
Policy Contexts: Controlling Information Flow in Parameterised RBAC

András Belokosztolszki∗, David M. Eyers∗, Ken Moody
University of Cambridge Computer Laboratory

JJ Thomson Avenue, Cambridge, United Kingdom
{firstname.lastname}@cl.cam.ac.uk

Abstract

Many RBAC models have augmented the fundamental re-
quirement of a role abstraction with features such as param-
eterised roles and environment-aware policy. This paper
examines the potential for unintentional leakage of infor-
mation during RBAC policy enforcement, either through the
exchange of parameters with external services when check-
ing environmental conditions, or through a policy design
which does not appropriately separate policy subsections
with different basic purposes. We propose a simple, robust
mechanism for handling these problems, and illustrate our
approach with a current application of our OASIS RBAC
system.

1 Introduction

Role-based Access Control (RBAC) has become a
widely adopted security paradigm through its intuitive
match to many real-world applications. The most funda-
mental RBAC notion is the role abstraction; namely that
roles are an intermediate entity sitting between the users or
principals in a given security setting, and the privileges that
these users must be granted in order to use the resources
of the system. This abstraction mirrors the way roles usu-
ally operate within human organisations; a particular person
will have certain privileges derived from their job title, and
thus only indirectly associated with that individual. Figure
1 depicts this simple scenario.

As suggested by Sandhu et al. [14], the role abstrac-
tion is merely a base for many more complex features
(this base model is referred to as RBAC0 in their work).
Their other models either incorporate notions of constraint-
guarded role-to-role transitions (RBAC2), the concept of role
hierarchy and delegation of authority (RBAC1), or a combi-
nation of the two (RBAC3).

RBAC models incorporating rule-based role activation

∗These authors contributed equally to this paper.

(such as RBAC2) will generally provide parameterised roles
to determine the specific behaviour of role instances in a
particular activation environment. In contrast to this ‘inter-
nal’ parameter environment, another common extension to
rule-based role activation is a capacity to incorporate ex-
ternal environmental factors through some predicate mech-
anism communicating with other system components. In
this paper we shall refer to elements that incorporate exter-
nal environmental input as environmental predicates. Here
we imply both that these predicates may be true or false
depending on dynamic conditions, and that, as in Prolog
predicates, parameters may be bound as a side-effect of a
successful predicate evaluation.

Whilst these mechanisms certainly increase the expres-
siveness of RBAC policy, they also increase its design com-
plexity, and consequently the opportunity for mistakes that
may cause information to flow to inappropriate destinations.
Some of our earlier work [2] performed an initial threat
analysis on the underlying distributed infrastructure of OA-
SIS (our particular RBAC implementation). In contrast, this
paper focuses on policy-level rather than system-level is-
sues, and is thus more widely applicable to any parame-
terised RBAC model, including those that allow a two-way
interaction with the dynamic environment.

We propose a system for classifying the constituent el-
ements within parameterised RBAC role-activation con-
straints into contexts defined within the policy store. In this
paper we say that a context names and identifies a partic-
ular section of an access control application. Each of the
parameters, roles, privileges, predicates and rules used to
specify policy in that access control application will exist
within some number of contexts. Sometimes it will be ap-
propriate to identify a policy administration context, and we
discuss this example in section 7. Our primary goals are to
control information flow, that is the passage of data through-
out the system, and to support distributed policy adminis-
tration. In our examples these constraints will be OASIS
role-activation rules, which are described in section 2.

We can apply context classification for a numerous pur-
poses. For a start, we can use contexts to restrict the pos-

1

Users Roles Privileges
activation

rule

activation

rule

authorisation

rule

Sessions

Figure 1. The basic Role-Based Access Control components.

sible specification of dependency paths between RBAC el-
ements occurring in role-activation conditions. This style
of classification is useful to protect against undesired in-
formation flow into and out of the access control environ-
ment through environmental predicates. In addition, it pro-
vides assistance in specifying the expected semantics of
such predicates.

We can also use contexts to provide a basis for control
over specific groups of privileges. In this case contexts help
prevent undue information flow between different aspects
of a single policy specification (i.e. one policy segment may
define rules that relate to quite different uses of a given ser-
vice than another).

Contexts can be used at a finer granularity to restrict in-
formation flow between the parameters of RBAC elements
occurring in role-activation conditions, including flows to
and from specific parameters of environmental predicates.
The specifics of the OASIS rules and their parameterised
elements are described in section 2 below.

Another use of policy contexts is to control the overall
behaviour of specific groups of RBAC role-activation con-
straints. This allows better distributed administrative con-
trol over the deployment of policy relating to such conflict-
ing privileges. Finally, contexts provide a basis for access
control over the policy store itself.

Note that our proposed mechanism for shielding the
RBAC infrastructure from the external environment is un-
necessary if the environmental predicates being used are
provably correct, or if they can be appropriately sand-
boxed. However we feel that such conditions are highly un-
realistic at present. Even if other ways of ensuring informa-
tion flow security exist, we believe our work is still useful
in other regards, for example supporting the sub-delegation
of policy administration.

This paper is organised as follows. Section 2 provides
an introduction to some of the research that has been done
on parameterised and context-aware RBAC. Section 3 in-
troduces how we define policy contexts, including the spec-
ification of context hierarchies. The next three sections de-
scribe where policy context restrictions may be placed, and
why each case is useful. First, Section 4 uses context speci-

fications to limit the overall acceptable dependency proper-
ties for particular policy elements. Note that these restric-
tions will hold for the evolution of policy (i.e. the definition
of new RBAC constraints). Restrictions on privileges are
also described. Section 5 discusses applying contexts at a
finer level of granularity, namely on the individual parame-
ters of policy elements as they participate in OASIS rules.
The mechanism is similar to the preceding case of apply-
ing context classification to policy elements, but designing
contexts for this level of specification will focus much more
on information flow properties rather than the higher level
design of dependency restrictions. For example, rather than
using contexts to indicate the semantics of a role for the
sake of policy evolution, we might just want to “fire-wall” a
particular parameter to ensure that it is only passed around
within a controlled context. This is particularly relevant
when the computation of RBAC constraints involves call-
ing out into an external environment.

Following this, section 6 describes the use of context
specifications to provide dependency restrictions on specific
sets of rules. A striking application of all of the above styles
of policy classification is to support distributed policy ad-
ministration, as described in section 7. Contexts provide a
useful granularity at which to define reflexive policy main-
tenance privileges.

Section 8 illustrates our approach via description of an
application for which OASIS has currently been deployed,
namely to provide a policy-based access control system
within a prototype electronic health record programme for
the United Kingdom National Health Service. Finally, sec-
tion 9 summarises our contributions and concludes this pa-
per.

2 Related Work

This section describes some of the research which has
been done into context-aware, parameterised RBAC. As
discussed in the introduction, most real-world RBAC sys-
tems now provide parameterisation; early examples include
[1, 9, 10, 12]. This trend has been further reinforced by the

2

specific parameterised models present in the NIST RBAC
standards [15].

Equally, many researchers have examined how to include
dynamic environmental interaction in their RBAC models
[1, 5, 6, 11]. Note that some authors refer to the dynamic
environment as ‘context’, using the word in a different sense
from this paper. One common motivation for such environ-
mental interaction support comes from a desire to enforce
dynamic separation of duties (SoD) constraints within role
hierarchies. For example, if a clerk role can be a prereq-
uisite role for activating either a cheque signer role or a
cheque counter-signer role, we may well want to enforce
that they cannot activate both such roles for any one cheque
object. Policy cannot be statically designed to uphold these
dynamic requirements. The more restrictive so-called static
SoD constraints can enforce such conditions, but they are
overly restrictive, often crippling the expressiveness of pol-
icy. Employing static SoD in the clerk example just pre-
sented would preclude each individual clerk from being
able to perform both signing and counter-signing roles, and
would thus represent a significant mismatch between the ex-
pressiveness of policy and the requirements of applications.
Another motivation for dynamic environmental interaction
is to provide support for temporal conditions. Many models
support such policy externalisation, among them TRBAC
[5], OASIS [1] and Ponder [7]. Externalised policy com-
ponents can clearly form a potential security problem, thus
certain amount of semantic information about these compo-
nents must be known to the policy engine. In the case of
temporal conditions such information can be formally spec-
ified, but our approach helps to address this problem for
more general cases.

An important goal we set for our context model was to
address distributed policy administration. Initial work in
this area can be found in [13], wherein Youman et al. intro-
duce the ARBAC model that uses RBAC to manage access
to the RBAC policy itself. Our work extends theirs as it
provides additional means to group policy components to-
gether, thus adding to the expressiveness and simplifying
such administrative RBAC policies.

The basic information flow control notion we employ
is certainly not new in computer science. For example, a
precise and formal model is presented in [8]. We use a
slightly different terminology, referring to contexts instead
of security classes or security labels. Also, we generally
do not need most of the more complicated features of some
of these models, such as dynamic security label binding or
analysis of implicit information flow.

The OASIS system [1] developed at the University of
Cambridge is a distributed RBAC model that incorporates
parameterised roles, appointment (which generalises dele-
gation), and rule-based role activation. There is extensive

support within these rules for checking context by supply-
ing parameters to environmental predicates.

Whilst appointment is a useful feature of OASIS, for
the purposes of this paper an appointment can simply be
thought of as a special type of role with a lifetime exceed-
ing that of a session, whose only privileges are to enable the
activation of standard (session-bound) roles. We shall often
use the term ‘rule element’ when referring to a role, appoint-
ment, privilege or environmental predicate, these being the
possible preconditions for, or targets of OASIS rules. Note
that special care must be taken when considering informa-
tion flow relating to environmental predicates. The reason
for this is that environmental predicates can set parameter
values (these are the out parameters), and they can do so by
considering the values of in parameters - indeed this partic-
ular type of information flow provided a strong motivation
for the research presented here.

OASIS role activation rules

OASIS policy is specified via two types of parameterised
rules: role activation and authorisation rules. A role activa-
tion rule allows a user to be assigned an active role within
the context of a session, and is of the form:

r1,r2, ...,rnr ,ac1, ...,acnac ,e1, ...,ene ` r

where ri, ac j and ek represent the nr prerequisite roles, nac
appointment certificates and ne environmental constraint
predicates in this rule respectively, and r is the target role.
In fact, any of these rule prerequisites and the target rule
may be parameterised. An example rule might be:

doctor(doctorID?),

currentShift(shi f t?),

isOnDuty(doctorID, shi f t) ` doctorOnDuty(doctorID)

Here doctor is a prerequisite role, and currentShift and
isOnDuty are environmental predicates. Note that the ap-
pended ‘?’s indicate that those parameters are bound to the
values already set when the rule prerequisite elements in
which they appear are presented to the rule. The alterna-
tive is parameters whose values are bound via the successful
evaluation of an OASIS rule. These parameters are typed;
this type information is recorded in the definitional section
of the policy, and thus does not need to be repeated in the
rules themselves. Often parameter modes do not need to be
specified either, since they can be inferred from the speci-
fication of a particular environmental predicate; but this is
not always the case, since parameters of some predicates
can occur in both ‘in’ or ‘out’ mode. It is therefore good
practise to define the mode when specifying the rule.

3

It should be clear from the above that an OASIS role acti-
vation rule can pass parameters into and out of the rule eval-
uation system via environmental predicates. These predi-
cates may be as simple as type conversion functions, but
they may also implement such complex operations as ex-
ternal database queries. In addressing information leakage,
we differentiate explicitly between local functions and envi-
ronmental predicates. Functions are blocks of code that run
entirely within the OASIS service. They may provide facil-
ities such as type conversion and other useful tools for eval-
uating expressions within rules – they are trusted pieces of
code within the OASIS infrastructure that do not risk leak-
ing information externally. On the other hand, environmen-
tal predicates extend the functionality of OASIS by incor-
porating an external computation. Examples might include
performing database lookup, or incorporating time into OA-
SIS rule evaluation. Potentially they can have undesirable
side-effects, and the information flow between them and the
OASIS infrastructure must be considered carefully.

OASIS authorisation rules

The other main type of OASIS rule specification is the
authorisation rule. Authorisation rules assign a privilege to
a role, and have the following form:

r,e1, ...,ene ` p

where r is the role in question, p is the privilege, and ek
represent the ne environmental constraint predicates. As for
role-activation rules, authorisation rule components may be
parameterised. The following example describes an autho-
risation rule wherein someone active in the role of a doctor
currently on duty, who is near a patient, and is assigned
to be treating that patient, can gain the read privilege on
the patient’s electronic health record (EHR). We assume
that the patientZone environmental predicate works using
some sort of automatic location sensor in a hospital, and
that the treatingDoctor environmental predicate confirms
the mapping between doctors and their current patients via
a database lookup.

doctorOnDuty(doctorID?),

patientZone(patientID?),

treatingDoctor(doctorID, patientID), ` readEHR(patientID)

We can impose context restrictions on rule parameters
and rule elements because of the comparative simplicity of
rule specifications compared to arbitrary programming lan-
guages. General purpose programming languages are cur-
rently too expressive to be sand-boxed effectively. OASIS

policy rules strike a balance – they are not designed to pro-
vide Turing completeness in themselves, but they can in-
clude programmable predicates. OASIS rules are declara-
tive, and simple enough to check statically to ensure that no
cyclic dependencies arise during parameter evaluation.

Before we discuss our parameter and role context model,
we should mention web-services. The original OASIS pro-
totypes were developed before the notion of web-services
had been considered. However, web-services provide a very
convenient mechanism through which access control sys-
tems might incorporate context. Our most recent Enterprise
JavaBeans implementation of OASIS does in fact use web-
service technologies (notably SOAP and WSDL) to provide
environmental predicates to OASIS policy servers. Evi-
dently such public forms, and indeed the risks involved with
calling services “at arm’s length”, emphasise the need for
mechanisms to avoid information leakage.

3 Context model

Our model for classifying policy components into par-
ticular contexts can be viewed as an extremely simple form
of meta-policy, namely a policy on the use of policy. Our
examples use the OASIS architecture, since it is the environ-
ment in which we have implemented and tested our ideas,
however it is important to realise that much of what we pro-
pose is relevant to any RBAC system. All RBAC systems
can use contexts to classify roles, and parameterised RBAC
systems can additionally use contexts to classify role pa-
rameters. The OASIS-specific context comes when we use
policy contexts within the semantics of OASIS rules. Gen-
erally our classification contexts are much simpler - indeed
are really just a form of static type checking.

Note that the context extensions that we have presented
in this paper are not directly integrated into our current OA-
SIS implementation. Instead, the XML policy files under-
stood by OASIS are used as a conduit between it and the
‘Desert’ policy authoring and analysis tool, first introduced
in [4].

As mentioned in the introductory section, there are a
number of independent uses for the policy context frame-
work we describe. The following four sections specifically
examine some of these applications. This section, however,
is focused entirely on the actual definitions of contexts. First
we discuss how context definitions interleave into current
OASIS policy specifications. We then extend the notion of
contexts to include context hierarchies and discuss the se-
mantics of sub-context relationships.

3.1 Context definitions for segregation

Currently OASIS policy specifications are divided up
into two main areas; a dictionary that defines access control

4

entities, and a rule repository that specifies the conditions
under which role activation and privilege authorisation may
take place.

We describe here how basic policy contexts are defined,
and thus are augmenting the first region of OASIS policy
specifications. Note that currently our OASIS implementa-
tion stores its policy in XML files contained within each
OASIS role-membership certificate issuing service. The
structure of these files provides a convenient framework in
which to present the concepts and examples introduced in
this paper. However, subject to a threat analysis, we intend
to shift from a policy file methodology to one employing a
more sophisticated, secure, shared repository. This is par-
ticularly relevant to the requirement that distributed access
control should be applied to the access control policy itself.
See [3] for further discussion.

Because the dictionary section also specifies types for
the parameters, these types need not be repeated when
later defining the prerequisite conditions and the targets of
rules. Information flow for parameters should be considered
alongside parameter types, in much the same way as when
analysing the use of variables in a strongly-typed program-
ming language. However, in our current OASIS implemen-
tation, parameter types are specified in terms of Java types,
and thus do not explicitly appear in the policy definitions.
An XML fragment from the example presented in section
8, is shown in Figure 2. The definitions node contains
a set of context definitions (which for simplicity are sim-
ple, flat contexts in this example). Each of the parameters
in the other elements that are defined provides, through the
contexts attribute, a list of the contexts in which it may be
used.

Some aspects of policy may not care to handle con-
texts explicitly, yet policy elements without explicit con-
texts should be able to participate alongside policy elements
that define them. We therefore specify that unless explicitly
overridden, all policy elements belong in the default con-
text.

Note also that the context definitions presented in figure
2 do nothing beyond providing a means for the segregation
of policy elements. Implicitly information flow is permit-
ted within elements of the same context. In this case, el-
ements which participate in multiple contexts (such as the
role doctor) thus allow information flow within their con-
text union. However, in this case the context definitions
have not explicitly described anything about their desired
information flows. We present our mechanism for allowing
contexts to describe these intended information flows in the
next section.

<?xml version="1.0"?>
<!DOCTYPE policies PUBLIC
"//CBCL//DTD policies//EN"
"http://www.cl.cam.ac.uk/
Research/SRG/opera/oasisPolicy1.1.dtd">

<policies>
<definitions>
<context name="web"/>
<context name="nhs"/>
<context name="audit"/>

<role name="doctor">
<param name="doctorid"

type="java.lang.Long"
contexts="web nhs"/>

</role>

<role name="patient">
<param name="patientid"

type="java.lang.Long"
contexts="web nhs" />

</role>

<environment name="current_duty"
class="nhs.environments.IsCurrentlyOnDuty">

<input name="id"
type="java.lang.Long"
context="nhs"/>

</environment>

<environment name="emp_db_user"
class="nhs.environments.QueryEmployeeDB">

<input name="gmcid"
type="java.lang.Long"
context="nhs"/>

<output name="doctorid"
type="java.lang.Long"
context="nhs"/>

</environment>

. . .

Figure 2. An example XML definitional policy
fragment

3.2 Context definitions with information flows

The example presented in figure 2 showed contexts being
used as a mechanism to segregate policy elements. How-
ever, there will often be cases where information flow is
necessary between two contexts, but the policy element
wishing to use this flow is not itself permitted to partici-
pate in both (e.g. in the manner of the doctor element in
figure 2). In such cases, we need to augment our context
definitions to describe the explicit information flow. An ex-

5

<context name="WAPgateway">
<source name="*" />
<target name="webForms" />
</context>

<context name="webStats">
<source name="webForms" />
</context>

<context name="webForms">
<source name="*" />
<target name="*" />
</context>

<context name="logging">
<source name="*" />
</context>

Figure 3. XML context definitions with explicit
information flows specified

ample is shown visually in figure 4, and our current XML
representation is shown in figure 3.

WAPgateway webForms

webStats

logging

Figure 4. Example information flow among
contexts.

Note that there is no default information flow unless ex-
plicitly specified. Thus the context webStats does not have
any specific acceptable external information flows currently
defined.

It may be desirable that a context define a general no-
tion of information flow without referring to explicit sources
or targets. Although we have not included complex use of
this feature in our example, we suggest that the name at-
tributes of the context specification actually contain XPath
expressions relative to the root node of the context defini-
tions, subject to the additive graph construction conditions
below. An alternative is simply to include multiple source
and target nodes. Thus context webForms specifies that in
fact any information flow will be accepted either in or out

of this context. Such a context may be used for distributed
policy administration, which we discuss in section 7. The
context logging can be considered as a “mode in” context.
Unless other contexts specifically allow information flows
from logging it will remain a context to which information
only flows inwards. Of course we are assuming that the
administration of the context definitions themselves does
not permit lower-level distributed administration to break
higher-level context information flow constraints.

Altogether, the context definitions specify a directed
graph in which the context entities form the graph nodes,
and the directed edges between nodes are specified within
each context definition. Note that it is acceptable to have
cycles in the information flow graph, since it defines all the
potential, permissible flows. If an actual information flow
suggested by a policy rule involves two contexts which are
directly connected in a cycle, the two contexts effectively
become synonymous.

At the moment this edge handling process is entirely ad-
ditive; that is, we do not permit a context to explicitly reject
graph node interconnections that may already have been set
up by other context definitions. Our work so far has not
yet uncovered sufficient need to justify this extra complex-
ity, although we remain open to the possibility. Similarly,
we shall be examining the potential utility of parameterising
the contexts themselves.

3.3 Hierarchical context definitions

The previous section described a simple implementation
of our context specification approach. This section extends
the model to include hierarchical context definitions, and
describes how to determine whether a parameter spanning
two specific contexts is in fact acceptable. We feel that
many applications might utilise notions of hierarchical con-
text. For example, considering a web context, one might
define a sub-context within this web context for when com-
munications occur over a specifically secure web connec-
tion. It also enables a hierarchical structure for distributed
policy administration.

The requirements for context hierarchies are similar to
Java interfaces, and thus avoid the difficulties of overlap-
ping routes to multiple inheritance tree roots. An example
of a hierarchical context might be:

<policies>
<definitions>
<context name="webPublish">
<target name="*"/>

</context>

<context name="secureForm"
parentcontext="webPublish">

<target name="secureWeb"/>
</context> ...

6

When we organise contexts in a hierarchy, it is important
to consider where the default context sits. Predictably,
since we are trying to facilitate newly defined contexts that
start with no accepted information flows, the default con-
text is not the root of the context hierarchy. By omitting
the parentcontext attribute, any specified context is as-
sumed to have the root context as its parent context. Note
that for security reasons the root context is not addressable
or definable in the manner of other contexts, and may not
have information flows directed to or from it. Similarly,
the default context is not addressable in context defini-
tions, but it can be used as a source or target of information
flows. Were the default context to be definable in the pol-
icy file itself, it might cause existing policy to be acciden-
tally “retro-fitted” with unintended context characteristics.

The semantics of a context hierarchy are that sub-
contexts are automatically permitted to define information
flows to and from their context parents. Note that these
potential information flows are not defined automatically –
it is not possible to generalise whether context users con-
sider sub-contexts more specific with respect to information
flows in or out, and thus we must leave this decision to the
policy architects.

Context hierarchies are also highly useful for controlling
sub-administration of policy. We discuss this in section 7.

Note that context hierarchies in an RBAC system are in-
dependent of any notion of role hierarchy which might exist.
An RBAC system supporting role hierarchies would prob-
ably choose to have lower-roles inherit contexts from their
parents, but we have not examined this question in detail
– OASIS uses the more general notion of appointments to
replace role hierarchies.

4 Context specifications for rule elements

In this section we discuss the application of the context
concept to rule elements, which in the case of OASIS are
prerequisite and target roles, appointments, environmental
predicates and privileges. Our context assignments do not
preclude assigning element participation to multiple con-
texts. We feel such a mechanism will greatly assist in man-
aging information flows in large-scale policy specifications.
In particular, it is worth noting that by using the context-
based specifications of permissible information flows over
rule elements, we are able to ensure that policy evolution
will maintain these constraints, including if the contexts in
which such elements exist change.

We provide a simple example of two roles which are both
tagged as members of certain contexts.

...
<role name="doctor" contexts="web nhs">
<param name="doctorid" type="java.lang.Long"/>

</role>

<role name="HIVconsultant" contexts="secureWeb nhs">
<param name="doctorid" type="java.lang.Long"/>

</role>
...

Clearly the doctor role is in two contexts, web and nhs,
and the HIVconsultant role is in both the secureWeb and
nhs contexts.

If the relevant roles, appointment certificates and envi-
ronmental predicates are assigned contexts, then the OA-
SIS rules which represent policy constraints can be checked
against the information flow defined for these contexts. To
determine if information flow constraints are met at this
level, we treat all prerequisite elements as being informa-
tion flows into this rule, and the rule target as an information
flow outwards.

In the case of role activation rules, target roles, and all
prerequisite elements must satisfy their context information
flow constraints. We take the union of all the prerequisite
elements’ contexts. The activation rule will not be accepted
unless there is a mapping through defined context informa-
tion flows from this combined source context into the con-
text of the target role.

In a similar manner technically, although the application
semantics are different, authorisation rules require that the
union of the prerequisite elements’ contexts can be mapped
through defined information flows to the context of the priv-
ilege targeted by this rule.

For an example, we take the roles we presented above
and assume that information flow from the secureWeb con-
text to the web context is not permitted. A rule such as:

doctor(x) ` HIVconsultant(x)

would be disallowed in our policy store since the left hand
side (prerequisites) belong to a context which cannot have
information flow into the context of the right hand side (tar-
get role).

Using this context mechanism, we can express and en-
sure conformance to static separation-of-duty constraints.
To do so, we define two target contexts to contain the mutu-
ally exclusive privileges or roles, and ensure that there are
no specified information flows between them. Hierarchical
context definitions (see section 3.3) will make it easier to
manage this when policy administration is distributed.

This simple mechanism based on context classification
enables the information flow permitted between different
rule elements within a policy store to be specified, and these
constraints are enforced statically. The restrictions on in-
formation flow will be maintained automatically as policy
evolves.

7

Role
Parameter

Parameter

Parameter

Role(s)

Environmetal
Predicate(s)

Parameter

Parameter

Preconditions

Activation

Target

Rule

Rule Element context assignment

Parameter context assignment

Rule context assignment

Parameter

Appointment(s)

Parameter

(Section 4)

(Section 5)

(Section 6)

Figure 5. Role activation rule components that can be assigned a context.

5 Context specifications for parameters

This section examines another application of the con-
text specifications presented in section 3. As described in
section 2, OASIS roles, appointments and environmental
predicates can, and for any non-trivial deployment usually
do, have parameters. So, in addition to specifying contexts
for the rule elements themselves, one can assign contexts
to the parameters, thus increasing the control over the in-
formation flow that takes place during the enforcement of
OASIS rules. This is particularly pertinent when consider-
ing that environmental predicates evaluated entirely within
the left hand side of an OASIS rule may carry information,
via their parameters, into external contexts. This notion of
fine-grained information flow is not captured in our anal-
ysis of policy elements in rules (presented in section 4).
Also, rule-elements are specific to a particular RBAC ar-
chitecture; the context specifications for parameters may be
applied to other non-OASIS parameterised RBAC architec-
tures.

The mechanism through which we specify the contexts
of parameters is very similar to that adopted for the pol-
icy elements themselves. From an XML viewpoint, we can
simply add a context attribute into the param nodes in the
role definition section of the policy document. For example:

<role name="doctor" contexts="nhs">
<param name="doctorid"

type="java.lang.Long"
context="secureWeb" />

</role>

We discuss the mechanism by which parameter contexts
are checked through a worked example in section 5.2. Note
also that the definition of a rule may enforce context restric-
tions on the parameters used within it – see section 6.

The checking of parameter context conditions is orthog-
onal to checking the policy element context conditions in a
rule. Whilst policy architects are encouraged to use all pos-
sible context constraint approaches, they are free to choose
any combination of the styles of context specification we
have presented. The various context specifications only in-
crease the restrictiveness of policy checks – there are no
unexpected side-effects of using them together.

5.1 Taxonomy of environmental predicates

As environmental predicates can have side effects in ad-
dition to being able both to read and to set parameter values,
it is prudent to provide a means to specify their information
flow characteristics. For example, take an environmental
predicate eq(a,b?) that sets the value of b to be equal to the
value of a. There are two context perspectives from which
to view this. From the perspective of an OASIS rule that
uses this predicate, we do not consider the mechanics of
the predicate itself; it is simply a contributer to the union
of contexts on the left hand side of the rule, which must be
mapped through defined information flows to the rule target.

From the perspective of parameter context checking,
though, the default case for this predicate will be to assume
that any parameter bound by the evaluation of this predi-
cate will carry information from all the source contexts of
its input parameters. To show why this is sensible, note that

8

<activation role="doctor" context="secure">
<condition name="qualified">

<match name="gmcid" value="\$x" />
</condition>

<condition name="emp_db_user">
<with name="gmcid" value="\$x" />
<match name="doctorid" value="\$doctorid" />

</condition>

<condition name="is_not_struck_off">
<with name="gmcid" value="\$x" />

</condition>
</activation>

Figure 6. An OASIS role-activation rule (in
XML form).

a buggy, hacked or poorly-written environmental predicate
could indeed copy data seen in any of its inputs to any of
its outputs. In effect, we are saying that all out parameters
of an environmental predicate are “tainted” or unsafe, since
its code is potentially untrusted, and that in addition there
is an implicit information flow from each input parameter
context to each output parameter context.

However, an environmental predicate is just a type of
policy element from the perspective of policy definition.
Either through trust, or hopefully, through some concrete
heuristic derived from the computational semantics of the
predicate, the actual context information flows from input
to output can be determined, and thus explicitly specified in
the parameter contexts given for this environmental predi-
cate’s definition.

5.2 Rule evaluation

The semantics of parameter context checking in our rule
evaluations should be intuitive, but we include an example
for completeness. Note that in the current implementation
of OASIS, the local parameter names (whose scope is just
the rule itself) are prefixed with a ‘$’ symbol.

Standard type checking merely involves binding each lo-
cal parameter’s type when their value is first set, and ensur-
ing that all subsequent occurrences of this parameter have a
compatible type. In current implementations this is trivial -
the types must match directly.

In parallel to this type checking, we augment the eval-
uation process by also binding each local parameter’s per-
mitted contexts when their value is first set (provided this,
in itself, is consistent with the mode of that parameter’s
context). Each subsequent appearance of that parameter is
checked to ensure that the hierarchical context is compat-
ible, as is the context mode. The only notable difference

from parameter type checking is that each parameter has
only one type, but may participate in numerous contexts.

For evaluation of the rule shown in Figure 6, parameter
context checking will guarantee that information flow into
the doctorid parameter will be a valid information flow
into the secureWeb context (as in the definition of the doc-
tor role above). Without any specific parameter context def-
inition of the emp db user predicate, the gmcid parameter
will also need to be in the secureWeb context, with conse-
quent static restrictions over the qualified appointment,
and the is not struck off environmental predicate. As
mentioned above, explicitly specifying the information flow
in the definition of emp db user could lessen this restric-
tion, with a subsequent increase in the dependence on the
actual predicate implementation!

6 Context specifications for rules

This section examines assigning rules themselves to par-
ticular contexts, rather than relying on the context classifi-
cation of their constituent policy elements and parameters.
We described how the classification of policy elements is
viewed as in and out information flows on the left and right
hand sides of rules in section 4. Applying context classifi-
cation to rules provides further overarching restrictions on
what may be included within them.

For example, the rule in figure 6 has been placed in
the secure context. This then affects the permissible
contexts of this rule’s policy elements and their parame-
ters, including possible policy evolution resulting from sub-
administration. Note that as for parameter contexts, the
default case of not having an explicit context specification
merely means that no extra context checks are performed.

Since rules are essentially containers for other policy el-
ements, we employ two parallel context checking seman-
tics. Each policy element and parameter within the rule
must pass a test based on either:

Context hierarchy. If this element or parameter exists in
a sub-context of the rule’s context, it passes our static
context check. Note this cannot ever be true for policy
elements or parameters which do not specify a context.

Explicit information flow specifications. Alternatively
we require that there is an explicit information flow
between the context of this policy element or parame-
ter and that of the rule. For elements and parameters
on the left hand side of a rule, the flow must be toward
the rule’s context. For right-hand side rule constituents
the flow must be from the rule’s context.

Note that the rule checks presented here augment the in-
formation flow checks presented in section 4.

9

7 Context specification for distributed ad-
ministration

The final application we present for the use of context
tagging within policy specifications is to support distributed
policy administration. The OASIS project aims to support
policy-based access control for systems of a sufficient scale
to require hierarchical, distributed policy administration.

Contexts used within our policy store provide a conve-
nient handle through which we can grant sub-administrators
privileges to maintain sub-sections of policy indepen-
dently from one another. Since the administration con-
texts themselves may be hierarchical, this makes it possi-
ble for a higher-level administrator to ensure that all sub-
administrators receive privileges appropriate to their needs,
and to their levels of trustworthiness and competence.

We can thus permit sub-administrators to create, view
and modify their own policy rules, see [3]. In terms of infor-
mation flow, the local administrators themselves are indeed
an element within a particular policy context.

Consistent with the hierarchical context notions pre-
sented in section 3.3, any given local administrator will be
able to define new information flows, but only within con-
texts that they control, and in any sub-contexts. Clearly
they would be in a position to modify and augment exist-
ing rules within their context, but they would also be able to
create their own definitions for rule elements, including the
incorporation of particular environmental predicates. All of
these privileges would be subject to the context restrictions
already mentioned. Creating information flows that go be-
yond their internal environment would require the modifi-
cation or creation of definitions under the control of higher-
level administrators.

Of course during policy evolution new contexts them-
selves may be added to the system, or existing contexts may
have their information flow rules changed. This type of pol-
icy evolution is more expensive than the addition or modifi-
cation of policy rules or rule elements, since all affected pol-
icy must be re-validated in light of this new context informa-
tion. We thus expect that administrators would try to keep
such modifications to a minimum. Various caching tech-
niques could drastically reduce the cost of this re-validation,
but we have not yet implemented such an approach.

We believe that by aggregating the inter-context flow
specifications into hierarchies, we can decrease the risks
of policy flaws that arise because higher-level administra-
tors have to maintain detailed, ad-hoc connections between
policy sub-sections and the privileges of those allowed to
maintain them.

8 An example application from our health
service deployment

This section describes our research performed in collab-
oration with Clinical and Biomedical Computing Limited.
We are deploying OASIS to provide access control within
a prototype widely-distributed Electronic Health Record in-
frastructure for the United Kingdom National Health Ser-
vice.

The goal of the CBCL OASIS project is to provide a
web-based interface to distributed health record fragments.
The nodes on this NHS network are highly autonomous; in-
deed this fact motivated much of the research behind this
paper. The main three types of elements within the system
are:

The NHS Portal. From the user perspective, the NHS Por-
tal is essentially a web server through which patients
and medical staff may gain access to records they are
authorised to examine. However, the NHS Portal also
has an OASIS-internal side. The internal OASIS net-
work links the NHS Portal with the other two pieces of
network infrastructure described below, and securely
transports fragments of electronic health record data.

The Index Server. A crucial feature of our Electronic
Health Record infrastructure is that there is little re-
liance on standard, centrally-defined data-structures;
the health record fragments may be heterogeneous in
semantics (although probably homogeneous in some
sort of web-oriented syntax, cf. HTML), provided
that they can be keyed and located appropriately. We
feel that it is highly unlikely a single record standard
will be adopted across all nodes linked in a wide-
area EHR network, thus the Index Server maintains in-
formation about the whereabouts of EHR fragments,
without any knowledge about the medical significance
of these fragments. Our current prototype uses NHSID
as part of the key for record fragments. The contents
of these fragments are not stored in the Index Server.

Clearly performance may be significantly boosted by
some form of intelligent cache which does understand
the medical significance of different EHR fragments,
but this also induces significant security design issues.
We have focused on core functionality.

HCO Servers. The Health Care Organisation (HCO)
servers actually contain electronic health record data.
These systems may be individual GP practices’ elec-
tronic records systems, large-scale hospital adminis-
tration systems or other lab or medical organisations’
on-line databases. We require that the records of any
such system can be keyed by our Index Server in terms
of an approximate local time-stamp, and that the local

10

system supports a web-style interface to which we can
control access via OASIS privileges.

Note that there is not a free flow of patient record data
throughout this EHR infrastructure. Each of the three types
of nodes presented above has its own local OASIS policy
store. Thus the policy of a particular HCO site, when pre-
sented with a request for a fragment, may be to first request
further credentials from the Index Server before permitting
the Index Server to acquire the privilege to read this frag-
ment on behalf of the NHS Portal. Whilst there is some ex-
tra network traffic caused by such a design, there are the sig-
nificant advantages of identity hiding and non-disclosure.

There are numerous ways in which this infrastructure
would benefit from the specification of information flow
contexts:

• Firstly, we can examine the problem from a network
traffic perspective. From the point of view of the NHS
Portal, it has two very different types of network con-
nection. On the user side, we are dealing with mainly
HTML documents travelling using the HTTPS proto-
col through the Internet (or an NHS subset of it). On
the Index Server side, our traffic consists of SOAP
messages travelling using HTTPS over an internal OA-
SIS network. Different high-level security and con-
fidentiality conditions would exist on these two net-
works.

• From the policy perspective, we ideally want to seg-
regate information flow within the NHS Portal too.
For example, it is desirable that there be only care-
fully controlled information flows between staff and
patients. Indeed in our current design, there is no need
to provide any such information flow directly between
these two groups. Our research has already been faced
with the problems caused by the fact that doctors are
usually also patients within any given overall health-
care infrastructure. Contexts can assist enforcing in
information flow restrictions on a user who can be seen
either as a patient or a doctor.

• Finally, contexts provide a significant administrative
handle for controlling policy evolution in such an NHS
infrastructure. Not only are there a large number of
distributed policy stores, but it is likely that the policy
store within a hospital EHR system will require sub-
administration. Section 7 discussed how delegation of
administration can be safely controlled using contexts.

As our NHS EHR prototype moves into later stages, we
hope to further incorporate context specifications into our
policy management tools and privilege sets (for reflexive
policy) currently under development.

9 Conclusion

In this paper we have introduced and discussed the po-
tential for undesirable information flows in parameterised
RBAC systems, particularly those allowing a two-way in-
teraction between the internal access control system and its
dynamic external environment. We have presented a sim-
ple, robust mechanism for increasing the semantic structure
of policy definitions, by means of the explicit specification
of permissible information flow. This research was moti-
vated by our deployment of OASIS in a prototype electronic
health record architecture, examples from which are used
through the paper. Beyond information flow protection, we
discuss application of our context technique to facilitate the
distributed administration of policy.

Research into dynamic policy context checks is ongoing.
Our future plans also include examining possible parametri-
sation of contexts and extending information flow specifica-
tion with negative paths, i.e. explicitly forbidding informa-
tion flow from one context to an other.

10 Acknowledgements

This research is supported by the Cambridge Australia
Trust, King’s College Cambridge, the John Stanley Grad-
uate Fund, and the United Kingdom Overseas Research
Students Awards Scheme. Thanks to the staff at Clinical
and Biomedical Computing Limited, particularly Tim
Mills and Ian Boston for design of the software and also
to John Norman and Jem Rashbass for their continued
support of our research collaboration, and also to the
other members of the Cambridge Opera Research Group
(http://www.cl.cam.ac.uk/Research/SRG/opera/),
for their work and feedback.

References

[1] Jean Bacon, Ken Moody, and Walt Yao. A model of
OASIS role-based access control and its support for
active security. ACM Transactions on Information and
System Security (TISSEC), 5(4):492–540, November
2002.

[2] András Belokosztolszki and David Eyers. Shielding
the OASIS RBAC infrastructure from cyber-terrorism.
In Proceedings of the IFIP WG 11.3 Conference,
2002.

[3] András Belokosztolszki and Ken Moody. Support for
self-administration of OASIS RBAC policies. Univer-
sity of Cambridge, Computer Laboratory.

11

[4] András Belokosztolszki and Ken Moody. Meta-
policies for distributed role-based access control sys-
tems. In Policy 2002: IEEE 3rd International Work-
shop on Policies for Distributed Systems and Net-
works, pages 106–115, 2002.

[5] Elisa Bertino, Piero Andrea Bonatti, and Elena Fer-
rari. TRBAC: A temporal role-based access control
model. ACM Transactions on Information and System
Security (TISSEC), 4(3):191–233, August 2001.

[6] Michael J. Covington, Wende Long, Srividhya Srini-
vasan, Anind K. Dev, Mustaque Ahamad, and Gre-
gory D. Abowd. Securing context-aware applications
using environment roles. In Sixth ACM Symposium on
Access Control Models and Technologies, pages 10–
20, 2001.

[7] Nicodemos Damianou, Naranker Dulay, Emil Lupu,
and Morris Sloman. The ponder policy specification
language. In Policies for Distributed Systems and Net-
works,International Workshop, POLICY 2001, Bris-
tol, UK, pages 18–38, 2001.

[8] Dorothy E. Denning. A lattice model of secure infor-
mation flow. Communications of the ACM, 19(5):236–
243, 1976.

[9] Luigi Giuri. Role-based access control: a natural ap-
proach. In Proceedings of the first ACM workshop on
Role-based access control, pages II–33–37, 1995.

[10] Cheh Goh and Adrian Baldwin. Towards a more com-
plete model of role. In Proceedings of the third ACM
workshop on Role-based access control, pages 55–62,
1998.

[11] Cheng Hian Goh, Stuart E. Madnick, and Michael D.
Siegel. Context interchange: overcoming the chal-
lenges of large-scale interoperable database systems
in a dynamic environment. In Proceedings of the third
international conference on Information and knowl-
edge management, pages 337–346. ACM Press, 1994.

[12] Emil Lupu and Morris Sloman. Reconciling role
based management and role based access control. In
Proceedings of the second ACM workshop on Role-
based access control, pages 135–141, 1997.

[13] Ravi Sandhu, Venkata Bhamidipati, Edward Coyne,
Srinivas Ganta, and Charles Youman. The ARBAC97
model for role-based administration of roles: prelim-
inary description and outline. In Proceedings of the
second ACM workshop on Role-based access control,
pages 41–50, 1997.

[14] Ravi Sandhu, Edward Coyne, Hal L. Feinstein, and
Charles E. Youman. Role-based access control mod-
els. IEEE Computer, 29(2):38–47, 1996.

[15] Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The
NIST model for role-based access control: towards
a unified standard. In Proceedings of the fifth ACM
workshop on Role-based access control, pages 47–63,
2000.

12

