 7 provides
concluding remarks.

2. BACKGROUND
In this section we provide a brief introduction to decen-
tralised publish/subscribe systems. We indicate our assump-
tions about multi-domain publish/subscribe systems, and
describe how these assumptions influence the developments
we have made from our previously published work.

2.1 Decentralised Publish/Subscribe Systems
A publish/subscribe system includes publishers, subscribers,
and an event service. Publishers publish events, subscribers
subscribe to events of interest to them, and the event ser-
vice is responsible for delivering published events to all sub-
scribers whose interests match the given event.

The event service in a decentralised publish/subscribe sys-
tem is distributed over a number of broker nodes. Together
these brokers form a network that is responsible for main-
taining the necessary routing paths from publishers to sub-
scribers. Clients (publishers and subscribers) connect to a
local broker, which is fully trusted by the client. In our dis-
cussion we refer to the client hosting brokers as publisher
hosting brokers (PHB) or subscriber hosting brokers (SHB)
depending on whether the connected client is a publisher or

IB

SHB

Sub

Pub

Pub

Sub
Sub

IB

PHB

IB

IB

PHB

IB

IB

IB

IB
SHB

SHB

IBIB

IB

IB

IB

IB

IB
IBIB

IB
TO

IB

IB
IB

Metropolitan Police
Domain

Congestion Charge
Service Domain

PITO Domain

Detective
Smith

Camera 1

Camera 2

Billing
Office Statistics

Office

Sub Subscriber SHB Subscriber
Hosting Broker

Pub Publisher PHB Publisher
Hosting Broker

TO Type Owner IB Intermediate
Broker

KEY

Figure 1: An overall view of our multi-domain publish/subscribe deployment

a subscriber, respectively. A local broker is usually either
part of the same domain as the client, or it is owned by a
service provider trusted by the client.

A broker network can have a static topology (e.g. Siena [3]
and Gryphon [14]) or a dynamic topology (e.g. Scribe [4]
and Hermes [13]). Our proposed approach will work in both
cases. A static topology enables the system administrator
to build trusted domains and in that way improve the effi-
ciency of routing by avoiding unnecessary encryptions (see
Sect. 3.4), which is very difficult with a dynamic topology.
On the other hand, a dynamic topology allows the broker
network to dynamically re-balance itself when brokers join
or leave the network either in a controlled fashion or as a
result of a network or node failure.

Our work is based on the Hermes system. Hermes is a
content-based publish/subscribe middleware that includes
strong event type support. In other words, each publication
is an instance of a particular predefined event type. Publica-
tions are type checked at the local broker of each publisher.
Our attribute level encryption scheme assumes that events
are typed. Hermes uses a structured overlay network as a
transport and therefore has a dynamic topology.

A Hermes publication consists of an event type identifier
and a set of attribute value pairs. The type identifier is the
SHA-1 hash of the name of the event type. It is used to
route the publication through the event broker network. It
conveniently hides the type of the publication, i.e. brokers
are prevented from seeing which events are flowing through

them unless they are aware of the specific event type name
and identifier.

2.2 Secure Event Types
Pesonen et al. introduced secure event types in [11], which
can have their integrity and authenticity confirmed by check-
ing their digital signatures. A useful side effect of secure
event types are their globally unique event type and at-
tribute names. These names can be referred to by access
control policies. In this paper we use the secure name of the
event type or attribute to refer to the encryption key used
to encrypt the event or attribute.

2.3 Capability-Based Access Control
Pesonen et al. proposed a capability-based access control
architecture for multi-domain publish/subscribe systems in
[12]. The model treats event types as resources that pub-
lishers, subscribers, and event brokers want to access. The
event type owner is responsible for managing access control
for an event type by issuing Simple Public Key Infrastruc-
ture (SPKI) authorisation certificates that grant the holder
access to the specified event type. For example, authorised
publishers will have been issued an authorisation certificate
that specifies that the publisher, identified by public key, is
authorised to publish instances of the event type specified
in the certificate.

We leverage the above mentioned access control mechanism
in this paper by controlling access to encryption keys using
the same authorisation certificates. That is, a publisher who
is authorised to publish a given event type, is also authorised

to access the encryption keys used to protect events of that
type. We discuss this in more detail in Sect. 4.

2.4 Threat model
The goal of the proposed mechanism is to enforce access
control for authorised participants in the system. In our
case the first level of access control is applied when the par-
ticipant tries to join the publish/subscribe network. Unau-
thorised event brokers are not allowed to join the broker
network. Similarly unauthorised event clients are not al-
lowed to connect to an event broker. All the connections in
the broker network between event brokers and event clients
utilise Transport Layer Security (TLS) [5] in order to pre-
vent unauthorised access on the transport layer.

The architecture of the publish/subscribe system means that
event clients must connect to event brokers in order to be
able to access the publish/subscribe system. Thus we as-
sume that these clients are not a threat. The event client
relies completely on the local event broker for access to the
broker network. Therefore the event client is unable to ac-
cess any events without the assistance of the local broker.

The brokers on the other hand are able to analyse all events
in the system that pass through them. A broker can anal-
yse both the event traffic as well as the number and names
of attributes that are populated in an event (in the case of
attribute level encryption). There are viable approaches to
preventing traffic analysis by inserting random events into
the event stream in order to produce a uniform traffic pat-
tern. Similarly attribute content can be padded to a stan-
dard length in order to avoid leaking information to the
adversary.

While traffic analysis is an important concern we have not
addressed it further in this paper.

3. ENCRYPTING EVENT CONTENT
We propose enforcing access control in a decentralised broker
network by encrypting the contents of published events and
controlling access to the encryption keys. Effectively we
move the responsibility for access control from the broker
network to the key managers.

It is assumed that all clients have access to a broker that
they can trust and that is authorised to access the event con-
tent required by the client. This allows us to implement the
event content encryption within the broker network without
involving the clients. By delegating the encryption tasks
to the brokers, we lower the number of nodes required to
have access to a given encryption key1. The benefits are
three-fold: i) fewer nodes handle the confidential encryption
key so there is a smaller chance of the key being disclosed;
ii) key refreshes involve fewer nodes which means that the
key management algorithm will incur smaller communica-
tion and processing overheads to the publish/subscribe sys-
tem; and iii) the local broker will decrypt an event once
and deliver it to all subscribers, instead of each subscriber

1The encryption keys are changed over time in response to
brokers joining or leaving the network, and periodically to
reduce the amount of time any single key is used. This is
discussed in Sect. 4.2

having to decrypt the same event. Delegating encryption
tasks to the local broker is appropriate, because encryption
is a middleware feature used to enforce access control within
the middleware system. If applications need to handle en-
crypted data in the application layer, they are free to publish
encrypted data over the publish/subscribe system.

We can implement encryption either at the event level or
the attribute level. Event encryption is simpler, requires
fewer keys, fewer independent cryptographic operations, and
thus is usually faster. Attribute encryption enables access
control at the attribute level, which means that we have
a more expressive and powerful access control mechanism,
while usually incurring a larger performance penalty.

In this section we discuss encrypting event content both at
the event level and the attribute level; avoiding leaking in-
formation to unauthorised brokers by encrypting subscrip-
tion filters; avoiding unnecessary encryptions between au-
thorised brokers; and finally, how event content encryption
was implemented in our prototype. Note that since no pub-
lish/subscribe client is ever given access to encryption keys,
any encryption performed by the brokers is necessarily com-
pletely transparent to all clients.

3.1 Event Encryption
In event encryption all the event attributes are encrypted as
a single block of plaintext. The event type identifier is left
intact (i.e. in plaintext) in order to facilitate event routing
in the broker network.

The globally unique event type identifier specifies the en-
cryption key used to encrypt the event content. Each event
type in the system will have its own individual encryption
key. Keys are refreshed, as discussed in Sect. 4.2.

While in transit the event will consist of a tuple contain-
ing the type identifier, a publication timestamp, ciphertext,
and a message authentication tag: <type id, timestamp,

cipher text, authentication tag>.

Event brokers that are authorised to access the event, and
thus have access to the encryption key, can decrypt the event
and implement content-based routing. Event brokers that
do not have access to the encryption key will be forced to
route the event based only on its type. That is, they will not
be able to make intelligent decisions about whether events
need not be transmitted down their outgoing links.

Event encryption results in one encryption at the publisher
hosting broker, and one decryption at each filtering inter-
mediate broker and subscriber hosting broker that the event
passes through, regardless of the number of attributes. This
results in a significant performance advantage compared to
attribute encryption.

3.2 Attribute Encryption
In attribute encryption each attribute value in an event is en-
crypted separately with its own encryption key. The encryp-
tion key is identified by the attribute’s globally unique iden-
tifier (the globally unique event identifier defines a names-
pace inside which the attribute identifier is a fully qualified
name).

The event type identifier is left intact to facilitate event rout-
ing for unauthorised brokers. The attribute identifiers are
also left intact to allow authorised brokers to decrypt the
attribute values with the correct keys. Brokers that are au-
thorised to access some of the attributes in an event, can
implement content-based routing over the attributes that
are accessible to them.

An attribute encrypted event in transit consists of the event
type identifier, a publication timestamp, and a set of at-
tribute tuples: <type id, timestamp, attributes >. At-
tribute tuples consist of an attribute identifier, ciphertext,
and a message authentication tag: <attr id, ciphertext,

authentication tag>. The attribute identifier is the SHA-1
hash of the attribute name used in the event type definition.
Using the attribute identifier in the published event instead
of the attribute name prevents unauthorised parties from
learning which attributes are included in the publication.

Compared with event encryption, attribute encryption usu-
ally results in larger processing overheads, because each at-
tribute is encrypted separately. In the encryption process
the initialisation of the encryption algorithm takes a sig-
nificant portion of the total running time of the algorithm.
Once the algorithm is initialised, increasing the amount of
data to be encrypted does not affect the running time very
much. This disparity is emphasised in attribute encryp-
tion, where an encryption algorithm must be initialised for
each attribute separately, and the amount of data encrypted
is relatively small. As a result attribute encryption incurs
larger processing overheads when compared with event en-
cryption which can be clearly seen from the performance
results in Sect. 5.

The advantage of attribute encryption is that the type owner
is able to control access to the event type at the attribute
level. The event type owner can therefore allow clients to
have different levels of access to the same event type. Also,
attribute level encryption enables content-based routing in
cases where an intermediate broker has access only to some
of the attributes of the event, thus reducing the overall im-
pact of event delivery on the broker network. Therefore the
choice between event and attribute encryption is a trade-off
between expressiveness and performance, and depends on
the requirements of the distributed application.

The expressiveness provided by attribute encryption can be
emulated by introducing a new event type for each group
of subscribers with the same authorisation. The publisher
would then publish an instance of each of these types in-
stead of publishing just a combined event. For example, in
our London police network, the congestion control cameras
would have to publish one event for the CCS and another for
the detective. This approach could become difficult to man-
age if the attributes have a variety of security properties,
since a large number of event types would be required and
policies and subscriptions may change dynamically. This
approach creates a large number of extra events that must
be routed through the network, as is shown in Sect. 5.3.

3.3 Encrypting Subscriptions
In order to fully protect the confidentiality of event content
we must also encrypt subscriptions. Encrypted subscrip-

tions guarantee: i) that only authorised brokers are able
to submit subscriptions to the broker network, and ii) that
unauthorised brokers do not gain information about event
content by monitoring which subscriptions a given event
matches. For example, in the first case an unauthorised
broker can create subscriptions with appropriately chosen
filters, route them towards the root of the event dissemina-
tion tree, and monitor which events were delivered to it as
matching the subscription. The fact that the event matched
the subscription would leak information to the broker about
the event content even if the event was still encrypted. In
the second case, even if an unauthorised broker was unable
to create subscriptions itself, it could still look at subscrip-
tions that were routed through it, take note of the filters on
those subscriptions, and monitor which events are delivered
to it by upstream brokers as matching the subscription fil-
ters. This would again reveal information about the event
content to the unauthorised broker.

In the case of encrypting complete events, we also encrypt
the complete subscription filter. The event type identifier in
the subscription must be left intact to allow brokers to route
events based on their topic when they are not authorised to
access the filter. In such cases the unauthorised broker is
required to assume that events of such a type match all
filter expressions.

Each attribute filter is encrypted individually, much as when
encrypting a publication. In addition to the event type iden-
tifier the attribute identifiers are also left intact to allow
authorised brokers to decrypt those filters that they have
access to, and route the event based on its matching the
decrypted filters.

3.4 Avoiding Unnecessary Cryptographic Op-
erations

Encrypting the event content is not necessary if the current
broker and the next broker down the event dissemination
tree have the same credentials with respect to the event
type at hand. For example, one can assume that all bro-
kers inside an organisation would share the same credentials
and therefore, as long as the next broker is a member of
the same domain, the event can be routed to it in plaintext.
With attribute encryption it is possible that the neighbour-
ing broker is authorised to access a subset of the decrypted
attributes, in which case those attributes that the broker is
not authorised to access would be passed to it encrypted.

In order to know when it is safe to pass the event in plaintext
form, the brokers exchange credentials as part of a hand-
shake when they connect to each other. In cases when the
brokers are able to verify each others’ credentials, they will
add them to the routing table for future reference. If a bro-
ker acquires new credentials after the initial handshake, it
will present these new credentials to its neighbours while in
session.

Regardless of its neighbouring brokers, the PHB will always
encrypt the event content, because it is cheaper to encrypt
the event once at the root of the event dissemination tree.
In Hermes the rendezvous node for each event type is se-
lected uniformly randomly (the event type name is hashed
with the SHA-1 hash algorithm to produce the event type

PHB

IBIB

IB SHB

RN IB

SHB

Figure 2: Node addressing is evenly distributed
across the network, thus rendezvous nodes may lie
outside the domain that owns an event type

IB IB SHBPHBP S

Encrypts Filters from
cache

Decrypts,
delivers

Decrypts,
filters

Plaintext
Cached Plaintext (most data)
Cached Plaintext (some data)
Different domains

Cyphertext

KEY

Figure 3: Caching decrypted data to increase effi-
ciency when delivering to peers with equivalent se-
curity privileges

identifier, then the identifier is used to select the rendezvous
node in the structured overlay network). Therefore it is
probable that the rendezvous node will reside outside the
current domain. This situation is illustrated in the event
dissemination tree in Fig. 2. So even with domain internal
applications, where the event can be routed from the pub-
lisher to all subscribers in plaintext form, the event content
will in most cases have to be encrypted for it to be routed
to the rendezvous node.

To avoid unnecessary decryptions, we attach a plaintext con-
tent cache to encrypted events. A broker fills the cache with
content that it has decrypted, for example, in order to filter
on the content. The cache is accessed by the broker when
it delivers an event to a local subscriber after first seeing if
the event matches the subscription filter, but the broker also
sends the cache to the next broker with the encrypted event.
The next broker can look the attribute up from the cache
instead of having to decrypt it. If the event is being sent to
an unauthorised broker, the cache will be discarded before
the event is sent. Obviously sending the cache with the en-
crypted event will add to the communication cost, but this is
outweighed by the saving in encryption/decryption process-
ing. In Fig. 3 we see two separate cached plaintext streams
accompanying an event depending on the inter-broker rela-
tionships in two different domains.

We show in Sect. 5.2 that the overhead of sending encrypted

messages with a full plaintext cache incurs almost no over-
head compared to sending plaintext messages.

3.5 Implementation
In our implementation we have used the EAX mode [2] of op-
eration when encrypting events, attributes, and subscription
filters. EAX is a mode of operation for block ciphers, also
called an Authenticated Encryption with Associated Data
(AEAD) algorithm that provides simultaneously both data
confidentiality and integrity protection. The algorithm im-
plements a two-pass scheme where during the first pass the
plain text is encrypted, and on the second pass a message
authentication code (MAC) is generated for the encrypted
data.

The EAX mode is compatible with any block cipher. We
decided to use the Advanced Encryption Standard (AES) [9]
algorithm in our implementation, because of its standard
status and the fact that the algorithm has gone through
thorough cryptanalysis during its existence and no serious
vulnerabilities have been found thus far.

In addition to providing both confidentiality and integrity
protection, the EAX mode uses the underlying block cipher
in counter mode (CTR mode) [21]. A block cipher in counter
mode is used to produce a stream of key bits that are then
XORed with the plaintext. Effectively CTR mode trans-
forms a block cipher into a stream cipher. The advantage of
stream ciphers is that the ciphertext is the same length as
the plaintext, whereas with block ciphers the plaintext must
be padded to a multiple of the block cipher’s block length
(e.g. the AES block size is 128 bits). Avoiding padding is
very important in attribute encryption, because the padding
might increase the size of the attribute disproportionally.
For example, a single integer might be 32 bits in length,
which would be padded to 128 bits if we used a block ci-
pher. With event encryption the message expansion is not
that relevant, since the length of padding required to reach
the next 16 byte multiple will probably be a small propor-
tion of the overall plaintext length.

In encryption mode the EAX algorithm takes as input a
nonce (a number used once), an encryption key and the
plaintext, and it returns the ciphertext and an authentica-
tion tag. In decryption mode the algorithm takes as input
the encryption key, the ciphertext and the authentication
tag, and it returns either the plaintext, or an error if the
authentication check failed.

The nonce is expanded to the block length of the underly-
ing block cipher by passing it through an OMAC construct
(see [7]). It is important that particular nonce values are
not reused, otherwise the block cipher in CTR mode would
produce an identical key stream. In our implementation we
used the PHB defined event timestamp (64-bit value count-
ing the milliseconds since January 1, 1970 UTC) appended
by the PHB’s identity (i.e. public key) as the nonce. The
broker is responsible for ensuring that the timestamps in-
crease monotonically.

The authentication tag is appended to the produced cipher
text to create a two-tuple. With event encryption a sin-
gle tag is created for the encrypted event. With attribute

encryption each attribute is encrypted and authenticated
separately, and they all have their individual tags. The tag
length is configurable in EAX without restrictions, which
allows the user to make a trade-off between the authen-
ticity guarantees provided by EAX and the added com-
munication overhead. We used a tag length of 16 bytes
in our implementation, but one could make the tag length
a publisher/subscriber defined parameter for each publica-
tion/subscription or include it in the event type definition
to make it a type specific parameter.

EAX also supports including unencrypted associated data in
the tag calculation. The integrity of this data is protected,
but it is still readable by everyone. This feature could be
used with event encryption in cases where some of the event
content is public and thus would be useful for content-based
routing. The integrity of the data would still be protected
against changes, but unauthorised brokers would be able to
apply filters. We have included the event type identifier as
associated data in order to protect its integrity.

Other AEAD algorithms include the offset codebook mode
(OCB) [17] and the counter with CBC-MAC mode (CCM)
[22]. Contrarily to the EAX mode the OCB mode requires
only one pass over the plaintext, which makes it roughly
twice as fast as EAX. Unfortunately the OCB mode has a
patent application in place in the USA, which restricts its
use. The CCM mode is the predecessor of the EAX mode.
It was developed in order to provide a free alternative to
OCB. The EAX was developed later to address some issues
with CCM [18]. Similarly to EAX, CCM is also a two-pass
mode.

4. KEY MANAGEMENT
In both encryption approaches the encrypted event content
has a globally unique identifier (i.e. the event type or the
attribute identifier). That identifier is used to determine
the encryption key to use when encrypting or decrypting
the content. Each event type, in event encryption, and at-
tribute, in attribute encryption, has its own individual en-
cryption key. By controlling access to the encryption key we
effectively control access to the encrypted event content.

In order to control access to the encryption keys we form a
key group of brokers for each individual encryption key. The
key group is used to refresh the key when necessary and to
deliver the new key to all current members of the key group.
The key group manager is responsible for verifying that a
new member requesting to join the key group is authorised
to do so. Therefore the key group manager must be trusted
by the type owner to enforce the access control policy. We
assume that the key group manager is either a trusted third
party or alternatively a member of the type owner’s domain.

In [12] Pesonen et al. proposed a capability-based access
control architecture for multi-domain publish/subscribe sys-
tems. The approach uses capabilities to decentralise the
access control policy amongst the publish/subscribe nodes
(i.e. clients and brokers): each node holds a set of capabil-
ities that define the authority granted to that node. Au-
thority to access a given event type is granted by the owner
of that type issuing a capability to a node. The capability
defines the event type, the action, and the attributes that

Type Owner

ACS

Broker

Key Manager

1. Grant authorisation
for “Number Plate” key

2. Broker requests to
join “Number Plate”
key group

5. If the broker satisfies
all checks, they will begin
receiving appropriate keys.

3. Key manager may check
broker’s credentials at the
Access Control Service

4. Key manager may
check that the Type
Owner permits access

Figure 4: The steps involved for a broker to be suc-
cessful in joining a key group

the node is authorised to access. For example, a tuple <NP,

subscribe, *> would authorise the owner to subscribe to
Numberplate events with access to all attributes in the pub-
lished events. The sequence of events required for a broker
to successfully join a key group is shown in Fig. 4.

Both the client hosting broker and the client must be au-
thorised to make the client’s request. That is, if the client
makes a subscription request for Numberplate events, both
the client and the local broker must be authorised to sub-
scribe to Numberplate events. This is because from the per-
spective of the broker network, the local broker acts as a
proxy for the client.

We use the same capabilities to authorise membership in a
key group that are used to authorise publish/subscribe re-
quests. Not doing so could lead to the inconsistent situation
where a SHB is authorised to make a subscription on behalf
of its clients, but is not able to decrypt incoming event con-
tent for them. In the Numberplate example above, the local
broker holding the above capability is authorised to join the
Numberplate key group as well as the key groups for all the
attributes in the Numberplate event type.

4.1 Secure Group Communication
Event content encryption in a decentralised multi-domain
publish/subscribe system can be seen as a sub-category of
secure group communication. In both cases the key man-
agement system must scale well with the number of clients,
clients might be spread over large geographic areas, there
might be high rates of churn in group membership, and all
members must be synchronised with each other in time in
order to use the same encryption key at the same time.

There are a number of scalable key management protocols
for secure group communication [15]. We have implemented
the One-Way Function Tree (OFT) [8] protocol as a proof
of concept. We chose to implement OFT, because of its
relatively simplicity and good performance. Our implemen-
tation uses the same structured overlay network used by the
broker network as a transport. The OFT protocol is based
on a binary tree where the participants are at the leaves of
the tree. It scales in log2n in processing and communica-
tion costs, as well as in the size of the state stored at each
participant, which we have verified in our simulations.

4.2 Key Refreshing
Traditionally in group key management schemes the encryp-
tion key is refreshed when a new member joins the group, an

existing member leaves the group, or a timer expires. Re-
freshing the key when a new member joins provides back-
ward secrecy, i.e. the new member is prevented from ac-
cessing old messages. Similarly refreshing the key when an
existing member leaves provides forward secrecy, i.e. the old
member is prevented from accessing future messages. Timer
triggered refreshes are issued periodically in order to limit
the damage caused by the current key being compromised.

Even though the state-of-the-art key management protocols
are efficient, refreshing the key unnecessarily introduces ex-
tra traffic and processing amongst the key group members.
In our case key group membership is based on the broker
holding a capability that authorises it to join the key group.
The capability has a set of validity conditions that in their
simplest form define a time period when the certificate is
valid, and in more complex cases involve on-line checks back
towards the issuer. In order to avoid unnecessary key re-
freshes the key manager looks at the certificate validity con-
ditions of the joining or leaving member. In case of a joining
member, if the manager can ascertain that the certificate
was valid at the time of the previous key refresh, a new
key refresh can be avoided. Similarly, instead of refreshing
the key immediately when a member leaves the key group,
the key manager can cache their credentials and refresh the
key only when the credentials expire. These situations are
both illustrated in Fig.5. It can be assumed that the cre-
dentials granted to brokers are relatively static, i.e. once a
domain is authorised to access an event type, the authority
will be delegated to all brokers of that domain, and they
will have the authority for the foreseeable future. More fine
grained and dynamic access control would be implemented
at the edge of the broker network between the clients and
the client hosting brokers.

When an encryption key is refreshed the new key is tagged
with a timestamp. The encryption key to use for a given
event is selected based on the event’s publication timestamp.
The old keys will be kept for a reasonable amount of time
in order to allow for some clock drift. Setting this value is
part of the key management protocol, although exactly how
long this time should be will depend on the nature of the
application and possibly the size of the network. It can be
configured independently per key group if necessary.

5. EVALUATION
In order to evaluate the performance of event content en-
cryption we have implemented both encryption approaches
running over our implementation of the Hermes publish/
subscribe middleware. The implementation supports three
modes: plaintext content, event encryption, and attribute
encryption, in a single publish/subscribe system.

We ran three performance tests in a discrete event simulator.
The simulator was run on an Intel P4 3.2GHz workstation
with 1GB of main memory. We decided to run the tests on
an event simulator instead of an actual deployed system in
order to be able to measure to aggregate time it takes to
handle all messages in the system.

The following sections describe the specific test setups and
the results in more detail.

5.1 End-to-End Overhead
The end-to-end overhead test shows how much the overall
message throughput of the simulator was affected by event
content encryption. We formed a broker network with two
brokers, attached a publisher to one of them and a sub-
scriber to the other one. The subscriber subscribed to the
advertised event type without any filters, i.e. each publi-
cation matched the subscriber’s publication and thus was
delivered to the subscriber. The test measures the com-
bined time it takes to publish and deliver 100,000 events. If
the content is encrypted this includes both encrypting the
content at the PHB and decrypting it at the SHB.

In the test the number of attributes in the event type is
increased from 1 to 25 (the x-axis). Each attribute is set
to a 30 character string. For each number of attributes in
the event type the publisher publishes 100,000 events, and
the elapsed time is measured to derive the message through-
put. The test was repeated five times for each number of
attributes and we use the average of all iterations in the
graph, but the results were highly consistent so the stan-
dard deviation is not shown. The same tests were run with
no content encryption, event encryption, and attribute en-
cryption.

As can be seen in Fig. 6, event content encryption introduces
a large overhead compared to not using encryption. The
throughput when using attribute encryption with an event
type with one attribute is 46% of the throughput achieved
when events are sent in plaintext. When the number of
attributes increases the performance gap increases as well:
with ten attributes the performance with attribute encryp-
tion has decreased to 11.7% of plaintext performance.

Event encryption fares better, because of fewer encryption
operations. The increase in the amount of encrypted data
does not affect the performance as much as the number of
individual encryption operations does. The difference in
performance with event encryption and attribute encryp-
tion with only one attribute is caused by the Java object
serialisation mechanism: in the event encryption case the
whole attribute structure is serialised, which results in more
objects than serialising a single attribute value. A more ef-
ficient implementation would provide its own marshalling
mechanism.

Note that the EAX implementation we use runs the nonce
(i.e. initialisation vector) through an OMAC construct to
increase its randomness. Since the nonce is not required to
be kept secret (just unique), there is a potential time/space
trade-off we have not yet investigated in attaching extra
nonce attributes that have already had this OMAC con-
struct applied to them.

5.2 Domain Internal Events
We explained in Sect. 3.4 that event content decryption and
encryption can be avoided if both brokers are authorised to
access the event content. This test was designed to show
that the use of the encrypted event content mechanism be-
tween two authorised brokers incurs only a small perfor-
mance overhead.

In this test we again form a broker network with two brokers.

Key refresh schedule

Broker 1 joining and
leaving the key group

Broker 2 joining and
leaving the key group

Actual key refresh times

Time

One day

Broker’s key group
credentials are valid

Actual join time Actual leave time

One day One day

Figure 5: How the key refresh schedule is affected by brokers joining and leaving key groups

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5 10 15 20 25

M
es

sa
ge

s
pe

r S
ec

on
d

Number of Attributes

No Encryption
Attribute Encryption

Whole-content Encryption

Figure 6: Throughput of Events in a Simulator

Both brokers are configured with the same credentials. The
publisher is attached to one of the brokers and the subscriber
to the other, and again the subscriber does not specify any
filters in its subscription.

The publisher publishes 100,000 events and the test mea-
sures the elapsed time in order to derive the system’s mes-
sage throughput. The event content is encrypted outside the
timing measurement, i.e. the encryption cost is not included
in the measurements. The goal is to model an environment
where a broker has received a message from another autho-
rised broker, and it routes the event to a third authorised
broker. In this scenario the middle broker does not need to
decrypt nor encrypt the event content.

As shown in Fig. 2, the elapsed time was measured as the
number of attributes in the published event was increased
from 1 to 25. The attribute values in each case are 30 char-

acter strings. Each test is repeated five times, and we use
the average of all iterations in the graph. The same test was
then repeated with no encryption, event encryption and at-
tribute encryption turned on.

The encrypted modes follow each other very closely. Pre-
dictably, the plaintext mode performs a little better for all
attribute counts. The difference can be explained partially
by the encrypted events being larger in size, because they
include both the plaintext and the encrypted content in this
test. The difference in performance is 3.7% with one at-
tribute and 2.5% with 25 attributes.

We believe that the roughness of the graphs can be explained
by the Java garbage collector interfering with the simulation.
The fact that all three graphs show the same irregularities
supports this theory.

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

 0 5 10 15 20 25

M
es

sa
ge

s
pe

r S
ec

on
d

Number of Attributes

No Encryption
Attribute Encryption

Whole-content Encryption

Figure 7: Throughput of Domain Internal Events

5.3 Communication Overhead
Through the definition of multiple event types, it is possible
to emulate the expressiveness of attribute encryption using
only event content encryption. The last test we ran was to
show the communication overhead caused by this emulation
technique, compared to using real attribute encryption.

In the test we form a broker network of 2000 brokers. We
attach one publisher to one of the brokers, and an increas-
ing number of subscribers to the remaining brokers. Each
subscriber simulates a group of subscribers that all have the
same access rights to the published event. Each subscriber
group has its own event type in the test.

The outcome of this test is shown in Fig. 8. The number
of subscriber groups is increased from 1 to 50 (the x-axis).
For each n subscriber groups the publisher publishes one
event to represent the use of attribute encryption and n

events representing the events for each subscriber group. We
count the number of hops each publication makes through
the broker network (y-axis).

Note that Fig. 8 shows workloads beyond what we would
expect in common usage, in which many event types are
likely to contain fewer than ten attributes. The subscriber
groups used in this test represent disjoint permission sets
over such event attributes. The number of these sets can be
determined from the particular access control policy in use,
but will be a value less than or equal to the factorial of the
number of attributes in a given event type.

The graphs indicate that attribute encryption performs bet-

ter than event encryption even for small numbers of sub-
scriber groups. Indeed, with only two subscriber groups
(e.g. the case with Numberplate events) the hop count in-
creases from 7.2 hops for attribute encryption to 16.6 hops
for event encryption. With 10 subscriber groups the corre-
sponding numbers are 24.2 and 251.0, i.e. an order of mag-
nitude difference.

6. RELATED WORK
Wang et al. have categorised the various security issues that
need to be addressed in publish/subscribe systems in the
future in [20]. The paper is a comprehensive overview of se-
curity issues in publish/subscribe systems and as such tries
to draw attention to the issues rather than providing solu-
tions.

Bacon et al. in [1] examine the use of role-based access con-
trol in multi-domain, distributed publish/subscribe systems.
Their work is complementary to this paper: distributed
RBAC is one potential policy formalism that might use the
enforcement mechanisms we have presented.

Opyrchal and Prakash address the problem of event confi-
dentiality at the last link between the subscriber and the
SHB in [10]. They correctly state that a secure group com-
munication approach is infeasible in an environment like
publish/subscribe that has highly dynamic group member-
ships. As a solution they propose a scheme utilising key
caching and subscriber grouping in order to minimise the
number of required encryptions when delivering a publica-
tion from a SHB to a set of matching subscribers. We as-
sume in our work that the SHB is powerful enough to man-

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40 45 50

Nu
m

be
r o

f H
op

s
in

 T
ot

al

Number of Subscription Groups

Attribute Encryption
Whole-content Encryption

Figure 8: Hop Counts When Emulating Attribute Encryption

age a TLS secured connection for each local subscriber.

Both Srivatsa et al. [19] and Raiciu et al. [16] present mech-
anisms for protecting the confidentiality of messages in de-
centralised publish/subscribe infrastructures. Compared to
our work both papers aim to provide the means for protect-
ing the integrity and confidentiality of messages whereas the
goal for our work is to enforce access control inside the bro-
ker network. Raiciu et al. assume in their work that none
of the brokers in the network are trusted and therefore all
events are encrypted from publisher to subscriber and that
all matching is based on encrypted events. In contrast, we
assume that some of the brokers on the path of a publica-
tion are trusted to access that publication and are therefore
able to implement event matching. We also assume that the
publisher and subscriber hosting brokers are always trusted
to access the publication. The contributions of Srivatsa et
al. and Raiciu et al. are complementary to the contributions
in this paper.

Finally, Fiege et al. address the related topic of event visi-
bility in [6]. While the work concentrated on using scopes as
mechanism for structuring large-scale event-based systems,
the notion of event visibility does resonate with access con-
trol to some extent.

7. CONCLUSIONS
Event content encryption can be used to enforce an access
control policy while events are in transit in the broker net-
work of a multi-domain publish/subscribe system. Encryp-
tion causes an overhead, but i) there may be no alterna-
tive when access control is required, and ii) the performance

penalty can be lessened with implementation optimisations,
such as passing cached plaintext content alongside encrypted
content between brokers with identical security credentials.
This is particularly appropriate if broker-to-broker connec-
tions are secured by default so that wire-sniffing is not an
issue.

Attribute level encryption can be implemented in order to
enforce fine-grained access control policies. In addition to
providing attribute-level access control, attribute encryption
enables partially authorised brokers to implement content-
based routing based on the attributes that are accessible to
them.

Our experiments show that i) by caching plaintext and ci-
phertext content when possible, we are able to deliver com-
parable performance to plaintext events, and ii) that at-
tribute encryption within an event incurs far less overhead
than defining separate event types for the attributes that
need different levels of protection.

In environments comprising multiple domains, where event-
brokers have different security credentials, we have quanti-
fied how a trade-off can be made between performance and
expressiveness.

Acknowledgements
We would like to thank the anonymous reviewers for their
very helpful comments. Lauri Pesonen is supported by EP-
SRC (GR/T28164) and the Nokia Foundation. David Eyers
is supported by EPSRC (GR/S94919).

8. REFERENCES
[1] J. Bacon, D. M. Eyers, K. Moody, and L. I. W.

Pesonen. Securing publish/subscribe for multi-domain
systems. In G. Alonso, editor, Middleware, volume
3790 of Lecture Notes in Computer Science, pages
1–20. Springer, 2005.

[2] M. Bellare, P. Rogaway, and D. Wagner. Eax: A
conventional authenticated-encryption mode.
Cryptology ePrint Archive, Report 2003/069, 2003.
http://eprint.iacr.org/.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf.
Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer
Systems, 19(3):332–383, Aug. 2001.

[4] M. Castro, P. Druschel, A. Kermarrec, and
A. Rowstron. SCRIBE: A large-scale and
decentralized application-level multicast
infrastructure. IEEE Journal on Selected Areas in
communications (JSAC), 20(8):1489–1499, Oct. 2002.

[5] T. Dierks and C. Allen. The TLS protocol, version
1.0. RFC 2246, Internet Engineering Task Force, Jan.
1999.

[6] L. Fiege, M. Mezini, G. M uhl, and A. P. Buchmann.
Engineering event-based systems with scopes. In
ECOOP ’02: Proceedings of the 16th European
Conference on Object-Oriented Programming, pages
309–333, London, UK, 2002. Springer-Verlag.

[7] T. Iwata and I. A. Iurosawa. OMAC: One-key CBC
MAC, Jan. 14 2002.

[8] D. A. McGrew and A. T. Sherman. Key establishment
in large dynamic groups using one-way function trees.
Technical Report 0755, TIS Labs at Network
Associates, Inc., Glenwood, MD, May 1998.

[9] National Institute of Standards and Technology
(NIST). Advanced Encryption Standard (AES).
Federal Information Processing Standards Publication
(FIPS PUB) 197, Nov. 2001.

[10] L. Opyrchal and A. Prakash. Secure distribution of
events in content-based publish subscribe systems. In
Proc. of the 10th USENIX Security Symposium.
USENIX, Aug. 2001.

[11] L. I. W. Pesonen and J. Bacon. Secure event types in
content-based, multi-domain publish/subscribe
systems. In SEM ’05: Proceedings of the 5th
international workshop on Software engineering and
middleware, pages 98–105, New York, NY, USA, Sept.
2005. ACM Press.

[12] L. I. W. Pesonen, D. M. Eyers, and J. Bacon. A
capabilities-based access control architecture for
multi-domain publish/subscribe systems. In
Proceedings of the Symposium on Applications and the
Internet (SAINT 2006), pages 222–228, Phoenix, AZ,
Jan. 2006. IEEE.

[13] P. R. Pietzuch and J. M. Bacon. Hermes: A
distributed event-based middleware architecture. In
Proc. of the 1st International Workshop on Distributed
Event-Based Systems (DEBS’02), pages 611–618,
Vienna, Austria, July 2002. IEEE.

[14] P. R. Pietzuch and S. Bhola. Congestion control in a
reliable scalable message-oriented middleware. In
M. Endler and D. Schmidt, editors, Proc. of the 4th
Int. Conf. on Middleware (Middleware ’03), pages
202–221, Rio de Janeiro, Brazil, June 2003. Springer.

[15] S. Rafaeli and D. Hutchison. A survey of key
management for secure group communication. ACM
Computing Surveys, 35(3):309–329, 2003.

[16] C. Raiciu and D. S. Rosenblum. Enabling
confidentiality in content-based publish/subscribe
infrastructures. In Securecomm ’06: Proceedings of the
Second IEEE/CreatNet International Conference on
Security and Privacy in Communication Networks,
2006.

[17] P. Rogaway, M. Bellare, J. Black, and T. Krovetz.
OCB: a block-cipher mode of operation for efficient
authenticated encryption. In ACM Conference on
Computer and Communications Security, pages
196–205, 2001.

[18] P. Rogaway and D. Wagner. A critique of CCM, Feb.
2003.

[19] M. Srivatsa and L. Liu. Securing publish-subscribe
overlay services with eventguard. In CCS ’05:
Proceedings of the 12th ACM conference on Computer
and communications security, pages 289–298, New
York, NY, USA, 2005. ACM Press.

[20] C. Wang, A. Carzaniga, D. Evans, and A. L. Wolf.
Security issues and requirements in internet-scale
publish-subscribe systems. In Proc. of the 35th Annual
Hawaii International Conference on System Sciences
(HICSS’02), Big Island, HI, USA, 2002. IEEE.

[21] D. Whitfield and M. Hellman. Privacy and
authentication: An introduction to cryptography. In
Proceedings of the IEEE, volume 67, pages 397–427,
1979.

[22] D. Whiting, R. Housley, and N. Ferguson. Counter
with CBC-MAC (CCM). RFC 3610, Internet
Engineering Task Force, Sept. 2003.

