
Many Aspects of Reliabilities in a Distributed
Mobile Messaging Middleware over JMS

Eiko Yoneki

University of Cambridge Computer Laboratory
William Gates Building, J J Thomson Avenue

Cambridge CB3 0FD, UK
{eiko.yoneki}@cl.cam.ac.uk

Abstract. Pronto[19] is a middleware system for mobile applications
with JMS messaging as a basis in both centralized and decentralized
forms. Asynchronous messaging is essential to support reliable commu-
nication with mobile devices. An intelligent gateway and smart caching
in Pronto support the construction of distributed messaging systems over
JMS servers. The main aim of Pronto is to support a reliable and efficient
message flow from data source to consumers by applying and comparing
different techniques. Pronto provides a solution for mobile application
specific problems such as resource constraints, network characteristics,
and data optimization, which achieves high reliability in end-to-end com-
munication.

1 Introduction and Background

Computing devices are becoming increasingly mobile. Mobile computing need to
deal with more dynamic environments and more resource constrains than tra-
ditional desktop computing. In a mobile/wireless network environment, devices
have a small ROM/RAM footprint, latency is high, bandwidth is low, connec-
tions are frequently interrupted, location of devices changes at any time, and
many devices are not programmable. This diversity of clients creates complex
environments in distributed systems. It is challenging to provide reliability un-
der such circumstances, especially as the information delivered to mobile devices
may be mission critical messages. Thus, middleware communication service is
important for integrating hybrid environments with high reliability.

Several communication mechanisms such as Remote Procedure Call (RPC)
and Remote Method Invocation (RMI) have been used for sharing the work-
load in distributed systems. Intercommunication is commonly achieved using
directed links between tightly coupled senders and receivers, where the message
destination must be known at the time of sending; this is difficult with changing
destinations or varying numbers of recipients. By contrast, Message Oriented
Middleware (MOM) encourages loose coupling between message senders and
receivers with a high degree of anonymity, the advantage of taking away static
dependencies in a distributed environment. MOM’s characteristics (intuitive pro-
gramming model, latency hiding, guaranteed delivery, store-and-forward) are
highly appealing for mobile applications to provide reliable message delivery.

R. Meersman and Z. Tari (Eds.): OTM Workshops 2003, LNCS 2889, pp. 934–949, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 841.889] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Many Aspects of Reliabilities in a Distributed Mobile Messaging Middleware 935

Java Message Serice (JMS)[15] is a recent Java technology, providing an API
for inter-client communication among distributed applications. The communica-
tion mechanism of JMS differs from others such as EJB (Enterprise Java Beans),
and CORBA (Common Object Request Broker Architecture), which define a
higher level of logic for applications. JMS is a service-oriented API specifica-
tion, providing an architecture for MOM and prescribing messaging function-
ality in terms of interfaces and associated semantics. It offers publish-subscribe
and point-to-point paradigms and expands previous messaging capabilities. JMS
works well in an environment where network connections can break, and where
the available bandwidth can vary within a short time. Most JMS products im-
plement a centralized server model. To provide rich JMS functionality, especially
persistent message delivery, servers require databases (for storing messages), yet
none of the commercial products has successfully implemented JMS in a de-
centralized model. There have been efforts to construct messaging systems over
peer-to-peer networks in distributed format, but none provide enterprise level
messaging functionality thus far. Given the characteristics of mobile devices and
wireless networks, more work is required for high performance and reliability.
Some important design issues are specified below:

– Wireless networks become increasingly packet-oriented. With a packet-
oriented bearer such as GPRS (General Packet Radio Service) or UMTS
(Universal Mobile Telecommunications System), users typically pay only for
the data they communicate. Reducing data size for transmission is crucial.

– Because of low bandwidth, high latency, and frequent disconnections, a mid-
dleware should provide an interface to applications that allows for communi-
cation to be maintained during disconnected operation. Dependable caching
is essential.

– A data source can be interpreted in different formats and semantics depend-
ing on the specifications of mobile devices and wireless networks. Semantic
transcoding technology [11] should allow for more efficient data flow.

– There are various bearers such as 2G, 2.5G, 3G, Bluetooth, and IEEE 802.11
and many devices are non-programmable. A middleware needs to offer an
interface that provides a communication abstraction.

This paper presents Pronto, a middleware system for mobile applications,
that is briefly introduced in [19]. The basis of Pronto is a MOM based on
JMS in both centralized and decentralized forms. The decentralized form is
called Serverless JMS. Pronto also introduces an intelligent Gateway with
store-and-forward messaging [18] for reliable and efficient transmission between
mobile applications and servers, taking advantage of plug-in components
for caching, device-specific transport, compression, semantic transcoding,
and message transformation, as well as supporting disconnected operation.
SmartCaching component provides generic caching in an N-tier architecture,
an essential function of Gateway. Caching reduces the communication between
mobile devices and data source, leading to gain high reliability. Constructing a
distributed system by deploying multiple gateways over JMS servers controls the

936 E. Yoneki

flow of messages, which limits unnecessary incoming network traffic to mobile
environments. The original data source should be made abstract to provide
compaction, then data should be evaluated whenever necessary. By going
through gateways, messages need to be more localized. This gives optimized
reliable and efficient message flow.

1.1 Delivery Semantics and Reliability

In messaging middleware systems, in particular when considering communica-
tion models and protocols, precise specification of the semantics of a delivery
is an important issue. Delivery guarantees are often limited by the behavior of
lower communication layers, down to the properties of the network itself, limiting
the choice of feasible semantics. Reliable point-to-point communication is usu-
ally achieved by applying TCP. In messaging middleware, messages may be sent
without generating a reply, and they may be processed hours after having been
sent. The communicating parties do not handle how messages are transmitted
and when they are processed. Thus, the messaging system must provide guaran-
tees both in terms of reliability and durability of the messages. It is not sufficient
to know that a message has reached the messaging system that sits between the
producers and consumers. It is necessary to guarantee that the messages will
not be lost due to failure of that messaging system. Messaging systems need to
provide various guarantees regarding reliability and fault tolerance ranging from
best-effort to guaranteed and timely.

Persistence is generally presented in messaging systems in a centralized model
and stores messages until consumers process them. It is based on store-and-
forward messaging, i.e. the provision of reliability over a network where connec-
tions may be dropped and restored. It is a trade-off because more processing
time is required for store-and-forward. Therefore a compromise to accomplish
the balance is important. On the other hand, distributed messaging middleware
in a decentralized model generally do not offer persistence since messages are
typically replicated upon dissemination. By sending one copy to each subscriber,
the system provides some degree of fault tolerance. However, a subscriber that
has unstable communication condition may not be able to obtain missed mes-
sages when recovering. In distributed messaging systems such as Scribe/Tapestry
can repair the multicast tree by periodically sending heartbeat messages. Other
systems use a mesh network such as Buyeux. The redundancy of a mesh net-
work can guarantee reliable delivery when a path is broken due to a faulty
broker. Gryphon achieve reliability in the similar manner. While sometimes a
high throughput is important and a low degree of reliability is acceptable, some
applications set higher priority over throughput. Messaging systems therefore
should provide different qualities of services to meet the demands of different
applications. The delivery semantics for notifications offered by existing systems
can be roughly divided into two groups, see also Section 3 for JMS Message
Flow:

Many Aspects of Reliabilities in a Distributed Mobile Messaging Middleware 937

– Unreliable delivery: Protocols for unreliable delivery give few guarantees.
These semantics are often used for applications where the throughput is the
most important issue, but the loss of certain messages is not fatal for the
application.

– Reliable delivery: Reliable delivery indicates that a message will be deliv-
ered to every subscriber despite the failure.

1.2 Many Aspects of Reliability

As distributed applications grow both in size and complexity, there is an increas-
ing demand to improve reliability. Different clients of messaging middleware will
have different degree of requirements regarding to reliability and quality of ser-
vice (QoS) guarantees provided by the middleware. Fault-tolerance mechanisms
have to be considered within the messaging middleware design, thus isolated
network or component failures do not affect the entire systems. Techniques such
as persistent messages and replication help to achieve a more robust messaging
middleware implementation. The servers can also be several times clustered to
provide fault tolerance. Publish-subscribe paradigm in messaging middleware
is a powerful and scalable abstraction, but an appropriate distributed infras-
tructure is the key to a scalable implementation of a messaging middleware
system. However, scalability might contradict with other required properties.
Increasing reliability guarantees the involvement of overheads such as logging
or detecting retransmitting and missing messages. The amount of traffic result-
ing from the acknowledgments generated by such protocols is considerable and
limits their scalability. Among distributed messaging middleware systems, prob-
abilistic protocols have recently received increasing attention since they fit the
decoupled and peer-to-peer natures. Instead of providing complete reliability by
deterministic approaches, probabilistic protocols ensure that a given notification
will reach a given subscriber with a high and quantifiable probability. Appro-
priate trade-off has to be defined to cope with scalability and expressiveness in
messaging middleware systems. In mobile environments, messaging middleware
systems should maintain communication during periods of disconnection. A dis-
connected period might be caused intentionally by the consumers, or by device
movements. Mobility support requires recovering messages during the discon-
nected period, and supporting mobility and disconnected operation should be
considered as a part of the reliability support. An intelligent caching helps to
reduce communication over unreliable links and indirectly contributes to obtain
high reliability. Content-based subscription gives flexibility through a combina-
tion of topic-based subscription to construct reliable and efficient message flow
in distributed messaging systems. It limits the network traffic to unnecessary
consumers. Pronto aims to accomplish high reliability for mobile applications
by applying and comparing different techniques. Section 2 gives an overview of
Pronto and deployments. More details on Pronto functions follow in Sections
3-6. This paper finishes with an overview of related work (Section 7) and a con-
clusion and future work (Section 8). See example applications and benchmarks
for performance improvement in [18], [20].

938 E. Yoneki

2 Pronto Overview

Pronto is designed as a middleware forming a collection of distributed services.
Three main functions form the backbone:

MobileJMS Client: MobileJMS Client is designed to adapt the JMS client
to mobile environments. The challenge is to accommodate JMS with constrained
mobile devices. The specifications and interfaces of JMS are complex, but not
all functions are mandatory for mobile environments. For example, Pronto
does implement neither map-message type nor message priority. On the other
hand, as an extension of the JMS API, Message Selector is added to support
content-based subscription. It is important to limit incoming network traffic to
mobile environment by content-based subscription, that provides more precise
message filtering function. One of the aims is to create a mobile-specific JMS
client API to optimize slim client library to obtain high reliability. MobileJMS
Client is described in more detail in Section 3. Furthermore, a simple JMS
server was implemented to support the MobileJMS Client, which is out of scope
of this paper.

Serverless JMS: Serverless JMS is a novel serverless version of MobileJMS
Client. The aim is to put the JMS scheme in a decentralized model, using IP
multicast as transport mechanism. In mobile environments, the nature of data
distribution may often fit better into a multicast/broadcast model. Multicast
transport mechanisms allow the efficient transmission of data from one to many
without redundant network traffic. The basic service provided by IP multicast is
an unreliable datagram multicast service, and there is no guarantee that a given
packet has reached all intended recipients of a multicast group. Serverless JMS
implements both reliable and unreliable multicast transports. A novel protocol
to support reliable multicast is designed using a negative acknowledgment.
Serverless JMS will perform best over an ad-hoc network. The ad-hoc network is
a dynamically re-configurable network without fixed infrastructure and without
a requirement for the intervention of a centralized access point. The message
domain publish-subscribe in JMS can reside on an ad-hoc network, but not
implementations based on a centralized server model. Here, Serverless JMS will
play an important role. Serverless JMS can be deployed over a high-speed bus
for transmitting a large number of messages distributing the workload of one to
several servers.

Gateway and SmartCaching: An intelligent Gateway [18] is introduced
as a message hub with store-and-forward messaging, taking advantage of plug-in
components for caching, device specific transport, and message transformation.
Multiple gateways can be deployed to construct a message broker network over
JMS servers, which should produce a reliable and efficient message flow from the
source to the consumer. Store-and-forward messaging gives distributed cache
and it provides reliability option even it causes messaging process redundant.
SmartCaching is designed to provide generic caching for N-tier architecture; it

Many Aspects of Reliabilities in a Distributed Mobile Messaging Middleware 939

is embedded as a central function for message storage in Gateway. Gateway
and SmartCaching are key technologies for improving messaging among mixed
mobile-tier environments in dynamic connectivity scenarios (see Sections 5-6 for
details). Plug-in components are not discussed in this paper.

2.1 Distributed Systems with Pronto in a Centralized Model

Figure 1 shows an overview of a distributed system with Pronto in a centralized
model. Different deployment possibilities are illustrated:

 JMS

Server

 SmartCaching

 Mobile
 JMS
 Client

 Local
Gateway

RemoteGateway

Device Specific
Communication

 Application

 Application

Application

JMS (TCP/IP)

 Transport Message

 Transform Message

RMI

 Smart
Caching

Fig. 1. System Overview of Pronto in a Centralized Model

– Application with MobileJMS Client: An application in a mobile device uses
a MobileJMS Client API; it communicates directly with the JMS server.

– Application with LocalGateway: An application in a mobile device uses a
Gateway API. LocalGateway is a mode of Gateway and can run as a separated
thread from the application or within the application and performs caching and
transcoding through plugged-in components.

– Application with RemoteGateway: An application in a mobile device uses a
Gateway API. RemoteGateway is another mode of Gateway and runs as a separate
process. Currently RMI-based transport between a RemoteGateway and Mobile-
JMS Client is implemented.

– Non-Programmable Devices with RemoteGateway: Non-programmable de-
vices require RemoteGateway to perform proper transportation and message trans-
formation for the target devices. RemoteGateway represents every subscriber and
publisher for the non-programmable device.

2.2 Pronto in a Decentralized Model

Serverless JMS supports a decentralized model. A publisher acts as a temporary
server and keeps a subscription list. Serverless JMS performs the best over ad-
hoc network environments (Figure 2a), and over high speed bus (Figure 2b). In
Figure 2b, JMS BUS is a Severless JMS over a high speed bus, which supports
to distribute a server’s work load to several servers, or replicate a large amount
of data to backup machines with classifying to the topics. Serverless JMS can
utilize auto-discovery function to maintain subscriptions. Current serverless JMS
requires IP Multicast capable routers.

940 E. Yoneki

2.3 Distributed Gateways over JMS Servers

Multiple Gateways can be used to distribute JMS messages to the target Gate-
ways where messages are sent to the devices. Gateways are like message brokers,
and they can form arbitrary topologies among themselves. Serverless JMS can be
also embedded in Gateway as a plug-in component and the cascaded gateways
act as multi-message hubs for distributing messages. JMS BUS is a Serverless
JMS over a high-speed bus. A high-speed bus can be LAN-based or WAN-based
as far as the routers allow IP multicast. Combination of Gateway and JMS BUS
offers powerful message flow control for optimization and reliability support, as
appropriate for the network characteristics. A deployment example is shown in
Figure 3. When the publisher publishes video message, the first gateway persists
it in cache. The message is transformed to audio data by extracting the audio
portion from video data then sent to the gateway subscribers. In this scenario,
all the gateway subscribers are supposed to distribute messages either audio or
short text. The gateway can be residing in the mobile device, and it can move
from one network to another network as far as the client identifier is set uniquely
within the name space. Gateways can act like event brokers grid to distribute
messages in reliable and efficient manner. The principle is with increasing dis-
tance from the source, data are expected to become more localized by deploying
Gateways.

3 Mobile JMS Client

MobileJMS Client is designed to follow the JMS API model. The common
building block of a messaging service is the message. Messages consist of events,
requests and replies that are created by and delivered to clients. Messaging
services such as persistent delivery, durable subscription, the time-to-live
option on a message, and transactions show the range of delivery methods.
Durable subscription is essential to support disconnected operation in Pronto.
Asynchronous messaging is a key integration point in mobile environments.
JMS defines two messaging paradigms, publish-subscribe and point-to-point,
the latter being less suited for mobile environments. Pronto implements

Ad-hoc

Serverless JMS

Serverless JMS

Serverless JMS

(a) Over Ad-hoc Network

J
M
S

B
U
S

J
M
S

B
U
S

Gateway
IP net

Gateway

Gateway

Application

Gateway

JMSServer

Gateway

(b) Over High Speed BUS

Fig. 2. Pronto in a Decentralized Model

Many Aspects of Reliabilities in a Distributed Mobile Messaging Middleware 941

Publisher (Video clip)

 Local
 GatewaySMS Plug-in

 IEEE
 802.11G

 IP net

Bluetooth

LAN

JMSServer
Gateway

 Gateway
(Subscribe only
Alert message)

 Gateway

Cache

Cache

JMSServer

Alert message
 via SMS

JMSServer
IEEE802.11B

Email

 JMS BUS

Gateway

Gateway

Voice over
 IP net

Call

SMS

Fig. 3. Multiple Gateways Deployment

publish-subscriber paradigm. JMS does not define standard address syntax,
using instead the Destination object that encapsulates the address [4]. In the
publish-subscribe paradigm, the Destination is called Topic. Messages are sent
to the Destination rather than specific processors or ports. Communication
is typically one-to-many and asynchronous. The publish-subscribe paradigm
supports the development of location-independent applications that can be
moved from one machine to another without affecting their peer applications. In
order to specialize JMS to a mobile environment the points below are considered:

Connection: A connection represents an open connection to the JMS
server. JMS does not define any specific transport mechanism. In Pronto,
HTTP via TCP/IP is implemented, which allows the applets using MobileJMS
Client to connect through firewalls to the JMS server. SSL pipe can be used to
provide secure connection.

Session: Connections create Sessions. A session is a single-threaded context
that handles message-passing operations. A JMS server has a session pool and
can execute separate messages concurrently, thus improving performance. If
client code needs to receive asynchronous messages concurrently, the client
can use multiple sessions to partition client operations, i.e. one client thread
can drive one session while another client thread can drive another. Each
session object serializes execution of message listeners. Thus, message listeners
can share session-related resources. In order to avoid the complex threaded
model, connections and sessions share one thread to receive a message in Pronto.

942 E. Yoneki

Message Flow: Figure 4 and 5 show the differences between two delivery
modes and figures explain the message flow including JMS server behavior. When
using the durable delivery mode, each message is stored by the JMS server per-
sistently before delivery to the consumer and is removed after message delivery.
This has a huge impact on performance but gaining reliability.

Figure 4 shows the durable subscription/persistent mode of the message flow.
The message has an expiration time, which is from the time-to-live beyond the
time of publication. It can be set to ’forever’ but will be discarded as soon
as delivery to all current subscribers and all durable subscribers is complete,
as recognized by the acknowledgments of the subscribers. If message delivery
’persistence’ is specified, the JMS server holds the message in persistent storage.
Figure 5 shows the non-durable/non-persistent mode of message flow. For non-
durable messages, the time that messages take to deliver to the Destination
depends on their numbers and Destination sizes.

A large number of messages collected in a Destination will take more time
to deliver. Redelivery delay time defines when to redeliver a message if a failure
occurs. With shorter times, the frequency of redelivery is high, thus increasing
network traffic. High Redelivery delay times give therefore better performance.
Redelivery Limit defines the number of times a message should be redelivered.
Although the probability of guaranteed messaging is lower with lower Redelivery
limit, it increases performance due to reduced memory overhead for non-durable
messages and persistent overhead for durable messages. It is therefore important
to set a sensible Redelivery limit to balance between high throughput and
reliability.

Durable Subscription: A durable subscriber registers a durable subscrip-
tion with a unique identity. A subsequent subscriber with the same identity
resumes the subscription in the state left by the previous subscriber. If there is
no active subscriber for a durable subscription, JMS retains the subscription’s
messages until they are received by the subscription or until they expire.
This supports not only disconnected operation but also location independence
automatically.

 Publisher
 Subscriber

JMS Server

Persistent Storage

 1

 3

 2 6

 4

 5

1. Publisher publishes message to server and waits for the acknowledgement
2. Server puts message in persistent queue
3. Server sends message acknowledgement back to Publisher
4. Server sends message to Subscriber
5. Subscriber sends acknowledgement back to Server
6. Server removes message from persistent queue

Fig. 4. Persistent Message Delivery

Many Aspects of Reliabilities in a Distributed Mobile Messaging Middleware 943

 Publisher Subscriber JMS Server

 1 3

 2 4

1. Publisher publishes message to server and waits for the acknowledgement
2. Server sends message acknowledgement back to Publisher
3. Server sends message to Subscriber
4. Subscriber sends acknowledgement back to Server

Fig. 5. Non-Persistent Message Delivery

Message Selector (Content-based Subscription): Topics can be struc-
tured into hierarchies, and subscriptions can be a part of the hierarchy. This
gives content-based messaging and greater flexibility for applications as there
is less coupling between producers and consumers. Content-based addressing is
more consumer-oriented, whereas subject-based addressing is producer-oriented.
Content-based subscription is not part of the JMS specification, but it can be
effective in mobile environments to control traffic to gain the relibility. Pronto
takes an approach to provide Message Selector for content-based subscription as
an extension of JMS API. Message Selector is a filter for a topic defined by the
consumer. In Pronto, this filter is implemented with an XML-based TextMes-
sage. A message selector is a string, whose syntax is based on a subset of SQL92
conditional expression syntax.

4 Serverless JMS

Many underlying transmission media such as Ethernet provide support for
multicast at the hardware level. Applications with Serverless JMS over such a
network lead to a significant performance improvement. Serverless JMS cur-
rently implements basic functions, while some JMS features such as persistent
delivery and durable subscription were omitted, given the nature of the network
model and IP multicast protocol. Key features are shown below:

Multicast Group: Groups of machines representing a multicast group
are identified by an IP multicast address. Each address can be considered
as a channel to identify groups of hosts interested in receiving the same
content. Two channels are used: the ManagementChannel serves administration
purposes, while the MessageChannel serves message transmission. As an option,
MessageChannel can be defined on each topic.

Reliable Protocol: The basic service provided by IP Multicast is an un-
reliable datagram multicast service. With such a service, there is no guarantee
that a given packet has reached all intended recipients of a multicast group.
Serverless JMS implements both reliable and unreliable multicast transport. The
reliable version uses a negative acknowledgment. The transparent fragmentation
and re-assembly of messages that exceed a UDP datagram size is implemented.

944 E. Yoneki

 IP Network

.

 MessageProducer

 FragmentProducer

 ReliableProducer

Msg
Part 1

 IP Multicast

Msg
Part2

Msg
Partn

 MessageConsumer

 FragmentConsumer

 ReliableConsumer

Msg
Part 1

Msg
Part2

Msg
Partn

 IP Multicast

. . .

(a) Protocol Stack in Serverless JMS

IP Network

. . .

 ReliableProducer

 IP Multicast

 ReliableConsumer

M1

 IP Multicast

M2

M3

Mn

 …

M id 1

M id n

…

M id 3

M id 2 Cached
Message

Retransmit
Repeat
retransmission
request

Lost
messages

 (b) Reliable Message Queue

Fig. 6. Reliable Protocol in Serverless JMS

This provides the highest possible delivery guarantee in a multicast environ-
ment. Figures 6a and 6b show the components to support the reliability and
the fragmentation in Serverless JMS. On the producer side, the FragmentPro-
ducer splits the message to fit into the packet if the message to be published
is larger than the defined network packet size. The ReliableProducer assigns a
unique order number to each message to allow identification by the consumer.
At the consumer side, the ReliableConsumer keeps an array that contains the
unique IDs of the messages. Once the ReliableConsumer detects lost messages,
it sends a retransmission request with the missing message IDs. This retrans-
mission request repeats until the messages are retransmitted or it runs into a
timeout. The retransmission is performed via the MessageChannel. Once the
ordered message comes in, the message will be pushed up to the FragmentCon-
sumer. The FragmentConsumer reassembles the data and pushes them up to the
MessageConsumer. The ReliableProducer retransmits the requested messages on
demand from the ReliableConsumer. The ReliableProducer keeps the message
cache array. This package provides reliability on message delivery. However, this
compromises throughput, because it slows down the procedure when the pro-
ducer interferes with the retransmission process.

Pronto uses deterministic protocols to provide reliability, which retransmits
the messages until all recipients acknowledge their receptions or are declared
failed. When the network is congested or a receive is perturbed, messages
accumulate in buffers until fully acknowledged. Since buffers are bounded, once
they fill up the producer is not allowed to send further messages.

Flow Control: The speed of the modern LAN transmission is high, and
packet loss will be rare due to good network quality. However, due to the high
speed, if the network buffer is not large enough and the subscriber cannot keep
up with the speed of incoming data, the buffer will be overwritten and messages
will be discarded. It is important to set the network buffer size large enough,
but the recent high-speed router fills up the buffer quicker than the subscriber
can process. That creates the same symptoms as when packets are lost during
transmission. The most effective way to avoid overwriting of the buffer is slowing

Many Aspects of Reliabilities in a Distributed Mobile Messaging Middleware 945

down the publishing messages and giving time to the subscriber to keep up with
the speed of incoming messages. In ReliableProducer, a mechanism slows down
or speed up message sending, depending on the detected transmission speed.
The ReliableProducer keeps a table containing the delay values. Between the
sending of two messages, the ReliableProducer does wait for the time of these
timeout values. The message cache array on the producer and the message
ID array on the consumer have to be coordinated with the speed of message
transmission. If message loss is higher than the amount of cached messages, the
consumer has no way to receive the retransmitting messages. In general, flow
control is difficult and expensive. There is no perfect logic to control this. One
has frequently to compromise between throughput and reliability.

Subscription Registration: Two subscription modes are defined: the
administrated and non-administrated modes. In the non-administrated mode,
publishers publish messages independently of the existence of subscribers.
Administration mode maintains a subscription list and prevents publishing
without subscribers.

Auto Discovery: An auto discovery function is designed. A publisher runs
an independent thread for auto discovery, which sends management data that
require an echo from subscribers via ManagementChannel and maintains the
subscription list. Auto discovery repeats this at defined intervals.

5 Gateway

Gateway distributes messages to other Gateways and applications. Multiple
gateways can be used as appropriate for the network environment and client
characteristics. This allows the construction of a distributed messaging system
over JMS servers and offers load sharing and load reduction for good perfor-
mance, leading to achieve an efficient and reliable message flow. Gateway uses
store-and-forwarding messaging paradigm, which is an overhead process and
redundant. However, to achieve high reliability, a redundant process may be
useful. Gateway is designed as a framework to perform plug-in functions for
which two interfaces are defined: Transport for mobile device transport and
Transform for message transformation. The plug-in functions should follow
these interface definitions. Gateway initially creates Transport and Transform
objects, according to XML-based configuration data. The Encode-Decode com-
ponent carries out the message transformation as defined in the configuration.
Specific configuration utility is not implemented in Pronto.

Plug-In Components: For the Transform interface, caching, compression,
and semantic transcoding are good candidates to reduce data size and network
traffic. Security (encrypting/decrypting data) functions can also be plugged
in. Semantic transcoding offers more than simple data reduction. The infor-
mation itself is made more abstract (to provide compaction), and the data

946 E. Yoneki

should be evaluated whenever necessary. In a mobile environment, a reduc-
tion of data size on the network dramatically increases performance, and the
concept of semantic transcoding is important. The data are linked to an anno-
tation [11], which can be text corresponding to a video clip, a document sum-
mary, or a linguistic description of the content for voice synthesis or image data
in grayscale/downsized/low-resolution. For Transport interface, device-specific
transport for non-programmable devices such as Short Message Service (SMS)
or email functions are candidates.

6 SmartCaching

Caching is essential for performance improvement by reducing network traffic
and improving latency. The cached data can be raw or processed and stored
for reuse, thus avoiding revisiting the source and passing the data through the
chain of reformatting and representation. SmartCaching, an intelligent cache
function, supports multi-tiered applications across platforms and devices. It
currently implements basic functions, while persistent caching, cache validation,
synchronization, and coherency management are beyond the scope of this study.
In SmartCaching, cached data are decoupled from the data source, and cached
data can be made active or up-to-date by CacheHandler, which is responsible
for updating the cache. For example, Gateway is a CacheHandler, and it uses
SmartCaching to store subscribed messages. Key functions to clients are the
Pull, Subscribe and Snapshot services. The Subscribe service provides
asynchronous notification of cached data to client applications, and applications
do not need to request to pull data that have already been requested. Using
the Subscribe service client applications may be event-driven and active.
This simple change has a major impact on performance and on the design
of the applications. Snapshot provides a specified period that can be used
by the mobile application to obtain the last cache image after disconnection.
CacheManager is the main component in SmartCaching. It creates objects
and manages requests and responses to requesters. Cache is an object that
contains a key and the actual caching object, kept as a linked list. The Cache
object contains the expiration date, and the CacheManager will remove expired
objects. Alternatively, the Cache object can be removed once it is delivered to
the subscriber. The three main functions above operate in response to requests
from CacheManager.

Pull: An application requests a cache synchronously.

Subscribe: An application requests a cache update notification to a cache
handler, which notifies the application after the cache is updated.

Snapshot: When data are delivered piecemeal to applications in a time
sequence, clients should be able to reconstruct the latest view of the information.
This can be achieved by obtaining all data from the data source or by retaining

Many Aspects of Reliabilities in a Distributed Mobile Messaging Middleware 947

1
Cache Manager

Recent
 Cache

 Data
 Source

Subscriber

Snapshot

 Updated
 Cache

New Data
Snapshot
Request

Data Handler
Application Cache

 Handler

Network

 1. Start Snapshot
 2. Delivery of new data on Key
 3. Snapshot and store Cache
 4. Return Snapshot Request

 Start
Snapshot

2

3

4

Client

Fig. 7. SmartCaching: Snapshot

the last image in a shared cache. The second option corresponds to the Snapshot
service. If the data source sends messages via minimal delta information, caching
updates existing data, applying only the delta information. Snapshot needs
to know when the baseline starts. Each time a new message is received, the
Snapshot rule is applied and the data persist in the cache. The Snapshot rules
can be provided by applications. If a client requests Snapshot, it will receive the
latest data only. It is the responsibility of the client application that made the
Snapshot request to retain all data, and, after the snapshot’s arrival, to apply
the data to bring that snapshot up-to-date. During disconnection, the client is
able to continue to operate using its own local cache to satisfy requests as far
as possible. After restoring communication, only the last image of the cache
needs to be updated. This can reduce the need for reconnection by skipping
all intermediate data. The event notification mechanism can then inform
applications of later changes in the underlying cached data. When Snapshot is
on, cache update notification is done only when the last image changes. The
data flow of Snapshot is shown in Figure 7.

7 Related Work

Reliability specific related work in messaging systems is discussed in Section
1. In this section, related work to Pronto is described. Since the initial JMS
specification was released [15], the existing MOM software has been rapidly
integrated under the JMS API. Examples are IBM’s MQSeries [8], TIBCO’s
TIB/Rendezvous [17], Softwired’s iBus [14], and BEA’s WebLogic [1]. However,
Softwired’s iBus Mobile is essentially the only one to extend JMS to mobile-tier,
and designed as an extension of J2EE application servers. It includes a messag-
ing middleware client library compatible with the JMS standard as well as a
middleware gateway used to connect mobile applications to J2EE application
servers. It supports mobile communication-specific protocols such as GPRS and
UMTS. In contrast, Gateway in Pronto is a message hub that can reside in the
device or anywhere in between. Pronto provides a flexible N-tier layout, deploy-
ing multiple gateways instead of a tight linkage with a server. Gateway offers
more than a transport protocol as described above. IBM’s MQSeries Everyplace

948 E. Yoneki

belongs to the MQSeries family of business quality messaging products. It is
designed to satisfy the messaging needs of lightweight devices with own API.
There is no standard messaging API for the mobile environment.

The original iBus before JMS heavily used multicast. Currently, several JMS
products support multicast transport such as TIB/Rendezvous. However, JMS
has not been tried on mobile ad-hoc networks. Much research currently focuses
on general datagram routing in both unicast and multicast routing [13,9], but
no definite solution to provide JMS semantics using these protocols has been
provided. An example of a drawback of using multicast is the drastic perfor-
mance reduction with redundant rebroadcasts [12]. For reliable transport over
IP multicast, various protocols such as SRM [5], RMTP [10], and TRAM [3] are
implemented. Pragmatic General Multicast (PGM) [6] is a reliable multicast sup-
port protocol for applications that require ordered or unordered duplicate-free
multicast data delivery from multicast sources to multiple receivers. For publish-
subscribe messaging systems, PGM provides a building block for the messaging
system itself, allowing higher performance and scalability for messages that need
to go to many destinations. This is a promising approach, but the PGM header
is not yet supported by any Java package. For now a reliable protocol based on
negative acknowledgment is designed and implemented in Pronto.

Optimizing data over a wireless environment has been successful, although
most technologies are tightly coupled with the applications or the servers, based
on a client-server model. Techniques for optimization include caching, protocol
reduction, header reduction, and adding an asynchronous model. For example,
IBM’s WebExpress [7] provides a web browser proxy between mobile clients and
a web server to optimize HTTP data. Caching is also tied to applications in
most cases. Java Temporary Cache (JCache) [16] has been proposed (but not
yet implemented practically) by Oracle and provides a standard set of APIs and
semantics that are the basis for most caching behavior including N-tier support.

8 Conclusion and Future Work

Pronto attempts to integrate technologies into a compact semantics-based mid-
dleware in support of issues specific to mobile environments. A mobile computing
environment is resource constrained and support of reliability requires precise
functionalities in both explicit and implicit ways. Deploying different plug-in
functions with Gateway demonstrates the construction of a reliable and efficient
message flow over a publish-subscribe system. Using disconnected operation and
SmartCaching improves flexibility for the design of mobile applications.
JMS is more complex than discussed here. Although JMS lacks security defini-
tion, Pronto would need to support other reliability functions such as adminis-
tration, security, error handling and recovery as well as distributed transactions.
Most importantly, it is critical to establish a standard API for publishing, man-
aging, and accessing public references to distribute functionality over mobile
environments; this includes security aspects such as encryption, authentication,
and access control on distributed objects.

Many Aspects of Reliabilities in a Distributed Mobile Messaging Middleware 949

Acknowledgment. I would like to thank Jean Bacon and Jon Crowcroft (Uni-
versity of Cambridge) for critical reading and constructive comments.

References

1. BEA. WebLogic 6.0 JMS. http://www.bea.com.
2. K. H. Britton et al. Transcoding: Extending e-business to new environments. IBM

System Journal, 40(1), 2001.
3. D. Chiu, S.Hurst, M. Kadansky, and J. Wesley. TRAM: Tree-based Reliable Mul-

ticast Protocol. Sun Microsystems Technical Report TR-98-66, 1998.
4. P. Eugster et al. The Many Faces of Publish/Subscribe. Technical Report TR-

DSC-2001-04, EPFL, 2001.
5. S. Floyd et al. A Reliable Multicast Framework for Light-weight Session and

Application Framing. ACM SIGGOMM Communications Review, 1995.
6. J. Gemmell et al. The PGM Reliable Multicast Protocol. IEEE Network special

issue on Multicast:An Enablling Technology,2003.
7. B. Housel and D. Lindquist. WebExpress: A System for Optimizing Web Browsing

in a Wireless Environment. Proc. of Int. Conf. on MobiCom, 1996.
8. IBM. MQ Series. http://www.ibm.com/software/ts/mqseries/.
9. S. Lee et al. On-Demand Multicast Routing Protocol. In Proc. of WCNC, 1999.

10. J. Lin and S. Paul. Reliable Multicast Transport Protocol (RMTP). Proc. of IEEE
INFOCOM ’96, 1996.

11. K. Nagao. Semantic Transcoding: Making the World Wide Web More Understand-
able and Usable with External Annotations. Proc. of Int. Conf. on Advanced in
Infrastructure for Electronic Business, and Education on the Internet, 2000.

12. S. Ni et al. The broadcast problem in a mobile ad-hoc network. In Proc. of
ACM/IEEE MobiCom, 1999.

13. E. Royer and C. Perkins. Multicast Ad-Hoc On-Demand Distance Vector Routing,
2000. draft-ietf-manet-maodv-00.txt.

14. Softwired. iBus Messaging . http://www.softwired-inc.com/.
15. Sun Microsystems. Java Message Service (JMS) API Specification.

http://java.sun.com/products/jms/.
16. Sun Microsystems. JCache: Java Temporary Caching API.

http://www.jcl.org/jsr/detail/107.prt.
17. TIBCO. TIB/Rendezvous Concepts . http://www.rv.tibco.com.
18. E. Yoneki and J. Bacon. Gateway: a Message Hub with Store-and-forward Mes-

saging in Mobile Networks. Proc. of ICDCS Workshops MCM, May 2003.
19. E. Yoneki. Pronto: Messaging Middleware over Wireless Networks.

4th ACM/IFIP/USENIX Int. Conf. of Middleware(Work in Progress), 2003.
20. E. Yoneki. Mobile Applications with a Middleware in Publish-Subscribe Paradigm.

Proc. of the Third Workshop on ASWN , 2003.

	Introduction and Background
	Delivery Semantics and Reliability
	Many Aspects of Reliability

	Pronto Overview
	Distributed Systems with Pronto in a Centralized Model
	Pronto in a Decentralized Model
	Distributed Gateways over JMS Servers

	Mobile JMS Client
	Serverless JMS
	Gateway
	SmartCaching
	Related Work
	Conclusion and Future Work

