
Information Flow Control for Strong Protection
with Flexible Sharing in PaaS

Thomas F. J.-M. Pasquier, Jatinder Singh and Jean Bacon
Computer Laboratory, University of Cambridge

Cambridge, United Kingdom
Email: firstname.lastname@cl.cam.ac.uk

Abstract—The need to share data across applications is be-
coming increasingly evident. Current cloud isolation mechanisms
focus solely on protection, such as containers that isolate at the
OS-level, and virtual machines that isolate through the hypervi-
sor. However, by focusing rigidly on protection, these approaches
do not provide for controlled sharing. This paper presents how
Information Flow Control (IFC) offers a flexible alternative.
As a data-centric mechanism it enables strong isolation when
required, while providing continuous, fine grained control of the
data being shared. An IFC-enabled cloud platform would ensure
that policies are enforced as data flows across all applications,
without requiring any special sharing mechanisms.

I. INTRODUCTION

Since the inception of PaaS, a major concern has been to
isolate tenants’ applications from each other to guarantee first,
confidentiality of their data and, to a lesser extent, its integrity.
Isolation was originally achieved by running tenants within
separate virtual machines (VMs), sharing hardware and the
hypervisor. More recently, strong isolation has been achieved
through containers [1], which isolate tenants over a shared
OS. Access to resources, such as storage, is often restricted
through tenant-based access control.

Applications, however, are increasingly required to share
data. The emergence of the Internet of Things (IoT), and IoT’s
use of PaaS services [2] to achieve open interoperability, is
making support for protected data sharing between PaaS ten-
ants increasingly urgent. Meanwhile, research on data sharing
between isolated containers [3], [4] has proposed complex and
often relatively inefficient (application-specific access control)
schemes.

We believe that what is needed is a generic mechanism
to finely control the exchange of information between par-
ties running applications on a PaaS cloud, that provides for
both protection (isolation) and sharing. Sharing should be
supported, by permitting data flows according to application
policy. Strict isolation should be enforced when flows are
not permitted. A mechanism is needed to enforce policy that
defines which information to share and with whom.

As such, we propose Information Flow Control (IFC),
which enables granular, data-centric isolation. Current con-
tainment approaches focus on strict tenant and/or infrastructure
isolation, with no means for controlling the subsequent use of
data that has been shared. IFC provides mandatory enforce-
ment and discretionary, application-specific policy specifica-

tion. Furthermore, IFC guarantees continued enforcement of
the specified policy after the data has been exchanged.

We begin by providing an overview of IFC, before de-
scribing our prototype implementation and its relevance to
cloud platforms. We then compare IFC with containers—the
contribution of this paper—to highlight the benefits of the
approach.

II. IFC MODEL

The purpose of IFC is to prevent data leakage through
controlled information exchange. Our model accords with the
general IFC guarantees of secrecy (no read up, no write down
[5]) and integrity (no read down, no write up [6]). Further
details of our model, with examples, are given in [7].

A. Tags and Labels

In IFC, tags are tokens that represent some security concern
regarding secrecy or integrity which are used to regulate flows
throughout the system. Tags are associated with entities that
include application instances (processes), messages, sockets or
any mechanism allowing data exchange.

Every entity in the system has two labels, each comprising
a set of tags: an entity A has a secrecy label S(A) and an
integrity label I(A). The current state of these labels is the
entity’s security context.

Definition 1. A flow of information A→ B is safe if and only
if:

A→ B, iff S(A) ⊆ S(B) ∧ I(B) ⊆ I(A)

The secrecy label S enforces privacy/confidentiality and the
integrity label I enforces data quality, using tags. For example,
a hospital patient Bob may be issued with a heart monitor
device to use when at home. Data from the device must flow to
a process in his hospital for analysis and storage. The hospital
process is only allowed to receive data from hospital-issued
devices, so has I =[hospital-issued]. Bob’s device and the data
flowing from it must also include the tag I =[hospital-issued]
for the data to be accepted. Because Bob’s data is private,
the heart monitor and data are tagged S =[medical, bob]. The
hospital process may only receive the data if it has tags which
include S =[medical, bob].

An example from Fig. 1b, is that Carl’s application instance
B can only communicate with Bob’s application instance B′

if S(B) ⊆ S(B′).



B. Decentralised Privileges and Security Contexts

Sometimes it may be necessary to make data more ac-
cessible (removing a secrecy tag), e.g. when a document
becomes ready for publication. This is known as declassi-
fication. It is also the case that certain applications may
require sanitised/verified input data. This means that a process
will be charged with analysing new inputs and labelling data
as sanitised (adding an integrity tag), to enable the data to
propagate further. This is termed endorsement.

An application (and the principal on behalf of whom the
application runs) requires privileges to undertake endorsement
and declassification operations. If an application A has a priv-
ilege to add t to its secrecy label, we denote this t ∈ P+

S (A),
and to remove t from its secrecy label: t ∈ P−S (A) (and
similarly P+

I (A) and P−I (A) are the privileges for integrity).

Definition 2. A label change noted A A′ is safe if and only
if all additions or removal of tags respect (where X stands for
either S or I):

X(A) := X(A) ∪ {t} if t ∈ P+
X (A)

OR

X(A) := X(A) \ {t} if t ∈ P−X (A)

IFC policy is therefore simple to express and enforce,
expression involving assigning tag metadata to entities and
enforcement checking the presence of tags in flow endpoints’
metadata. Moreover IFC policy is enforced continuously, un-
like traditional access control.

III. CLOUD PROVIDER ENFORCED IFC

We have developed a prototype IFC implementation to
demonstrate the feasibility of an IFC-enabled cloud platform.
For want of space, here we provide only a brief overview, for
more detail see [7]. Data exchange across machines is done
through an IFC-aware message passing middleware, described
in [8].

A. Kernel Enforced IFC

FlowK operates to enforce IFC within an OS, and thus easily
integrates into cloud services. It is implemented in the kernel
to ensure consistent enforcement across all applications. We
assume that passive entities (files, sockets and pipes) are used
to exchange data between active entities (processes), and we
prevent shared memory between processes.

Our implementation uses system call interception through
a Linux Kernel Module [9]. Although this method has some
limitations [10], [11], it is sufficient for a proof-of-concept
exploration of IFC functionality. We are currently investigating
a Linux Security Module IFC implementation to help address
some of these concerns.

B. User Space Helpers

The development of IFC-aware applications, including ser-
vices forming part of an IFC-aware PaaS, requires mechanisms
for user-space processes to interact with the kernel-level IFC

functionality. For this, we define User-Space Helper processes,
which have three functions: 1) persisting an application’s
security context across multiple executions; 2) saving the
correspondence between local and global tag representations;
3) assisting in inter-process message-passing.

C. A Prototype for PaaS with Decentralised IFC

We now describe application-level integration through a
framework for web applications that run above an IFC-aware
OS. This has been implemented and detailed in [7]. In this
implementation, the workers are Ruby on Rails instances and
we use a Redis data-store.

End-users are able to specify the IFC security context in
which they want their request (and therefore the application)
to be executed. This is managed through a web interface.
An end-user is able to: define new tags to reflect his policy
requirements; share tags with other end-users to allow data
sharing; and dynamically define under which IFC security
context the remote cloud application should be executed. For
example, a security context can be set up such that a nurse
can access the medical information pertaining to one of their
patients.

The end-users attach1 to each request credentials specifying
the security context in which the request should be executed.
When requests are received they are routed towards an appli-
cation instance running within the specified security context.
If no such instance exists, a new one is created to meet
the user’s security requirements. To improve performance,
application instances (processes) no longer in use can be
recycled (reused) through checkpoint techniques that ensure
no data leaks between security contexts [12].

Application instances are constrained to work within a
well defined security context as specified by the end-user
request. This security context cannot be changed directly by
the application and its enforcement is guaranteed by the OS as
described in §II. The resources, data items (within a store) and
messages an application instance is able to read/send or write/
receive are (tagged) in accordance with the IFC constraints.

In terms of protection, application bugs or misconfigurations
cannot compromise end-users’ data. Furthermore, data pro-
duced by an application (e.g. a smart watch) could be used by
another application (e.g. a diet coaching application) provided
the security contexts of the applications are compatible.

IV. CONTAINMENT COMPARED

Virtual machines (VMs) are well established as a mecha-
nism for tenant isolation, albeit somewhat heavyweight since
each tenant is allocated a separate VM (executing its own OS,
software-stack, etc.). More recently, containers have emerged
as a more efficient (performance-wise) form of isolation [1],
[13], in which tenants share the same OS.

1This is similar to a single sign-on system, i.e. the user authenticates with
the security context provider and receives credentials corresponding to the
desired security context.



Hardware

Operating System

ResourcesResources

App

A (Bob)

App

A (Ann)

App

B (Carl)

App

B (Bob)

App B ContainerApp A Container

(a) Application isolation via containers.

Hardware

OS with IFC support

Resources

App

A (Bob)

App

A (Ann)

App

B (Carl)

App

B (Bob)

S(A′) ⊆ S(B)

S(A) = S(B)

(b) Resource and data sharing with IFC constraints.

Fig. 1: Container Isolation vs IFC aware OS

Both of these approaches focus on protection, essentially
imposing a ‘silo’ around/between tenants and/or resources. Al-
hough applications can contrive to share data across isolation
boundaries, sharing is either unsupported by the platform, or
tends to target situations where multiple applications belong
to a single/small groups of tenants, specified statically. For
example, Google Pods2 allows applications to exchange infor-
mation and share common resources, but focuses on enabling
common logging, content management, backup services, etc.,
for the range of applications that a tenant runs.

There is an increasing need for managed data sharing across
a range of tenants and application boundaries. Developments
in ‘Internet of Things’ (IoT), for example, are towards break-
ing application/tenant silos to allow large-scale data sharing in
order to build more sophisticated applications [2], including
dynamically. There are also requirements emerging regarding
the isolation of data and applications for individual end-users
(c.f. isolating at the granularity of a tenant), for example,
to offload power-constrained devices’ computations [3], while
allowing data to be shared when appropriate.

Such sharing must be controlled. The rationale of existing
mechanisms is that once data access is authorised, there is
no further control over how the data is subsequently used.
The benefit of IFC is to control information propagation
continuously, not only at the point of authorisation.

In Fig. 1, we illustrate the differences between an IFC and
container managed cloud. For containers, application instances
run as though they were alone in the machine, and all appli-
cation instances within the same container share resources.
IFC allows more fine grained non-interference policy, making
it possible for inter-tenant data sharing (which is complicated
when using containers) and intra-tenant isolation (which would
require a large number of containers, and increase management
complexity). In short, IFC enables not only isolation, but also
flexible data sharing.

In Fig. 1b, we see a user, Bob, sharing data between two
applications, and another user, Carl, who shares data with

2http://tinyurl.com/ml5kux4

Bob. Using containers (Fig. 1a) any data exchange policy
would be application-centric (i.e. App A can interact with
App B). Further, once the data is shared there is a definitive
loss of control: Bob has no guarantee that if he shares his
data with application B, Carl cannot access it. As discussed
earlier, it is possible for each user/application pair to run its
own container, but this brings issues of scale. In contrast, with
IFC, the data is protected by the cloud platform. Even when
shared between applications, data can only flow to application
instances with compatible security contexts (as defined by
their S and I labels’ tag sets). Carl cannot access Bob’s data
even if they both execute instances of application B, except
by specific IFC-enforced policy. Although one application
instance per security context appears heavyweight, it is far
less so than the alternative of running a complete container per
user. Furthermore, as mentioned, application instances can be
re-used through checkpointing techniques in order to reduce
overhead.

Another consideration is that container technology does
not currently extend to the protection of data storage. IFC
can be enforced within the OS, and also in cloud provided
services such as data storage (protecting files) or caching.
A technique explored is to provide an IFC-aware trusted
interface between the data-store and the cloud application
[14] or through an IFC-aware FUSE interface [7], leveraging
the OS IFC enforcement mechanism discussed in §III. IFC
has been integrated into the PostgreSQL database [15], and
a messaging middleware SBUS-IFC [8], that also enables
managed database queries.

Managed data sharing is only possible if the cloud provider
is able, and trusted, to guarantee that the data-bound policies
are enforced. As part of this enforcement, audit logs can be
generated. A verifiable audit log provides transparency as to
whether data is properly used and managed, i.e. according to
the provider-tenant contract. Further, as these logs are naturally
data-centric [16] they allow for more meaningful audit than
traditional system logs, and are able to capture data-specific
constraints; such as those imposed by legislation dictating

http://tinyurl.com/ml5kux4


the geographic locales to which particular information may
flow [17], [18]. Audit can also raise the level of trust end-users
have in the behaviour of cloud applications. For example, end-
users could verify that no data leakage occurred, or that their
data are not being shared with undisclosed third parties.

V. CONCLUSIONS & FUTURE WORK

Cloud security has always been a major issue. PaaS security
design traditionally focussed on protection, isolating tenants
via VMs and later via OS co-resident containers. The need
for data-sharing between tenants was not a major consider-
ation, but has increasingly become a requirement. Even with
traditional applications we can envisage, say, local government
having many separate applications such as social services,
public transport, electoral roll and many more, relating to the
same citizens and needing a degree of interworking.

With the emergence of IoT, the need for sharing becomes
compelling. The philosophy of IoT is open interoperability,
with data sharing able to occur dynamically, possibly in un-
foreseen ways. Cloud services are seen as an essential part of
an overall IoT architecture which may include traditional cloud
applications as well as ‘things’. Examples of ‘things’ include
the many personal monitoring devices whose data need to be
composed and correlated for emergency detection, but also
integrated with traditional healthcare, including professional
care services and health record databases.

The contribution of this paper is in the case for isolation
approaches that also provide for managed data sharing. We
believe the rigour and flexibility of IFC makes it a strong
contender for meeting the future needs of PaaS clouds for
both strong protection and flexible sharing as required.

So far, we have built a proof-of-concept system from a
Linux kernel module (FlowK) to an IFC-enabled web-service
application framework [7]. We have integrated an IFC-aware
messaging middleware with FlowK [8].

There are remaining challenges in deploying IFC in PaaS
clouds but we believe it is feasible and has great potential.
Discussion on and progress towards meeting these challenges
can be found in [19], [7], [8], [2]; in outline:
(1) IFC can be implemented at different levels in the cloud
stack, giving rise to cross-cutting concerns. For example,
policy concerning structured objects operates at a higher-
level than the OS. As initial work towards this, we have
structured messages with individually labelled attributes as
part of middleware integration [8].
(2) For a general architecture including multi-clouds and end-
systems, IFC can be extended to operate end-to-end, provided
a global naming scheme is defined for tags.
(3) Uniquely among IFC models and implementations, we
have aimed for maximum transparency of IFC. An application
instance can use IFC without reengineering if it does not need
to change its security context.

Acknowledgement
This work was supported by the UK Engineering and Physical
Sciences Research Council under grant EP/K011510 “Cloud-

SafetyNet: End-to-End Application Security in the Cloud”. We
acknowledge the support of Microsoft for work on Cloud Law.

REFERENCES

[1] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peter-
son, “Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors,” in ACM SIGOPS Operating
Systems Review, vol. 41, no. 3, 2007, pp. 275–287.

[2] J. Singh, T. Pasquier, J. Bacon, , H. Ko, and D. Eyers, “20 Cloud Security
Considerations for Supporting the Internet of Things,” submitted, IEEE
Internet of Things Journal, 2015.

[3] S. Lee, E. L. Wong, D. Goel, M. Dahlin, and V. Shmatikov, “πBox: A
Platform for Privacy-Preserving Apps.” in 10th USENIX Symposium on
Networked System Design and Implementation, 2013, pp. 501–514.

[4] B. Viswanath, E. Kiciman, and S. Saroiu, “Keeping information safe
from social networking apps,” in Proceedings of the 2012 ACM work-
shop on Workshop on online social networks. ACM, 2012, pp. 49–54.

[5] D. E. Bell and L. J. LaPadula, “Secure Computer Systems: Mathematical
Foundations and Model,” The MITRE Corp., Bedford MA, Tech. Rep.
M74-244, May 1973.

[6] K. J. Biba, “Integrity Considerations for Secure Computer Systems,”
MITRE Corp., Tech. Rep. ESD-TR 76-372, 1977.

[7] T. F. J.-M. Pasquier, J. Bacon, and D. Eyers, “FlowK: Information
Flow Control for the Cloud,” in 6th International Conference on Cloud
Computing Technology and Science (CloudCom). IEEE, Dec 2014.

[8] J. Singh, T. Pasquier, J. Bacon, and D. Eyers, “Integrating Middleware
with Information Flow Control,” in International Conference on Cloud
Engineering (IC2E). IEEE, 2015.

[9] N. Dhanjani and G. Rodriguez-Rivera, “Kernel Korner: Loadable Kernel
Module Programming and System Call Interception,” Linux Journal, no.
82es, Feb. 2001.

[10] T. Garfinkel, “Traps and Pitfalls: Practical Problems in System Call
Interposition Based Security Tools.” in NDSS, vol. 3, 2003, pp. 163–
176.

[11] R. N. Watson, “Exploiting Concurrency Vulnerabilities in System Call
Wrappers.” WOOT, vol. 7, pp. 1–8, 2007.

[12] B. Niu and G. Tan, “Efficient user-space information flow control,”
in Proc. 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, 2013, pp. 131–142.

[13] S. He, L. Guo, Y. Guo, C. Wu, M. Ghanem, and R. Han, “Elastic applica-
tion container: A lightweight approach for cloud resource provisioning,”
in 26th International Conference on Advanced Information Networking
and Applications (AINA). IEEE, 2012, pp. 15–22.

[14] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information Flow Control for Standard OS Abstrac-
tions,” in 21st ACM Symposium on Operating Systems Principles, 2007,
pp. 321–334.

[15] D. Schultz and B. Liskov, “IFDB: Decentralized Information Flow
Control for Databases,” in 8th ACM European Conference on Computer
Systems (Eurosys). ACM, 2013, pp. 43–56.

[16] R. K. Ko, M. Kirchberg, and B. S. Lee, “From System-centric to Data-
centric Logging-accountability, Trust & Security in Cloud Computing,”
in Defense Science Research Conference and Expo (DSR), 2011. IEEE,
2011, pp. 1–4.

[17] K. Hon, C. Millard, C. Reed, J. Singh, I. Walden, and J. Crowcroft,
“Policy, Legal and Regulatory Implications of a Europe-Only Cloud,”
Queen Mary University of London, School of Law, Tech. Rep.,
2014. [Online]. Available: http://papers.ssrn.com/sol3/Delivery.cfm/
SSRN ID2527951 code1577160.pdf

[18] T. Pasquier and J. Powles, “Expressing and Enforcing Location Require-
ments in the Cloud using Information Flow Control,” in International
Workshop on Legal and Technical Issues in Cloud Computing (Claw’15).
IEEE, 2015.

[19] J. Bacon, D. Eyers, T. Pasquier, J. Singh, I. Papagiannis, and P. Pietzuch,
“Information Flow Control for Secure Cloud Computing,” IEEE TNSM
SI Cloud Service Management, vol. 11, no. 1, pp. 76–89, March 2014.

http://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID2527951_code1577160.pdf
http://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID2527951_code1577160.pdf

	Introduction
	IFC Model
	Tags and Labels
	Decentralised Privileges and Security Contexts

	Cloud Provider Enforced IFC
	Kernel Enforced IFC
	User Space Helpers
	A Prototype for PaaS with Decentralised IFC

	Containment compared
	Conclusions & Future Work
	References

