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Abstract 
This paper describes an approach for representing electronic commerce 
contracts using occurrences.  We first define what is meant by an occurrence and 
demonstrate how an occurrence may be used to store a workflow event, such as 
a purchase.  Next we demonstrate how the occurrence abstraction can be used to 
store names.  We continue with an explanation of various types of query and 
demonstrate how queries can be represented and stored using occurrences.  We 
show that the storage of queries is necessary in order to determine which stored 
descriptions describe a given occurrence, and consequently which policies apply 
to that occurrence.  A discussion of contracts and their representational 
requirements follows, and we show how occurrences and queries may be used to 
represent defined terminology, regular and conditional duties, permissions, and 
powers in contracts.  We provide an overview of our implementation and 
describe related work. 
 

1 Introduction 
Business policies, originating from internal and external contractual agreements, 
are currently buried in application logic in various opaque languages, such as 
Java, C, and SQL.  These languages do not provide businesses with a direct 
means of representing, storing, querying, enforcing, disseminating, and collating 
the business policies associated with contracts. 
 
We present a novel approach for representing electronic commerce contracts 
using occurrences.  We begin with an overview of the context of our work.  We 
then describe how occurrences are represented and stored, and explain how the 
participants in occurrences may be explicitly specified using identifiers or may 

be described using queries.  We illustrate how queries can be stored and 
demonstrate how the ability to determine which queries cover a particular item 
stored in the database may be used to determine which contractual provisions 
(policies) apply to a given item.  We discuss how contracts may be represented, 
and consequently automatically performed and enforced, in terms of defined 
terminology, regular and conditional duties, permissions, and powers.  A brief 
overview of our implementation architecture is provided.  We conclude with a 
comparison to related work and a summary of our results. 
 

2 Overview 
The concepts described in this paper have been implemented in the E-commerce 
Application Development and Execution Environment (EDEE), written in Java.  
The implementation context for the environment is as shown in Figure 1 – 
Contextual Overview below.  Business analysts feed the business policies 
defined in the business’s contracts and the system’s user requirements 
specification into the system using EdeeLang, a language which provides 
support for occurrences, queries, and policies as described in this paper. 
 
The business policies (contracts between the legal entities in the human activity 
system) and the user requirements specification for the system (contracts 
between the computer system and its users), are stored in an occurrence store.  
For instance, a user requirements specification for a system may contain the 
policy ‘the system is obliged to email the travel itinerary to the user 60 days 
before travel’ which encodes the contract between the system and its users and 
is stored in the occurrence store.  Workflow occurrences (fulfillment 
occurrences) and further contracting occurrences are added to the occurrence 
store and checked against existing contracts.  Occurrences are triggered 
automatically by the system in accordance with the policies defined in the 
contracts (specifications) in the occurrence store. 
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• Seats must be booked by 
1800 hours on the day 
before outward travel.
• If cancelled before 
departure of outward 
journey, 50% refund 
available.
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Figure 1 – Contextual Overview 

 
This paper illustrates the detailed underlying representation of occurrences, 
which are used to store policies and workflow events, at a storage level.  It 
should be remembered though that, for reasons of usability, the interface to the 
system which stores the contracts and policies is more likely to be a constraining 
menu-driven interface or a simple English-like language which allows the user 
to work with the policies in a convenient and readable manner. 
 

3 Representing and Storing Occurrences 
An occurrence is a happening that occurs at a particular point in time or that 
occupies a continuous or discontinuous period of time.  Occurrences have 
participants acting in various roles.  For example, a purchasing occurrence has 

participants acting in the roles purchaser1, purchased, and seller.  The 
occurrence “Brian’s selling of his book” can be considered as “an entity (c1) 
named ‘Brian’ participates as seller in an occurrence (o1), classified by 
some authority as a sale/purchase, with an entity (c2), classified by some 
individual or institution as a book, participating as the sold item”.  The notion 
of individuated occurrences was arguably pioneered by the philosopher Donald 
Davidson [9, 22] who suggested that events (similar to what we call 
‘occurrences’) such as ‘the killing of Caesar by Brutus’ are identified 
particulars2.  We have implemented a formal system inspired in part by 
Davidsonian event semantics to represent and reason about commercial 
occurrences. 
 
Four simple occurrences are illustrated diagrammatically in Figure 2 below: an 
occurrence (o1) of Brian purchasing a particular book, an occurrence (o2) of 
Brian owning that book, an occurrence (o3) of Walt purchasing the book from 
Brian, and an occurrence (o4) of Walt owning the book. 
 

o1
(a purchasing)

c1 (Brian) c2 (the book)

����

o2
(an owning)

o3
(a purchasing)

c3 (Walt)

Occurrence Participants

o4
(an owning)

 
Figure 2 – Typical Commercial Occurrences 

                                                 
1 To highlight role names in occurrences, we will frequently (though not always) show role names in 
Courier font. 
2 The use of the definite article ‘the’ in the phrase ‘the killing of Caesar by Brutus’ was, amongst 
other factors, taken by Davidson to indicate that a specific identifiable entity was being referred to 
by the phrase ‘the killing of Caesar by Brutus’. 



 
Occurrences may be represented in a tabular form which defines the occurrence 
identifier, the participants in the occurrence, and their respective roles.  Our 
motivation for choosing this particular participant-occurrence-role 
implementation schema is that it provides a simple, convenient, and uniform 
means of storing and retrieving occurrences - and consequently, as we shall see 
later, it provides a convenient and uniform means of storing and retrieving 
queries and policies (contractual provisions) – in traditional relational databases 
or tabular data structures.  Table 1 below shows the tabular representation of the 
occurrence o3 which is a purchasing of a particular book by Walt, from Brian. 
 

Participant Occurrence Role 
c1 (named ‘Brian’) o3 (a purchasing) seller 
c2 (classified as a book) o3 bought 
c3 (named ‘Walt’) o3 buyer 

Table 1: Representing a purchasing occurrence “Walt buying the book 
from Brian” 

 
We choose to use domain- or application-specific roles3, rather than merely 
generic thematic roles, in the representation of occurrences.  While generic 
thematic roles – such as ‘agent’, ‘patient’, ‘instrument’, ‘source’, and 
‘destination’ – are often helpful and are commonly used in grammatical 
description and knowledge representation in artificial intelligence [1, 12, 23, 
26], they have been criticized.  Davis, for instance, argues that the thematic role 
of a participant in an event occurrence may be difficult to determine or 
ambiguous [10].  Reliance solely on thematic roles is therefore problematic as 
thematic roles do not always uniquely identify participants in a given role in a 
commercial occurrence.  For example, in ‘Walt buys the book from Brian’4, both 
Walt and Brian can be construed to be in the ‘agent’ thematic role of the 
purchase occurrence, as Walt is doing the buying and Brian is doing the selling.  

                                                 
3 Jurafsky and Martin [17] refer to domain- or application-specific roles as ‘deep roles’.  The names 
of the deep roles are derived from the verb – e.g. the verb ‘buying’, as in ‘Walt buying the book 
from Brian’ yields the roles ‘buyer’, ‘bought’, and ‘seller’. 
4 In the reading we intend for ‘Walt buys the book from Brian’, consider ‘buys’ to be referring to a 
single, particular occurrence of purchasing, which we can denote here by occurrence identifier o3.  
Other readings are possible. 

Using the domain-specific roles ‘buyer’ and ‘seller’ allows us to avoid this 
vagueness. 
 
Davidson [9] comments that occurrences (what he terms ‘events’) may fall 
under multiple descriptions.  In our example, the phrases ‘the buying of the book 
by Walt from Brian’, ‘the purchasing of the book by Walt from Brian’, and ‘the 
selling of the book by Brian to Walt’ could all be used to refer to the occurrence 
o3; the use of different descriptions such as ‘buying’, ‘purchasing’ or ‘selling’ 
should not distract us from noting that in each case we are referring to the same 
underlying occurrence.  For this reason, we prefer to name occurrences using the 
pure identifier o3 because a naming such as buying3 or selling4 would 
undesirably tie the description to the occurrence identifier.  As we shall see later, 
occurrences can be multiply classified5, and the classification of the occurrence 
may occur retrospectively based on the attributes of the occurrence. 
 
It is worthwhile to point out at this stage that, unlike traditional frame-based 
representations, in the occurrence-based representation proposed, the semantics 
arise from the classification of the occurrence (via a classifying event) rather 
than from the role-names.  The role-names are primarily to distinguish between 
different roles.  System decisions generally depend on the classification of the 
occurrence, rather than on the names of the various roles involved in the 
occurrence.  We shall see later, in the section Representing and Storing 
Classifications, how occurrences are classified. 
 

4 Representing and Storing Names 
The special treatment of symbols (names) is useful as it provides a strong 
conceptual separation between the symbols and the items they represent.  For 
instance, the symbol ‘Brian’ (identified as symbol s4 and stored in the Symbol 
table) is conceptually distinct from the concept named Brian (identified as c1).  
The conceptual separation between the symbol and the concept to which it refers 
is implemented through naming occurrences, which are occurrences of the form 
‘[individual or institution, a namer] naming [concept, a named item] [symbol, 

                                                 
5 Indeed occurrences may be given different classifications according to the same or different 
institutions over time. 



a name]’.  The Church of England’s naming of c1 as ‘Brian’ is depicted in 
Table 2 below. 
 

Participant Occurrence Role 
c1 (Brian) o4 named 
s4 (the symbol ‘Brian’)6 o4 name 
c4 (the Church of England) o4 namer 

Table 2: Representing a naming occurrence “The Church of England 
names c1 ‘Brian’” 

 
This representation permits different individuals or institutions to assign 
different names to the same concept.  In the case of two or more individuals 
assigning the same name to a concept, we can resolve the ambiguity by 
qualifying the name with the name of the namer, or perhaps with the time or 
context of the naming. 
 

5 Representing and Storing Queries 
A query is a request for items fitting certain criteria.  A query can be viewed as 
an occurrence of querying, where the criteria specified play various roles in the 
querying occurrence.  It is important to distinguish between a query and its 
results.  The query (i.e. query definition) may be referred to using its occurrence 
identifier – e.g. o5 – whereas the results of the query are referred to using the 
corresponding query resolution identifier for the query, which we will indicate 
using the occurrence identifier for the query preceded with a question mark – 
e.g. ?o5.  To illustrate the importance of this distinction, consider an occurrence 
of “rich people buying caviar”.  If we consider o5 as being the query ‘rich 
people’ it would clearly be incorrect to state the occurrence as “o5 buying 
caviar” since it is not the query that is buying caviar but the items returned by 
the query; that is, we are not predicating something of the query, but rather of 
the results returned by the query.  The correct rendition of the occurrence is 

                                                 
6 Data-type restrictions suggest that it is undesirable to store symbols and numbers in the table which 
stores occurrences in participant-occurrence-role form.  Symbols and numbers are therefore stored in 
separate Symbol and Number tables.  The former simply contains symbol-identifier and symbol-text 
columns, and the latter number-identifier and number-value columns. 

therefore “?o5 buying caviar” which reads “[the results of the query o5] buying 
caviar”. 
 
We currently define algebraic, alphabetic, set-theoretic, occurrence-related, 
conditional, and nested queries.  The following sections explain each of these 
query types and their structure in terms of roles (criteria). 
 

5.1 Algebraic Queries 
Three basic types of algebraic query are catered for:  equality, strictly less than, 
and strictly greater than.  The three basic types of algebraic query are 
represented as shown in Table 3 below, which depicts the algebraic queries 
‘x = 6.2’, ‘x < 7’, and ‘x > 9’ respectively (where x is the solution of the query).  
o1, o2, and o3 in the table below are occurrences of querying. 

 
Participant Occurrence Role 
6.2 (n1)7 o1 algebraic-equals-criterion 
7 (n2) o2 algebraic-less-than-criterion 
9 (n3) o3 algebraic-greater-than-criterion 

Table 3- Representation of Basic Algebraic Queries:   
Equality, Strictly Less Than, and Strictly Greater Than 

Queries of the form ‘greater than or equal’, ‘less than or equal’, ‘between’ (with 
inclusive or exclusive upper and lower limits), and discontinuous ranges are 
represented using combinations of basic algebraic queries and set-theoretic 
queries described below.  For example ‘greater than or equal to’ is represented 
as a union of a strictly greater than query and an equal to query, and a ‘between’ 
query with exclusive upper and lower limits is represented as the intersection of 
a strictly less than query involving the upper limit and a greater than query 
involving the lower limit. 
 

                                                 
7 As mentioned earlier, due to data-type restrictions, numbers are stored in the separate Number 
table.  For readability we show the numbers directly; however, what appears in this column is really 
the number identifier: e.g. n1, n2, n3 where n1=6.2, n2=7, n3=9. 



5.2 Alphabetic Queries 
Alphabetic queries are catered for in a similar manner to algebraic queries, 
though alphabetic queries of course cater for alphabetic comparison rather than 
numeric comparison.  For the sake of brevity, the detailed structure of alphabetic 
queries is shown in the Appendix. 

5.3 Set-Theoretic Queries 
Set-theoretic queries for union, intersection, difference, identification, universal 
set, empty set, identification, negation, and cardinality (counting) are supported.  
For the sake of brevity, only union and negation are discussed in detail here; 
other forms of set-theoretic query are explained in the Appendix. 
 

Union ?o1 ∪ ?o2  ∪ … returns the items in any of the sets 
?o1, ?o2, etc. where ?o1, ?o2, etc. are the sets resulting 
from the resolution of the queries o1, o2, etc.  In all of the 
examples to follow, the question mark ‘?’ preceding the 
querying occurrence identifier is used to refer to the 
resolution of the query, rather than the query definition 
itself.  The criteria (arguments) to the union query can be 
referred to as ‘uniands’.  The representation of a general 
union query is as shown in Table 4 below: 

 
Participant Occurrence Role 
?o1 (results of query o1) o4 uniand 
?o2 (results of query o2) o4 uniand 
… … … 

Table 4- Representation of a Union Query 

Negation A negation (‘not’) query can be represented using the 
universal set as the differor and the negated set as the 
differand.  For example, the query ‘not rich pensioners’ 
can be represented as shown in Table 5 below: 

 

Participant Occurrence Role 
Universal Set o4 differor 
‘rich pensioners’8 o4 differand 

Table 5- Representation of the Query ‘not rich pensioners’. 

 

5.4 Occurrence Related Queries 
Occurrence-related queries are queries that are solved by specifying any two of 
the participant, occurrence, and role columns and solving for the third.  
Occurrence-related queries look for identifiers in matching participant-
occurrence-role triples; the values (or set or range of values) of two columns are 
specified in the criteria and the results are the contents of the third column in all 
rows where the two specified columns match.  There are naturally three types of 
occurrence-related query: 

• An occurrence query specifies the participant and role and returns all 
occurrence-identifiers with this participant in that role. 

• A participant query specifies the occurrence and role and returns all 
participant-identifiers in this occurrence with this role. 

• A role query specifies the occurrence and participant and returns all role-
identifiers for the participant in the occurrence. 

The representation and resolution of occurrence-related queries is described in 
depth in the Appendix. 
 

5.5 Conditional Queries (Side-Conditions) 
It is frequently the case that a query should only return results when certain side-
conditions are met.  These side-conditions evaluate to true or false; an item is 
only returned by (and, conversely, covered by), a conditional query if the item 
satisfies the main criteria of the query and the side-condition also evaluates to 
true.  The distinction between main criteria, which relate directly to the 
attributes of an item, and side-conditions, which relate to the situation in which 

                                                 
8 What is stored here is the identifier of the results of the query ‘rich pensioners’ (e.g. ‘?o5’) rather 
than the text ‘rich pensioners’.  The text ‘rich pensioners’ which represents the underlying query 
‘concepts classified as rich, intersection concepts classified as pensioners’ is used merely for 
readability. 



the query is performed, is important.  For instance, let us assume that the 
occurrence-store stores the following occurrences:  ‘John pays $2 at 3pm’, ‘John 
pays $4 at 7pm’, and ‘John pays $5 at 8pm’.  The query ‘payments by John after 
6pm’ could have two interpretations, each returning different results: 

• Interpretation as a pure occurrence-related query, where ‘after 
6pm’ is a main criterion of the occurrence rather than a side-
condition: Effectively, this interpretation of the query could be 
paraphrased as ‘payments by John where the payment occurs after 
6pm’.  This query returns ‘John pays $4 at 7pm’ and ‘John pays $5 
at 8pm’, irrespective of the time at which the query is evaluated. 

• Interpretation as a conditional query, where ‘after 6pm’ is a side-
condition: Effectively, this interpretation of the query could be 
paraphrased as ‘payments by John when the current time is after 
6pm’.  This query returns nothing when the query is evaluated 
before 6pm, and returns ‘John pays $2 at 3pm’, ‘John pays $4 at 
7pm’ and ‘John pays $5 at 8pm’ when the query is evaluated after 
6pm. 

 
A conditional query can be represented by combining a regular query with a 
side-condition that evaluates to true or false.  As shown in Table 6 below, the 
side-condition is merely a query-resolution-identifier (in this case ?o2); the 
mechanism for determining whether a side-condition is true or false is explained 
in the Appendix.9 
 

Participant Occurrence Role 
?o1 o6 (conditional-query) main-query criterion 
?o2 o6 side-condition criterion 

Table 6- Representation of a Conditional Query 

 

                                                 
9 To cater for side-conditions which involve checking the system-clock (e.g. ‘after 6pm’) we would 
treat this as a query which returns the system time where the system time is greater than 6pm; the 
query would return nothing if the system time was less than 6pm.  Clearly such a query involves 
invoking a method which interrogates the system clock.  Queries which involve method invocations 
are not dealt with in this paper, but nevertheless may often be necessary for certain types of side-
condition. 

As we shall shortly see in Section 7.4 on Conditional Duties, which discusses 
conditional queries in more depth, conditional queries are needed to represent 
conditional obligations. 
 

5.6 Nested Queries 
Queries can be nested within each other.  Nesting queries allows us to combine 
queries in order to specify complex criteria that are not otherwise expressible.  
Set-theoretic queries, occurrence-related, and conditional- queries can nest 
queries of any other type within them.  As the participants in the criteria used for 
set-theoretic, occurrence-related, and conditional queries are queries themselves 
(or more specifically, query resolution identifiers associated with specific 
queries), the representations shown above and in the Appendix can be used to 
store nested queries.  The next section gives an example of storing a nested 
query. 
 

5.7 Storing Queries 
For the purposes of representing policies and contracts and determining which 
policies (contractual provisions) apply, queries need to be stored rather than 
merely answered and discarded as is typically the case with conventional 
relational databases.  Consider the business policy “The department head 
requires that the librarian must be notified of purchases of books”.  This 
business policy can be viewed as a contractual requirement and can be 
considered as an occurrence of obliging (say, o20) where: 

• the participant in the role obliger is the department head, 
• the condition under which the obligation holds is “a purchasing of a 

book has occurred”, and 
• what is obliged is occurrences fitting the description “a notifying to 

the librarian of the purchase”. 
Two queries are important here, each of which needs to be stored in order to 
store the policy as a whole: 

1. The query “purchasings of books”:  this can be read as “occurrences of 
purchasing where the item in the role purchased is classified as a 
book”. 



2. The query “notifyings to the librarian of the purchase”:  this can be read 
as “occurrences of notifying where the person in the role notified is 
the librarian”. 

These queries, and the occurrence of obliging (o20) which links them, need to 
be stored for a number of reasons: 

1. The query “purchasings of books” needs to be stored so that, upon 
occurrence of an event, we can determine whether the event occurrence 
is covered by the query “purchasings of books” – that is, whether the 
occurrence can be described as a “purchasing of a book” – and we can 
consequently determine which policies cover the occurrence.  We can 
determine which policies cover the occurrence because we can 
determine which policies are linked to the stored query “purchasings of 
books” which we have determined, via database look-up, covers the 
occurrence.  In this case, we determine that there is an obligation policy 
(which is an occurrence of ‘obliging’) that is linked to the stored query 
“purchasings of books”, because something must be done when an 
occurrence fitting the description “purchasings of books” occurs. 

2. The query “notifyings to the librarian of the purchase” needs to be 
stored so that, firstly, we can determine what courses of action can be 
taken in order to satisfy the obligation, and, secondly, we can determine 
whether a given course of action satisfies the description of the 
occurrences obliged under the obligation.  For instance, an occurrence 
o23 that is an emailing of the details of the purchase to the librarian, 
can clearly also be described as a “notifying to the librarian of the 
purchase”, and would consequently satisfy the obligation, as would an 
occurrence o25 that is a faxing of the details of the purchase to the 
librarian.  We say that the occurrence o23 (or o25 depending on 
which implementation mechanism is chosen) can be described as a 
“notifying to the librarian of the purchase” because the occurrence is 
covered by the stored query “notifyings to the librarian of the 
purchase”. 

 
Now that we have motivated why it is that queries must be stored, let us turn to 
the means by which queries are stored.  It is clear from the descriptions above of 
the various types of query that storing a query in an occurrence-centric database 
is simply a matter of storing the query-occurrences with their relevant criterion-

types (that is, roles in the query occurrence) and actual criteria (that is, 
participants in the query occurrence). 
 
Following is an example of query storage for a simple nested query.  The query 
“select concepts named ‘Brian’” is a nested query consisting of an alphabetic-
equals query (to identify the symbol ‘Brian’), nested inside an occurrence query 
(to select naming occurrences in which ‘Brian’ is the name given), which in turn 
is nested inside a participant query (to select concepts being named in the afore-
mentioned naming occurrences).  Specifically, the query “select concepts named 
‘Brian’” could be regarded as: “select participants in the role ‘named’ in 
occurrences in the set (select occurrences where (select symbols equal to 
‘Brian’) are in the role ‘name’)”; the brackets indicate the various levels of 
nesting.  The query would be represented using occurrences as shown in Table 7 
below, which captures the full structure of the query. 
 

Participant Occurrence Role 
‘Brian’ (s4) o10 (an alphabetic equals 

query) 
alphabetic-equals-
criterion 

?o10 (results of query o10) o11 (an occurrence query) participant-criterion 
the role ‘named’ o11 role-criterion 
?o11 (results of query o11) o12 (a participant query) occurrence-criterion 
the role ‘name’ o12 role-criterion 

Table 7: Storage of the nested-query “select concepts named ‘Brian’” 

 
The ability to store queries also means that we can use queries to look-up other 
(stored) queries.  The ability to look-up queries that return results which fit 
certain criteria is useful for finding covering-queries – that is, the ability to 
analytically find which queries cover a certain item.  This in turn is useful for 
determining which policies cover a particular item, and for interrogating a 
contract to determine what items and eventualities the contract covers.  We 
describe the mechanism for finding covering-queries, and its use in finding the 
policies applicable to an item, in more detail in Section 5.9 on Determination of 
Covering-Queries. 
 



5.8 Query Resolution 
We may wish to locate, reconstruct, and resolve queries that are stored in 
policies, or we may wish to resolve non-stored queries such as “tell me what 
you’ve got for sale” or “tell me what happened from the audit” against the rows 
stored in the occurrence store.  A stored query can be resolved against 
occurrences stored in a relational database by locating and reconstructing the 
query and executing it against the database using SQL.  Non-stored queries can 
be parsed and resolved directly.  For in-memory data stores, which are also 
supported by EDEE, EDEE executes the query by locating-and-reconstructing 
the stored query or by directly-parsing the non-stored query and then resolving it 
using appropriate Java set operations on tabular, indexed, in-memory data 
structures.  The mechanism for query resolution in all cases is predominantly a 
tabular lookup combined with operations on sets of identifiers, and is described 
in more detail in the following paragraphs. 
 
As an example of query resolution, the query “select concepts named ‘Brian’” 
(which is a nested query as described in Storing Queries above), would be 
resolved as follows: 
 

1. Alphabetic-equals query:  select the symbol identifier for the symbol 
alphabetically equal to the symbol ‘Brian’.  Here we specify our 
alphabetic-equals-criterion as ‘Brian’ and, given Table 9 below, we 
find that symbol s4 satisfies this criterion. 
 

Symbol Identifier Symbol Text 
s4 ‘Brian’ 
s5 ‘Niki’ 
s6 ‘Peter’ 

Table 8: Mechanism used to find the symbol alphabetically equal to ‘Brian’ 

(See footnote 6) 
 

2. Occurrence query:  select the occurrences (of naming an individual 
with a name) in which the name given was the symbol ‘Brian’ (s4).  
Here we specify our participant-criterion as s4 (the symbol identifier 
for ‘Brian’, returned by the alphabetic-equals query in step 1 above) 
and we specify our role-criterion as the role ‘name’.  Given Table 9 
below, we find that occurrence o2 satisfies this query. 

 
Participant Occurrence Role 
c5 (the Church of England) o2 namer 
c1 o2 named 
(the symbol) ‘Brian’ (s4) o2 name 

Table 9: Mechanism used by occurrence query for finding  
occurrences in which the name given was ‘Brian’ (s4) 

 
3. Participant query:  select the participants who are being named in the 

previously found occurrence(s).  Here we specify our role-criterion as 
the role ‘named’ and our occurrence-criterion as the occurrence o2 
(which has the occurrence-identifier found by the query in step 2 
above).  Given Table 10 below, we find that concept c1 satisfies this 
criterion. 

 
Participant Occurrence Role 
c5 (the Church of England) o2 namer 
c1 o2 named 
(the symbol) ‘Brian’ (s4) o2 name 

Table 10: Mechanism used by participant-query for finding  
participants in occurrence o2 (a naming ‘Brian’) 

 

5.9 Determination of Covering-Queries 
Finding covering-queries is the reverse of query resolution.  In query resolution, 
we begin with a defined query and return all the results that match the specified 
criteria.  When finding covering-queries we begin with an item, and determining 
which queries cover the item.  The item may be a regular concept or it may itself 
be a query, in which case we can still determine analytically which other queries 
completely cover the results of that query. 
 
Figure 3 below illustrates the complementary nature of query resolution and 
determination of covering-queries.  Assume we have the occurrences ‘Walt 
paying Ken’, ‘Walt paying Brian’, and ‘Peter paying Brian’ stored in the 
occurrence store.  Further, assume we have the queries ‘Walt paying’ and ‘Brian 



paid’ stored in the occurrence store.  Using the schema defined earlier the 
queries ‘Walt paying’ (i.e. ‘select paying occurrences where the payer is Walt’) 
and the query ‘Brian paid’ (i.e. ‘select paying occurrences where the paid person 
is Brian’) would each be stored as combinations of nested occurrence-queries.  
Turning now to query resolution, the query ‘Walt paying’ would return the 
occurrences ‘Walt paying Ken’ and ‘Walt paying Brian’.  Similarly, the query 
‘Brian paid’ would return the occurrences ‘Walt paying Brian’ and the 
occurrence ‘Peter paying Brian’.  If we consider the reverse, determination of 
covering-queries, we see that the occurrence ‘Walt paying Brian’ is covered by 
both the queries ‘Walt paying’ (i.e. ‘payings where Walt is the payer’) and 
‘Brian paid’ (i.e. ‘payings where Brian is the person paid’).  We say that an 
occurrence (or indeed any item) fits a description if it is covered by a stored 
query. 
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Figure 3 – Occurrences Fitting a Description (Covered by a Stored Query) 

 
To give an example of determining covering-queries, assume we had the 
following queries stored:   

• Query occurrence o1, representing ‘x < 6’ 
• Query occurrence o2, representing  ‘x < 7’ 
• Query occurrence o3, representing ‘x > 9’ 

 

Given the number ‘x=6.2’ it is straightforward to determine that this number is 
covered by the query o2 (‘x < 7’) only.  To determine this we simply use the 
rule “a number is covered by numeric-less-than queries where the ‘less-than’ 
criterion is greater than the number, and by numeric-greater-than queries, where 
the ‘greater-than’ criterion is less than the number”.  This rule is easily 
formulated as a query which returns the covering-queries for that number. 
 
Given the query ‘x<5’ it is easy to determine that this query is covered by the 
queries o1 (‘x < 6’) and o2 (‘x < 7’).  To determine this we simply use the rule 
“a numeric-less-than query A is covered by numeric-less-than queries where the 
‘less-than’ criterion is greater than the ‘less-than’ criterion of A”.  Again, this 
rule is easily formulated as a query which returns the covering-queries for that 
numeric-less-than query. 
 
Given that there are a broad range of query types (algebraic, alphabetic, set-
theoretic, occurrence-centric, and conditional queries) there is a complex set of 
queries which can be used to determine which stored queries cover a given item 
or query.  For instance, to determine which union queries cover a given query 
we use the rule “a union query A covers a query B where any ‘uniand’ criterion 
of A covers B”.  To determine which conditional queries cover a given query A 
we find those conditional queries which have the query A, or a query which 
covers A, as the main-query criterion, and whose side-condition criterion 
evaluates to true.  The complete set of rules relating to determination of 
covering-queries is quite lengthy, and has been omitted from this paper for the 
sake of brevity. 
 
As mentioned previously, the ability to determine which queries cover a given 
item or query is essential for determining which policies apply to a given item or 
occurrence.  For example, let us take the policy ‘AuctionHouse PLC prohibits 
bids over $100’, which is represented as shown in Table 11 below: 



Participant Occurrence Role 
c1 (named ‘Auction House PLC’) o4 (a prohibiting) prohibitor 
?o2 (results of the query/description 
‘biddings over $100’)10 

o4 prohibited (occurrences) 

Table 11- Representation of ‘AuctionHouse PLC prohibiting bids over 
$100’ 

 
We show in the representation above that what is prohibited is any occurrence 
fitting the description (i.e. query) ‘biddings over $100’.  Attempting to add the 
bidding occurrence ‘Steve bidding $150’ to the database is clearly a violation of 
this policy as the occurrence is covered by the query ‘a bidding over $100’ and 
is consequently covered by the prohibition. 
 

6 Representing and Storing Classifications 
Classifications can be represented using queries and classifying occurrences.  In 
the initial purchasing example demonstrated in Table 1 above we saw that a 
participant in an occurrence is often specifically identified by an identifier.  
However, it is also possible that the participants in an occurrence may be 
identified by a query which returns a set of identifiers.  This mechanism of using 
queries to specify participants in an occurrence is useful for specifying the 
participants in an occurrence of classifying.  Classifying occurrences take the 
form ‘[individual or institution, the classifier] classifying [concept or set 
of concepts, the classified item(s)] as [concept, the class].’  The class11 
is then usually named using a naming occurrence.  For example we could 
represent ‘accounts with balance > $100 for longer than 60 days are classified as 
overdue’ using the classifying and naming occurrences shown in Table 12 
below. 
 

                                                 
10 For brevity, the storage of this query is not shown here.  The query would involve selecting the 
bidding occurrences where the price bid (i.e. amount in the ‘bid’ role) is greater than $100. 
11 More accurately, the participant in the class role in the classifying occurrence. 

Participant Occurrence Role 
?o1 (the results of the query/description 
‘accounts with balance > $100 for longer than 
60 days’12) 

o4 (a classifying) classified 
concepts 

c2 (the concept overdue) o4 class 
(classification) 

c4 (the company making the classification) o4 classifier 
(institution) 

c2 (the concept overdue) o5 (a naming) named 
s8 (the symbol ‘overdue’) o5 name 
c4 (the company that calls this ‘overdue’) o5 namer 

Table 12: Representing a classifying occurrence “Accounts with balance > 
$100 for longer than 60 days are classified as overdue” 

 

                                                 
12 This is a complex query that could be formulated with a combination of intersection, occurrence, 
and algebraic queries. 



7 Representing and Storing Contracts 
In order to represent contracts, formalisms must be provided to represent 
contractual provisions – that is, the descriptive and prescriptive policies 
specified in the contract.  The provisions of a contract include policies that 
define terminology and its interpretation, regular and conditional rights and 
duties of the parties, and authority (permissions and powers).  We must be able 
to specify what constitutes a breach of contract, and how contracts are 
interpreted in terms of various governing institutions and systems of law.  
Furthermore the act of stating the terms of an agreement must be separated from 
an act that make those terms binding.  The formalisms needed to represent these 
requirements in an occurrence centric manner are explained in the following 
sections. 
 

7.1 Terminology and the Interpretation of Terms 
Contracts commonly define terms13 which are intended to be construed in a 
particular sense.  For example, a contract may define the terms: ‘you’, ‘yours’, 
‘the Company’, and others.  Terminology is defined so as to explain how the 
parties name and classify items and occurrences being referred to by the 
contract.  The ability to define terminology reduces ambiguity, improves 
consistency, and makes the contract more concise [27].  Defined terminology 
can be easily implemented using a combination of classifying and naming 
occurrences.  Earlier (Table 12 above) we defined the term ‘overdue’ according 
to a definition specified by a company; the term ‘overdue’ could equally well be 
defined according to a definition specified by a contract. 
 

                                                 
13 Here we mean terms in the specific sense of ‘words and phrases’, not in the sense of ‘provisions of 
the agreement’. 

The interpretation of a term is all the results returned by the query associated 
with the defined term (i.e. the query associated with the classification – the term 
is simply the name of the class associated with the classifying occurrence).  In 
the case of the term ‘overdue’ defined in Table 12, ‘overdue’ is the name of the 
class c2 associated with the classifying occurrence o4.  The interpretation of 
‘overdue’ would be ?o1 – that is the results of the query o1 – which holds the 
role classified in the classifying occurrence o4.  This means that an 
account with a balance of $125 for 72 days would be interpreted as ‘overdue’, 
whereas an account with a balance of $20 for 30 days would not. 
 
The use of classifying occurrences allows us to construct ontologies in a far 
more flexible manner than is possible with object-oriented languages.  Object-
oriented languages expect the static class hierarchy to be created first – objects 
are instantiated according to fixed class definitions; this inhibits evolution and 
precludes multiple interpretations.  Our approach allows alternative 
classifications and retrospective reclassifications, through the simple mechanism 
of adding classifying occurrences.  Furthermore, unlike object-oriented class 
structures, classifying occurrences are subjective, allowing for multiple 
classifications by different parties or by the same party over time.  Subjectivism 
is common in the interpretation of contracts and essential in the application of 
different systems of law to contracts since each system of law applies its own 
subjective classifications.  The subjective classification imposed by the highest 
court of the land will be the ultimate classification applied during disputes about 
the contract, but other classifications may be used by the parties during 
performance of the contract.  We explain more about this in Section 7.7 on 
Institutional Interpretations and Systems of Law.  We turn now to the 
representation of rights. 
 

7.2 Rights of Parties 
Hohfeld [15] explains that the word ‘right’ has multiple senses, inter alia: 

• One sense of ‘right’ is the correlative of ‘duty’ or ‘obligation’.  For 
example, if X has a duty (obligation) to deliver specific goods to Y, 
then Y has the corresponding right (entitlement) to receive delivery of 
the goods from X. 

• Another sense of ‘right’ is synonymous with ‘power’.  A party X has 
the right (i.e. power) to sell an item if they have the ability to bring 



about certain occurrences which constitute a valid sale; that is, if they 
have the ability to bring about certain occurrences that are classified as 
valid sales by a governing institution.  The notion of power is defined 
in the section on Authority below. 

 

7.3 Duties of Parties 
The first sense of ‘right’ as an ‘obligation’ or ‘entitlement’ can be represented in 
the form: [obliger] obliges [occurrence(s) fitting a description].  Table 13 below 
represents the duty of Brian to deliver a particular book to Walt within 5 days.  
This duty is equivalent to the entitlement of Walt to have the particular book 
delivered to him.  Notice that it is only the first delivering occurrence fitting the 
description that is obliged14.  This means that once a suitable delivery occurs, the 
obligation is fulfilled and nothing else is obliged.  When the query describing 
the obliged occurrences (?o1 in this case) can return no more results 
irrespective of what is added to the database, the query is said to be ‘full’, and 
the corresponding obligation is said to be ‘fulfilled’. 
 

Participant Occurrence Role 
c3 (named ‘Walt’) o4 (an obliging) obliger 
?o1 (the results of the query/description ‘the 
first occurrence of delivering of the particular 
book by Brian to Walt within 5 days’) 

o4 obliged 
occurrences 

Table 13: Representing the duty (obligation o4) of Brian to deliver the book 
to Walt 

Violations of obligations are formalized in the section on Breaches below. 
 

7.4 Conditional Duties 
It is common for duties in contracts to be conditional obligations that come into 
force upon occurrence of a certain event.  For instance, the duty of Brian to 
deliver is contingent upon Walt’s paying for the book.  The conditional nature of 
the obligation can be achieved by classifying the occurrence o4 as an ‘obliging’ 
                                                 
14 Contrast this to permitted and prohibited occurrences, to be discussed in Section 7.5, where it is 
usually all occurrences fitting the description (rather than just the first n occurrences fitting the 
description) that are permitted or prohibited. 

(i.e. a valid and in-force obligation according to a certain party or institution) 
only if the conditions have been met.  This is implemented using a classification 
of the results of a conditional query, as illustrated in Table 14 below;  the 
conditional query returns the occurrence o4 only if the conditions have been 
met, and consequently o4 is classified as an in-force obligation only if the 
conditions have been met.  In the absence of being classified as an ‘obliging’ 
(‘in-force obligation’), o4 is not an enforceable obligation.  As mentioned 
earlier, the role names ‘obliger’ and ‘obliged occurrence’ (in Table 13 above) 
have no semantics in the absence of an explicit classification of the occurrence 
with which these roles are associated (in Table 14 below).  So the occurrence o4 
becomes an in-force obligation only when it is classified as such by a particular 
institution, and does not become an obligation solely by virtue of having the 
roles ‘obliger’ and ‘obliged occurrences’. 
 

Participant Occurrence Role 
?o5 – this is a conditional query which: 
• when ‘Walt has paid Brian’ exists, returns the 

occurrence o4 – in Table 13 above - which has 
‘Brian’ as obliger and ‘the first delivering of the 
book to Walt within 5 days’ as the obliged 
occurrence 

• when ‘Walt has paid Brian’ does not exist, 
returns nothing 

o6 (a classifying) classified 

c6 (an obliging / an in-force obligation) o6 class 
the parties to the contract15 o6 classifiers 

Table 14: Representing a conditional obligation of Brian to deliver the book 
to Walt if Walt has paid for the book, using a conditional query in a 

classifying occurrence 

 
A further example of a conditional obligation is: “You must pay a penalty of 
$100 if you pay late”, or alternatively “You must, if you pay late, pay a penalty 
of $100”.  Here “paying a penalty of $100” is a description of an occurrence; the 
first occurrence fitting the description is what is obliged, but the obligation is 
only recognized if “you pay late” is true (i.e. occurs).  The obligation is not 

                                                 
15 Again, what is stored here is not the text ‘the parties to the contract’, but rather the query-
resolution identifier ?o7, where o7 is the query that returns the parties to the contract. 



recognized if you pay on time.  Table 15 below represents this conditional 
obligation. 
 

Participant Occurrence Role 
?o1 – the results of the query ‘the first 
paying of a fine of $100’ 

o2 (has no type until 
classified by the ‘classifying’ 
occurrence o4) 

obliged 
occurrences 

?o3 – this is a conditional query 
which: 
• when ‘you pay late’ exists, 

returns the occurrence o2 in the 
row above 

• when ‘you pay late’ does not 
exist, returns nothing 

o4 (a classifying) classified 

c6 (an obliging / an in-force obligation) o4 class 
the parties to the contract16 o4 classifiers 

Table 15: Representing a conditional obligation to pay a penalty of $100 if 
you pay late 

Secondary obligations that come into force upon violation of a primary 
violation are common in contracts.  These can be represented as conditional 
obligations. 
 

                                                 
16 Again, what is stored here is not the text ‘the parties to the contract’, but rather the query-
resolution identifier ?o7, where o7 is the query that returns the parties to the contract. 

7.5 Authority: Permissions and Power 
The notion of authority can be considered in terms of the distinct notions of 
permission and empowerment.  For instance ‘the salesperson is authorized to 
sell items discounted by up to 50% of their regular sales price’ could mean one 
or both of two things: 

 
1. ‘The salesperson is prohibited from selling items discounted by 

more than 50% of their regular sales price’.  The representation of 
this prohibition is as depicted in Table 16 below.  Violating this 
prohibition would subject the salesperson to possible disciplinary 
action from the company.  Violations are discussed in the section 
on Breaches below. 
 

Participant Occurrence Role 
c1 (the company) o5 (a prohibiting) prohibitor 
?o1 (the results of the 
query/description “occurrences of 
selling where goods are sold at a 
discount of more than 50% of their 
regular price”) 

o5 prohibited 

Table 16: Representing a company prohibiting a salesperson 
from selling goods at a discount of more than 50% of their 

regular price 

 



2. ‘The salesperson is empowered to sell (contractually capable of 
selling) only items discounted by less than 50% of their regular 
sales price’.  The representation of this power is as depicted in 
Table 17 below.  In terms of UK commercial law this means that, 
provided the company has made reasonable efforts to communicate 
this constraint on the agent’s authority to the consumer, any 
attempt by the salesperson to sell an item discounted to more than 
50% of the regular sales price does not constitute a valid selling 
occurrence in terms of the company’s policies, nor in the eyes of 
the Court and is consequently not classified as such.  In contrast, if 
there is an occurrence of attempting to sell the item discounted by 
less than 50% of the regular sales price by the salesperson then the 
sale is valid and the occurrence is so classified by the Court. 
 

Participant Occurrence Role 
?o1 (the results of the 
query/description “occurrences of 
selling where goods are sold at a 
discount of less than 50% of their 
regular price”) 

o6 (a classifying) classified 

c1 (the company making this 
classification) 

o6 classifier 

c4 (a valid selling) o6 classification 

Table 17: Representing the power of a salesperson to sell goods 
(enact a valid occurrence of selling) only when they are 

discounted by less than 50% of their regular price 

 
In short, the power of an individual to bring about an occurrence 
means that the occurrence, provided it fits certain criteria, will be 
construed as (i.e. classified as) an occurrence of a certain type by a 
governing institution.  Jones and Sergot [18] formalize this with 
the use of a ‘counts as’ connective; we make use of classifying 
occurrences which have a similar effect.  For instance, an 
occurrence is classified by the Commercial Law Court as a valid 
sale (occurrence of ‘selling’ according to the courts definition of 
‘selling’) if the parties have agreed precise terms and the seller is 
authorized to sell the item. 

 

In the example “Salespeople may not sell goods discounted by more than 50%” 
notice that ‘salespeople’ is a query which returns the set of individuals classified 
as salespeople.  If John Smith is a salesperson, the query resolves to a set of 
results that includes John Smith, yielding the policy “John Smith may not sell 
goods discounted by more than 50%”.  Of course, determination of covering-
queries – the reverse of query-resolution – may be used to check which policies 
apply to John Smith.  A determination of covering-queries for John Smith would 
reveal that he is covered by salespeople, and that salespeople, are in turn, 
mentioned by the nested query (in this case, an occurrence-description) 
‘salespeople selling goods discounted by more than 50%’, which in turn is 
covered by the prohibition against such occurrences (i.e. is covered by the 
‘prohibiting’ occurrence that takes the afore-mentioned occurrence-description 
in the ‘prohibited’ role).  The determination of covering queries is therefore an 
essential tool in interrogating the contract in order to ascertain which provisions 
of the contract apply.  If there are multiple conflicting provisions we obviously 
have to choose which one to apply:  that is, whether a given permission or 
specific obligation overrides a contradictory prohibition or vice versa.  We may, 
for instance, need to decide whether a given occurrence in which something is 
obliged, holds as (that is, is classified by a certain institution as) a valid and 
enforceable obligation – occurrence of ‘obliging’ – in the case where there is a 
prohibition to the contrary. 
 

7.6 Breach of Contract 
Violations occur when: 

• An obligation to perform an occurrence fitting a description has not 
been fulfilled by a certain deadline.  In the case of the obligation of 
Brian to deliver a particular book to Walt within 5 days, the obligation 
is violated if there is no such delivery within the requisite time.  Such 
breaches can be represented using the occurrence structure illustrated 
in Table 18 below. 

• A forbiddance (prohibition) against performing an occurrence fitting a 
certain description has been flouted.  Such breaches can be represented 
using the occurrence structure illustrated in Table 19 below, which 
gives the example of violating the prohibition against selling items at a 
discount of more than 50%. 

 



Participant Occurrence Role 
?o7 – the results of a conditional query which: 
• after the deadline and if there are no 

occurrences fitting the description of 
obliged occurrences (i.e. fitting the 
description in the ‘obliged’ role of the 
obligation o417 of Brian to deliver the book 
to Walt within 5 days), returns the 
obligation o4. 

• before the deadline, returns nothing. 

o8 (a violating / 
breach) 

violated 

o8 o9 (a classifying) classified item 
c12 (a violation/breach, in terms of the 
contract) 

o9 class 

Table 18: Representing the violation of an obligation (o417) to perform by a 
deadline (specifically, an obligation of Brian to deliver the book to Walt 

within 5 days) 

 
Participant Occurrence Role 
?o10 – the results of a conditional query 
which: 
• returns the prohibition occurrence o518 if 

there are any occurrences fitting the 
description of prohibited occurrences (i.e. 
fitting the description in the ‘prohibited’ 
role in the prohibition against selling items 
discounted by more than 50%). 

• otherwise, returns nothing. 

o11 (a violating / 
breach) 

violated 

o11 o12 (a classifying) classified item 
c12 (a violation/breach, in terms of the 
contract) 

o12 class 

Table 19: Representing the violation of a prohibition (o518)  
against selling items discounted by more than 50% 

 

                                                 
17 Refer to Table 13 for the definition of the obligation (obliging) occurrence o4. 
18 Refer to Table 16 for the definition of the prohibition (prohibiting) occurrence o5. 

7.7 Institutional Interpretations and Systems of Law 
Occurrences such as classifying, naming, authorizing, and prohibiting each can 
take role-players such as the classifying party, naming party, authorizing party 
and prohibiting party.  These role-players can be viewed as the institutions or 
individuals which make the classifications or define the norms.  The ability to 
afford multiple institutional definitions allows contracts to be subjectively 
interpreted in terms of alternative institutional interpretations or systems of law 
which define their own norms relating to classifications, duties, prohibitions, 
and powers.  For example, the lower courts may classify a company as being 
exempt according to certain contractual provisions and classification criteria set 
out by the judge of the lower court; the Appeals Court may make a different 
classification using its own criteria. 
 

7.8 Proposed Terms versus Binding Agreements 
It is important to recognize that the act of stating or proposing the terms of the 
contract does not make the contract binding.  The interpretation and enforcement 
of the terms is provisional upon agreement being reached and recognized by the 
parties, or being recognized by the court in the event of any dispute.  For 
instance, the stated term ‘Brian must deliver the book to Walt’ – restated as 
“Obliged is an occurrence of ‘delivering of the book by Brian’” – applies (i.e. is 
classified as a valid ‘obliging’ and therefore an in-force obligation by a 
governing institution) only if a valid sale (selling) has been recognized.  The 
terms and conditions of the sale agreement only come into force (are conditional 
upon) a valid ‘selling’ being recognized. 
 
The reinterpretation of proposed terms as binding terms following an occurrence 
of agreeing can be implemented using the conditional query mechanism 
introduced earlier.  The occurrence schemas used to implement the conditional 
nature of terms in general would appear as follows: 

• [Governing institution] classifying [select occurrences in which 
something is in the role obliged, but only if there is an occurrence 
o3 which pertains to the contract and is classified as a valid selling] as 
valid occurrence of ‘obliging’. 

• [Governing institution] classifying [select occurrences in which 
something is in the role prohibited, but only if there is an 



occurrence o3 which pertains to the contract and is classified as a 
valid selling] as valid occurrence of ‘prohibiting’. 

• and so forth. 
In each of the occurrence schemas listed in the bullet points above, notice that 
‘but only if there is an occurrence o3 which pertains to the contract and is 
classified as a valid selling’ is a condition in a conditional query; the conditional 
query returns nothing if the condition is not satisfied, and consequently nothing 
is classified as a valid ‘obliging’ or ‘prohibiting’ by the governing institution if 
the condition is not satisfied (i.e. if there is no occurrence of ‘selling19’ for the 
contract). 
 

8 Performing and Enforcing Contracts 
An occurrence-based system performs and enforces contracts by: 

• determining currently applicable obligations, by finding 
descriptions of obliged occurrences associated with occurrences 
currently classified as valid obligings (diagnosis) 

• fulfilling its own obligations by triggering occurrences which it is 
capable of which fit the descriptions specified in its obligations 
     (liveness) 

• avoid violating prohibitions which cover it, by trying not to trigger 
occurrences which fit the descriptions specified in such prohibitions 
     (safety) 

• monitoring fulfillment of (primary and secondary) obligations and 
violation of prohibitions by users, through the determination of 
covering-queries    (detection) 

• classifying new occurrences appropriately according to defined norms, 
thereby causing certain classifications of occurrences (in line with 
powers) and suppressing certain classifications of occurrences  
     (prevention / immunity) 

• fulfilling any secondary obligations arising from unavoidable 
violations    (cure) 

 

                                                 
19 ‘selling’ is synonymous here with ‘agreeing to the sale’. 

9 Implementation and Motivation 
Figure 4 – Implementation Architecture below shows a schematic architecture 
of an Edee occurrence store – the store is an active database as new occurrences 
added to the database are checked against existing stored queries and policies 
(contracts) and the contractually defined responses are accordingly triggered. 
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Figure 4 – Implementation Architecture 

 
The simple participant-occurrence-role structure of all occurrences enables us to 
use a broad variety of back-end data stores to uniformly store occurrences, and 
consequently queries and policies.  The EDEE environment has been 
successfully tested against Oracle 8.1.7, PostgreSQL 7.1, IBM DB/2 7.1, 
Microsoft SQL Server 7.0 (SQL Server 2000) and Microsoft Access 2000 
running on SunOS, Red Hat Linux 6.2, Windows NT and Windows 2000.  The 
ability to uniformly store queries and policies in a vendor-independent manner 
provides greater platform-independence than proprietary stored-procedures and 
triggers; furthermore databases that do not support stored procedures and 
triggers can still be used for query and policy storage.  EDEE also implements 
its own in-memory data-store in Java which allows caching of results and 



substantially more rapid retrieval and determination of covering-queries 
compared to on-disk data.  Both on-disk and in-memory structures can be 
queried using the EdeeQL query language. 
 

10 Related Work 
Existing policy approaches and languages are primarily targeted at system or 
network management [11, 28, 20] or access control [13, 4, 14, 19] and are not 
capable of representing and enforcing e-commerce contracts and business 
policies.  The expressiveness of each approach varies.  For example OASIS 
[13], LaSCO [14], QCM [19] and PolicyMaker [4] can express only 
authorization policies, whereas Ponder [11] can express authorization and 
obligation policies as well as some basic descriptive policies through an 
associated name service.  All adopt a traditional object-oriented framework, 
above which the policy notation is laid.  COLOR-X [7], though not developed as 
a policy notation, is a conceptual modeling framework that incorporates various 
policy concepts such as the ‘permit’ and ‘must’ modalities.  The end-goal of 
COLOR-X is the generation of object-oriented code (classes, attributes, and 
methods) from a conceptual schema or functional specification, whereas we 
propose the generation of various types of occurrences-based policies to be 
stored in an occurrence store. 
 
A commercial rules repository, like Business Rule Solutions Inc’s RuleTrack 
[6] can be used for recording and organizing rules, but is limited to storing 
textual descriptions of the rules, which are not machine-interpretable.  
Commercial rules engines include Blaze Software’s Advisor [5], Vision 
Software’s Vision JADE, Usoft, and ILOG Rules.  Web content personalization 
servers like ATG Dynamo, BEA Weblogic, and Microsoft Site Server 3.0 and 
Commerce Server 2000 embed lightweight rules engines or rule generating 
scripts which typically generate VBScript or JavaScript source code;  they 
implement content personalization rules via a combination of XML (for tagging) 
and hooks to an existing object model.  Traditional rules languages are 
implemented above object-oriented or procedural fundamentals or as SQL 
triggers above relational database, and invariably use the Event-Condition-
Action (ECA) model where events (occurrences) are statically typed.  Being 
constrained by a static object model, they provide little or no support for 
subjective interpretation (classification) and naming of items and occurrences.  

Furthermore, traditional rule languages do not formalize the essential contractual 
notions of duty, authority, and power20 as provided by EDEE.  These notions, 
which according to Hohfeld [15] are among the fundamental legal conceptions, 
are essential constructs for representing legal relations between parties in 
contracts. 
 
Most current event monitoring services [2, 3, 8, 21, 25] focus on event 
detection and neglect event actuation.  GEM [21] has been integrated with the 
Ponder policy language, and CEA has been integrated with the OASIS access 
control policy language.  In both cases, procedural or object-oriented languages 
are used as the basis.  These event monitoring services allow composite events 
to be fired.  However, aside from the notable exception of GEM, these event 
monitors provide no actuation facilities or operators for triggering structured 
patterns of events which would be necessary for workflow management in 
e-commerce applications.  Event monitoring systems monitor for the occurrence 
of certain events and notify interested parties; in the absence of integration with 
a policy system, event monitoring systems cannot check which policies are 
applicable in the current circumstances. 
 
Workflow languages, as exemplified by the Process Specification Language 
(PSL) specification [24], allow routing policies to be defined based partially on 
the fulfilment of obligations derived by the company from its contracts and 
internal procedures.  However, workflow languages tend to neglect notions such 
as those of descriptive and prescriptive norms (classifying, obliging, prohibiting) 
that are crucial to coherent contract specification.  Our occurrence-based policy 
language is sufficiently expressive to model the join and split primitives for 
process control typically provided by workflow products: 
�� A join (synchronization, or rendezvous) point involves forbidding the next 

(successor) process from starting until the condition (e.g. ‘and’, ‘or’, or 
complex condition) has been fulfilled.  The successor process is then said to 
be ‘released’.  Some processes may be required to finish simultaneously, in 
which case the end of one process obliges the other process to end.  A join 
is actually a DETECT-and-CONTROL mini-workflow that occurs 

                                                 
20 Recall that the notion of ‘power’ is implemented by classifying occurrences fitting a certain 
description as being of a certain type according to a certain institution; this effectively empowers an 
actor to bring about a certain situation (legal relationship) according to that institution. 



concurrently with some other processes.  Detection (monitoring) involves 
determining which processes have started or finished. 

�� A split (selection) point involves selecting and obliging one or more 
successor processes to start (perhaps simultaneously), which may involve 
forbidding other successor processes from starting.  A split is actually a 
SELECT-and-CONTROL mini-workflow that occurs concurrently with 
some other processes. 

CONTROL (in the case of DETECT-and-CONTROL and SELECT-and-
CONTROL mini-workflows) involves obliging other processes to start or finish, 
authorizing other processes to start or finish, or prohibiting other processes from 
starting or finishing. 
 

11 Conclusion 
We have described a scheme for representing commercial contracts using an 
abstraction known as the occurrence.  Occurrences have participants acting in 
various roles.  The participants in an occurrence may be explicitly specified 
using an identifier, or may be described using a query.  Queries themselves can 
be stored as occurrences.  Contractual notions such as defined terminology, 
duties, authority, powers, and breaches can be formalized in terms of 
occurrences of classifying, obliging, authorizing, and violating.  Conditional 
obligations are supported.  Furthermore, subjective interpretations in terms of 
alternative institutional interpretations and systems of law are supported. 
 
Business application specifications are stated in terms of contracts between legal 
entities, and contracts between the computer system and its users.  Contracts can 
be used to encode the policies governing the behavior of human agents and 
computerized systems.  By providing a formal representation of the core 
semantics of commercial contracts and business policies through the use of 
occurrences, the occurrence-centric mechanisms implemented by EDEE 
constitute a powerful means of directly storing, interrogating, and executing 
business application specifications and electronic commerce contracts. 



 

12 Acknowledgements 
This research is supported by grants from the Cambridge Commonwealth Trust, 
the Overseas Research Students Scheme (UK), and the University of Cape Town 
Postgraduate Scholarships Office.  Thanks are due to various members of the 
Opera Group at the University of Cambridge Computer Laboratory for helpful 
comments on the draft. 
 

13 References 
[1] Allen, J., Natural Language Understanding: Second Edition, 

Benjamin/Cummings, 1-41, 248 (1995). 
[2] Bacon, J.M., J. Bates, R.J. Hayton, and K. Moody, “Using Events to 

Build Distributed Applications”, in: Proceedings of the IEEE SDNE 
Services in Distributed Networks and Environments, Whistler, British 
Columbia, 148-155 (1995). 

[3] Bacon, J.M., K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, 
O. Seidel, and M. Spiteri, “Generic Support for Distributed 
Applications”,  IEEE Computer,  vol. 33 no. 3, 68-76 (2000). 

[4] Blaze, M., J. Feigenbaum, and J. Lacy, “Decentralized Trust 
Management”, in: Proceedings of the IEEE Conference on Security 
and Privacy.  Oakland, CA (1996). 

[5] Blaze Software, “Blaze Advisor Technical White Paper” (2000),  
Available from: http://www.blazesoft.com/products/docrequest.html. 

[6] Business Rules Solutions, LLC, “BRS RuleTrack” (2001), 
Available at: http://www.brsolutions.com/ruletrack.shtml. 

[7] Burg, J.F.M., and van de Riet R.P., “COLOR-X: Object Modeling Profits 
from Linguistics”, in:  Proceedings of the 2nd International Conference 
on Building and Sharing of Very Large-Scale Knowledge Bases 
(KB&KS’95), Enschede, The Netherlands (1995). 

[8] Carzaniga, A., D.S. Rosenblum, and A.L. Wolf, “Design of a Scalable 
Event Notification Service: Interface and Architecture”, Technical Report 
CU-CS-863-98, Department of Computer Science, University of 
Colorado, Boulder (1998). 

[9] Davidson, D., Essays on Actions and Events, Clarendon Press, Oxford 
(1980). 

[10] Davis, T., “Lexical Semantics and Linking in the Hierarchical Lexicon”, 
PhD Thesis, Stanford University, Department of Linguistics, 17-69 
(1996),  
Available at: http://www-linguistics.stanford.edu/~tdavis/index.html. 

[11] Damianou, N., N. Dulay, M. Lupu, and M. Sloman, “Ponder:  A 
Language for Specifying Security and Management Policies for 
Distributed Systems.  The Language Specification.  Version 1.11”, 
Imperial College Research Report DoC 2000/1, Department of 
Computing, Imperial College of Science and Technology, University of 
London (2000). 

[12] Expert Advisory Group on Language Engineering Standards (EAGLES), 
“Thematic Roles”, (2000),  
Available at: http://www.ilc.pi.cnr.it/EAGLES96/synlex/node62.html. 

[13] Hayton R.J., J.M. Bacon, and K. Moody, “Access Control in an Open 
Distributed Environment”, in: Proceedings of the IEEE Symposium on 
Security and Privacy, Oakland, CA, 3-14, (1998). 

[14] Hoagland J.A., R. Pandey, and K.N. Levitt, “Specifying and Enforcing 
Policies using LaSCO: the Language for Security Constraints on 
Objects”, Department of Computer Science, University of California, 
Davis, Presentation and Position Paper at the Policy Workshop, Hewlett 
Packard Laboratories, Bristol, UK, (1999). 

[15] 
 

Hohfeld W.N., Fundamental Legal Conceptions as Applied in Judicial 
Reasoning, Edited by Walter Wheeler Cook, Greenwood Press 
Publishers, Westport Connecticut (1978). 

[16] ILOG Corporation,  “Business Rules” (2001), 
Available at: http://www.ilog.com/products/rules/. 

[17] Jurafsky D.S., and J.H. Martin, Speech and Language Processing,  
Prentice Hall, New Jersey, 499-543, 607-629 (2000). 

[18] Jones, A.J.I., and M. Sergot, “On Power in e-Institutions”, in:  Second 
International Workshop on Formal Models of Electronic Commerce 
(FMEC’00), Wharton School, University of Pennsylvania (2000). 

[19] Kakkar, P., M. McDougall, C.A. Gunter, and T. Jim, “Credential 
Distribution with Local Autonomy”, Department of Computer and 
Information Science, University of Pennsylvania (1999), 
Available from:  http://www.cis.upenn.edu/~qcm/papers/autonomy.ps.gz. 



[20] Koch, T.,  Automated Management of Distributed Systems.  Dissertation 
for the degree of Doktor-Ingenieur at the Fachbereich für Elektrotechnik 
der FernUniversität Hagen, Shaker Verlag, Aachen, (1997). 

[21] Mansouri-Samani, M., and M. Sloman.  “GEM:  A Generalised Event 
Monitoring Language for Distributed Systems”, IEE/IOP/BCS 
Distributed Systems Engineering Journal, vol. 4 no. 2 (1997).  Extended 
version of a paper presented at ICODP/ICDP ‘97 conference, Toronto, 
(1997). 

[22] Martin, R.M., D. Davidson, R.J. Butler, and W.C. Salmon.  “Proceedings 
of the Symposium on Events and Event-Descriptions at the University of 
Western Ontario Philosophy Colloquium 1966”, in: Fact and Existence, 
ed. J. Margolis, Basil Blackwell, Oxford (1969). 

[23] Palmer, F., Grammar, Penguin Books, (1984). 
[24] Schlenoff C., M. Gruniger, F. Tissot, J. Valois, J. Lubell, and J. Lee, The 

Process Specification Language (PSL) Overview and Version 1.0 
Specification, National Institute of Standards and Technology (2000), 
Available from:  http://www.mel.nist.gov/psl/. 

[25] Segall, B., D. Arnold, J. Boot, M. Henderson, and T. Phelps.  “Content 
Based Routing with Elvin4”, in: Proceedings of the Australian Unix 
and Open Systems User Group Conference (AUUG2K), Canberra, 
Australia, (2000). 

[26] Sowa, J.F.,  Knowledge Representation:  Logical, Philosophical, and 
Computational Foundations.  Brooks/Cole. Pacific Grove, California, 
USA (2000). 

[27] Thorpe, C.P., and J.C.L. Bailey, Commercial Contracts, Kogan Page, 
London (1999). 

[28] Wies, R., “Using a Classification of Management Policies for Policy 
Specification and Policy Transformation”, in: Proceedings of the 
IFIP/IEEE International Symposium on Integrated Network 
Management, Santa Barbara, California, USA (1995). 

 

14 Biographical Details 
 
Alan Abrahams is a doctoral student at the University of Cambridge Computer Laboratory.  His 
research interests include the use of event semantics for e-commerce application specification and 
development.  He holds a Bachelor of Business Science degree with honours in Information Systems 
from the University of Cape Town, South Africa.  Previously, he lectured systems analysis and 
design at the Department of Informatics, University of Pretoria.  He was co-author of a paper on 
e-commerce application development which won the best paper award at the International Academy 
for Information Management 14th Annual Conference. 
 
Dr Jean Bacon is a reader in distributed systems at the University of Cambridge Computer 
Laboratory and a Fellow of Jesus College, Cambridge.  Under various EPSRC grants she has 
investigated open architectures for role-based access control in interworking services, and composite 
event architectures for asynchronous middleware.  She leads the Opera Research Group with 
colleague Ken Moody.  She is the author of Concurrent Systems (Addison Wesley) and Editor-in-
Chief of IEEE Distributed Systems Online (http://computer.org/dsonline).  Jean lectures on 
concurrent systems, operating systems, and distributed systems at the Computer Laboratory. 



15 Appendix:  Structure of Queries Not Shown In Main Body 
This appendix describes in detail the structure of queries not shown in the main 
body. 
 

15.1 Structure of Algebraic Queries 
See page 4. 
 

15.2 Structure of Alphabetic Queries 
The three basic types of alphabetic query are represented as shown in Table 20 
below, which depicts the queries ‘x = Brian’, ‘x < Niki’, and ‘x > Peter’ 
respectively (where x is the solution of the query). 

 
Participant Occurrence Role 
‘Brian’ (s4)21 o1 alphabetic-equals-criterion 
‘Niki’ (s5) o2 alphabetic-less-than-criterion 
‘Peter’ (s6) o3 alphabetic-greater-than-criterion 

Table 20- Representation of Basic Alphabetic Queries:  Equality, Less 
Than, and Greater Than 

As for algebraic queries, the basic types of alphabetic queries can be composed 
using set-theoretic queries. 
 

                                                 
21 Again, due to data-type restrictions, symbols are stored in the separate Symbol table.  For 
readability we show the symbols directly; however, what appears in this column is really the symbol 
identifier: e.g. s4, s5, s6 where s4=‘Brian’, s5=‘Niki’, s6=‘Peter’. 

15.3 Set-Theoretic Queries 
Set-theoretic queries for union, intersection, difference, identification, universal 
set, empty set, and negation are supported. 
 

Union See page 5. 

Intersection ?o1 ∩ ?o2 ∩ … returns the items in all of the sets 
?o1, ?o2, etc. where ?o1, ?o2, etc. are the sets 
resulting from the resolution of the queries ?o1, ?o2, 
etc.  The criteria (arguments) to the intersection query can 
be referred to as ‘intersectands’.  The representation of a 
general intersection query is as shown in Table 21 below: 

 
Participant Occurrence Role 
?o1 o4 intersectand 
?o2 o4 intersectand 
… … … 

Table 21- Representation of an Intersection Query 

Difference ?o1 - ?o2 returns the items in the set ?o1 but not in 
(i.e. excluding those items in) the set ?o2 where ?o1 and 
?o2 are the sets resulting from the resolution of the 
queries o1 and o2 respectively.  The criteria (arguments) 
to the difference query can be referred to as the ‘differor’ 
and ‘differand’.  The representation of a general 
difference query is as shown in Table 22 below: 

 
Participant Occurrence Role 
?o1 o4 differor 
?o2 o4 differand 

Table 22- Representation of a Difference Query 



Universal Set A special query that returns all the concepts in the 
database.  The universal set is represented simply by a 
specially assigned identifier. 

Empty Set A special query that returns nothing.  The empty set is 
represented simply by a specially assigned identifier. 

Identification An identification query with the criterion c1 returns 
the item identified as c1 if that item exists in the 
database, and the empty set otherwise.  Identification 
queries are used to allow identifiers to be wrapped 
inside queries so as to be nestable inside other queries.  
The representation of an identification query is as 
shown in Table 23 below: 

 
Participant Occurrence Role 
c1 o4 identificand 

Table 23- Representation of an Identification Query that 
returns c1 if it exists in the database 

Negation See page 5. 

Cardinality A cardinality (counting) query is used to count the 
number of items fitting a description.  A cardinality 
query takes a single criterion which is a set of items to 
be counted; this set is generally specified using a query 
which describes the criteria for items falling into the 
set.  For example, a count of ‘rich pensioners’ would 
simply specify that what is counted are items fitting the 
description (i.e. the results of the query) ‘rich 
pensioners’.  This can be represented as shown in Table 
24 below: 

 

Participant Occurrence Role 
‘rich pensioners’22 o4 counted 

Table 24- Representation of the query to ‘count 
rich pensioners’. 

15.4 Occurrence-Related Queries 
 

Occurrence 
query 

An occurrence query specifies the participant and role 
and can be represented as shown in Table 25 below; 
all occurrence-identifiers with this participant in that 
role are returned. 

 
Participant Occurrence Role 
?o1 o4 participant-criterion 
?o2 o4 role-criterion 

Table 25- Representation of an Occurrence Query 

Graphically, the ‘search window’ used to resolve an 
occurrence query looks like that shown in Table 26 
below: 
 

Participant Occurrence Role 
[match participant-
criterion] 

 [match role-
criterion] 

Table 26- A graphical representation of the 
‘search window’ used to resolve an Occurrence 

Query 

 

                                                 
22 What is stored here is the identifier of the results of the query ‘rich pensioners’ (e.g. ‘?o5’) rather 
than the text ‘rich pensioners’.  The text ‘rich pensioners’ which represents the resolution (?o5) of 
the underlying query (o5) ‘concepts classified as rich, intersection concepts classified as pensioners’ 
is used merely for readability. 



Participant 
query 

A participant query specifies the occurrence and role 
and can be represented as shown in Table 27 below; 
all participant-identifiers in this occurrence with this 
role are returned. 

 
Participant Occurrence Role 
?o1 o5 occurrence-criterion 
?o2 o5 role-criterion 

Table 27- Representation of a Participant Query 

Graphically, the ‘search window’ used to resolve a 
participant query looks like that shown in Table 28 
below: 
 

Participant Occurrence Role 
 [match occurrence-

criterion] 
[match role-
criterion] 

Table 28- A graphical representation of the ‘search 
window’ used to resolve a Participant Query 

 
Role query A role query specifies the occurrence and participant 

and can be represented as shown in Table 29 below; all 
role-identifiers for the participant in the occurrence are 
returned. 

 
Participant Occurrence Role 
?o1 o6 participant-criterion 
?o2 o6 occurrence-criterion 

Table 29- Representation of a Role Query 

Graphically, the ‘search window’ used to resolve a 
role query looks like that shown in Table 30 below: 
 

Participant Occurrence Role 
[match participant-
criterion] 

[match occurrence-
criterion] 

 

Table 30- A graphical representation of the 
‘search window’ used to resolve a Role Query 



15.5 Conditional Queries 
A conditional query returns results only when the side-conditions evaluate to 
true.  Conditional queries may use simple conditions, or complex conditions 
may be constructed using the operators not, and, or, any-K (i.e. cardinality / 
some specified number K), all, or none.  These operators are not implemented 
in the usual truth-functional way of classical propositional logic since we are not 
dealing with propositions.  Rather, they are implemented in a set-theoretic way 
since we are dealing with sets of occurrences, which are more fine-grained than 
propositions23.  To evaluate conditions we select event occurrences and count 
them and then check if the count is correct (i.e. so-to-speak ‘true’ or false).  This 
evaluation can be achieved using the various query types defined earlier; e.g. 
occurrence-related queries are used for selecting event occurrences and 
cardinality queries are used for counting.  Table 31 below demonstrates how a 
variety of complex conditions are evaluated in a set-theoretic, occurrence-centric 
manner. 
 
Example 
Condition 

Set-Theoretic, Occurrence-Centric Evaluation 
(Implemented using the Occurrence-Centric Queries and Cardinality 
Queries defined earlier) 

“you pay late” Resolve “select ‘late payings by you’ occurrences”.  If the count of 
its results is greater than or equal to one, the condition is true, 
otherwise it is false. 

“you do not24 
pay the correct 
person” 

If the count of “select ‘payments to the correct person’ 
occurrences” yields zero (i.e. such an occurrence does not exist), 
the condition is true, otherwise it is false. 

“you pay late 
and you are a 
regular 
customer” 

Resolve “select ‘you pay late’ occurrences” and “select ‘you are a 
regular customer’ occurrences”.  Count the number of results of 
each of the selects.  If none of the selects yield zero (i.e. zero of the 
selects yield zero results), the condition is true, otherwise it is false.  
Notice here that we are counting the count events (i.e. counting the 
count events that yield zero). 

                                                 
23 For example, instead of having merely the proposition ‘P’ as in classical propositional logic, in an 
occurrence-centric view we have an identified occurrence (e.g. o1) classified as being in the class 
‘P’. 
24 Words shown in courier font (e.g. not, and, or, any-k, etc.) are connectives for complex 
conditions 

“you pay late 
or you pay too 
little” 

If counting the results of the union of “select ‘you pay late’ 
occurrences” and “select ‘you pay too little’ occurrences” yields 
one or more, the condition is true, otherwise it is false. 

“you do any 
two or 
more of25: 
pay late, 
change your 
travel date, or 
miss your 
flight” 

At first glance “counting the results of (select the union of (select 
‘you pay late’ occurrences and select ‘you change your travel date’ 
occurrences and select ‘you miss your flight’ occurrences)) yields 2 
or more results” would seem the obvious way to do evaluate this 
condition, but is not correct because it would not yield the correct 
result if you, for instance, changed your travel date twice but do 
neither of the other two things (i.e. did not pay late nor did you 
miss your flight).  The correct implementation is: “counting the 
number of (selects which yield one or more results) yields 2 or 
more results”, where the selects that are counted are “select ‘you 
pay late’ occurrences” and “select ‘you change your travel date’ 
occurrences” and “select ‘you miss your flight’ occurrences”.  
Again, notice that you have to count your count events (i.e. count 
the counts that yield more than one) here; and then check that this 
count of counts yields two or more (as specified in the original 
condition “any two or more of...”).  Notice that this 
condition would be difficult and very inefficient to implement in a 
traditional truth-theoretic manner, as propositional logic does not 
cater for counting and furthermore does not reify (individuate) 
occurrences so would not allow for the counting of occurrences; the 
condition would have to be implemented as a combination of “(you 
pay late and you change your travel date) or (you pay late and you 
miss your flight) or (you change your travel date and you miss your 
flight)” which is impractical for two reasons: 

- it would lead to a combinatorial explosion for large 
numbers of k, in ‘any-k of’ expressions, and 

- it does not allow you to specify conditions like ‘any X 
of: …’ where X is a variable computed at run-time. 

you do 
all/none of: 
… 

As for any-k, but replace k with the count of the number of 
different event-types listed (in the case of all) or with zero (in the 
case of none). 

Table 31: Evaluating Truth Conditions in a Set-Theoretic, Occurrence-
Centric Manner 

                                                 
25 Notice that, because an any-k can be combined with an algebraic greater-than or less-than query, 
we can easily implement ‘any k or more’ and ‘any k or less’. 


