
Policy Storage for Role-Based Access Control Systems

András Belokosztolszki, David M. Eyers, Wei Wang, Ken Moody
University of Cambridge Computer Laboratory

JJ Thomson Avenue, Cambridge, United Kingdom
{firstname.lastname}@cl.cam.ac.uk

Abstract

Role-based access control has been a focal area for
many security researchers over the last decade. There have
been a large number of models, and many rich specification
languages. However there has been little attention paid to
the way in which access control policy is stored persistently.
This paper investigates policy storage from the perspective
of access control to the policy itself, and of its distributed
administration.

1. Introduction

By introducing roles as an indirection between the
mapping of users to privileges, role-based access control
(RBAC) can simplify security administration tasks. Be-
cause users are mapped to roles and roles are then mapped
to privileges, the addition or deletion of users is a sepa-
rate process from adding and deleting the privileges con-
nected to those roles. This simplifies management com-
pared to approaches such as access control lists, access ma-
trices, or DAC [7]. However, most RBAC models have nu-
merous extensions beyond the basic role abstraction, some-
times leading to complex policy specification languages.
For example, these languages might support separation
of duty constraints, fast revocation and/or role hierarchies
[1, 7, 8, 9, 13]. Although policy design has drawn signif-
icant research attention, often little thought has been given
to how these policies might actually be stored. Many pro-
totype implementations use a flat file structure, for example
a XML file. Some store their policies via a directory ser-
vice; however, the emphasis is still on the use of such policy,
and not how it is created in the first place, nor subsequently
maintained during system operation.

Clearly utilising a text file provides little fine-grained
control over its access control. Generally, binary access
will be employed, allowing anyone with access to the file
complete policy update privileges. This is clearly inade-
quate, especially when one considers the requirements for

any large-scale organisation. Our research is partly moti-
vated by Electronic Health Record (EHR) access control
within the UK National Health Service. In the NHS, ac-
cess control on patients’ records must be enforced within
a large-scale distributed environment where local domains
(e.g. hospitals) have varying degrees of autonomy. To be
scalable, we must support the distribution of policy through-
out these domains. We also have further requirements from
two extremes of policy granularity; on one hand there may
be NHS-wide policy standards required, and on the other,
UK data protection laws may lead to the requirement that
patients can elect to restrict access to their own records, in
this way becoming administrators of certain policy compo-
nents. Thus for such highly distributed administration, we
need to apply access control over the access control pol-
icy representation itself – segmenting policy storage to give
control to principals with varied trustworthiness, compe-
tence, and privilege.

Restricting the modification of access control policies
can be done at two main levels. First, a principal’s requests
to modify policy are intercepted, and policy is used to deter-
mine whether such an operation is permitted or denied. As-
suming sufficient privilege to make a policy modification,
this new policy version can then be checked as to whether
it satisfies certain constraints (see [4]). We consider both
these approaches in this paper.

The frequency of policy change in large-scale systems
may vary significantly. Some systems might modify policy
as infrequently as once per year whereas others may make
changes many times a day. In either case multiple versions
of a policy may be active at any given time, and this poses
problems.

Our goal is a scalable policy store which is distributed
and active, by which we mean that notification of change to
one policy component is distributed as soon as possible to
the manager of each policy component that may depend on
it. The policy store must support fine-grained access con-
trol over its modification. The policy management system
also must provide version control and handle any version
conflict situations.

1

This paper presents our experience designing and im-
plementing a policy store for our particular model of role-
based access control, which is introduced in Section 2. Note
that most of our work is relevant to general RBAC models;
we indicate which parts of our policy store are particularly
specific to our RBAC architecture. In the second part of
this section we describe work done in this area by other re-
searchers and compare their research with ours. Section 3
examines the policy structure we want to store. This in-
cludes both the information that encodes the meaning of
policy itself, and the meta-information needed to manage
policy versioning, facilitate policy access control, and to
ease policy administration.

In Section 4 we present implementation details relat-
ing to activity support, and discuss how our policy store
manages version control and maintains policy consistency.
Finally, Section 5 concludes the paper and provides an
overview of our future research goals.

2. Related Work

This section provides a quick overview of the technolo-
gies used within our research. We begin by introducing the
OASIS RBAC model.

2.1. OASIS RBAC

As mentioned in the introduction, Role-based access
control introduces a role indirection between users and priv-
ileges. Many RBAC models (see [7, 11, 13]) extend this
basic approach with constraints that require a user to hold a
number of particular prerequisites, probably other roles or
references to external predicates, in order to make further
role activations. Extensions might also include support for
delegation; enabling roles or principals to give temporary
rights to other principals.

Without loss of generality we will look at one particu-
lar implementation of role-based access control. The Open
Architecture for Secure Interworking Services (OASIS) [1],
includes an RBAC model which supports most of the exten-
sions commonly used at present.

In OASIS users enter a role (within a given OASIS ses-
sion) by satisfying some role activation rule. These rules
include a sequence of parameterised prerequisites, each pre-
requisite being a role, an environmental predicate or an ap-
pointment. Environmental predicates form a link to services
external to the OASIS world, for example database systems
or time services. Appointments are credentials like roles,
but their lifetime is not session-bounded. Thus they can
cater for concepts like delegation or privilege assignment
as well as real world qualifications (e.g. a doctor’s certi-
fication). Apart from having a lifetime that is longer that

of a session appointment certificates (instances of appoint-
ments) can impose additional, policy independent restric-
tions. An important feature of OASIS is its fast revoca-
tion mechanism. Prerequisites can be marked as member-
ship conditions – any membership condition becoming false
(e.g. a role is revoked) will cause immediate revocation of
the roles dependent on this prerequisite. An activation rule
might look like:

local user(h id?),

employed medic(h id?)∗,
on duty(h id) ` doctor on duty(h id)

In this rule there are three prerequisites: a role (lo-
cal user) with one parameter (h id?), an appointment (em-
ployed medic) that also has a parameter (h id?) and an
environmental predicate on duty, also with one parame-
ter (h id). If a principal holds these prerequisites then
according to this rule it may enter the target role doc-
tor on duty(h id), where the h id parameter is set by the
rule. Note, that the appointment is also a membership con-
dition, therefore the target role is revoked if the validity of
the appointment certificate for employed medic is revoked.

Privileges are assigned to roles by means of authorisa-
tion rules. Any such rule assigns a single privilege to a
single role, but may also contain environmental predicate
prerequisites. Note that these prerequisites’ parameters can
bind privilege parameters. An example authorisation rule
is:

doctor on duty(h id),

patient o f (h id,x) ` accessEHR(′general in f .′,x).

In this example a privilege accessEHR is assigned to
the doctor on duty(h id) role if the environmental condition
patient of(h id, x) evaluates to true. In this rule h id and x
are variables and ’general inf.’ is a constant.

Full details of the OASIS model can be found in [1].

2.2. Related work

An important motivation for our research is the need for
policy administration and access control to it. Most models
use simple text files for policy specification or just com-
pletely ignore this important issue.

Sandhu introduces the concept of administrative do-
mains in [12] about ARBAC. This work provides the ba-
sic means required to control access to a policy store. The
granularity of access is too coarse for our needs, however,
we have extended their domain concept into our notion of
contexts. Contexts are discussed in section 4.4.

Many RBAC models use more sophisticated means to
store a policy than simple text files. Ponder [6] reads its

2

Policy

Predicate

Data Type Function Appointment Role Authorization Rule Role Activation RulePrivilegeContexts

Figure 1. The major components of a policy.

policy from a directory accessed via LDAP. Whilst this al-
lows fine-grained access control to a policy, the hierarchical
structure of the directory is rigid. Our approach permits
several, orthogonal policy classification schemes to operate
in parallel, achieving functions such as information flow re-
strictions as well as assisting distributed administration.

Some models encapsulate policy components into certifi-
cates. An example for this is PERMIS [5] that uses X.509
certificates, which it stores in a directory service. This ap-
proach supports a less expressive access control to policy
components. Also, due to the nature of certificates the re-
moval of selected policy components is more difficult.

3. Policy Components

RBAC policy storage will clearly depend on the compo-
nents which make up a policy representation. In this sec-
tion we describe the OASIS RBAC components and talk
about relationship between them. The main components are
shown in figure 1. In many cases this is without too much
loss of generality in terms of relevance to other RBAC ap-
proaches. The individual components are as follows:

Data types describe the types used in the policy for func-
tion return values, and prerequisite parameter types – the
types for role, appointment, and environmental predicate
parameters. From a storage perspective these data types are
handled similarly to data types in many standard relational
database management systems, e.g. PostgreSQL [10].

Note the specification of a data type must include some
functions that enable management of its values. Such func-
tions include tests for equality, serialisation and type con-
version.

Contexts provide a naming and classification mecha-
nism on which policy relating to policy modification can be
based. Contexts are labels that can be attached to, and thus
group together, sets of policy components including rules,
roles, even role parameters and contexts themselves. Any
policy component can have a number of contexts associated
with it. At policy specification time, specification errors
or policy modification privilege violations can be detected
by using contexts to check information flow constraints be-
tween policy components. Contexts can also be used as a

classification scheme for restricting access to the policy el-
ements themselves. Such policy element classification is
essential for distributed policy administration.

Although largely used for policy administration, clearly
this context information needs to be included in our pol-
icy store, along with the permissible relationships between
contexts. For more information on contexts see [3].

Functions and predicates are mainly used as prereq-
uisite conditions in a policy. Predicates are an extension
of functions as they can refer to entities outside the access
control policy engine (for example they can access external
databases or web services). Predicates and functions both
have a return data type, although in the case of predicates
the return type is fixed to the built-in boolean type. All the
parameters of functions and predicates are also typed.

In some contexts, the optimisation of function usage can
be greatly assisted by further meta-information, such as
whether functions are invertible (and what the inverse func-
tion is if it exists), whether backtracking through this func-
tion can generate multiple results, and so forth.

Privileges specify the name and typed parameters of the
privileges that can be the target of authorisation rules.

Appointments are a concept specific to OASIS RBAC,
but from storage point of view they behave like roles that
are the part of all RBAC models.

Roles are used either as rule prerequisites or as the tar-
gets of activation rules. As in case of privileges and appoint-
ments, information about the parameter types and context
must be stored for each role.

Authorisation rules, as described in our section about
OASIS, broker the role to privilege mapping. The structure
of these rules is visualised in figure 2. In this figure we refer
to Terms which are either constants or variables.

The container objects are present to represent instances
of prerequisites or privileges. In addition to the reference
of the prerequisite or privilege type, these instances con-
tain rule specific information about the parameter bind-
ing of prerequisites to either variables within the scope of
each rule, or constants. For example a role specification
local user(id integer) gives information only about the data
types and names of its parameters, but a role container
binds the parameters of this role to terms that hold a value

3

(local user(X), where X is a variable of a rule this role in-
stance is part of).

Authorization Rule

Predicate Container Role Container

PrerequisiteFunction

Term

Privilege

Privilege Container

Role Variable

Figure 2. Authorisation rule structure

When storing an authorisation rule in a file either as text
or an XML document the sequential nature of files imposes
an ordering on the rules. This quality is lost when these
rules are stored in a data base like system.

Many RBAC implementations including OASIS do not
require ordering, but some RBAC use this information to
prioritise among rules. To support both these models rules
can be partially ordered, and this information must be stored
with them.

Activation rules are similar to authorisation rules, and
are depicted in figure 3. Here the containers store additional

Role Activation Rule

ActPredicateContainer ActRoleContainer

ActPrerequisite
+membership: boolean

Predicate

Term

Role

target

Variable

ActAppointmentContainer

AppointmentRoleContainer

Figure 3. Role activation rule structure

information such as whether a prerequisite is a membership
condition.

4. Policy Store

In this section we look at policy storage from an archi-
tectural perspective. We present a design which uses three
levels of abstraction (see figure 4).

The lowest level, described in Section 4.1, provides ad-
vanced notification and triggering support in the underly-
ing storage database. In our implementation we extended
the PostgreSQL [10] RDBMS, integrating our t5 predicate
store. The API of this layer is targeted to the needs of our
middle layer.

Policy management

Active predicate management

Policy component management

Users

RDBMS

Figure 4. Our three layer policy store archi-
tecture.

As described in Section 4.2, our middle layer uses the
lowest layer active predicate store to assist it in map-
ping policy components onto database tables and monitor-
ing their modification. The API presented to the highest
layer provides addition, deletion and modification opera-
tions over policy components whilst hiding all the low-level
notifications caused by such operations.

The highest layer is responsible for grouping policy
modifications into a larger transaction-like units, providing
version support and ensuring consistency. We discuss this
layer in Section 4.3.

OASIS makes extensive use of a publish/subscribe event
middle-ware for managing revocation and for handling
problems associated with unavailability of OASIS servers.
By using self-administration, our particular policy store im-
plementation inherits many of these desirable OASIS fea-
tures.

4.1. The t5 Active Predicate Store

We originally implemented the t5 active predicate store
to provide efficient support for environmental predicates
that accessed databases in OASIS. t5 predicates, just like
relational database tables, are specified by a name and a
type schema.

Treating relational database tables as predicates, t5 adds
advanced, automatically generated triggering based on a
small amount of meta-information provided for each table.

Note that to support the RBAC policy component data
types, we use t5’s extensible data type system to specify
and check predicate parameters. A simple expression lan-
guage describes the particular actions to perform based on
changes to the predicates. These expressions are automati-
cally translated into SQL triggers and into meta information
that is used by t5 triggers.

We store all the t5 conditions in template tables (see fig-
ure 5) which relate to each predicate of interest. Storing
conditions in this way has many advantages over explicitly
setting up triggers for each. Firstly the semantics of trigger
conditions are restricted, meaning we know about invert-
ibility and other conditions of the available template evalu-
ation functions. We can thus increase efficiency by filtering
which templates need evaluation.

4

...

...

Sc
he

m
a

te
m

pl
.

N
ot

if
y

na
m

e
A

ct
io

n

C
om

m
 ta

bl
e

NotificationArguments and matching functions

Old
Arg1

New
Arg1

Old
Arg2

New
Arg2

Old
Argn
New
Argn

function
ng

function
2f

function
2g

function
1g

function
1f

function

nf

E
ve

nt
 ty

pe

Figure 5. The structure of a template.

Whenever a predicate changes (e.g. tuple insertion, dele-
tion or modification), it is matched against the relevant tem-
plate(s). These templates include old and new value expres-
sions which are matched via template functions to old and
new values of the predicate. These functions (shown as fi
and gi in Figure 5) are user-specified and can even be added
at runtime. If a checked template matches a change then the
action part of the template is executed. This can publish an
event to a registered principal. t5 supports both push and
pull style messaging, and can optionally guarantee deliv-
ery. A post action is executed after such a template match.
This post action can be used, for example, to specify that a
template should be automatically deleted after a particular
number of successful matches.

A major advantage of t5 is that its features are accessible
from any SQL console. Users merely need to know about a
few extra table structures. For example, to set up a new t5
predicate it is sufficient to add a tuple to the t5 predicates
table. This will automatically set up all the relevant ta-
bles that store meta-information, templates, triggers, and so
forth, if they do not already exist. From a user perspective,
the predicate tables behave exactly the same as other tables
in the DBMS. t5 also comes with a set of helper functions
which perform tasks such as adding wrappers to the data
types, or adding access control restrictions.

Note that t5 can also be accessed explicitly from OASIS
via a set of environmental predicates, although to support
the policy storage in this paper this extra interface is not
necessary.

4.2. Policy Component Storage

We build on the predicate store presented above to map
policy components into predicates that are stored persis-
tently in the database, and react to changes immediately.

Due to space limitations we are only able to examine
a few of the fourteen tables we use to store our policy in
a relational database system, although this is sufficient to
illustrate our approach.

Activation rules, as for any of the other policy compo-
nents, may be associated with some number of contexts.
This association is rendered in the standard manner for n-

to-n relations, as in:

act_rules (ar_id ID PRIMARY KEY, ...)
contexts (c_id ID PRIMARY KEY, name text, ...)
actrule_contexts(ar_id ID REFERENCES act_rules,

c_id ID REFERENCES contexts)

These tables would normally be accessed indirectly via
an API that concerns policy components described in Sec-
tion 3. For example, the method add context(...) modi-
fies the Contexts table. These methods are responsible for
maintaining consistency of the underlying tables.

Before invocation of these methods leads to any modi-
fications, the requesting principal must be verified to have
appropriate authorisation.

4.3. Policy Management Layer

Although the methods provided by the API of the mid-
dle layer in themselves perform simple steps, the seman-
tics of the policy elements may lead to many method calls
being required to make a single change. For example, to
add a new rule one must specify the variables for this rule
as well as the prerequisites, and bind the parameters of the
prerequisites (the number of which may vary) to variables
or constant values. It is not appropriate to provide a single
middle layer method to perform all these operations, how-
ever not doing so might lead to an operation like adding a
rule being non-atomic. Thus for policy evolution we must
provide a means of grouping such a method call sequence
into a transaction, and to identify each such consistent pol-
icy version. The necessary functions are provided by the
policy storage middle layer.

4.4. Consistency

Policies are distributed over a number or OASIS servers,
so, naturally, it is necessary to disseminate policy updates.
To avoid inconsistencies due to use of different policy ver-
sions the lower layers of policy storage provide us with no-
tification of policy modification. For disseminating these
notifications we use the notification mechanisms that are al-
ready present in the OASIS middleware. Issues concerning
notification failures and attack handling are described in [2].

5

The style of policy modification transaction at a given
server is a check in/check out system rather than utilis-
ing other automatic conflict resolution methods common in
databases. Once a policy is checked out at a particular pol-
icy store server, modifications can be performed on it. There
are many ways to constrain such modifications:

(1.) Fine-grained access control based on the modifi-
cation primitives. We do not have space to detail all the
fine-grained modification methods of the middle layer here,
however each is associated with a parameterised RBAC
privilege. Whenever such methods are invoked, the OA-
SIS engine will have checked that the principal requesting
the change holds the relevant privilege.

(2.) As each policy component can be tagged as a mem-
ber of some number of contexts, modification privileges can
make use of context information as discussed in [3]. When
policy components are grouped into units based on contexts,
the number of privileges required for specifying access to
the policy itself can be reduced significantly.

(3.) Once a policy modification has been completed, that
is the new policy is ready to be checked in into the policy
store, the policy may be checked against a set of high-level
constraints, so called meta-policies [4]. Meta-policies can
express constraints such as static separation of duties, and
can insist on the existence of certain types, roles, and rules,
among other tests. These consistency checks occur at the
top level in our policy store architecture.

After a policy has been successfully checked into the
policy store it is assigned a new version tag, and appro-
priate notification events are sent out regarding this pol-
icy change. To achieve fast policy dissemination we use a
publish/subscribe middleware that is already integrated into
OASIS. Information about the differences between policy
versions may also be issued. This information is used by
tools that monitor policy evolution. For example, it may be
acceptable that a role issued based on a previous policy ver-
sion be retained and accepted for access requests, but oth-
erwise all roles issued by the obsolete policy version will
need to be revoked.

5. Conclusion

This paper described our work on active RBAC policy
storage. We described the three-level architecture used in
our implementation. At each level we discussed the kinds
of policy consistency being checked, and what policy meta-
information was required. Overall we have designed and
implemented a system to provide comprehensive support
for RBAC access control, policy management and policy
evolution.

6. Acknowledgements

András Belokosztolszki is supported by King’s Col-
lege Cambridge, the John Stanley Graduate Fund, and
the United Kingdom Overseas Research Students (ORS)
Awards Scheme. David Eyers is funded by the Cambridge
Australia Trust and the ORS Awards Scheme. Wei Wang’s
research is supported by EPSRC.

References

[1] J. Bacon, K. Moody, and W. Yao. A model of OASIS role-
based access control and its support for active security. ACM
Transactions on Information and System Security (TISSEC),
5(4):492–540, Nov. 2002.

[2] A. Belokosztolszki and D. Eyers. Shielding RBAC infras-
tructures from cyberterrorism. In Research Directions in
Data and Applications Security, pages 3–14. Kluwer Aca-
demic Publishers, 2003.

[3] A. Belokosztolszki, D. M. Eyers, and K. Moody. Policy con-
texts: Controlling information flow in parameterised RBAC.
In Policy 2003: IEEE 4th International Workshop on Poli-
cies for Distributed Systems and Networks, 2003.

[4] A. Belokosztolszki and K. Moody. Meta-policies for dis-
tributed role-based access control systems. In Policy 2002:
IEEE 3rd International Workshop on Policies for Distributed
Systems and Networks, pages 106–115, 2002.

[5] D. W. Chadwick and A. Otenko. The permis x.509 role
based privilege management infrastructure. In Seventh ACM
Symposium on Access Control Models and Technologies,
pages 135–140. ACM Press, 2002.

[6] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The pon-
der policy specification language. In Policies for Distributed
Systems and Networks,International Workshop, POLICY
2001, Bristol, UK, pages 18–38, 2001.

[7] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A role-based
access control model and reference implementation within
a corporate internet. In ACM Transactions on Information
and System Security, volume 2, pages 34–64, 1999.

[8] L. Giuri. Role-based access control: a natural approach.
In Proceedings of the first ACM workshop on Role-based
access control, pages II–33–37, 1995.

[9] C. Goh and A. Baldwin. Towards a more complete model
of role. In Proceedings of the third ACM workshop on Role-
based access control, pages 55–62, 1998.

[10] T. P. G. D. Group. PostgreSQL 7.3 Programmer’s Guide.
http://www.postgresql.org.

[11] M. Nyanchama and S. Osborn. Access rights administra-
tion in role-based security systems. In IFIP Workshop on
Database Security, pages 37–56, 1994.

[12] R. Sandhu, V. Bhamidipati, E. Coyne, S. Ganta, and
C. Youman. The ARBAC97 model for role-based admin-
istration of roles: preliminary description and outline. In
Proceedings of the second ACM workshop on Role-based
access control, pages 41–50, 1997.

[13] R. Sandhu, E. Coyne, H. L. Feinstein, and C. E. Youman.
Role-based access control models. IEEE Computer,
29(2):38–47, 1996.

6

