
An Open Architecture for Secure Interworking Services

Richard Hayton Ken Moody

APM Ltd
Poseidon House

Castle Park
Cambridge, UK

CB3 ORD

TJniversity of Cambridge
Computer Laboratory

Pembroke Street
Cambridge, UK

CB2 3QG

Abstract 1 Introduction
There is a developing need for applications and dis-

tributed services to cooperate or inter-operate. Cur-
rent mechanisms can hide the heterogeneity of host op-
erating systems and abstract the issues of distribution
and object location. However, in order for systems to
inter-operate securely there must also be ways to hide
differences in security policies, or at least to support
negotiation between them.

In a widely distributed environment there will be
many different organisations. If users and services in
these organisations are to interwork, there must be
standard mechanisms for the specification and enforce-
men.t of access control policies.

Other proposals for the interworking of security
mechanisms have focussed on the enforcement of ac-
cess policy at the expense of flexibility of expression
of policy. This work describes a new architectural ap-
proach to security. The key idea is that a process is
the universal client entity; a process may act on be-
half of an identified individual as in traditional secu-
rity schemes. More generally, a process may adopt
an application-specific name or role, and this is used
as the basis for authentication in Oasis. A service
may then be written in terms of service-specific cate-
gories of clients, decoupled from the mechanisms used
to specify and enforce access control policy.

When a request is made of a service, that service
must decide on some basis whether to perform the re-
quest. The flexibility of an access control architecture
hinges on the amount of information available to the
service when making this decision; if no information
is provided then no useful distinction can be made
betvveen requests. Traditional approaches to security
are closed in the sense that the information available
is strictly limited and defined by a generic security
arch.itecture.

This approach allows great flexibility when integrat-
ing a number of services, and reduces the mismatch
of policies that is common in heterogeneous systems.
In addition, Oasis services may be integrated with al-
ternative authentication and access control schemes,
providing a truly open architecture.

Ideally, we should be able to develop applications
and services in terms of service-specific categories of
clients. For example a Meeting application could be
developed with client categories Chair, Speaker and
Member. The conditions under which a particular
user may assume one of these roles are a feature of
the environment in which the application is used, not
a feature of the application itself.

Such a scheme would provide a flexible mechanism
to allow the integration of separately developed ser-
vices,

A flexible security definition is meaningless if not
backed by a robust and eficient implementation. Oa-
sis has been fully implemented, and is inherently
distributed and scalable. In this paper we describe
the general approach then concentrate on revocation,
where security designs are most often criticised. Oasis
is unique in supporting the rapid and selective revoca-
tion of privileges which can cascade between services
and organisations.

Given such a scheme, care must be taken to control
the complexity. In traditional schemes access control
decisions are based on the identity of the user responsi-
ble for a request; typically, an access control list (ACL)
specifies which principals have what access. Although
inflexible, policy statements such as ACLs are easily
understood and easy to manage. If more general in-
formation is available it may change rapidly and the
circumstances in which a request may or may not be
granted can become unclear. It is therefore essential

O-8186-7813-5/97 $10.00 01997 IEEE 315

Proceedings of the 17th International Conference on Distributed Computing Systems (ICDCS '97)
1063-6927/97 $10.00 © 1997 IEEE

that policies can be expressed in a clear and unambigu-
ous way, so that contradictions and security loopholes
can be discovered.[3]

Oasis is an architecture for access control that al-
lows policies to be defined in terms of axioms in a
proof system. Processes apply these axioms to prove
their eligibility to enter a set of roles. Each service re-
stricts its operations to clients who have proved their
membership of an appropriate role. For example, a
process must prove that it represents a member of a
meeting before the Meeting application will allow it
to invoke the speak operation. These proofs are gen-
erated dynamically and may be invalidated rapidly if
their premises change.

Oasis is a distributed architecture. Policy is not
administered centrally and there is no global name
space for roles: any service may define new roles and
provide policy statements describing how the roles in-
teract with roles provided by other services. This is
significant in that it allows interworking between sep-
arate administrative domains which have limited trust
in each other.

Typically, each service will define one or more roles
and (implicit) access control policy will be defined
in terms of them. The conditions for entry to these
roles can then be defined later by an administrator.
The scheme trivially subsumes the traditional identity
based schemes which may be specified as “the client
process must represent a logged-on user on an ACL”

This paper is in two parts. In the first, we con-
sider how general access control policies may be repre-
sented, and how policy for one service may be defined
in terms of roles relating to another. In the second we
consider the implementation of this scheme, with par-
ticular attention to the implementation of rapid, selec-
tive revocation of role membership (and hence access
rights). A fuller description of the Oasis architecture
can be found in [4].

2 Related Work
The seminal work by Lampson [l] established the

ground rules for access control policy specification and
implementation mechanism. The formulation of ac-
cess control in terms of client naming has its roots in
existing role based access control architectures, such as
described in [2]. However these models use the term
role as a pseudonym for user, which is less general
than the approach presented here. In addition, exist-
ing models tend to rely on a single, per organisation
policy defining who untertakes each role, and what
the relationships between the roles are. We see roles
as much more widely applicable and flexible, being ca-
pable of independent definition by services inhabiting

multiple administrative domains in an open world.
For this style of use we need a model that supports

application specific roles, and that captures the re-
lationship between the roles defined by and used in
different contexts.

3 Policies and Proofs
Access control is about determining if a request

from a process is to be honoured. Requests do not
come directly from human users, although it may be
appropriate to express access control policy as if they
did. For example, consider a file /dots/Oasis .ps pro-
tected by the ACL

“ rjh2l(rw), staff(r) ”

If a process P representing a user tjml5 attempts to
read this file, then the file service will consult the ACL.
This is equivalent to attempting to prove

P may read /dots/Oasis .ps

given the statement

1 P represents tjm15

and the axioms
k x represents rjh21 + x may read /docs/Oasis.ps
I-- x represents rjh21 + x may write /docs/Oasis.ps
I- (z represents U) A (U in staff)

+ x may read /dots/Oasis .ps

In traditional approaches, proving the statement

l- P represents tjm15

is considered as authentication, and this is performed
by an authentication service. However there is no fun-
damental reason why we cannot have an ACL grant-
ing access to processes based on the machine they are
running on, the program being executed or the time of
day. All that is required is that a suitable statement
is available during the access check and that the file
service believes that the statement is valid[5]. This is
the basic mechanism used in Oasis. Client processes
obtain certified statements from services and use them
as credentials when accessing other services. To man-
age complexity, these statements are of a restricted
form and represent role memberships, as described in
the following section.

4 Role Membership Certificates
A role membership certificate is a certified state-

ment that a particular process may represent a par-
ticular role. For example

l Process P represents the user tjm15 within the
Computer Lab.

316

Proceedings of the 17th International Conference on Distributed Computing Systems (ICDCS '97)
1063-6927/97 $10.00 © 1997 IEEE

l Process Q represents a member of the meeting
within Meeting 1.23

l Process R represents a client who may read file
/dots/Oasis .ps in the CL filing system.

Each of these statements indicates that the process is
a member of a particular role. In the first example the
role is User(tjmlEi), in the second Member0 and in
the third UseFile(/docs/Oasis .ps, read). Note that
representing a user is a role like any other. We do not
have ‘user in role’ semantics. Roles are parametrised
as this simplifies policy definition.

The italicised part of the statement represents the
context in which it is valid. For example only the
Computer Laboratory login service may issue state-
ments about which processes represent Computer Lab.
users. Role membership certificates are implemented
as identity based capabilities, and are protected by a
secret known only to the issuing service. In this way,
context is managed implicitly.

Any client who has obtained a role membership cer-
tificate may approach a service and attempt to gain
access. The service may simply use this certificate
(for example the file service may expect UseFile
certificates) and this gives capability-like semantics.
Alternatively, a service may apply further axioms, for
example by consulting an ACL.

Note that the service does not care how the process
came by the certificate used in the access check; it
is simply concerned with its validity. This allows us
to decouple the implementation of a service from the
management of access control policy.

5 Specifying Policy
Policy is specified by providing axioms for use by

potential clients wishing to enter a role. These axioms
take the form of statements in a role definition lan-
guage (RDL). For example a meeting application may
provide two roles: Chair and Member and have role
definitions as follows:

Chair t Login.User(jmb)
Member(u) c Login.User(u) a Chair

: u in staff

The first statement indicates that a client with the
role User(jmb) may enter the role Chair. As any
number of services may issue User certificates, the
policy is incomplete if we do not specify which service
these certificates should have been issued by. In this
example the name ‘Login’ is looked up in a trusted
name server and returns the address of the system
login service.

The second statement is used by processes wishing
to enter the Member0 role. It states that a process
must hold a suitable login certificate and be delegated
by the Chair. It is equivalent to the following axiom:

c represents Chair
c wishes to delegate Member(u) to c’

c’ represents Login.User(u)
u in staff

c’ represents Member(u)

Generally, a Chairperson will think of delegation
as referring to a person not a process. A delegation
request by the chair may be of the form ‘delegate
Member(rjh21) to User(rjh21)‘. A request of this
form by a process c will result in a delegation certifi-
cate representing the following axiom being returned.

c’ represents Login.User(rjh21)
-c wishes to delegate Member(rjh21) to c’

This may be passed to a potential member and, to-
gether with a role membership certificate for the role
User, may be provided as a credential when attempt-
ing to enter the role Member.

6 Specifying Revocation
In the above sections we have described how flexible

access control policies may be specified as statements
in a role definition language that correspond to axioms
in a ,proof system. However, in order for this system
to be of use, we must be able to withdraw statements
that no longer hold. For example, if the Chair wishes
to revoke the membership delegated to rjh21, this
may be considered as a withdrawal of the statement

c wishes to delegate Member(rjh21) to c’

In order to allow freedom of policy expression, it must
be possible to give statements relating both to the con-
ditio:ns required for role entry, and to the conditions
under which that entry should be revoked. In RDL
this :is done by annotating the statements to indicate
which phrases represent entry conditions and which
represent membership rules. An entry condition need
only hold at the time of role entry, but membership
rules must remain valid. If at any time after role en-
try, a role membership cannot be proved using axioms
formed by the membership rules related to it, then
the membership is revoked. Membership rules are in-
dicated by appending an asterisk. For example the
statement

Member(u) c Login.User(u) a* Chair
: (u in staff)*

317

Proceedings of the 17th International Conference on Distributed Computing Systems (ICDCS '97)
1063-6927/97 $10.00 © 1997 IEEE

indicates that Membership will be revoked if the Chair
reverses the delegation decision (as a is a member-
ship rule) or if the user represented by the member-
ship ceases to be a member of the group staff (as
u in staff is a membership rule). Nothing else will
affect the role membership. Efficient implementation
of revocation in Oasis proved to be the key issue for
its overall performance, and an effective mechanism is
described in the following sections.

7 Validating Certificates

Suppose that a client supplies a certificate as a cre-
dential, either when performing an operation, or when
entering a role; we must validate that the certificate is
genuine, was issued to the client making the request
and has not been revoked. There are three stages to
validation. Firstly, the client identifier is validated us-
ing a suitable authentication protocol. This ensures
that one process cannot masquerade as another. Sec-
ondly, the integrity of the certificate is validated by re-
computation of a digital signature. These two checks
ensure that the client was issued with the certificate
and that it was once valid. All that remains is to check
that the certificate has not been revoked. Revocation
information is stored in a record in the issuing server,
and each certificate contains a reference to this record
so that the status can be checked. Note that revoked
certificates are not physically removed from clients, as
this is not possible in a distributed environment.

Certificates are signed, and this digital signature is
a function of the certificate text, the process identifier
and the issuing service. It is based on that used in
[6] and ensures that a certificate cannot be ‘stolen’ or
used out of context. Unlike other schemes, in Oasis
the only function of the digital signature is to check
that the signature is not forged. Once the check has
been performed, the integrity of the certificate may
be cached, and re-computation avoided. This is par-
ticularly significant in distributed architectures where
validation may involve a remote procedure call to the
issuing service.

In addition, if the digital signature check fails, then
the service can be certain that the certificate has been
modified. If the messages are protected from acciden-
tal corruption by checksums, then a failed signature
check is a good indication of an attempt by a client to
gain illicit access. This is a great improvement over
schemes in which signature checks frequently fail for a
number of reasons, making attempted fraud difficult
to detect.

8 Managing Revocation
Revocation of certificates is managed by storing a

small credential record within the issuing server for
each valid certificate. Each record represents the
server’s current belief about some fact, for example
the fact that a certificate has not been revoked. When
an event occurs (such as a failure or a revocation) this
information can be used to update credential records,
and hence to allow flexible, selective revocation.

Credential records form a directed graph, such that
a child represents some function of the beliefs held
about its parents. In this way, only a single credential
record need be consulted to confirm an arbitrary num-
ber of facts. A field is added to each certificate called
a ‘credential record reference’. This is a reference to
a record within the issuing server that represents the
validity of the certificate. The name space for cre-
dential record references is designed so that references
are never reused, and credential records representing
facts that are false, and will always remain false, can
be deleted.
8.1 Constructing Graphs

Graphs of credential records correspond directly to
proofs formed by the instantiation of RDL axioms.
Each membership rule involved in the definition of a
role will be represented by a single credential record.
Consider the definition of ‘Member’ from the previous
section.

Member(u) t Login.User(u)* a* Chair
: (u in staff)*

There are three membership rules for this definition:

1.

2.

3.

The supplied logged on certificate must remain
valid. The certificate contains a reference to the
credential record representing this fact.

The delegation must not be revoked. A new cre-
dential record is created to represent this fact.
The delegator is given the right to delete this
record.

The client must remain a member of the group
‘staff ‘. Each group membership is represented
by a single credential record, and membership
lookup returns a reference to this as a side-effect.

To create a suitable credential record to represent the
truth of all three of these facts one new record must
be created (for rule 2) and a second record must be
created to form the conjunction of the truth values
representing rules 1, 2, and 3. A small optimisation is
possible in that the two new records can be combined
into one fulfilling both functions. In general one new

318

Proceedings of the 17th International Conference on Distributed Computing Systems (ICDCS '97)
1063-6927/97 $10.00 © 1997 IEEE

credential record is required for each (revokable) dele-
gation, and one for each entry to a role with multiple
membership rules.

9 Distribution Issues
In a distributed environment, certificates issued at

one server may be used as credentials at another. Con-
sequently, a credential record in one server may be re-
quired to be the parent of a record in another. This
raises issues of naming, independent failure modes and
robustness. In order to decouple the name space and
failure modes of two services, external records are used
to represent remote facts and event notification is used
to communicate state changes between servers.
9.1 External Records

If a server requires a reference to a credential record
on another service, it creates a local surrogate record
called an external record. This record contains infor-
mation about the identity, location and state of the
record being represented, together with the standard
attributes of a credential record, including an identifier
within the local name space. The state of the record
is maintained by event notification, as described be-
low, and in all other respects the record is treated as
a local credential record.
9.2 Event Notification

Asynchronous event notification is an important
feature of distributed systems, and the RPC mecha-
nism used in the current implementation of Oasis has
been extended to add event management functions.
Oasis makes use of these functions by defining the
event type Modified(CRR, newstate) in the interface
definition file of an Oasis server. A server may then
register interest in the state of a particular credential
record, and will be informed if its state changes, by
being sent an event with CRR and newstate set to
appropriate values.

In this way, revocation taking place in one server
may affect certificates issued by another. Revocation
is therefore both rapid and selective. In addition, as
revocation is event-based rather than depending on
timeouts, there is a low ‘background’ overhead to us-
ing certificates, since they do not need to be continu-
ally refreshed.
9.3 Example

Figure 1 gives a snapshot of the certificates issued
relating to a meeting involving two client processes.
The Login service (top box) has issued login certifi-
cates to two processes P and Q, and stores credential
records for each of these. It offers a validation service,
and will validate the certificates it has issued upon de-
mand. We assume the Login service is also responsible

for group membership, and stores credential records
indicating who is a member of each group.

In the example process P has become the Chair of
the meeting, and has been issued with a “Chair” cer-
tificate by the Meeting application (bottom box). The
Chair has decided to delegate to the user rjh21 to
be allow him to become a member of the meeting.
To do this, it requests a delegation certificate from
the Meeting application indicating the role being del-
egate’d, and the role required of a client wishing to use
this certificate. This delegation is revokable, and the
delegation certificate contains a reference to a record
within the meeting application that indicates that re-
vocation has not taken place. P passes this delegation
certificate to Q, who may use it to enter the role “Mem-
be?‘. According to the rules given previously, Q must
suppl,y a Login certificate and a delegation certificate,
and tlhe Meeting application must validate that rjh21
is a member of the group staff. To facilitate revo-
cation, a graph of credential records is created within
the Meeting application. A new credential record is
created to indicate the validity of the certificate being
issued. The parents of the new record represent the
membership rules: that delegation has not been re-
voked, that Q is logged in and that rjh21 is a member
of the group staff. The new certificate is then signed
and returned to Q. Figure 1 shows a snapshot of this
position. Note that each issued certificates can be val-
idated by checking at most one credential record, and
that revocation by the Chair will lead to the invalida-
tion of the “r j h21 is member” credential record. Once
this takes place, Q’s member certificate will no longer
be accepted, and is therefore effectively revoked.

Once the meeting finishes and the Meeting appli-
cation terminates, the certificates issued by it will be
useless, and there is no need to revoke them explicitly.

10 The Effect of Failures
Event notification between servers may be delayed

indefinitely by network congestion or failure. Addi-
tionally, either of the parties may fail and restart in-
dependently. These situations must be taken into ac-
count .in the design of any distributed system involv-
ing events. The approaches described here are im-
plemented as part of a generic event library, and are
equally admissible to any event-based application.

Consider two parties A and B, where A wishes to
send ES a stream of messages. If every message A sends
contai.ns a sequence number, then B will be able to
detect, if any previous message has been lost. If in
addition, A ensures that a message is sent at least every
t seconds, then B will know within time t if a message
has been lost or delayed.

319

Proceedings of the 17th International Conference on Distributed Computing Systems (ICDCS '97)
1063-6927/97 $10.00 © 1997 IEEE

Process P has:

User ., I, ,,

Revoke ~=~~f~dllll18dl)h

1 Chair
L

Delegation Certificates:

r- Member

Process Q has:

Key:
Is Validated By
Event Notification
Internal Reference

\ May Revoke

Figure 1: A credential record graph

This is the basic requirement for event handshak-
ing. In addition, B must periodically inform A that
events have been received, so that A may delete any
associated state.

This protocol is called a heartbeat protocol, and a
form of it is used in the event system implemented.
The server responsible for signalling events is used
as the initiator of the protocol and ensures that a
heartbeat event is sent every t seconds. Individual
events (and heartbeats) are not acknowledged for rea-
sons of efficiency, but the client replies periodically, so
that the server can detect failures and resend event
instances if required.

This leads to a system with the following charac-
teristics:

l A client can be certain of receiving an event
within time t of its generation, or of detecting
that notification may have failed or been delayed.

l A server can detect a client that is not responding,
and after a period can assume that it is no longer
running.

l A client who processes and forwards events can
treat heart-beats in a similar manner. This fea-
ture allows a service to provide guarantees about
‘indirect’ events from other services.

In Oasis, missed heartbeats lead to external creden-
tial records being marked as ‘unknown’. This state
propagates to child records, and possibly to other
servers. While the state of a record is unknown, a
service may not be willing to use certificates relying
upon it. When connection is re-established the state
of each record is read and, if necessary, events are re-
registered with the remote service. The period of the
heartbeat is negotiated so that if, for example, group
membership changes are rare and revocation due to

320

Proceedings of the 17th International Conference on Distributed Computing Systems (ICDCS '97)
1063-6927/97 $10.00 © 1997 IEEE

these changes may be delayed, then the heartbeat pe-
riod may be set to once every few hours rather than
once every few seconds. Of course, regardless of the
heartbeat, revocation will still be rapid if there are no
communications failures.

11 Relaxing the Rules
As described above, in order to validate an Oasis

certificate, the issuing server must be consulted. This
is because only the issuing server will know whether
the certificate has been revoked, and only that server
will be able to inform a client application should it
be revoked in future. In widely distributed systems
this cost may be unacceptable. If we are to improve
the performance we must sacrifice something of the
semantics. We can create a second form of certifi-
cate protected by public key signatures. These can
be validated without recourse to the issuing service,
but revocation information will not be available. In-
stead, each certificate can contain timestamps indi-
cating when it is valid. Following these periods the
certificate is discarded so that revocation is effectively
delayed by a period equal to the lifetime of the cer-
tificate. By combining the two forms of certificate, a
system designer can fine tune the performance trade-
offs. Alternative schemes that rely only on timed-out
certificates do not provide this flexibility. We envis-
age that credential-based certificates will be the norm,
with timed certificates being used to represent rela-
tively stable information that is useful over a wide
area, for example group or project membership.

12 Integration with Alternative
Security Mechanisms

As described in section 4, when services make access
control decisions, they rely on a number of statements
in the form of certificates. As these certificates can be
used to represent any role membership, a gateway can
be devised to translate access control information from
other security schemes. For example a service may
issue Kerberos(userid) certificates, indicating that a
process has been authenticated by a Kerberos server to
represent the given UserId. As Oasis supports rapid
revocation, the revocation schemes of other services
can be mimicked.

A second issue is reasoning about security policies.
If all policies are defined in terms of Oasis RDL state-
ments, then reasoning is relatively straightforward as
the policies have common semantics and a strong for-
mal backing. When combined with policies from other
services, reasoning becomes more difficult. However,
as RDL is an expressive language, it is often the case
that alternative policies may be converted to RDL.

Even if this does not aid implementation, it greatly
simplifies reasoning about interacting policies. See [4,
chapter 31 for a detailed treatment of the conversion
of UNIX ACLs to RDL statements.

13 Conclusions
There are two primary access control issues; the

specification of access policy and the enforcement of
that policy. In a distributed environment the specifi-
cation mechanism must be extremely flexible, as differ-
ent organisations have radically different needs. Un-
like other proposals for distributed access control, Oa-
sis has concentrated on the specification of policy, and
how policies interact, rather than on the mechanisms.
We believe the result is a clean and simple architec-
ture that hides heterogeneity and so aids reasoning.
Far frlom being inefficient, we have found that that the
distributed proofs can be represented by an extremely
efficient mechanism: credential records. This is a gen-
eral mechanism for the representation of beliefs, and
may be used to allow Oasis services to interwork with
other security mechanisms, as well as providing the
framework for the Oasis implementation itself.

Acknowledgements
We acknowledge the UK EPSRC for supporting this

work under grant GR/K77068. We are grateful to ICL
for ge:neral support of our research group.

References
PI

PI

[31

[41

151

PI

[71

321

B. W. Lampson. Protection In Fifth Princeton Sympo-
siwm on Information Sciences and Systems, pages 437-443,
Princeton University, March 1971. Reprinted in Operating
Systems Review, 8, 1, January 1974 pp.18-24.

Ravi S.Sandhu, Edward J. Coyne, Hal L. Feistein, and
Charles E. Youman. Role base access control models. IEEE
Computer, February 1996.

Morris Sloman, Policy Driven Management for Distributed
Systems, In Journal of Network and Systems Management,
Plenum Press, 2(4) 1994

R. Hayton, OASIS, An Open Architecture for Secure In-
terworking Services, University of Cambridge PhD thesis,
Technical Report 399. 1996.

Butler Lampson, Martin Abadi, Michael Burrows and Ed-
ward Wobber, A Calculus for Access-Control in Distributed
Systems, In ACM Transactions on Programming Languages
anal Systems, 15(4):706-734, 1993

Li Gong. A secure identity-baaed capability system. In Pro-
ceedings of the 1989 Symposium on Security and Privacy,
pages 56-63. IEEE, May 1989.

R. Hayton, J. Bacon, John Bates, and K. Moody, Using
Events to Build Large Scale Distributed Applications, ACM
SIGlOPS European Workshop, September 96.

Proceedings of the 17th International Conference on Distributed Computing Systems (ICDCS '97)
1063-6927/97 $10.00 © 1997 IEEE

