Information Flow Control with Minimal Tag Disclosure

Hajoon Ko
University of Cambridge
first.last@cl.cam.ac.uk

Changyu Dong
University of Strathclyde

first.last@strath.ac.uk

ABSTRACT

Information Flow Control (IFC) extends conventional access
control beyond application boundaries, and allows control of
data flows after a point of authorised data disclosure. In a
deployment of IFC within a cloud operating system (OS),
the IFC implementation can be trusted by applications run-
ning over the same OS instance. In an IFC deployment
within a widely distributed system, such as in the Internet
of Things, the potential for trustworthy enforcement of IFC
must be ascertained during connection establishment. IFC
is based on tagging data in line with data management re-
quirements. When audit is included as part of IFC, it can
be shown that a system complies with these requirements.

In this paper, we consider the possibility that some tags
may be sensitive and discuss the use of Private Set Inter-
section (PSI) to prevent unnecessary disclosure of IFC tags
during the establishment of communication channels. The
proposed approach guarantees that on authorised flows, only
the tags necessary for that interaction are disclosed and that
no tags are disclosed for prevented flows. This functional-
ity is particularly important in contexts such as healthcare,
where privacy and confidentiality are paramount.

CCS Concepts

eSecurity and privacy — Information flow control;
Distributed systems security; Public key (asymmetric) tech-
niques;

Keywords

Information Flow Control, Private Set Intersection

1. INTRODUCTION

Our previous work [12] explores Information Flow Con-
trol (IFC) as an information-centric security mechanism to
ensure safe sharing of data across application boundaries in
a cloud computing context. This is unlike traditional ac-
cess control mechanisms, where the data owner often loses

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

International Conference on Internet of Things and Cloud Computing '16
Cambridge, United Kingdom

© 2016 ACM. ISBN 978-1-4503-4063-2...$15.00
DOL: 10.475,/123_4

Jatinder Singh
University of Cambridge
first.last@cl.cam.ac.uk

David Eyers
University of Otago

dme@cs.otago.ac.nz

Thomas F. J.-M. Pasquier
University of Cambridge
first.last@cl.cam.ac.uk

Jean Bacon
University of Cambridge

first.last@cl.cam.ac.uk

control over their data as it moves beyond the boundaries
of the applications. Indeed, IFC allows the sharing of data
between mutually distrusting parties [6], as long as the un-
derlying enforcement mechanism is mutually trusted. IFC
can guarantee that shared data, or data derived from shared
data, cannot be used outside of a specified purpose [7]. This
is achieved by attaching labels (each comprising a set of
tags) to all entities within the IFC-protected system. Flows
are prevented unless the labels accord, as described in §2.

Our earlier work relies on the assumption that there is a
single IFC-enforcing party, the PaaS cloud provider. This
cloud provider is incentivised to guarantee the proper en-
forcement of the security mechanism as part of their service
offering. When IFC is extended to a wider distributed envi-
ronment, such as for the Internet of Things (I0T), challenges
arise given the multitude of players involved.

In our current implementation, a communication channel
between two applications is established after mutual autho-
risation and verification of their IFC labels. Initial thoughts
on how to ensure a remote party, in an IoT context, is sub-
ject to a trustworthy enforcement regime is discussed in [13].

In this paper we focus on managing the fact that IFC tags
may be sensitive.

Consider a self-monitoring patient scenario where both a
hospital-issued medical device and a patient’s own fitness/
wellbeing “app” feed data into the patient’s medical record.
The patient’s medical record software may have sensitive
tags that should not be disclosed to the app on the patient’s
mobile phone. Our current implementation was developed
for a trusted environment, where IFC is transparent to ap-
plication instances and, at present, all tags are disclosed as
part of establishing a communication channel. However, it
is generally preferable that tags are disclosed on a “need-to-
know” basis.

We propose to leverage well known techniques to extend
IFC to a non-uniformly trusted, distributed world (IoT). We
use X.509 certificates for authorisation and tag verification,
as described in [18], using attribute certificates to represent
tags [1,3]. Private Set Intersection (PSI) [5] is a crypto-
graphic mechanism that allows two parties to compute the
intersection of two sets without revealing the elements out-
side of the intersection. In this paper, we present a protocol
that uses PSI to prevent the unnecessary disclosure of tags
between communicating parties, as IFC is enforced on con-
nection establishment.

10.475/123_4

Hospital’s Patient
Monitoring Server

Database App

Patient’s Medical Device

[sensorApp | [ReportApp |

I:”:“:l Untrusted application processes
_ Trusted IFC Enforcement System

Figure 1: CamFlow Architecture.

Controlled Data Flow
by CamFlow Software

2. CAMFLOW IFC IMPLEMENTATION

IFC is not a replacement for existing security mechanisms
such as traditional, point-based access controls or the en-
cryption of sensitive data, but rather is complementary, pro-
viding guarantees when sharing sensitive data between par-
ties or services. IFC specifies the trust assumptions that
need to be made. Instead of a need to trust all parties
involved, only trust in the IFC enforcement mechanism is
required.

Our model (a full description is available in [12]) derives
from Myers’ model [8] where data flow policy is encapsulated
using secrecy and integrity labels associated with every en-
tity of the considered system. These labels are each a set of
tags with each tag representing a particular security concern.
Security tags might include e.g. medical_data, alice_private,
encrypted; integrity tags might include e.g. validated_input,
standard_format, some_trusted_datasource.

S(A) represents the set of secrecy tags and I(A) the in-
tegrity tags held by an entity A. Data flow between an entity
A and an entity B is allowed if and only if:

5(4) € S(B) A I(B) € I(A)

In other words, data flow is allowed if and only if A’s secrecy
label is a subset of B’s and B’s integrity label is a subset of
A’s. The security context of an entity is defined as the state
of its S and I labels.

IFC is a data-centric mandatory access control mechanism
that guarantees non-interference across security contexts.
The security properties of interacting entities are checked
continuously on every data exchange.

CamPFlow [12] is a cloud-targeted implementation of IFC.
A Linux Security Module (LSM) enforces IFC constraints
between kernel objects (processes, files, pipes, etc.) on the
local machine, while a communication middleware is used
for IFC-constrained, inter-machine communication [16]. We
illustrate our architecture in Fig. 1.

To move towards a distributed environment such as IoT,
we described in [18] how X.509 standard mechanisms can
be used to represent IFC concepts. Public Key Certificates
are used to uniquely identify entities in the system; they are
referred to as Identity Certificates (IDC). Attribute Certifi-
cates (AC) [3] are used to represent IFC tags, and are at-
tributes linked to the identified entity. In a CamFlow con-
text, IDCs are used to authenticate applications (e.g. Bob’s
medical smartphone app). After authentication, ACs are
exchanged between parties (e.g. Bob’s app and a web appli-
cation instance on the hospital server) to determine, based
on IFC constraints, whether the communication should be
authorised.

Our current IFC implementation, which is developed for
PaaS clouds, assumes trustworthy IFC enforcement. En-
forcement is transparent to application instances; applica-
tion managers allocate tags to application instances, without
the application’s direct involvement. Establishing a connec-
tion between applications occurs though a middleware. This
process involves mutual endpoint authorisation, after which
IFC enforcement takes place [12]. Currently, the commu-
nicating entities’ IFC components reveal their entire sets of
tags to each other to check the IFC subset relationship, after
which the flow is accepted or rejected.

As motivated in §1, some tags may be sensitive and a
means of enforcing IFC without disclosing all the parties’
tags is desirable. As a general principle, tags should only
be disclosed on a “need-to-know” basis, and especially for
the potentially many parties dynamically involved in IoT
chains. The next section describes a means for establish-
ing common subsets of tags between entities: private set
intersection (PSI). Incorporating PSI into IFC enforcement
means that if no flow is allowed, neither party knows any
tags of the other party. If communication is allowed, the
sending party knows only that its secrecy tags are a subset
of the receiver’s and the receiving party that its integrity
tags are a subset of the sender’s.

3. IFC WITH PSI FOR IoT

PSI enables two parties, A and B, holding a set of elements
Sa and Sp respectively, to compute the intersection S4 NSp
without revealing to each other any other non-intersecting
elements between their sets. PSI is an active research area
and has been applied to many privacy-sensitive applications.
For example, a government agency and an airline could per-
form PSI to identify terrorist suspects on an airline’s pas-
senger list, without directly revealing the full list of suspects
or passengers to each other [2].

To explain the application of PSI in an IFC context, we
consider a scenario where a fitness/wellbeing device (e.g.
fitbit) — hereafter A — is used to transmit patient activity
data to a hospital service — hereafter B.

To establish a one-way communication channel from A to
B (A — B) to satisfy the IFC constraints introduced in §2, A
must verify that S(A) C S(B), that is S(A) = S(A)NS(B).
B must verify I(B) C I(A), that is I(B) = I(A)NI(B).!

Fig. 2 shows how a generic PSI scheme can be leveraged
to enforce IFC without disclosing unnecessary tags to either
party. In our example, that means Alice’s device A such
that S(A) = {alice} can only verify if Alice’s hospital ser-
vice instance B runs with the label S(B) = {alice}, without
A learning about any other of B’s potential tags such as
medical or AIDS.

For evaluation of IFC with PSI, we selected Oblivious
Pseudo-Random Functions (OPRF) [2]. The basic idea is
to hash the tags before transmitting them for comparison.
Since simple hashing of well-known tag names is subject to
guessing (e.g. dictionary attacks), public-key cryptography
is used to prevent this (see [2] for details).

1To establish two-way communication both parties must in-
dependently verify S(A4) = S(B) and I(A) = I(B), which
can be efficiently achieved through a private equality test as
for the example described in [4].

— A’s secrecy tags : Sa = {sai, saz,...50;s)}
— A’s integrity tags : Za = {ias, tag, ...iq7 4| }
— B’s secrecy tags : Sp = {sb1, sbz, ...sbsy|}
— B’s secret input : Zp = {ibs, tbs, ...ibjz,4 }

1) A EEN PSI Protocol S5

A <= [PSI Protocol | =% B (where S¢ = S4 N Ss)

A 24 PSI Protocol ZEB
A é PSI Protocol % B (where Ze = Za N 1s)

2) Data flow A to B
A : If Sc # Sa, disallow outgoing data.
B : If Z¢ # Ig, disallow incoming data.

3) Data flow B to A
B : If S¢ # Si, disallow outgoing data.
A : If Ze # Z ., disallow incoming data.

Definitions

- CFa, CFg : CamFlow IFC middleware enforcement
process invoked by A, B

- IDCy,IDCg : identity certificate issued to A, B

-AB : application processes whose data flow

is controlled by CF4, CFp
- ACay,), ACB) © A, B’s attribute certificate for tag ¢, t;

Figure 2: PSI applied to IFC policy enforcement.

Trust and Threat Model

It is beyond the scope of this paper to consider attacks to
PSI. Moreover, there are a number of outstanding issues in
IoT that require attention [9,17].

Our concern in this paper is to reveal tags on a “need-to-
know” basis between verified IFC implementations as gen-
eral good practice. Our adversarial model is an “honest-but-
curious” entity. A health professional’s device labelled with
S(A) = {medical} can review and analyse general medical
data S(D) = {medical}, or receive medical data from a re-
mote process S(P) = {medical}. If A attempts to read data
labelled S(D') = {medical, Alice, AIDS}, IFC will prevent
this flow, but A’s IFC enforcement component learns all the
data’s tags in the process. We are aiming to prevent such a
potential leakage.

If IFC is to be used in an IoT context, the IFC enforce-
ment mechanism must be trusted. TPM [10] is a physi-
cally tamper-resistant security chip that verifies the software
stack on a given hardware platform at boot time [14] and
monitoring is continued during execution. We assume the
integrity of a remote IoT device’s CamFlow software and its
underlying platform can be verified by TPM technology [13].

CamFlow IFC-PSI connection establishment

The IFC-PSI protocol is described in Fig. 3. Communica-
tion between processes A and B, whose communications are
controlled by their IFC enforcement systems CF4 and CFp.
The IFC implementation ensures that all external communi-
cation is via these components. Each application process has
its own identity certificate (IDC) and one or more attribute
certificates (ACs) specifying its assigned tags. When ap-
plication processes communicate remotely, they invoke their
local IFC middleware, CF4 and CFp respectively.

In the setup stage (step 0), CFa and CF'p load and verify
the identity certificate (IDC) and tag certificates (AC's) of
their application processes A and B. In step 1, A requests
CF'4 for remote data transmission to B whose external data
flow is under the control of CFp. In step 2, CF4 and CFp
authenticate each other based on Public Key Infrastructure
(PKI), using their IDCs. In step 3, CF4 and CFp run the
PSI protocol by using the tags of their application processes
as PSI inputs. In steps 4 and 5, CF4 and CFp exchange AC's
for their common secrecy and integrity tags to be verified by
each other. In step 6, the connection between A and B is

IFC-PSI Protocol

0) CFa : verify A’s IDC and AC's
prepare S4 and Z4

CFp : verify B’s IDC and AC's
prepare Sp and Zp

1) A— CFa : request a remote data transmission to B

2) CF4 <+ CFp : PKI-based mutual IDC verification
3) CF4 < CFp : execution of a PSI protocol

4) CF4 — CFp : {AC(AJ)H € Ic}
CFp : verify A’s AC's and its integrity tags

5) CFp — CFy : {AC(B,t)|t S Sc}
CF4 : verify B’s AC's and its secrecy tags

6) [A, CF4] — [CFB, B]: data flow from A to B with IFC

enforced by CF4 and CFp

Figure 3: The IFC-PSI protocol.

established and data can be transmitted.

4. EVALUATION

5 e PSI-AC

—~ AC-only (non-PSI)
— TLS baseline

g

g ./././t
= o

Eosl e € 5 5 g g 8 5 5°°

e °

0 : 1 1 : : 1 : : : 1
2 4 6 8 10 12 14 16 18 20
Number of tags (same for each party)

Figure 4: PSI overhead comparison.

To demonstrate the approach, we integrated our IFC-PSI
protocol into SBUS [15] (CamFlow’s middleware). The pro-
tocol operates as part of establishing a communication chan-
nel. For our implementation, we leveraged the OPRF-based
PSI implementation by the SPROUT Laboratory at the Uni-
versity of California Irvine.? We also use the X.509 Attribute
Certificate (AC) library, which is an OpenSSL wrapper de-
veloped by the Pervasive Computing group at the University
Carlos TI1,? for general tag exchange and management.

http://sprout.ics.uci.edu/
3http://www.it.uc3m.es/dds/index.html

TLS PSI AC Total
22.15ms 18.12ms 6.03ms || 46.3ms

Table 1: Delay breakdown for TLS, PST and AC stages when
each party holds 20 tags.

Our experiment involved two 1.6GHz Intel machines with
4GB RAM running Ubuntu 14.04 LTS, directly connected
through a local 1000BASE-T Ethernet network. The results
are presented in Fig. 4. In the graph, the horizontal line
represents the (constant) overhead imposed by establishing
a TLS connection. The AC-only scheme is where all tags
are exchanged (and verified), while PSI-AC represents our
‘minimal disclosure’ approach. From the results, we see that
PSI-AC imposes a steeper (linear) overhead than that of AC-
only. This is because processing each PSI element requires
non-negligible cryptographic computations.

Our experiment was to demonstrate the feasibility of a
PSI-based tag exchange for IFC enforcement. Given the na-
ture of the IFC model (§2), we see potential optimisations
with respect to the subset and equality relationships between
the tags held by each party. Further, in the IFC use cases
we have considered to date, we have found that typically
policy can be represented with only a few tags [19]. In Ta-
ble 1 we present the overheads for a situation involving 20
tags, to indicate performance overheads in what is more of a
worst-case scenario. Note also that PSI is an active area of
research, and more efficient protocols may become available.

S. CONCLUSION

As the 10T evolves, we expect many end-user devices to
connect with cloud-based services for data processing and
archiving. Such services may handle sensitive data from
many other sources and the IFC tags they hold for such
purposes should not be freely revealed. In an IoT context,
we must establish during connection set up that the IFC
enforcement is trustworthy, i.e. is running hardware-verified
IFC-enforcement software. Even so, it is good practice to
reveal IFC tags only on a “need-to-know” basis so that sen-
sitive tags are never disclosed beyond the domain in which
they apply.

A full threat and risk model for IoT including cloud ser-
vices is beyond the scope of this paper. IFC enables policy-
specified control of where data flows, with audit of all al-
lowed and rejected flows [11]. This creates the ability to
demonstrate that services comply with their data manage-
ment obligations.

In this paper we have argued that PSI could be a use-
ful addition to IFC, so that only the tags that are essential
to IFC-controlled communication are revealed to the parties
concerned. We have shown that it is possible to incorpo-
rate a recent PSI protocol into our existing CamFlow (IFC)
implementation. In future work, we see potential for opti-
misation and refinement.

6. ACKNOWLEDGEMENTS

This work was supported by UK Engineering and Physical
Sciences Research Council grant EP/K011510 CloudSafe-
tyNet: End-to-End Application Security in the Cloud. We
acknowledge the support of Microsoft through the Microsoft
Cloud Computing Research Centre.

7. REFERENCES

[1] D. W. Chadwick, A. Otenko, and E. Ball. Role-based
Access Control with X. 509 Attribute Certificates. Internet
Computing, IEEE, 7(2):62-69, 2003.

[2] E. De Cristofaro and G. Tsudik. Practical private set

intersection protocols with linear complexity. In 14th

International Conference on Financial Cryptography and

Data Security, pages 143-159. Springer, 2010.

S. Farrell and R. Housley. An Internet Attribute Certificate

Profile for Authorization. Technical report, IETF, 2002.

[4] M. Freedman, C. Hazay, K. Nissim, and B. Pinkas. Efficient
set intersection with simulation-based security. Journal of
Cryptology, pages 1-41, 2014.

[5] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private
matching and set intersection. In Advances in
Cryptology-EUROCRYPT 2004, pages 1-19. Springer,
2004.

(6] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris. Information Flow Control for
Standard OS Abstractions. In Symposium on Operating
Systems Principles, pages 321-334. ACM, 2007.

[7] N. Kumar and R. Shyamasundar. Realizing Purpose-Based
Privacy Policies Succinctly via Information-Flow Labels. In
Big Data and Cloud Computing (BDCloud’14), pages
753-760. IEEE, 2014.

[8] A. C. Myers and B. Liskov. A Decentralized Model for

Information Flow Control. In Symposium on Operating

Systems Principles (SOSP), pages 129-142. ACM, 1997.

H. Ning, H. Liu, and L. Yang. Cyberentity Security in the

Internet of Things. Computer, 46(4):46-53, April 2013.

[10] B. Parno. Bootstrapping Trust in a” Trusted” Platform. In
Conference on Hot Topics in Security (HotSec’08).
USENIX, 2008.

[11] T. Pasquier, J. Singh, , J. Bacon, and D. Eyers.
Information Flow Audit for PaaS clouds. In International
Conference on Cloud Engineering (IC2E). IEEE, 2016.

[12] T. Pasquier, J. Singh, D. Eyers, and J. Bacon. CamFlow:
Managed Data-Sharing for Cloud Services. I[EEE
Transactions on Cloud Computing, 2015.

[13] T. F. J.-M. Pasquier, J. Singh, and J. Bacon. Clouds of
Things need Information Flow Control with Hardware
Roots of Trust. In International Conference on Cloud
Computing Technology and Science (CloudCom’15). IEEE,
2015.

[14] N. Santos, K. P. Gummadi, and R. Rodrigues. Towards
Trusted Cloud Computing. In Conference on Hot Topics in
Cloud Computing, pages 3-3. USENIX, 2009.

[15] J. Singh, D. Eyers, and J. Bacon. Policy Enforcement
within Emerging Distributed, Event-Based Systems. In
ACM Distributed Event-Based Systems (DEBS’1}), pages
246-255, 2014.

[16] J. Singh, T. Pasquier, J. Bacon, and D. Eyers. Integrating
Middleware and Information Flow Control. In International
Conference on Cloud Engineering (IC2E), pages 54-59.
IEEE, 2015.

[17] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers.
Twenty security considerations for cloud-supported Internet
of Things. IEFEE Internet of Things Journal, 2015.

[18] J. Singh, T. F. J.-M. Pasquier, and J. Bacon. Securing Tags
to Control Information Flows within the Internet of Things.
In International Conference on Recent Advances in
Internet of Things (RIoT’15). IEEE, 2015.

[19] J. Singh, J. Powles, T. Pasquier, and J. Bacon. Data Flow
Management and Compliance in Cloud Computing. IEEE
Cloud Computing Magazine, SI on Legal Clouds, 2015.

(3

[9

	Introduction
	CamFlow IFC Implementation
	IFC with PSI for I111T
	Evaluation
	Conclusion
	Acknowledgements
	References

