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Abstract. A significant increase in real world event monitoring capabil-
ity with wireless sensor networks brought a new challenge to ubiquitous
computing. To manage high volume and faulty sensor data, it requires
more sophisticated event filtering, aggregation and correlation over time
and space in heterogeneous network environments. Event management
will be a multi-step operation from event sources to final subscribers, com-
bining information collected by wireless devices into higher-level informa-
tion or knowledge. At the same time, the subscriber’s interest has to be
efficiently propagated to event sources. We describe an event broker grid
approach based on service-oriented architecture to deal with this evolu-
tion, focusing on the coordination of event filtering, aggregation and corre-
lation function residing in event broker grids. An experimental prototype
in the simulation environment with Active BAT system is presented.

1 Introduction

Recent progress in ubiquitous computing with a dramatic increase of event mon-
itoring capabilities by Wireless Sensor Networks (WSNs) is significant. Sensors
can detect atomic pieces of information, and the data gathered from different
devices produce information that has never been obtained before. Combining
regionally sensed data from different locations may spawn further useful infor-
mation. An important issue is to filter, correlate, and manage the sensed data
at the right time and place when they flow over heterogeneous network envi-
ronments. Thus, an integrated event correlation service over time and space is
crucial in such environments.

Event correlation services are becoming important for constructing reactive
distributed applications. It takes place as part of applications, event notification
services or workflow coordinators. In event-based middleware systems such as
event broker grids, an event correlation service allows consumers to subscribe to
patterns of events. This provides an additional dimension of data management,
improvement of scalability and performance in distributed systems. Particularly
in wireless networks, it helps to simplify the application logic and to reduce its
complexity by middleware services. It is not easy to provide reliable and useful
data among the massive information from WSNs. Mining new information from
sensed data is one issue, while propagating queries over WSNs is a different
issue. Combination of both approaches will enhance data quality, including users’

R. Meersman et al. (Eds.): OTM Workshops 2005, LNCS 3762, pp. 304–313, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Event Broker Grids with Filtering, Aggregation, and Correlation 305

intentions such as receiving, providing, and passing data. At the same time, data
should be managed as openly as possible.

Middleware’s Task: Middleware for sensor networks can be defined as software
that provides data aggregation and management mechanisms, adapting to the
target application’s need, where data are collected from sensor networks. This
functionality must be well integrated within the scheme of ubiquitous computing.
The middleware should offer an open platform for users to seamlessly utilize
various resources in physically interacting environments, unlike the traditional
closed network setting for specific applications. As a part of this approach, mobile
devices will play an important role and will be used for collecting sensor data
over ad hoc networks, conveying it to Internet backbone nodes. Mobile devices
can be deployed in remote locations without a network infrastructure, but they
are more resource constrained, and a detectable/implementable event detection
mechanism is required.

The trend of system architecture to support such platforms is towards service
broker grids based on service management. When designing middleware for sen-
sor networks, heterogeneity of information over global distributed systems must
be considered. The sensed information by the devices is aggregated and combined
into higher-level information or knowledge and may be used as context. The pub-
lish/subscribe paradigm becomes powerful in such environments. For example,
a publisher broker node can act as a gateway from a WSN, performing data
aggregation and distributing filtered data to other networks based on contents.
Event broker nodes that offer data aggregation services can efficiently coordinate
data flow. Especially with the distributed event-based middleware over peer-to-
peer (P2P) overlay network environments, the construction of event broker grids
will extend the seamless messaging capability over scalable heterogeneous net-
work environments. Event Correlation will be a multi-step operation from event
sources to final subscribers, combining information collected by wireless devices
into higher-level information or knowledge.

There has been much effort for in-network data aggregation such as TinyDB
[8]. However, a mainstream of deployments of sensor networks is to collect all
the data from the sensor networks and to store them in database. Data analysis
is preceded from the data in the database. We propose a distributed middleware
architecture integrating global systems to support high volume sensor data. We
prototype our proposed system in a simulation environment with real world data
produced by the Active BAT system [5].

This paper continues as follows: section 2 describes middleware architecture,
section 3 discusses event filtering/aggregation/correlation, section 4 reports an
experimental prototype with the Active BAT system, section 5 describes related
works and it concludes with section 6.

2 Middleware Architecture

Service Oriented Architecture (SOA) is a well-proven concept for distributed
computing environments. It decomposes applications, data, and middleware into
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reusable services that can be flexibly combined in a loosely coupled manner.
SOA maintains agents that act as software services performing well-defined
operations. This paradigm allows users to focus on the operational descrip-
tion of the service. All services have an addressable interface and communi-
cation via standard protocols and data formats (i.e., messages). SOA can deal
with aspects of heterogeneity, mobility and adaptation, and offers seamless in-
tegration of wired and wireless environments. Generic service elements are con-
text model, trust and privacy, mobile data management, configuration, ser-
vice discovery, event notification. The following are key issues addressed in our
design.

• Support for service discovery mechanisms (e.g., new and sporadical services)
for ad hoc networks.

• Support for an adaptive abstract communication model (i.e., event-based
communication for asynchronous communication).

Peer-to-peer networks and grids offer promising paradigms for developing ef-
ficient distributed systems and applications. We integrate the Open Services
Gateway Initiative (OSGi) [10] on the application layer. OSGi is open to almost
any protocol, transport or device layers. The three key aspects of the OSGi
mission are multiple services, wide area networks, and local networks and de-
vices. Key benefits of the OSGi are platform and application independent. In
other words, the OSGi specifies an open, independent technology, which can
link diverse devices in local home network. The central component of the OSGi
specification effort is the services gateway. The services gateway enables, con-
solidates, and manages voice, data, Internet, and multimedia communications
to and from the home, office and other locations. We have developed a generic
reference architecture applicable to any ubiquitous computing space. The mid-
dleware contains separate physical, sensor components, event-broker, service,
service management, and an open application interface. We are in progress of
implementing the reference architecture.

2.1 Service Semantics

We define service semantics in addition to the service definition so that services
can be coordinated. Model real world is a collection of objects, where objects
maintain their state using sensor data. Queries and subscriptions are examples of
objects that are mapped to the service objects, and thus mapped to the sensors.
This approach gives flexibility to services that will develop and evolve.

2.2 Layer Functionality

We describe the brief functionality of each layer below (see also Fig. 1).

Physical Layer: This layer consists of various sensors and actuators.

Sensor Component Layer: A sensor component layer can communicate with
a wide variety of devices, sensors, actuators, and gateways and represent them
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Fig. 1. Middleware Architecture with Wireless Sensor Data

to the rest of the middleware in a uniform way. A sensor component converts
any sensor or actuator in the physical layer to a service that can be programmed
or composed into other services. Users can thus define services without having
to understand the physical world. Decoupling sensors and actuators from sensor
platforms ensures openness and makes it possible to introduce new technology
as it becomes available.

Event Broker Layer: This layer is a communication layer between Sensor
component layer and Service layer. It supports asynchronous communication
by publish/subscribe paradigm. Event filtering, aggregation, and the correlation
service is currently a part of this layer.

Service Layer: This layer contains the Open Services Gateway Initiative
(OSGi) framework, which maintains leases of activated services. Basic services
represent the physical world through sensor platforms, which store service bun-
dle definitions for any sensor or actuator represented in the OSGi framework.
A sensor component registers itself with the service layer by sending its OSGi
service definition. Application developers create composite services by Service
Management Layer’s functions to search existing services and using other ser-
vices to compose new OSGi services. Canned services, which may be usefully
globally, could create a standard library.

A context is represented as an OSGi service composition, where the context
could be obtained. The context engine is responsible for detecting and managing
states.

Service Management Layer: This layer contains ontology of the various
services offered and the appliances and devices connected to the system. Ser-
vice advertisement and discovery use service definitions and semantics to reg-
ister or discover a service. Service definitions are tightly related to the event
types used for communication in Event Broker Layer including composite for-
mats. The reasoning engine determines whether certain composite services are
available.

Application Interface: An application interface provides open interfaces for
applications to manage services including managing contexts.
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3 Event Correlation/Filtering/Aggregation

Event Correlation will be essential when the data is produced in a WSN and
multi-step operation from event sources to final subscribers, which may reside
in the Internet. Combined data collected by wireless devices into higher-level
information or knowledge must be supported. In [12], we introduced a generic
composite event semantics, which combines traditional event composition and
a generic concept of data aggregation in wireless sensor networks. The main fo-
cus is on supporting time and space related issues such as temporal ordering,
duplication handling, and interval-based semantics, especially for wireless net-
work environments. We presented event correlation semantics defining precise
and complex temporal relationships among correlated events.

Event correlation is sometimes deployed as part of applications, event notifi-
cation services, or as a framework as part of middleware. Definition and detection
of composite events especially over distributed environments vary, and equally
named event composition operators do not necessarily have the same semantics,
while similar semantics might be expressed using different operators. Moreover,
the exact semantic description of these operators is rarely explained. Thus, we
define the following schema to classify existing operators: conjunction, disjunc-
tion, sequence, concurrency, negation, iteration, and selection. Considering the
analyzed systems, it becomes clear that to simply consider the operators is not
sufficient to convey the full semantic meaning. Each system offers parameters,
which further define/change the operator’s semantics. The problem is that the
majority of the system reflects parameters within the implementations.

Many event-based middleware offer a content-based filtering, which allows
subscribers to use flexible querying languages to declare their interests with
respect to event contents. The query can apply to different event types. On the
other hand, the event correlation addresses the relation among event instances of
different event types. Filtering and correlation share many properties. WSN has
led to new issues to be addressed in event correlation. Traditional networking
research has approached data aggregation as an application specific technique
that can be used to reduce the network traffic.

WSN Data aggregation in-network operation has brought a new paradigm to
summarize current sensor values in some or all of a sensor network. TinyDB [8]
is an inquiry processing system for the sensor network and takes a data centric
approach, where each node keeps the data, and those nodes execute retrieval and
aggregation (in-network aggregation) with on-demand based operation to deliver
the data to external applications. TinyLIME [3] is enhancing LIME (Linda In
Mobile Environments) to operate on TinyOS. In TinyLIME, tuple space subdi-
vided as well as LIME is maintained on each sensor node, and coordinated tuple
space is formed when connecting with the base station within one hop. It works
as middleware by offering this abstracted interface to the application. The cur-
rent form of TinyLIME does not provide any data aggregation function, and only
a data filtering function based on Linda/LIME operation is provided at the base
station node. On the other hand, TinyDB supports data aggregation function
via SQL query, but redundancy/duplication handling is not clear from available
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Fig. 2. Event Filtering, Aggregation and Correlation

documents. The coordination of nodes within WSN is different from other wire-
less ad hoc networks. The group of nodes acts as a single unit of processors in
many cases, and for a single phenomenon, multiple events may be produced to
avoid the loss of event instances, which is a different concept from traditional
duplication of events. Aggregation has three stages: local, neighbour, and global.
Fig. 2 highlights the relation among aggregation, filtering and correlation. Mid-
dleware research for WSN has been recently active, but most research focuses
on in-network operation for specific applications. We provide a global view of
event correlation over whole distributed systems from the correlation semantics
point.

4 Prototype with Active BAT System

Sentient computing is a type of ubiquitous computing which uses sensors to per-
ceive its environment and react accordingly. Sensors are used to construct a world
model, which allows location-aware or context-aware applications. One research
prototype of a sentient computing system has been the work at AT&T Research
in the 1990s and the research continues at the University of Cambridge as the
Active BAT system [5]. It is a low-power, wireless indoor location system accu-
rate up to 3 cm. It uses an ultrasound time-of-light trilateration1 technique to
provide more accurate physical positioning. Users and objects carry Active BAT
tags. In response to a request that the controller sends via short-range radio,
a BAT emits an ultrasonic pulse to a grid of ceiling-mounted receivers. At the
same time the controller sends the radio frequency request packet, it also sends
a synchronized reset signal to the ceiling sensors using a wired serial network.
Each ceiling sensor measures the time interval from reset to ultrasonic pulse ar-
rival and computes its distance from the BAT. The local controller then forwards
the distance measurements to a central controller, which performs the trilatera-
tion computation. Statistical pruning eliminates erroneous sensor measurements
caused by a ceiling sensor detecting a reflected ultrasound pulse, instead of one
that travelled along the direct path from the BAT to the sensor.

SPIRIT (SPatially Indexed Resource Identification and Tracking) [5] pro-
vides a platform for maintaining spatial context based on raw location informa-
tion derived from the Active BAT location system. It uses CORBA to access
information and spatial indexing to deliver high-level events such as ‘Alice has
entered the kitchen’ to listening context aware applications. SPIRIT models the



310 E. Yoneki

physical world in a bottom up manner, translating absolute location events for
objects into relative location events, associating a set of spaces with a given ob-
ject and calculating containment and overlap relationships among such spaces,
by means of a scalable spatial indexing algorithm.

4.1 Prototype

The current Active BAT system employs a centralized architecture, and all data
are gathered in the database, where computational power is cheap. The Active
BAT system, as described, is expensive to implement in that it requires large in-
stallations, and a centralized structure. The centralized structure allows for easy
computation and implementation, since all distance estimates can be quickly
delegated to a place where computational power is cheap. Moreover, the active
mobile architecture facilitates the collection of multiple simultaneous distance
samples at the fixed nodes, which can produce more accurate position estimates
relative to a passive mobile architecture.

It is inherently scalable both in terms of sensor data acquisition and man-
agement as well as software components. However, when constructing real-time
mobile ad hoc communications with resource constrained devices, a distributed
coordination must be supported, so that mobile device users can promptly sub-
scribe to certain information.

We simulate all rooms and corridors hold gateway nodes (see the location
map Fig. 3), which are capable to participate in event broker grids. The software
design follows the service-oriented architecture described in Section 2. Thus,
each local gateway node performs event filtering and correlation. Each local
node registers the service that associates states with abstractions such as ”ID10
in the room SN07”. These states are decomposed to the units executable by
the event broker grid, where event correlation and aggregation and filtering are
operated. The details of high-level language for service composition and event
type definition are still under development. The used data is taken on March
22nd in 2005. The total number of events is around 200,000, and a sample of
event data is shown in Fig. 4. This shows BAT data after the location of the user
is calculated, which consists of timestamp, user, area, coordination (X, Y, Z) and
orientation. The receiver on the ceiling produces more than two times of data
than this.

Reception

Kitchen
Corridor West Corridor East

Meeting Room
  
 

Fig. 3. Active BAT Location Map
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    30408.802618,10,SN09,1002.335327,1033.320801,1.261441,-22.443605 
    30408.856115,10,SN09,1002.520386,1033.289429,1.251856,-20.335649 
    30409.063099,10,SN09,1002.533203,1033.279297,1.285185,-20.326197 
    30409.112594,10,SN09,1002.732910,1033.234863,1.270585,-22.712467 
    30409.315079,10,SN09,1002.921448,1033.175903,1.271525,-54.598316 
    30409.370575,10,SN09,1002.994690,1033.126587,1.283121,-56.499645 
    30409.564561,10,SN09,1003.170227,1033.044556,1.298443,-52.581676 

Fig. 4. Active BAT Events

4.2 Experiments

We performed several event correlations, and among those, we show the use of
durable events below. Fig. 5 depicts the number of events over the local gateway
nodes without durable events and Fig. 6 shows the same operation with durable
event composition. During this experiment, thirteen BAT holders participated,
which are shown ID1 through ID13. The result shows a dramatic reduction of
event occurrences through the use of durable events.

Fig. 7 and Fig. 8 also depict the power of durable events composition over
user ID 10 and 13 over the timeline (24 hours).

4.3 Temporal Ordering in Active BAT System

The applications derived from Active BAT have high accuracy and real-time
tracking requirements. Problems of time synchronization and coordination
amongst beacons are easily resolved, because these systems are wired and have a
centralized controller. In the Active BAT system, the timestamp is derived from
a Global Clock Generator (GCG), which is a hardware clock that sends ‘ticks’
to every component of the system over a serial link. When a location is com-
puted, the location message is timestamped using the GCG. In general, GCG
delay is in the order of microseconds, and the slowest part of the system is the
bit that waits for ultrasound to propagate (speed of sound) after a position is
requested but before a position can be calculated. This delay is used to measure
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the distance between the BAT and the receiver at the ceiling. Once the location
is calculated, the message then has to travel up to SPIRIT (order of millisec-
onds), and the event will be generated. However, no reliable information on that
delay is considered. In Active BAT system, time synchronization is controlled
in a centralized manner, and a trigger to collect BAT information is also used
to synchronize all the clocks in the system. The current experiment assumes
that all timestamps are properly synchronized. The implementation of temporal
ordering mechanism described in [12] is in progress.

5 Related Works

Much composite event detection work has been done in active database research.
SAMOS [4] uses Petri nets, in which event occurrences are associated with a
number of parameter value pairs. Early language for composite event follows
the Event-Condition-Action (ECA) model and resembles database query alge-
bras with an expressive syntax. Snoop [2] is an event specification language
for active databases, which informally defines event contexts. The transition
from a centralized to a distributed system let to a new challenge to deal with
time. Snoop presents an event-based model for specifying timing constraints to
be monitored and to process both asynchronous and synchronous monitoring
of real-time constraints. Reference [7] proposes an approach that uses occur-
rence time of various event instances for time constraint specification. GEM
[9] allows additional conditions, including timing constraints to combine with
event operators for composite event specification. In event-based middleware,
publish/subscribe can provide subscription for the composite event instead of
multiple primitive events, and this reduces the communication within the sys-
tem and potentially gives a higher overall efficiency, which is addressed by [11].
Hayton et al. [6] on composite events in the Cambridge Event Architecture [1]
describe an object-oriented system with an event algebra that is implemented
by nested pushdown FSA to handle parameterized events. For related work on
WSN data aggregation, see Section 3.



Event Broker Grids with Filtering, Aggregation, and Correlation 313

6 Conclusions and Future Work

The recent evolution of ubiquitous computing with a dramatic increase of event
monitoring capabilities by wireless devices and sensors requires sophisticated
middleware. We focus on specific aspects for supporting service broker grids in-
cluding the data and communication models. The network environments will be
more heterogeneous than ever, and open, P2P based networking environments
will become common. In this paper, we provide a prototype of such a grid system
over sensor networks and show simulated experimental results based on real data
from the Active BAT system. Event broker nodes that offer data aggregation
services can efficiently coordinate data flow. Event broker grids should seamlessly
disseminate relevant information generated by deeply embedded controllers to
all interested entities in the global network, regardless of specific network char-
acteristics, leading to a solution to construct large distributed systems over dy-
namic hybrid network environments. We are working on a complete implemen-
tation including various timestamping environments and parallel/hierarchical
composition.
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