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Abstract

Message-oriented middleware (MOM) is at the core of a vast number of financial services and telco applications, and
is gaining increasing traction in other industries, such as manufacturing, transportation, health-care and supply chain
management. Novel messaging applications, however, pose some serious performance and scalability challenges. In
this paper, we present a methodology for performance evaluation of MOM platforms using the SPECjms2007 standard
benchmark. SPECjms2007 is based on a novel application in the supply chain management domain designed to stress
MOM infrastructures in a manner representative of real-world applications. In addition to providing a standard workload
and metrics for MOM performance, the benchmark provides a flexible performance analysis framework that allows users
to tailor the workload to their requirements. The contributions of this paper are: i) we present a detailed workload
characterization of SPECjms2007 with the goal to help users understand the internal components of the workload and
the way they are scaled, ii) we show how the workload can be customized to exercise and evaluate selected aspects
of MOM performance, iii) we present a case study of a leading JMS platform, the BEA WebLogic server, conducting an
in-depth performance analysis of the platform under a number of different workload and configuration scenarios. The
methodology we propose is the first one that uses a standard benchmark providing both a representative workload as
well as the ability to customize it to evaluate the features of MOM platforms selectively.




1 Introduction

Message-oriented middleware (MOM) is increasingly adopted as an enabling technology for modern event-driven ap-
plications like stock trading, event-based supply chain management, air traffic control and online auctions to name just
a few. Moreover, the publish-subscribe paradigm is now used as a building block in major new software architectures
and technology domains such as Enterprise Service Bus (ESB), Enterprise Application Integration (EAI), Service-Oriented
Architecture (SOA) and Event-Driven Architecture (EDA) [6]. Novel messaging applications, however, pose some serious
performance and scalability challenges. For example, the next generation of event-driven supply chain management
based on RFID technology [11] (for instance SAP’s AutolID infrastructure [3]) will be highly reliant on scalable and effi-
cient backend systems to support the processing of acquired real-time data and its integration with enterprise applications
and business processes [31]. Large retailers, like Wal-Mart, Metro or Tesco, are expected to have throughput rates of
about 60 billion messages per annum [2]. The performance and scalability of the underlying MOM platforms used to
process these messages will be of crucial importance for the successful adoption of such applications in the industry.

To guarantee that applications meet their Quality of Service (QoS) requirements, it is essential that the platforms on
which they are built are tested using benchmarks to measure and validate their performance and scalability. However,
if a benchmark is to be useful and reliable, it must fulfill several fundamental requirements [23]. First of all, it must be
designed to stress platforms in a manner representative of real-world messaging applications. It must exercise all critical
services provided by platforms and must provide a level playing field for performance comparisons. Finally, to be reliable,
a benchmark must generate reproducible results and must not have any inherent scalability limitations. While a number
of proprietary benchmarks for MOM servers (e.g., [37, 20, 1, 22]) have been developed and used in the industry for per-
formance testing and product comparisons (e.g., [8, 25, 4]), these benchmarks do not meet the above requirements. The
reason is that most of them use artificial workloads that do not reflect any real-world application scenario. Furthermore,
they typically concentrate on stressing individual MOM features in isolation and do not provide a comprehensive and
representative workload for evaluating the overall MOM server performance. Finally, these benchmarks do not provide
enough flexibility allowing users to design their own custom workloads aimed at stressing and evaluating selected aspects
of MOM performance. To address these concerns, in September 2005 we launched a project at the Standard Performance
Evaluation Corporation (SPEC) with the goal to develop a standard benchmark for evaluating the performance and
scalability of MOM products. The new benchmark was called SPECjms2007 and it was developed at SPEC’s OSG-Java
Subcommittee with the participation of TU-Darmstadt, IBM, Sun, BEA, Sybase, Apache, Oracle and JBoss. SPECjms2007
exercises messaging products through the JMS (Java Message Service) [39] standard interface which is supported by all
major MOM vendors [32].

In this paper, we present a methodology for performance evaluation of MOM platforms using the SPECjms2007 bench-
mark. SPECjms2007 is based on a novel application in the supply chain management domain that comprises a set of
supply chain interactions between a supermarket company, its stores, its distribution centers and its suppliers. We de-
scribe these interactions and explain the way they are interrelated. An important advantage of SPECjms2007 is that it
allows users to customize the workload to their needs by configuring it to stress selected features of the MOM infrastruc-
ture in a way that resembles a given target customer workload. Thus, the benchmark provides a flexible and robust tool
that can be used for in-depth performance evaluation of MOM servers. However, in order to exploit this, users need to
understand the way the workload is decomposed into components and which performance aspects are exercised by these
components. To this end, after discussing the benchmark scenario and its implementation, we present a detailed work-
load characterization of SPECjms2007 with the goal to help users understand the internal components of the workload
and the way they are scaled. We show how the workload can be customized to exercise and evaluate selected aspects
of MOM performance. In the second half of the paper, we present a case study of a leading JMS platform, the BEA
WebLogic server, conducting an in-depth performance analysis of the platform under a number of different workload and
configuration scenarios. We evaluate the server performance for both the point-to-point and publish/subscribe messaging
domains studying the effect of individual workload characteristics on the server CPU utilization, the message throughput,
the CPU processing time per message/KByte payload, the message delivery latency, etc. The methodology we propose is
the first one that uses a standard benchmark providing both a representative workload as well as the ability to customize
it to evaluate the features of MOM platforms selectively.

The rest of the paper is organized as follows. In Section 3, we introduce the SPECjms2007 benchmark. Following this,
in Section 4, we present an in-depth characterization of the SPECjms2007 workload. We show how the workload can
be customized to stress selected performance aspects and discuss two standard strategies for scaling the workload. In
Section 5, we present our in-depth case study of BEA WebLogic JMS server. In Section 6, we survey related work in the
area of MOM performance analysis. Finally, the paper is wrapped up with some concluding remarks in Section 7.
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Figure 2.1: Point-to-point messaging. Figure 2.2: Pub/sub messaging.

2 Background

Message-oriented middleware (MOM) is a specific class of middleware that supports loosely coupled communication
among distributed software components by means of asynchronous message-passing as opposed to a request/response
metaphor. In a nutshell, the idea behind MOM is that a middleman is introduced sitting between communicating parties.
The middleman receives messages from one or more message producers and broadcasts those messages to possibly
multiple message consumers. This allows a producer to send a message and then continue working while the message is
being delivered and processed. The decoupling of communicating parties has several important advantages: i) message
producers and consumers do not need to know about each other, ii) they do not need to be active at the same time to
exchange information, iii) they are not blocked when sending or receiving messages [10].

The Java Message Service (JMS) [39] is a standard Java-based interface for accessing the facilities of enterprise MOM
servers. In the terminology of JMS, a MOM server that supports the JMS API is referred to as JMS provider (or JMS server)
and applications that use the JMS provider to exchange messages are referred to as JMS clients. A client that sends a
message is called message producer and a client that receives a message is called message consumer. JMS supports two
messaging models: point-to-point (P2P) and publish/subscribe (pub/sub). P2P messaging is built around the concept of a
message queue which forms a virtual communication channel. Each message is sent to a specific queue and is retrieved
and processed by a single consumer. Pub/sub messaging, on the other hand, is build around the concept of a topic. Each
message is sent to a specific topic and it may be delivered to multiple consumers interested in the topic. Consumers are
required to register by subscribing to the topic before they can start receiving messages. In the pub/sub domain, message
producers are referred to as publishers and message consumers as subscribers. JMS queues and topics are commonly
referred to as destinations. The two messaging models are depicted in Figures 2.1 and 2.2. The JMS specification defines
several modes of message delivery with different QoS attributes:

Non-Persistent/Persistent: In non-persistent mode, pending messages are kept in main memory buffers while they are
waiting to be delivered and are not logged to stable storage. This provides low messaging overhead at the cost
of losing undelivered messages in case of a server crash. In persistent mode, the JMS provider takes extra care
to ensure that no messages are lost in case of a server crash. This is achieved by logging messages to persistent
storage such as a database or a file system. In case of a server crash, undelivered messages are recovered from
stable storage on system restart. In non-persistent mode, each message is guaranteed to be delivered at-most-once,
whereas in persistent mode it is guaranteed to be delivered once-and-only-once.

Non-Durable/Durable: JMS supports two types of subscriptions, durable and non-durable. Non-durable subscriptions
last for the lifetime of their subscriber, i.e., a subscriber will only receive messages that are published while it is
active. Messages published while the subscriber is inactive, will be missed by the latter. In contrast to this, durable
subscriptions ensure that a subscriber does not miss any messages during periods of inactivity.

Non-Transactional/Transactional: A JMS messaging session can be transactional or non-transactional. A transaction is a
set of messaging operations that are executed as an atomic unit of work. JMS supports two types of transactions:
local and distributed. Local transactions are limited to messaging operations executed on a JMS server. Distributed
transactions allow other transactional operations such as database updates to be executed with JMS messaging
operations as part of a single atomic transaction.




For a more detailed introduction to MOM and JMS the reader is referred to [19, 39].




3 The SPECjms2007 Benchmark

3.1 Requirements and Goals

The aim of the SPECjms2007 benchmark is to provide a standard workload and metrics for measuring and evaluating the
performance and scalability of MOM platforms. To achieve this the SPECjms2007 workload must fulfill several important
requirements. First of all, it must be based on a representative workload scenario that reflects the way platform services
are exercised in real-life systems. The goal is to allow users to relate the observed behavior to their own applications and
environments. Second, the workload should be comprehensive in that it should exercise all platform features typically
used in MOM applications including both point-to-point (P2P) and publish/subscribe (pub/sub) messaging. The features
and services stressed should be weighted according to their usage in real-life systems. The third requirement is that the
workload should be focused on measuring the performance and scalability of the MOM server’s software and hardware
components. It should minimize the impact of other components and services that are typically used in the chosen
application scenario. For example, if a database would be used to store business data and manage the application state, it
could easily become the limiting factor of the benchmark as experience with other benchmarks shows [24]. Finally, the
SPECjms2007 workload must not have any inherent scalability limitations. The user should be able to scale the workload
both by increasing the number of destinations (queues and topics) as well as the message traffic pushed through a
destination.

Producing and publishing standard results for marketing purposes will be just one usage scenario for SPECjms2007.
Many users will be interested in using the benchmark to tune and optimize their platforms or to analyze the performance
of certain specific MOM features. Others could use the benchmark for research purposes in academic environments
where, for example, one might be interested in evaluating the performance and scalability of novel methods and tech-
niques for building high-performance MOM servers. All these usage scenarios require that the benchmark framework
allows the user to precisely configure the workload and transaction mix to be generated. Providing this configurability is
a great challenge because it requires that interactions are designed and implemented in such a way that one could run
them in different combinations depending on the desired transaction mix.

3.2 Workload Scenario

The workload scenario chosen for SPECjms2007 models the supply chain of a supermarket company. The participants
involved are the supermarket company, its stores, its distribution centers and its suppliers. The scenario offers an excel-
lent basis for defining interactions that stress different subsets of the functionality offered by MOM servers. Moreover, it
offers a natural way to scale the workload. The participants involved in the scenario can be grouped into the following
four roles:

3.2.1 Company Headquarters (HQ)

The company’s corporate headquarters are responsible for managing the accounting of the company, managing informa-
tion about the goods and products offered in the supermarket stores, managing selling prices and monitoring the flow of
goods and money in the supply chain.

3.2.2 Distribution Centers (DCs)

The distribution centers supply the supermarket stores. Every distribution center is responsible for a set of stores in a
given area. The distribution centers in turn are supplied by external suppliers. The distribution centers are involved in the
following activities: taking orders from supermarkets, ordering goods from suppliers, delivering goods to supermarkets
and providing sales statistics to the HQ (e.g. for data mining).
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3.2.3 Supermarkets (SMs)

The supermarkets sell goods to end customers. The scenario focuses on the management of the inventory of supermarkets
including their warehouses. Some supermarkets are smaller than others, so that they do not have enough room for all
products, others may be specialized for some product groups like certain types of food. We assume that every supermarket
is supplied by exactly one of the distribution centers.

3.2.4 Suppliers (SPs)

The suppliers deliver goods to the distribution centers of the supermarket company. Different suppliers are specialized
for different sets of products and they deliver goods on demand, i.e. they must receive an order from the supermarket
company to send a shipment.

3.3 Modeled Interactions

SPECjms2007 implements seven interactions between the participants in the supermarket supply chain.

Interaction 1: Order/Shipment Handling between SM and DC

This interaction exercises persistent P2P messaging between the SMs and DCs. The interaction is triggered when
goods in the warehouse of a SM are depleted and the SM has to order from its DC to refill stock. The following steps are
followed as illustrated in Figure 3.1:

1. A SM sends an order to its DC.

2. The DC sends a confirmation to the SM and ships the ordered goods.

3. Goods are registered by RFID readers upon leaving the DC warehouse.

4. The DC sends information about the transaction to the HQ (sales statistics).

5. The shipment arrives at the SM and is registered by RFID readers upon entering the SM warehouse.

6. A confirmation is sent to the DC.

Interaction 2: Order/Shipment Handling between DC and SP

This interaction exercises persistent P2P and pub/sub (durable) messaging between the DCs and SPs. The interaction
is triggered when goods in a DC are depleted and the DC has to order from a SP to refill stock. The following steps are
followed as illustrated in Figure 3.2:

1. ADC sends a call for offers to all SPs that supply the types of goods that need to be ordered.




2. SPs that can deliver the goods send offers to the DC.

3. Based on the offers, the DC selects a SP and sends a purchase order to it.

4. The SP sends a confirmation to the DC and an invoice to the HQ. It then ships the ordered goods.

5. The shipment arrives at the DC and is registered by RFID readers upon entering the DC’s warehouse.
6. The DC sends a delivery confirmation to the SP

7. The DC sends transaction statistics to the HQ.

Interaction 3: Price Updates

This interaction exercises persistent, durable pub/sub messaging between the HQ and the SMs. The interaction is
triggered when selling prices are changed by the company administration. To communicate this, the company HQ sends
messages with pricing information to the SMs.

Interaction 4: SM Inventory Management

This interaction exercises persistent P2P messaging inside the SMs. The interaction is triggered when goods leave
the warehouse of a SM (to refill a shelf). Goods are registered by RFID readers and the local warehouse application is
notified so that inventory can be updated.

Interaction 5: Sales Statistics Collection

This interaction exercises non-persistent P2P messaging between the SMs and the HQ. The interaction is triggered
when a SM sends sales statistics to the HQ. HQ can use this data as a basis for data mining in order to study customer
behavior and provide useful information to marketing.

Interaction 6: New Product Announcements

This interaction exercises non-persistent, non-durable pub/sub messaging between the HQ and the SMs. The interac-
tion is triggered when new products are announced by the company administration. To communicate this, the HQ sends
messages with product information to the SMs selling the respective product types.

Interaction 7: Credit Card Hot Lists

This interaction exercises non-persistent, non-durable pub/sub messaging between the HQ and the SMs. The inter-
action is triggered when the HQ sends credit card hot lists to the SMs (complete list once every hour and incremental
updates as required).

3.4 Benchmark Implementation

3.4.1 Event Handlers and Agents

SPECjms2007 is implemented as a Java application comprising multiple JVMs and threads distributed across a set of client
nodes. For every destination (queue or topic), there is a separate Java class called Event Handler (EH) that encapsulates
the application logic executed to process messages sent to that destination. Event handlers register as listeners for the
queue/topic and receive call backs from the messaging infrastructure as new messages arrive. For maximal performance
and scalability, multiple instances of each event handler executed in separate threads can exist and they can be distributed
over multiple physical nodes. Event handlers can be grouped according to the physical location (e.g. HQ, SM, DC or
SP) they pertain to in the business scenario. In addition to the event handlers, for every physical location, a set of
threads is launched to drive the benchmark interactions that are logically started at that location. These are called driver
threads. The set of all event handlers and driver threads pertaining to a given physical location is referred to as agent.
For example, each DC agent is comprised of a set of event handlers for the various destinations inside the DC and a set
of driver threads used to drive Interaction 2, which is the only interaction with logical starting point at DCs.

3.4.2 Driver Framework

The SPECjms2007 scenario includes many locations represented by many event handlers. In order to drive the JMS server
to its capacity, event handlers may well be distributed across many physical machines. The reusable control framework

7



designed for SPECjms2007 aims to coordinate these distributed activities without any inherent scalability limitations.
Key design decisions were that

* It should be written as far as possible in plain Java. Since Java is the natural prerequisite of a JMS application this
reduces installation and configuration requirements on end users.

 Further to the above, RMI is used as the basis for communication as this is part of the standard J2SE platform.
* The controller needs not be on the same machine as any of the performance-critical workloads.

* Users should have maximum choice in how they wish to lay out their workload to achieve optimum performance
(within the bounds of the SPECjms2007 run rules).

—I Node }

Controller

Figure 3.3: Driver Framework

Figure 3.3 provides a simplified view of a typical test being run on four nodes. In addition to the event handlers, it is
made up of several simple components:

Controller

The controller component reads in all of the configuration and topological layout preferences given by the user. This
will include items such as the number of different types of event handler and lists of the nodes across which they may be
run. With this knowledge, the controller instantiates the topology. It begins this by connecting to a satellite process on
each node machine identified as part of this test to give it specific instructions.

Satellite

The satellite is a simple part of the framework which knows to build the correct environment to start child Java
processes for SPECjms2007. It takes the controller’s configuration and starts the agent processes relevant to that node.
Although each agent is logically discrete from its peers, the satellite will, based upon the initial configuration, combine
many agents into a single JVM for reasons of scalability.

Agents

Each logical agent represents one of the locations in the application scenario. This means that, for example, a dis-
tribution center agent will contain a set of DC event handlers pertaining to that location. Agents connect back to the
controller who co-ordinates the stages of the test. Once all agents are connected, the event handlers (implemented as a Java
thread each) start connecting to the JMS server and the warm-up phase of messaging begins. The controller manages the life
cycle of the test by monitoring progress, coordinating phase changes and collecting statistics from the other components.
When complete, it validates and combines the statistics into summary output files and presents the final metric for the
test.




3.4.3 Workload Configurability

An important goal of SPECjms2007 that we discussed in Section 3.1 was to provide a flexible framework for performance
analysis of MOM servers that allows users to configure and customize the workload according to their requirements. To
achieve this goal, the interactions have been implemented in such a way that one could run them in different combina-
tions depending on the desired transaction mix. SPECjms2007 offers three different ways of structuring the workload:
horizontal, vertical and freeform. The latter are referred to as workload topologies and they correspond to three different
modes of running the benchmark offering different level of configurability. The horizontal topology is meant to exercise
the ability of the system to handle increasing number of destinations. To this end, the workload is scaled by increasing
the number of physical locations (SMs, DCs, etc.) while keeping the traffic per location constant. The vertical topology,
on the other hand, is meant to exercise the ability of the system to handle increasing message traffic through a fixed set
of destinations. Therefore, a fixed set of physical locations is used and the workload is scaled by increasing the rate at
which interactions are run. Finally, the freeform topology allows the user to use the seven SPECjms2007 interactions
as building blocks to design his own workload scenario which can be scaled in an arbitrary manner by increasing the
number of physical locations and/or the rates at which interactions are run. In the most general case, the following
workload parameters can be configured:

* # physical locations (HQs, SMs, DCs, SPs) emulated
* Rates at which interactions are run

* Message size distribution for each message type

* # agents for each physical location

* Distribution of agents across client nodes

e # JVMs run on each client node

* Distribution of agents among JVMs

* # event handlers for each message type

» # driver threads for each interaction

e # JMS Connections shared amongst event handlers
* Acknowledgment mode for non-transactional sessions

* Optional connection sharing by multiple sessions

While in the horizontal and vertical topologies there are some restrictions as to which of the above parameters can be
set, no restrictions apply to the freeform topology. Most importantly, the user can selectively turn off interactions or
change the rate at which they are run to shape the workload according to his requirements. At the same time, when
running the horizontal or vertical topology, the benchmark behaves as if the interactions were interrelated according to
their dependencies in the real-life application scenario. For further details on the benchmark implementation, the reader
is referred to [33].




4 SPECjms2007 Workload Characterization

4.1 Message Traffic Analysis

We start with a detailed analysis of the message traffic produced by the benchmark workload in terms of the number and
type of messages generated and their sizes. We consider the workload parameters that can be configured in the most
general freeform topology and show how they affect the resulting message traffic. The different types of messages and
destinations used in the various interactions are detailed in Table 4.1.

[ Intr. | Message | Destination [ Type [ Prop. | Description |
order Queue (DC) ObjectMsg BT Order sent from SM to DC.
orderConf Queue (SM) ObjectMsg BT Order confirmation sent from DC to SM.
shipDep Queue (DC) TextMsg BT Shipment registered by RFID readers upon
1 leaving DC.
statInfo-OrderDC Queue (HQ) StreamMsg NBE NT Sales statistics sent from DC to HQ.
shipInfo Queue (SM) TextMsg BT Shipment from DC registered by RFID readers
upon arrival at SM.
shipConf Queue (DC) ObjectMsg BT Shipment confirmation sent from SM to DC.
callForOffers Topic (HQ) TextMsg BT,D Call for offers sent from DC to SPs (XML).
offer Queue (DC) TextMsg BT Offer sent from SP to DC (XML).
pOrder Queue (SP) TextMsg BT Order sent from DC to SP (XML).
pOrderConf Queue (DC) TextMsg BT Order confirmation sent from SP to DC
2 (XML).
invoice Queue (HQ) TextMsg BT Order invoice sent from SP to HQ (XML).
pShipInfo Queue (DC) TextMsg BT Shipment from SP registered by RFID readers
upon arrival at DC.
pShipConf Queue (SP) TextMsg BT Shipment confirmation sent from DC to SP
(XML).
statInfo-ShipDC Queue (HQ) StreamMsg NE NT Purchase statistics sent from DC to HQ.
| 3 | priceUpdate | Topic (HQ) | MapMsg | BT, D | Price update sent from HQ to SMs. |
4 inventoryInfo Queue (SM) TextMsg BT Item movement registered by RFID readers in
the warehouse of SM.
[ 5 T statinfosM [ Queue (HQ) | ObjectMsg [ NpNT | Sales statistics sent from SM to HQ. |
6 product- Topic (HQ) StreamMsg NB NT, ND New product announcements sent from HQ to
Announcement SMs.
| 7 | creditCardHL | Topic (HQ) | StreamMsg | NBE NT, ND | Credit card hotlist sent from HQ to SMs. |

Table 4.1: Message Types Used in The Interactions - (N)P=(Non-)Persistent; (N)T=(Non-)Transactional; (N)D=(Non-)Durable

4.1.1 Messages Sizes

The sizes of the messages generated as part of each interaction can be configured by setting an interaction-specific
message sizing parameter (for example, “number of order lines sent to DC" for Interaction 1). Each sizing parameter
can be assigned three possible values with respective probabilities (discrete probability distribution). The message sizing
parameters used for the different interactions are listed in Table 4.2, along with some data that can be used to compute
the resulting message sizes in KBytes. This data is based on measurements we took using a deployment of SPECjms2007
on a major JMS server platform!. The exact message sizes may be slightly different on different platforms, as MOM
servers add their own platform-specific message headers. The measurements provided here were compared against
measurements on a second popular JMS server and the differences were negligible. Based on the data in Table 4.2, the
message sizes in KBytes for Interactions 1, 2, 4, 6 and 7 can be computed as % = m, - x + b where x is the interaction’s
message sizing parameter and m; and b are set to their respective values from Table 4.2. The priceUpdate messages
of Interaction 3 have constant size that cannot be changed by the user. The size of the statInfoSM messages used in
Interaction 5 is configured using two sizing parameters as follows & = x-(m; +m,-y)+b where x and y are the two sizing
parameters (i.e. “number of SM cash desks" and “number of sales lines") and m;, m, and b are set to their respective
values from Table 4.2. Based on the above two formulas and the data in Table 4.2, the user can configure the benchmark
to use message sizes that match the user’s own target workload.

1 Due to product license restrictions, the specific configuration used cannot be disclosed.
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[ Intr. | Message Sizing Parameters | Message [ T mi [ m | b ]

orderConf 0.0565 na 1.7374

statInfoOrderDC 0.0153 na 0.1463

1 No of order lines sent to DC sh%pInfo 0.0787 na 0.8912

shipDep 0.0787 na 0.7222

order 0.0565 na 1.4534

shipConf 0.0202 na 0.7140

callForOffers 0.1785 na 0.8094

offer 0.2489 na 0.9414

pOrder 0.2498 na 1.1076

. ShipConf 0.0827 na 0.7612

2 | No of purchase order 1 t to SP P

© ot purchase order mes sent to statinfoShipDC 0.0831 na 0.7681

pOrderConf 0.2410 na 1.3494

invoice 0.1942 na 1.1211

pShipInfo 0.0827 na 0.7279
[ 38 | Message has fixed size | priceUpdate [ na | na ] 02310 |
[ 4 ] Noof registered items leaving warehouse | inventoryInfo [ 00970 | na ] 05137 |
[ 5 ] Noof cash desks & sales lines [ statinfoSM [ 0.0139 ] 0.3650 | 0.9813 |
[ 6 ] Noof new products announced | productAnnouncement | 0.0103 | na | 0.1754 |
[ 7 ] Noof credit cards in hot list [ creditCardHL [ 00166 | na ] 0.1846 |

Table 4.2: Parameters for Message Size Calculation

Group a b c d
Type Pub/Sub Pub/Sub | P2P P2P
Properties | NPNTND | PTD NPNT | PT

Table 4.3: Message Groups

4.1.2 Message Throughput

We now characterize the message throughput first on a per interaction basis and then on a per location basis. The two
most important sets of workload parameters that determine the message throughput are the number of locations of each
type and the interaction rates. We denote the sets of physical locations as follows:

“IJSM = {SMI,SMz, . "SM“I’SM‘} "IJDC = {DCl,DCZ, e ’DCN’Dcl}

Wgp = {SP,SP,,...,SPy,, } Wyo = {HQy, HQ,, ..., HQuy, }

Note that although the modeled scenario has a single physical HQ location, the benchmark allows multiple HQ in-
stances to exist each with its own set of queues. The goal is to avoid the HQ queues becoming a bottleneck when scaling
the number of SMs, DCs and SPs. It is assumed that messages sent to the HQ are distributed evenly among the HQ
instances. Multiple HQ instances are considered as separate servers within the same physical location.

For each interaction, the interaction rate specifies the rate at which the interaction is initiated by every physical instance
of its initiating location, SM for Interaction 1, DC for Interaction 2, etc. We denote the interaction rates as A;,1 <i < 7.
Since multiple HQ instances are not considered as separate physical locations, it follows that the rates of Interactions
3, 6 and 7 which are initiated by the HQ are interpreted as rates over all HQ instances as opposed to rates per HQ
instance. Interaction 2 uses a set of topics representing the different product families offered by suppliers. These topics
help to distribute the callForOffers messages sent by DCs. Suppliers subscribe to all topics corresponding to groups of
products they offer so that they receive all relevant callForOffers messages. We denote the set of product families as
11 = {PF,,PF,,PF,,...,PF}.

The probability that a SP offers products from a given product family PF; € I1 is a configurable workload parameter
and will be denoted as p. Every SP subscribes to p - |II| product families and thus |¥g,|- p - |I1| subscriptions exist overall.
The number of subscribers that subscribe to a given product family is denoted as { = [¥g;| - p.

In the following, we show how the message throughput, in terms of the number of messages sent and received per
unit of time, can be broken down according to the type of messaging (P2P vs. pub/sub) and the message delivery mode
(persistent vs. non-persistent, transactional vs. non-transactional, durable vs. non-durable). To this end, we group
messages as shown in Table 4.3. Further, we define the following sets:

I'={a, b,c,d}: Message groups as defined in Table 4.3.
Q = {se, re}: Messages sent vs. messages received.

A ={SM,SP,DC,HQ}: Types of physical locations.

4.1.2a). Message Throughput per Interaction
We first analyze the message throughput on a per interaction basis. We will use the following notation:
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g forjeq,1<i<7andkerl
No of messages of group k sent/received per sec as part of Interaction i.

g=%,,8 for1<i<7,jeq
Total no of messages sent/received per sec as part of Interaction i.

i N7 g .
&’ _Zi=1 gi forjeq ) . )
Total no of messages sent/received per sec over all interactions.

Based on the information provided in the previous sections and analysis of the benchmark design, the following
equations are derived characterizing the message throughput of each interaction:

Interaction 1: Yoo = & =AYyl Yo = &19=5 A1 ¥yl
J = 0, Vke{a,b}rjeq
Interaction 2: Jz"a = 0,Vjeq be = &5 =2y ¥l
oy = A2 ¥pcl ba = &5y =(0+5) Ay [¥pcl
E;fb = 4"12'|‘1’DC|
Interaction 3: 5 = s é)k = 0, VkeT,k#bAjEQ
égfb = Az |[Ygyl
Interaction 4: ad = Sha=Aa Yyl Zt,k = 0, VkelLk#dAjeN
Interaction 5: sa = Eoqa=2s Wyl é)k = 0, VkelLk#dAjeQ
Interaction 6: e = e Jﬁ’k = 0, VkeT,k#aAjen
ba = Mo 1¥sul
Interaction 7: e = A 17’,( = 0, VkeT,k#aAjen
va = A7 ¥yl

4.1.2b). Message Throughput per Location
We now analyze the message throughput on a per location basis. The following notation will be used:

ZiforjeqleAker
No of messages of group k sent/received per sec by a location of type .

le =Dver 5{),( forjeQ,leA
Total no of messages sent/received per sec by a location of type I.

SMs participate in all interactions apart from Interaction 2. The following equations characterize the message through-
put of each SM:

Xsma = Xsmp = Xsme =0 Xsme = s
Xsrzew,a = At A; X;?w,d = 24+
Xsmp = A3 Asma = 2M+24

SPs participate only in Interaction 2. Overall A,-|¥ | callForOffers messages are sent by the DCs per sec. Therefore,
every SP receives p - A, - |¥,| messages and for each of them it sends an offer to the respective DC. The probability that
an offer is accepted is % and hence the number of SP offers accepted per sec is given by:

p Ay [¥pel . Ag - ¥l
¢ [Wspl
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The following equations characterize the message throughput of each SP:

Xspa = Xspa = Xspp = Xspe = Xspe =0
Xsr;b = p-Ay|[¥pcl
Xspa = P'lz'|\I/Dc|+%|2qj—|\Ij|DC|
SP
re _ 224+ [¥pcl
Fspd = T lwg,]

DCs participate in Interactions 1 and 2 both as producers and consumers of messages. The number of SMs supplied

by each DC is given by § = Wl
[pel

The following equations characterize the message throughput of each DC:

Xbca = Xpca=Xpcy = Xpce =0
Xi)ec,b = A

Xf)ec,c = 0-A+ A

Xf‘)ec,d = 31;-6+22,

Yheq = 3 -8+2A,(0+2)

The HQ participate in Interactions 1, 2, and 5 as message consumer and in Interactions 3, 6, and 7 as message
producer. The following equations characterize the message throughput of the HQ:

YHae = ZXHob = XHoe = Xigd =0

Xga = Moty

Xgp = M3

Thoe = M1%sul+As [Wpcl+ s Wyl
Xiga = M2 1¥ncl

The detailed message throughput analysis presented above serves two main purposes. First, using the throughput
equations, the user can assemble a workload configuration (in terms of number of locations and interaction rates)
that stresses specific types of messaging under given scaling conditions. As a very basic example, the user might be
interested in evaluating the performance and scalability of non-persistent pub/sub messaging under increasing number
of subscribers. In this case, a mix of Interactions 6 and 7 can be used with increasing number of SMs. Second, the
characterization of the message traffic on a per location basis can help users to find optimal deployment topology of
the agents representing the different locations such that the load is evenly distributed among client nodes and there are
no client-side bottlenecks. This is especially important for a messaging benchmark where the server acts as mediator in
interactions and significant amount of processing is executed on the client side.

4.2 Horizontal Topology

As mentioned earlier, the goal of the horizontal topology is to exercise the ability of the system to handle increasing
number of destinations. To achieve this, the workload is scaled by increasing the number of physical locations (SMs, DCs,
etc) while keeping the traffic per location constant. A scaling parameter BASE is introduced and the following rules are
enforced:

1. |¥,y,| = BASE 5. |TI] = [Wgyl
v
2. [Wpc| =" 6. p=1
3. [Wspl =1[0.4-[Tgyl] 7. A, 1<i<7areset

Wyl as shown on Table 4.4
4. |\I/HQ| = [%1

Figure 4.1 shows how the number of locations of each type is scaled as the BASE parameter is increased. The rates A; at
which interactions are initiated by participants are fixed so that the traffic per location (and therefore also per destination)
remains constant. The relative weights of the interactions are set based on a detailed business model of the supermarket
supply chain which captures the interaction interdependencies. This model has several input parameters (e.g. total
number of product types, size of supermarkets, average number of items sold per week) whose values are chosen in such
a way that the following overall target messaging mix is achieved as close as possible:
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A 2 A3 Aa As A Ay

1.53920154 | 2.13333333 6.00000000 | 3.37837837 11.54401154 11.38519924 | 9.23076923

Table 4.4: Interaction Rates for the Horizontal Topology

* 50% P2P messages and 50% pub/sub
* 50% of P2P messages persistent, 50% non-persistent

* 25% of pub/sub messages persistent, 75% non-persistent

The goal is to put equal weight on P2P and pub/sub messaging. Within each group the target relative weights of
persistent vs. non-persistent messaging have been set according to the relative usage of these messaging styles in real-
life applications. The criteria for what is a typical MOM application were defined based on input provided by the
various participating vendors in the SPECjms working group including IBM, Sun, Oracle, BEA, Sybase and Apache. A
comprehensive survey was conducted considering real-life customer applications and analyzing their workloads.

Table 4.6(a) shows the resulting message mix in the horizontal topology. Figure 4.2 presents the same data in graphical
form. Figures 4.3 and 4.4 show how the number of messages of each type and the bandwidth they use are scaled as a
function of the BASE parameter. As evident from the figure, when scaling the workload the proportions of the different
types of messages remain constant. This is expected since the relative weights of the various messaging styles used by
the workload should not depend on the scaling factor.

The sizes of the messages used in the various interactions have been chosen to reflect typical message sizes in real-life
MOM applications. Pub/sub messages are generally much smaller than P2P messages due to the decoupled nature of
the delivery mechanism. For every type of message, SPECjms2007 generates messages with sizes chosen from a discrete
distribution with three possible values as shown in Table 4.5. There are two exceptions, the priceUpdate message used
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2000
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Figure 4.3: Horizontal Topology: # msg. sent Figure 4.4: Message traffic in Kbytes
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Message Size 1 Size 2 | Size 3 Avg.
Intr. | Probability 95 % 4% 1% Size
orderConf 2.02 7.39 41.29 | 2.63
statInfoOrderDC 0.22 1.67 10.83 0.39
1 shipInfo 1.28 8.76 55.95 2.13
shipDep 1.12 8.59 55.79 1.96
order 1.74 7.10 41.01 2.34
shipConf 0.81 2.73 14.83 1.03
callForOffers 1.35 7.06 36.52 | 1.93
offer 1.69 9.65 50.71 2.50
pOrder 1.86 9.85 51.07 2.67
2 pShipConf 1.01 3.65 17.29 1.28
statInfoShipDC 1.02 3.68 17.38 1.29
pOrderConf 2.07 9.79 49.56 | 2.86
invoice 1.70 7.92 39.95 2.33
pShipInfo 0.98 3.62 17.26 1.24
[ 3 [ priceUpdate [ 024 ] 024 024 024
[ 4 T inventoryInfo [ 148 ] 1022 ] 49.03 | 231 |
| 5 | statinfoSM | na | 5.27 |
| 6 | productAnnouncement | 1.21 | 0.28 | 10.51 | 1.26 |
[ 7 T creditCardHL [ 101 ] 849 ] 5000 [ 1.80 |

Table 4.5: Message Sizes in KByte

Table 4.6: Topology Message Mix

(a) Horizontal

Message Message Count Bandwidth
Group Target | Achieved Used
a 37.50% 37.46% 24.66%
b 12.50% 12.45% 2.41%
c 25.00% 24.55% 49.19%
d 25.00% 25.55% 23.74%
(b) Vertical
Message Message Count Bandwidth
Group Target | Achieved Used
a 15.00% 14.19% 7.19%
b 5.00% 5.99% 2.25%
[ 40.00% 39.09% 61.03%
d 40.00% 40.74% 29.52%
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Figure 4.5: Vert. Topology Message Mix

in Interaction 4 and the statInfoSM message used in Interaction 5. The former has a fixed size, while the latter has size
between 4.7 and 24.78 KB with an average of 5.27 KB. Since statInfoSM messages contain sales statistics, their size is
determined by the rate at which items are sold in supermarkets which depends on the number of customers visiting a
supermarket per day and the average number of items sold per customer.

4.3 Vertical Topology

The goal of the vertical topology is to exercise the ability of the system to handle increasing message traffic through a
fixed set of destinations. Therefore, a fixed set of physical locations is used and the workload is scaled by increasing the
rate at which interactions are executed. Similar to the horizontal case, a single parameter BASE is used as a scaling factor.
The following rules are enforced:

1.

2.

3.

4.

[Ty | =10
[¥pcl=2
[¥spl =5
|‘I’HQ| =2

5. |II] =100

6. p =50%

7. A; =c; -BASE, where ¢; is a fixed factor (see Table 4.7)

and1<i<7

Again, the relative weights of the interactions are set based on the business model of the supply chain scenario. Unlike
the horizontal topology, however, the vertical topology places the emphasis on P2P messaging which accounts for 80% of
the total message traffic. The aim is to exercise the ability of the system to handle increasing traffic through a destination
by processing messages in parallel. This aspect of MOM server performance is more relevant for P2P messaging (queues)
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Table 4.7: Interaction Rate Scaling Factors for the Vertical Topology
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Figure 4.6: Vertical Topology: # msg. sent Figure 4.7: Message traffic in Kbytes

than for pub/sub messaging where the message throughput is inherently limited by the speed at which subscribers can
process incoming messages.

Table 4.6(b) shows the achieved message mix in the vertical topology. Figure 4.5 presents the same data in graphical
form. Figures 4.6 and 4.7 show how the number of messages of each type and the bandwidth they use are scaled as
a function of the BASE parameter. Again, when scaling the workload the message mix remains constant which is the
expected behavior. The sizes of the messages used in the various interactions are computed in the same way as for the
horizontal topology (see Table 4.5).
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5 Case Study

In this section, we present a case study with a deployment of SPECjms2007 using the WebLogic Server 10 JMS platform.
We present a detailed performance analysis of the platform considering both the P2P and pub/sub messaging domains.
Our evaluation is the first one that uses a standard workload to stress the JMS server. We demonstrate how SPECjms2007
can be exploited for in-depth analysis of selected aspects of the MOM server performance.

e ~ % "
| SPECjms2007 Driver ; (' BEAWebLogic Server 10 \l
Opteron 1216 2.4 GHz Dual Core CPU ' { 2XxIntel Xeon 53352.33 GHz |
! 4 GB, Debian Linux 2.6.18 ) | Quad-Core, 8 MB Cache ;
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\\\ i Windows 2003 Server 64bit
\\\ \\ /\ \. /
\ N — /
\ ~a —
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\ N — e \
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\ \ — 3.5GHz, 16 GB, 6 SAS RAID 10 |
\ — Debian Linux 2.6.18 |
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\ v ./
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Figure 5.1: Experimental Environment

5.1 Experimental Setting

The experimental environment in which we conducted our case study is depicted in Figure 5.1. WebLogic Server was
deployed on a machine with two quad-core Intel Xeon 2.33 GHz CPUs and 16 GB of main memory. The server was run
in a 64-bit JRockit 1.5 JVM using 8 GByte of heap space. A RAID 0 disk array comprised of four disk drives was used for
maximum performance. The WebLogic JMS Server was configured to keep persistent messages in a file-based store on
the disk array and to use a 3.8 GByte message buffer to store message bodies in memory. The SPECjms2007 controller
and satellite drivers were distributed across five machines, four one-way dual-core Opteron at 2.4 GHz and one four-way
dual-core Intel Xeon at 3.5 GHz. All machines were connected to a 1 Gbit network. To further increase the network
capacity, a separate Gbit link was installed between the server and the 4-way driver machine. The latter was configured

to always use this link when accessing the server. The satellite drivers were distributed across the machines in such a
way that the network traffic was load-balanced between the two networks.
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5.2 Horizontal and Vertical Scaling

We first ran some experiments in the horizontal and vertical topologies in order to show the behavior of the server when
scaling the workload in the two alternative ways'. Figure 5.2 shows the server CPU utilization and the CPU processing
time per message (counting both sent and received messages) for the horizontal topology. Figure 5.3 shows the same
data for the vertical topology. In both cases, there is a clear linear correlation between the scaling factor (i.e., the
BASE) and the server utilization. However, the server utilization grows much faster in the horizontal mode. For a given
value of the scaling factor, the CPU consumption of the horizontal topology is between 2.2 and 2.3 times higher than
the CPU consumption of the vertical topology. This is expected given that the number of messages injected per second
in the horizontal topology is about two times higher than in the vertical topology (see the message traffic analysis in
Sections 4.2 and 4.3). It is interesting to compare the average CPU time per message (counting both sent and received
messages). The latter is about 10% lower for the horizontal topology. The reasons for this will become clear in the next
section.
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Figure 5.2: Measurement Results for Horizontal Experiments
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Figure 5.3: Measurement Results for Vertical Experiments

5.3 Customized Vertical Workloads

We now consider two customized workloads based on the vertical topology. The goal is to break down the workload into
its P2P and pub/sub components and analyze the server performance when running them in isolation. To this end, the

1 SPECjms2007 is a trademark of the Standard Performance Evaluation Corporation (SPEC). The results or findings in this publication have not
been reviewed or accepted by SPEC, therefore no comparison nor performance inference can be made against any published SPEC result. The
official web site for SPECjms2007 is located at http://www.spec.org/o0sg/jms2007.
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Figure 5.4: Measurement Results for Customized Vertical Experiments with P2P Messaging

first workload runs only P2P interactions (i.e., 1, 4 and 5), whereas the second one runs only pub/sub interactions (i.e.,
3, 6 and 7)2. In both cases, the relative interaction mix for the considered interactions is the same as for the standard
vertical topology. Figures 5.4 and 5.5 show the measurement results. We can see that, as expected, the pub/sub portion
of the workload is by far much more light-weight than the P2P portion. This is due to two reasons. On the one hand,
for a given value of the BASE, the P2P message traffic injected is much larger than the pub/sub traffic according to
the definition of the vertical topology presented in Section 4.3. On the other hand, the server overhead per delivered
message is significantly lower in the pub/sub case. Looking at the CPU time per message (counting both sent and
received messages) in the two workloads, we can see that for both workloads the latter does not change much as we
increase the BASE. For P2P messaging it stabilizes at around 0.28ms, whereas for pub/sub messaging it stabilizes at
0.13ms. From this we can conclude that the overhead per P2P message sent/received in the vertical topology is over two
times higher than the overhead per pub/sub message sent/received.

This explains why the CPU time per message sent/received in the horizontal topology compared to the vertical topology
was measured to be lower in the previous section. This is expected given that the horizontal topology has much less P2P
messaging as a proportion of the overall workload than the vertical topology (see Table 4.6).

5.4 Publish/Subscribe Messaging

We now study the performance of the server when running only pub/sub messaging. We use the freeform topology and
specifically Interactions 3 and 7 to exercise persistent transactional durable (PTD) messaging and non-persistent non-
transactional non-durable (NPNTND) messaging, respectively. Table 5.1 shows the configuration for five of the scenarios
we analyzed. For each scenario, the emulated number of producers and consumers are shown. Multiple producers
and consumers are configured by setting the number of interaction driver threads and the number of emulated SMs,
respectively. The producers were run on the 4-way IBM x3850 server, whereas the consumers were distributed among

2 Note that Interaction 2 is not part of these workloads since it contains a mix of both P2P and pub/sub messaging.
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Figure 5.5: Measurement Results for Customized Vertical Experiments with Pub/Sub Messaging

the four one-way Opteron-based servers. In both of the considered interactions, each SM acts as a message consumer
and therefore the number of consumers is equal to the number of SMs. In all scenarios there is a single HQ instance and
a different number of SMs depending on the specified number of consumers. For each scenario, Table 5.1 also shows the
message injection rate, the message size and the message type according to the classification in Section 4.1.2 (Table 4.3).
Given that in both Interaction 3 and 7, each interaction execution results in sending a single message, the specified
message injection rate is configured by setting the respective interaction rate. In the cases where ‘unlimited’ message
injection rate is specified, each producer is configured to inject messages at full speed (i.e., with zero delay between
successive messages). The results from the experiments are presented in Figures 5.6 to 5.10.

Scen. Interaction | # Prod. # Cons. Msg. Injection Rate | Msg. Size Msg. Group | Fig.
1 7 30 variable 1000 msg/sec variable a 5.6
2 7 30 10 1000 msg/sec variable a 5.7
3 7 variable | variable | unlimited 0.24 KByte | a 5.8
4 3 1 variable | unlimited 0.24 KByte | b 5.9
5 3and 7 1 variable | unlimited 0.24 KByte | b 5.10

Table 5.1: Configuration for Pub/Sub Scenarios

We now take a closer look at the measurement results. We start with NPNTND pub/sub messaging. In the first scenario,
we consider the effect of increasing the number of consumers on the server CPU consumption. As expected, the overall
CPU utilization and the CPU processing time per message increase linearly with the number of consumers and the rate
of increase depends on the message size (Figure 5.6). The larger the message size, the greater the effect the number of
consumers has on the overall CPU consumption.

The goal of the second scenario is to evaluate the effect of increasing the message size on the CPU consumption per
message and KByte of payload sent. The CPU processing time per message is directly proportional to the message size,
however, this does not hold for the CPU time per KByte of payload (Figure 5.7). The latter drops exponentially for
message sizes up to 10 KByte and stabilizes around 0.2ms for larger messages. This is due to the fact that for every
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Figure 5.6: Scenario 1: NPNTND Pub/Sub Messaging with Increasing Number of Consumers

message there is a constant overhead around 0.4ms (independent of the message size) for parsing the JMS message
header. For small messages this overhead dominates the overall processing time, however, as the size of the message
grows, the overhead becomes negligible compared to the time needed to deliver the message payload. Thus, for messages
larger than 20 KByte, we can estimate the message processing time as MsgSize * 0.2ms.
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Figure 5.7: Scenario 2: NPNTND Pub/Sub Messaging with Increasing Message Size

In the third scenario, we analyze the effect of varying the number of producers and consumers (Figure 5.8). Each
producer is configured to publish messages at full speed. Given that the number of emulated producers (up to 5) does
not exceed the number of available CPU cores on the machine hosting the producers, the latter can inject messages in
parallel without competing for CPU time on the client side. We consider the server CPU utilization, the throughput in
terms of messages sent per second and the CPU processing time per message sent. It is important to note that, in all
considered scenarios, the machines hosting the producers and consumers were far from saturated, so that the effect
of the client side of the benchmark on the observed system performance was insignificant. From the results we see
that increasing the number of message producers and consumers both lead to higher server CPU utilization, however, the
number of producers has by far much higher effect on the CPU consumption than the number of consumers. The reason is
that whereas the message throughput increases with increasing number of producers, it decreases with increasing number
of consumers even if the server is only lightly loaded. The results show that the effect of the decreasing throughput on
the CPU consumption cancels out the effect of the increasing number of consumers resulting in stagnation in the server
utilization. This is due to synchronization effects. The server has to ensure that successive messages sent by individual
producers are delivered in the order in which they are sent. Thus, the more consumers, the higher the synchronization
overhead for each producer. Messages sent by different producers, on the other hand, are not affected by this because
the server is not required to deliver them in the order in which they were sent. The results also show that the number
of producers does not have a significant effect on the average CPU processing time per message. On the other hand,
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Figure 5.8: Scenario 3: NPNTND Pub/Sub Messaging with Varying Number of Producers and Consumers

as already shown in the first scenario, the CPU processing time per message is directly proportional to the number of
consumers.

In the fourth and fifth scenarios, we evaluate the performance of PTD pub/sub messaging. We first look at the effect of
increasing the number of consumers on the server CPU consumption, the mean message delivery latency and the number
of messages sent/received per second. The results are shown in Figure 5.9. The server CPU utilization goes up to almost
80% for 150 consumers and stabilizes at this level together with the total number of received messages per second for
higher number of consumers. Message processing in this case includes disk I/O operations for persisting the messages.
The message delivery latency remains below 15ms for up to 150 consumers. There is a good linear correlation between
the received messages/sec and the server CPU utilization. Finally, the rate of sending messages drops by almost a factor
of 20 as the number of consumers is increased up to the saturation point.
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Figure 5.9: Scenario 4: PTD Pub/Sub Messaging with Increasing Number of Consumers

Scenario | Interaction | # SMs # HQs Injection Rate | Msg. Size | Msg. Group | Figure
1 5 variable | variable | unlimited 2 KByte c 5.11
2 4 variable | na unlimited 2 KByte d 5.11
3 4 5 na unlimited variable d 5.12

Table 5.2: Configuration for P2P Scenarios

The fifth scenario compares NPNTND messaging with PTD messaging in terms of the server CPU utilization, the
message throughput (number of messages sent per second) and the CPU processing time per message sent. As we
increase the number of consumers, the server CPU utilization increases steadily at a decreasing rate. The CPU processing
time per message sent increases linearly with the number of consumers and the rate of increase is much higher for PTD
messaging than for NPNTND messaging. For 150 consumers, the overhead is over 6 times higher for PTD messaging
than for NPNTND messaging. This is explained by the fact that PTD messaging includes additional overhead not just for
persisting messages but also for managing transactions which is directly dependent on the number of consumers.

5.5 P2P Messaging

We now study the performance of the server when running only P2P messaging. We use the freeform topology and
specifically Interactions 5 and 4 to exercise non-persistent non-transactional (NPNT) and persistent transactional (PT)
messaging, respectively. Table 5.2 shows the configuration for three scenarios we analyzed. For each scenario, the number
of SMs and HQs are shown as well as the message injection rate, the message size and the message type according to the
classification in Section 4.1.2 (see Table 4.3). Given that in both Interaction 4 and 5, each interaction execution results
in sending a single message, the specified message injection rate is configured by setting the respective interaction rate.
The interaction rate is specified on a per location basis. The analysis results for the three scenarios are presented in
Figures 5.11 and 5.12.
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Figure 5.10: Scenario 5: NPNTND vs. PTD Pub/Sub Messaging

We now take a closer look at the results. The first two scenarios compare the performance of NPNT and PT P2P
messaging (Figure 5.11). In both scenarios, the number of queues used is varied and the goal is to measure the maximum
message traffic per second that can be processed. The first scenario uses Interaction 5 with multiple HQ instances each
having its own queue for incoming statInfoSM messages sent by the SMs. In each test, both the number of HQ instances
and the number of SMs are set to the desired number of queues. Thus, every SM has a HQ instance and a respective
queue that receives its messages. SM agents have 5 producer (driver) threads each. HQ agents have 5 consumer threads
each. In order to ensure that the number of producer and consumer threads remains constant, the number of agents per
SM/HQ is set in such a way that the number of agents of each type does not change (Section 3.4.2). For example, in
the test with 1 queue (1 SM and 1 HQ), there are 20 agents per SM/HQ, in the test with 2 queues, there are 10 agents
per SM/HQ and so forth, in all cases leading to 20 agents in total. The second scenario is setup in exactly the same way
with exception that it uses Interaction 4 and therefore only SM agents are involved. Each SM agent has 5 producer and 5
consumer threads. The two interactions are configured to use the same message size so that we can compare the results.

As we can see in Figure 5.11, when moving from 1 queue to 2 queues, the message throughtput increases by about 5%
for NPNT messaging and about 10% for PT messaging. Increasing the number of queues beyond 2, does not affect the
message throughput, the server utilization or the CPU time per message/Kbyte. The server CPU utilization is slightly
lower (6-10%) for PT messaging. The latter is expected given that persistent messaging involves disk I/O. The message
throughput is about 2.5 times higher for NPNT messaging given that the CPU time used per message/KByte processed is
over 2 times lower compared to PT messaging. Overall, the results show that using more than two queues does not lead
to any noticable change in the system performance of our configuration.

In the third scenario, we study the performance of PT P2P messaging with variable message size. We use Interaction 4
with a fixed number of SMs and 5 producer and 5 consumer threads per SM. The results are shown in Figure 5.12. As we
can see, the CPU processing time per message increases linerarly with the message size whereas the CPU time per KByte
quickly drops and stabilizes around 0.1ms per KByte. As we discussed earlier when evaluating pub/sub messaging, the
reason for the drop in the overhead per KByte is that there is a constant overhead for parsing the message header which
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Figure 5.11: Scenarios 1 and 2: NPNT vs. PT P2P Messaging with Increasing Number of Queues

for small messages dominates the overall processing time. The mean delivery latency seems to increase quadratically

with the message size.
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6 Related Work

Message-oriented middleware is a major part of today’s enterprise systems and its performance and scalability has been
gaining increasing attention over the past decade. In the following, we present an overview of the most popular workloads
used for benchmarking MOM products and review a selection of performance studies of commercial and open-source
messaging platforms that have been published recently.

In [41], an evaluation of IBM’s MQSeries V5.2 platform is presented. The authors study the performance of four differ-
ent styles of messaging: non-persistent non-transactional, persistent non-transactional, persistent local transactional and
persistent global transactional. The server’s maximum sustainable throughput is introduced as a metric for characterizing
the server performance. The results show the impact of various factors including the message length, the server log
buffer space and the number of receiver threads. In [40], the authors evaluate three leading JMS providers, IBM Web-
Sphere MQ/MQIntegrator, TIBCO Rendezvous/MessageBroker V4.0 and Mercator Integration Manager V6.0. A synthetic
transactional workload is used and the maximum sustainable throughput for persistent and non-persistent messages is
measured. Similarly, in [7] an empirical methodology for evaluating the QoS of JMS products is presented. This time in
addition to the maximum sustainable throughput, several further evaluation criteria are considered, the message delivery
latency, the elapsed time for batch messaging and the effectiveness of persistent message recovery after a server crash.
Two leading JMS servers are evaluated. Unfortunately, the study only considers point-to-point messaging and the authors
do not disclose the names of the tested products.

Another performance study comparing TIBCO Rendezvous (TIB/RV) against SonicMQ was published in [27]. This
study considers both point-to-point and publish/subscribe messaging. For point-to-point messaging, the effects of in-
creasing the number of sender and receiver pairs is analyzed. For publish/subscribe messaging, the effect of increasing
the number of publishers and subscribers is analyzed. Furthermore, the authors consider the time taken for a batch of
messages to be delivered, the connection time for new subscribers, as well as the server memory and CPU utilization.
Some general guidelines for designing a benchmark suite for distributed publish/subscribe systems are presented in [5],
however, no specific implementation or measurement results are provided. In [9], the performance of the individual
elements used in message broker applications is evaluated highlighting the cost of using each element rather than the
cost of running complete applications.

In [18], the capacity of the WebsphereMQ JMS server is evaluated in terms of its throughput performance. The
message throughput in the presence of filters is studied and it is shown that the message replication grade and the
number of installed filters have a significant impact on the server throughput. An analytical model of the message
processing time and the server throughput is presented and validated through measurements. Several similar studies
using Sun Java System Message Queue, FioranoMQ, ActiveMQ and BEA WebLogic JMS server were published in [17],
[14]1, [15] and [16], respectively. The study in [15] considers complex AND-, OR-. and IN-filters of different length.
In [29], the results from the evaluation of the different products are compared and summarized. A more in-depth
analysis of the message waiting time for the FioranoMQ JMS server is presented in [28]. The authors study the message
waiting time based on an M/G/1 — co approximation and perform a sensitivity analysis with respect to the variability of
the message replication grade. The analysis shows that the message waiting time is low as long as the server throughput
is sufficiently high. The authors derive formulas for the first two moments of the message waiting time based on different
distributions (deterministic, Bernoulli and binomial) of the replication grade. Finally, two simple distributed architectures
based on conventional JMS servers that increase the JMS capacity beyond the capacity provided by a single server are
proposed.

In [26], a simple test harness for testing of JMS providers for correctness and performance is presented. The authors
develop a formal model for JMS behavior based on the I/O automata used in other group communication systems. The
focus here is on verifying the correctness of JMS implementations and only basic support for performance analysis is
provided. In [13], an efficient strategy for reliable messaging using different persistence methods with different kinds
of messages is developed. The strategy utilizes daemon threads to reduce its influence on the system and has been
implemented as part of a JMS server.

In addition to the above, a number of proprietary and open-source benchmarks for messaging platforms have been de-
veloped and used in the industry, for example, the SonicMQ Test Harness [37], IBM’s Performance Harness for Java Mes-
sage Service [20], Apache’s ActiveMQ JMeter Performance Test [1] and JBoss’ Messaging Performance Framework [22].
Using these and other similar benchmarks, numerous comparative performance studies of competitive products have
been conducted and published by JMS product vendors over the last 5 years, see for example [8, 25, 36, 34, 4, 12, 30].

As evident from the above, numerous approaches to MOM performance analysis have been developed and used in the
industry and academia. However, pretty much all of them are based on artificial workloads that do not reflect any real-
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world application scenarios. Furthermore, they typically concentrate on exercising individual MOM features in isolation
and do not stress the server in a manner representative of real-life applications. Moreover, in most cases performance
studies conducted using these workloads have been biased in favor of particular products leading to contradictary claims
made by MOM vendors [21, 35, 34, 8, 25, 38]. The workload and benchmarking methodology presented in this paper
represent a novel approach to performance evaluation of MOM platform performance. The benchmark we presented has
several distinct characteristics that distinguish it from previous benchmarks in this area. It not only provides standard
workload and metrics that are comprehensive and representative of real-life applications, but also provides a robust and
flexible performance analysis framework making it possible to customize the workload to best match the user application
requirements.
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7 Concluding Remarks

We presented a methodology for performance evaluation of MOM platforms using the SPECjms2007 standard benchmark.
We first introduced the benchmark discussing its goals, the business scenario it models and its internal component
architecture. After this, we presented a detailed workload characterization of SPECjms2007 with the goal to help users
understand the internal components of the workload and the way they are scaled. We showed how the workload can be
customized to exercise and evaluate selected aspects of MOM performance. Our extensive analysis of the message traffic
produced by the benchmark considered the following dimensions, i) message types and destinations, ii) message sizes,
iii) message throughput and iv) message delivery modes. We characterized the message traffic both on a per interaction
and location basis. The results we presented can be used to define a workload configuration that stresses selected features
of the MOM infrastructure in a way that resembles a given target customer workload. Moreover, the traffic equations
are essential for finding an optimal deployment topology with a uniform load distribution and no client-side bottlenecks.
After considering the general freeform topology, we looked at the more specific horizontal and vertical topologies. We
discussed their goals and characterized the interaction and message mixes they are based on and the way they are scaled.
Our analysis not only helps to better understand and interpret official benchmark results, but also provides an example
of how to define a scalable workload configuration for evaluating selected performance and scalability aspects of MOM.

In the second half of the paper, we presented a case study of a leading JMS platform, the BEA WebLogic server,
conducting an in-depth performance analysis of the platform under a number of different workload and configuration
scenarios. We evaluated the server performance for both the point-to-point and publish/subscribe messaging domains
studying the effect of individual workload characteristics on the server CPU utilization, the message throughput, the CPU
processing time per message/KByte payload, the message delivery latency, etc. Two groups of scenarios were tested. The
first group uses complex workloads based on the standard horizontal and vertical topologies provided by the benchmark.
The second group includes scenarios that focus on specific aspects and features of MOM, e.g the overhead of persisting
messages, the influence of the message size, the effect of increasing the number of message producers/consumers and
the maximum throughput that can be processed through a given number of queues.
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