
FlowR: Aspect Oriented Programming
for Information Flow Control in Ruby

Thomas F. J.-M. Pasquier Jean Bacon
University of Cambridge

{thomas.pasquier, jean.bacon}@cl.cam.ac.uk

Brian Shand
Public Health England

brian.shand@phe.gov.uk

Abstract
This paper reports on our experience with providing Information
Flow Control (IFC) as a library. Our aim was to support the use
of an unmodified Platform as a Service (PaaS) cloud infrastructure
by IFC-aware web applications. We discuss how Aspect Oriented
Programming (AOP) overcomes the limitations of RubyTrack, our
first approach. Although use of AOP has been mentioned as a
possibility in past IFC literature we believe this paper to be the
first illustration of how such an implementation can be attempted.

We discuss how we built FlowR (Information Flow Control for
Ruby), a library extending Ruby to provide IFC primitives using
AOP via the Aquarium open source library. Previous attempts at
providing IFC as a language extension required either modification
of an interpreter or significant code rewriting. FlowR provides a
strong separation between functional implementation and security
constraints which supports easier development and maintenance;
we illustrate with practical examples. In addition, we provide new
primitives to describe IFC constraints on objects, classes and meth-
ods that, to our knowledge, are not present in related work and take
full advantage of an object oriented language (OO language).

The experience reported here makes us confident that the tech-
niques we use for Ruby can be applied to provide IFC for any Ob-
ject Oriented Program (OOP) whose implementation language has
an AOP library.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques; D.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords Information Flow Control, Aspect Oriented Program-
ming, Security

1. Introduction
In 2012 we developed a web portal, in collaboration with Public
Health England, to grant access by brain cancer patients to their
records [34]. As well as standard authentication and access control
we used Information Flow Control (IFC) to track the flow of data
end-to-end through the system. For this purpose, we used Ruby-

[Copyright notice will appear here once ’preprint’ option is removed.]

Track, a taint-tracking system for Ruby, developed by the SafeWeb
project [17].

However, we came to realise certain limitations of the mech-
anisms we had deployed. For example, to enforce the required
IFC policy, we manually inserted IFC checks at selected applica-
tion component boundaries. In practice, objects and classes are the
natural representation of application components within an object
oriented language and it seems natural to relate security concerns
with those objects. We should therefore associate the primitives and
mechanisms to enforce IFC with selected objects. Furthermore, we
wish to be able to assign boundary checks on any class or object
without further development overhead. We also wish to be able
to exploit the inheritance property to define rules that apply to
categories of objects (for example defining a boundary check for
all possible children of I/O). We therefore decided to investigate
the use of Aspect Oriented Programming (AOP), and selected the
Aquarium library [53], instead of RubyTrack, to use with our Ruby
implementation to provide IFC-aware web applications.

We believe the techniques we have used to provide IFC mecha-
nisms for Ruby can be extended to any Object Oriented Language
(OO Language) with an AOP library, such as Java [23], C++ [43]
or JavaScript [54]. AOP has advantages over our earlier approach:
IFC label tracking and enforcement can be applied to any object
and/or method invocation; programmers need have minimal con-
cern about the underlying implementation; maintenance overheads
are low, for example, when there are changes in the library code.
These factors contribute to the overall reliability of software devel-
oped using AOP [49].

It has already been pointed out [11] that AOP can be used to im-
plement security functions such as authentication and access con-
trol. Our main objective is to separate IFC concerns from the de-
velopment of the application; we believe that functional issues and
security issues should be kept well separated whenever possible.
The AOP paradigm allows us to separate the core functionality de-
veloped by a programmer from the policy specified by a security
expert [49]. Furthermore, the literature on providing IFC through a
library [29, 31, 55] has already hinted that AOP techniques could
be used to implement IFC.

However, we make some assumptions on the environment and
the problems we are addressing. First, we assume that the developer
is not adversarial; the aim is to protect against inadvertent disclo-
sure of information through bugs within the application. Second,
we focus on the design of web applications using a framework such
as Sinatra or Rails to be, for example, deployed on a PaaS (Platform
as a Service) cloud, using readily available languages/interpreters.
Third, in this context, we assume the application’s host ensures that
no data can be disclosed outside of the application. Finally, we as-
sume that the organisation running the application is willing to ac-
cept a performance overhead in exchange for increased security as-
surance. Other solutions can be envisioned for other circumstances,

paper submitted for Modularity’14 1 2014/1/10

such as using a particular IFC-aware interpreter or running on an
IFC-aware operating system. However, these would require control
over the infrastructure that is not available in a standard hosting
solution or PaaS, this would require the use of self-managed infras-
tructure or the use of IaaS (Infrastructure as a Service).

The Ruby standard implementation provides no real multi-
threading support (more recent versions are starting to address
this). Therefore, Ruby web servers tend to be multi-process rather
than multi-threaded, which allows us to handle IFC rule violation
effectively; we fail completely any process violating an IFC con-
straint. This is preferable to (per thread) exception handling which
may generate implicit information flows [39]; this is discussed fur-
ther in section 2.2.

Section 2 gives background on Aspect Oriented Programming
and Information Flow Control. Section 3 then gives an overview
of our work; we specify the basic principles governing flows and
the primitives we added to the language to manipulate IFC labels.
Section 4 describes our implementation. Section 5 presents a sim-
ple use case to demonstrate the simplicity of the approach then de-
scribes the web portal for brain cancer patients mentioned above.
In section 6 we show that performance is similar to an equivalent
solution and we argue that our approach provides better usability.
Section 7 presents related work and section 8 summarises and con-
cludes.

2. Background
Our paper targets readers interested in both AOP usages and IFC
implementations. Some may not be familiar with both topics so we
give a brief introduction to each, indicating the relevant literature.
The last subsection discusses problems that are not addressed in
this paper and which are generally not addressed by library-level
implementations of IFC. We believe readers should be aware of
these issues and options, and suggest further reading in section 7.2.

2.1 Aspect Oriented Programming and Security
Aspect Oriented Programming was introduced in 1997 by Kiczales
et al. [22]. It is a programming paradigm extending Object Ori-
ented Programming (OOP) by allowing cross-cutting aspects to be
expressed. An aspect is a piece of code named an advice together
with a pointcut determining when it should execute. The pointcut
is used to determine the join-points (object methods) where the ad-
vice code will be executed. Fig. 1 provides an illustration of this
concept. In the original specification an advice could be executed
either before or after the join-point code is executed. The paradigm
was later extended with an around advice [23] which has control
over whether or not the join-point code should be executed.

An advice is composed of a primitive to express when the advice
should be executed (i.e. before, after, around), a pointcut describing
where the advice should be executed and a block of instructions to
specify the behaviour of the advice. This is illustrated in Fig. 2
where we define an advice to be executed around a call to the
method write of instances of File. The example is in Ruby and using
the Aquarium library [53]. The parameters passed to the advice are
the join-point to be executed, the object the method belongs to and
the arguments passed to the method.

A pointcut can be made more expressive by using a regular
expression (some implementations may not provide this, however
this is provided by the library we are using) to define the methods
and classes to which the advice should be applied. We can also
specify a list of methods to be ignored, or implement different
behaviour either after a normal execution or if the method throws
an exception.

Advice

Source Object

Source Object

Target Object
Class A

Target Object
Class B

Method Call

Method Call

join-point

join-point

pointcut

Figure 1. Visual representation of an aspect

2.2 Information Flow Control
It has long been argued that standard security techniques, such
as firewalls and access control mechanisms, are not enough to
prevent information leakage [9]. Indeed, it is beyond the scope
of such mechanisms to determine whether, after the controls they
impose, the information is used correctly. For example it is difficult
to determine if the confidentiality of decrypted data is respected
[39]. We therefore need to protect information flow, that is, how
information is transmitted within and between applications.

In 1975, Denning [8] proposed a model to track and enforce
rules on information flow within a procedural language. In this
model, variables are associated with security classes. The flow of
information from a variable a to a variable b is allowed only if the
security class of b noted b is higher than a. The security class of an
n-function on a classified variable is noted a1⊕...⊕an. This allows
the no-read up, no-write down principle [4] to be implemented to
enforce secrecy. By this means a traditional military classification
(public, secret, top secret) can be implemented. A second security
class can be associated with each variable to track integrity (quality
of data) [6] during reading down and writing up. Using this model
we are able to control and monitor information flow to ensure data
secrecy and integrity.

In 1999 Myers [33] proposed security labels to replace the se-
curity classes of Denning’s model [9]. Clearance levels are consid-
ered too coarse-grained, permitting unnecessary access and were
replaced by the “need-to-know” principle, also known as “Princi-
ple of Least Privilege (PoLP)” [41]. Labels are composed of tags
representing categories of information or the nature of the informa-
tion. The secrecy label is propagated with data between objects and
the integrity label is used to define which data are allowed to flow
into and within an object. Here, integrity relates to the trustworthi-
ness of the source of any data rather than accidental corruption, for
example, by hardware. A central authority is not needed in such a
model since data flow policy is user-specified (discretionary) rather

a round method : : w r i t e , t y p e : F i l e
do | j o i n p o i n t , o b j e c t , ∗ a r g s |

p u t s ‘ h e l l o ’
r e t u r n e d v a l u e = j o i n p o i n t . p r o c e e d
p u t s ‘ goodbye ’
r e t u r n r e t u r n e d v a l u e

end

Figure 2. Example: An advice in Ruby using Aquarium

paper submitted for Modularity’14 2 2014/1/10

y := x mod 2

Figure 3. Explicit information flow

x := x mod 2
y := 0
i f x = 1 t h e n y := 1

Figure 4. Implicit information flow[39]

than centrally mandated. However, system support is needed at run-
time for the continuous monitoring of data flows.

IFC implementations must ensure that labels can be allocated to
principals but not be forged by them; can be allocated to data and
“stick” to them; and that label checking enforces security policy
regarding all aspects of information flow.

Practical IFC systems cannot work with policies that only al-
low data to become more restrictively labelled, for example secret
data passed to a principal with top secret clearance becomes top
secret when incorporated at that level. There are situations where
constraints should be relaxed, for example, to enable the public re-
lease of previously classified data. The privilege to override secrecy
IFC restrictions is known as the declassification privilege. In order
to declassify an information item, the owner or owners must agree
to remove their policy restrictions. This method of declassification
again appears to remove the need for a central authority, as every
owner is responsible for its own policy. But since the processes
running on behalf of a principal oi, or the precise hierarchy of prin-
cipals, is only known at runtime, declassification also requires run-
time support.

In this style of language a variable declaration can be aug-
mented with an annotation to describe the policy associated with
the data item. Examples can be seen in the solutions proposed by
Denning [9] or Myers [33]. It is in these cases the programmers’
responsibility to not only understand the algorithm being imple-
mented but also the desired security policy [57]. But the security
constraints may not all be clear during the functional design phase
and inconsistencies can arise at runtime. It is generally better to
separate security concerns from functional ones, limiting the im-
pact they have on each other in the engineered system. We decided
in this work to explore the use of AOP to enforce IFC constraints
specifically in order to provide this separation.

2.3 Implicit Flow and Covert Channels
In this paper, as in most similar projects on IFC enforced at the
library level, we do not address the problem of covert channels and
implicit flow [2, 10, 15]. Explicit flows from x to y, noted x ⇒ y
are caused by passing data between variables, as illustrated in
Fig. 3, or performing operations or method calls on such variables.

An implicit flow of information arises from the control structure
of the program. Fig, 4 illustrates an implicit flow x⇒ y equivalent
to the explicit flow illustrated in Fig. 3. It is possible to track such
an assignment by introducing a process sensitivity level, as defined
in the US DoD “orange book”1, in which case the assignment of
y can be detected at runtime. We could consider that any variable
modified within the if statement (or any function called from it)
must be assumed to create an information flow. However, in the
case x = 0, no value is assigned to y and therefore no flow is
detected even if it exists.

It is possible to prevent such flows remaining unnoticed by
applying the label from the if to any assignment happening after

1 http://www.dtic.mil/whs/directives/corres/pdf/850001p.pdf

x := x mod 2
z := z mod 2
y := 0
w := 0
i f x = 1 t h e n y := 1
i f z = 1 t h e n y := 1

w:= x mod 2

Figure 5. Example of label creep

the if statement. However, this means that the number of labels
assigned to variables will increase [15], often unnecessarily. This
leads to data with higher sensitivity than intended, known as label
creep [37]. This phenomenon is illustrated in Fig. 5. From the
Denning model, briefly described in section 2.2, we expect that
w = x; that is, x and w are of the same security level. However, if
we enforce process sensitivity levels, we have w = x ⊕ z even if
we know there is no z ⇒ w.

To address the concerns brought by the benevolent developer
assumption, it has been suggested that an implicit flow can be pre-
vented by the preemptive halting of program execution [2, 40].
However, this could prevent legitimate applications from terminat-
ing [2]. Therefore, to deal with potentially malicious code, variable-
level runtime taint tracking can be combined with static analysis
techniques [51].

At present in our project we do not consider implicit flow
nor other covert channels [20] such as timing channels, storage
channels [26, 27] or termination channels [52]. We briefly discuss
in section 7 how some of these problems could be solved in an AOP
context.

3. The FlowR IFC Model
IFC models are used to represent and constrain the flow of informa-
tion within an application. In this paper, we focus on the aspects of
the model relating to a single application rather than a distributed,
multi-application environment.

In the DEFCon project [31], AOP was used with Java to enforce
IFC by inserting IFC policy around selected methods. In FlowR,
we extend those ideas by providing IFC at the level of objects,
classes and methods, and provide basic primitives to enforce IFC.
Our approach is not specific to Ruby but can be used with any
OO Language that supports AOP. Furthermore, our techniques can
work with an arbitrary library, without programmers having to
know about its inner workings, so requiring little effort from them.

We provide tracking and flow control on what we define as basic
variables (strings, integers, floats, etc.) and on arbitrary objects,
classes or methods (as required).

In this section we first define the labels associated with objects.
We then explain how the labels indicate flows that are and are not
allowed and how labels are propagated for allowed flows. Finally,
we outline how declassification is achieved.

3.1 Security labels
In order to monitor Information Flow we use labels. Our label
model is inspired by that proposed by Efstathopoulos et al. [13].

Every tracked object is associated with two labels: a Receive
label and a Send label. The Receive label is used to represent the
type of information that is allowed to flow into an object, while
Send labels are used to represent the nature of the information
and its sensitivity. Send (S) labels are sticky, that is, they will
propagate and taint any object they interact with, which ensures that
no information can flow untracked. Receive (R) labels however do
not propagate and concern only a single object or class.

paper submitted for Modularity’14 3 2014/1/10

A label is composed of a set of tags, each representing an in-
dividual concern about the information, for example, the origin of
the information, its privacy level or its owner. Tags are composed
of two elements: a unique identifier t and a marker + or − repre-
senting the privileges an object has over the information labelled
with this tag. To guarantee that each tag identifier is unique we rep-
resent tags using the Ruby concept of symbol which associates with
a string an integer guaranteed to be unique in the current execution
context. t+ and t− indicate the tag with identifier t and privileges
+ or − respectively.

In a Receive label. An object with a tag t− in its Receive label is
not allowed to receive information labelled with the tag t. An
object with a tag t+ in its Receive label is allowed to receive
such information. Receive labels are not changed by the flow of
information.

In a Send label. An object with a tag t+ in its Send label is allowed
to flow to an appropriately labelled destination object and the
tag will propagate. An object with a tag t− in its Send label is
allowed to flow to an appropriately labelled destination object,
but the tag does not propagate. For details on tag propagation
see sections 3.2 and 3.4.

We need to add an additional constraint, that only one tag can
be associated with some identifier t. This means that in any label
L, either t− or t+ can exist, but not both. In order to simplify the
notation for the rest of the paper, when we write t ∈ L, we mean
(t+ ∨ t−) ∈ L.

We also have a special tag, named default. Strictly speak-
ing, when unlabeled data are manipulated the empty labels are
interpreted as Send label S = {default+} and a Receive label
R = {default+}, that is, such data can be freely transmitted. A
label therefore implicitly has default+ added to its tags, i.e. it is
assumed to contain the default privilege default+. In order to sim-
plify the notation we can omit the default tag in a label. However, it
is also possible to explicitly specify the default label. It is forbidden
to set the tag default− in the Send label but it may be appropri-
ate to set the tag default− in the Receive label, as we see in an
example below.

3.2 Allowed flows and label propagation
We denote the flow of information between two entities A and B
as A → B. We need to define two rules, the first to describe an
allowed flow and the second how tags in labels propagate between
entities. We define h(t, L) as the function returning the privilege
associated with the identifier t in the label L (either R or S). The
flow A → B is allowed to occur if ∀t ∈ SA, h(t, RB) = + holds
true. We define S′A = {t|t ∈ SA ∧ h(t, SA) = +}, as the set
of tags that should propagate. After the flow, SB is modified to
become S′B = SB ∪ S′A.

We define the function ALLOW (A,B) which, given two enti-
ties A and B returns true if the flow is allowed and false otherwise.
We also define the function PROPAGATE(A,B) which prop-
agates the send label from A to B according to the definition we
have just given.

Jajodia et al. [19] specify that information flow occurs only if
an object changes its state, i.e. changes the value of one or more of
its attributes. However, this assumes that methods cannot be altered
at run time [18], which is not the case in Ruby. Therefore we need
to consider more possible flows.

Flow of information occurs on method call. A method call is the
interaction of several entities: the caller C, the callee O, the method
parameters p1, ..., pn and the returned value r. We distinguish two
phases: the calling of the method and the returning phase.

LA = MA = {a−, b+}

MB = {b−}

OO

MC = {c−}

ii

LB = {a−, b−} LC = {a−, b+, c−}

MD = {}

OO

LD = {a−, b−}

Figure 6. Illustration of label inheritance

During the first phase the flow of information is as follows:
C → O, p1 → O, ... pn → O. In the second phase the flows
first O → r and then r → C. It is important to note that at the
end of the second phase we may have Sr 6= SO . This is due to the
fact that class/object attributes may have different labels than the
class/object they belong to and that there may be label operations
within the execution of the method (a method performing an oper-
ation on the returned value of another method call, for example).
Having different attribute labels may be useful when doing event
processing such as in DEFCon [31].

3.3 Methods, instances, class labels
As mentioned earlier, our model has the notion of method label,
object label and class label. Object labels are associated with a
particular instance of a class, while class labels are associated with
all instances of the class or inherited class. Finally, method labels
are associated with a particular method of an object or class.

In OO languages classes inherit from their parents. To maintain
this logic, the labels defined in a parent class are inherited by its
children. Similarly, an object inherits the label of its class and a
method inherits the label of its object or class (in the case that this
is a static method). It is important to note here that we only support
multilevel hierarchical inheritance, but the model could quite easily
be extended to support multiple inheritance if implemented in a
language supporting this feature.

We now define how labels are inherited. We consider the inher-
itance from class A to class B. Note that the process would have to
be repeated as often as necessary and also that the process is sim-
ilar when inheriting from class to object or from class or object to
method. The inheritance process is identical for Send and Receive
labels.

We note LA the apparent label for class A (taking into account
inheritance) and MA the label defined at the level of class A. For a
class B inheriting from A, LB = {t|t ∈ LA ∧ t /∈ MB} ∪MB .
Fig. 6 illustrates this principle. For simplicity in the rest of this
paper, label will always refer to the apparent label of an object,
class or method.

Table 1 illustrates how such a feature can be used to express
security concerns throughout an application (we take well known
Ruby classes as an example). We first declare that we do not want
sensitive information to be written to a file. We also define a tag
named internal to protect data that we do not want to leave our

paper submitted for Modularity’14 4 2014/1/10

class receive send
IO {internal−} {}
File {sensitive−} {}
NurseReport {} {medical+}
Patient {medical+, default−} {}
PublicData {medical−} {}

Table 1. Expressing application level security concerns

application (for example a private key used for encryption). We
therefore forbid such information to go through any I/O.

We define a class NurseReport which inherits from File to al-
low the nurse to perform some operation on the report she writes
about a patient. We want all data associated with NurseReports to
be considered medical. We therefore associate the {medical} tag
with the Send label of NurseReports. An instance of a NurseReport
would have the following labels
R : {sensitive−, internal−}, S : {medical+};
that is, it does not accept sensitive or internal information and con-
tains medical information which it can send to allowed recipients.

We define two other classes inheriting from File that we call
Patient and PublicData. Patient labels are as follows:
R : {medical+, internal−, sensitive−, default−}, S : {}.
As we want our patient well informed, he is only able to read
information issued by medical sources (in our case coming from
a nurse). He cannot read unlabelled data. PublicData labels are as
follows:
R : {medical−, internal−, sensitive−}, S : {}.
This class includes data made public for research. Obviously we
do not want confidential medical data to be available to the general
public so it is not allowed to flow into PublicData.

However, we want to provide the option for patients to release
anonymised data for research purposes. Therefore, we define in the
class Patient a method generate anonymised record and associate
with this method the label R : {}, S : {medical−}. The medical
tag of the data input to the method does not propagate so the data
returned by this method would not include the medical tag in its
label. It could therefore be used with the PublicData class. Algo-
rithm 1 illustrates how such a method would be used. Section 3.4
contains a general discussion of declassification of data.

Algorithm 1 Example of method label usage
p = new Patient
d = new PublicData
d.add(p.generate anonymised record) . succeeds
d.add(p.get record) . fails

In order to express real security concerns, we should define a
label per patient in order to isolate their respective data. We give an
example of this, for records of customers’ orders, in section 4.

3.4 Ensuring secrecy and integrity
Information flow control generally enforces two properties through-
out the execution of a program. In this section we first describe how
we can guarantee the integrity of an entity, then how we can guar-
antee secrecy of information.

3.4.1 Integrity
Guaranteeing integrity of an entity means accepting data only from
trusted sources. The first step to achieve integrity is to set the
Receive label to R = {default−}, that is, no unlabelled data
can be read. So far, with this Receive label, our entity is unable
to receive any information.

Now, we need to set a list of trusted sources. This is done by
associating a tag with identifier source with the trusted information
and setting the Receive label as follows R = {source+, default−}.
Here we state that this entity will only accept information associ-
ated with the tag with identifier source.

Setting R = {source 1+, source 2+, default−} means
that we accept information labelled with one of source 1+ or
source 2+ or both. Here we are effectively building a white list.

We may also want to prevent onward, indirect propagation of
information from a trusted source, i.e. trustworthiness need not be
transitive. To achieve this we set the Send label of the source to
S = {source−}. As defined in section 3.2, the tag source− does
not propagate to the Send label of the receiver of the information.
So an entity that built a white list including the tag source+ would
be able to read information directly from the source entity, but
would not be able to read it through an intermediate entity. This
is important in order to avoid privilege creep.

3.4.2 Secrecy
Secrecy means preventing secret data from being transmitted to an
untrustworthy entity. In our context this would generally mean leav-
ing an application or well-known channel. For example, medical
data should only be stored in an appropriate database and never be
logged or transmitted to a third party server through the network.

In this context the first thing to do is to associate the secret data
or the source of the secret data (such as a database) with a tag that
will propagate through all the application. That is, we set its Send
label to S = {secret+}. At this point our IFC library will track
the data through our application.

The final step to ensure secrecy is to set the receive label of any
entity representing a connection outside our application to refuse
information with a tag containing this label. This is done simply
by setting the entity’s Receive label to R = {secret−}. Here we
are effectively building a black list of information which cannot be
transmitted to this entity.

3.4.3 Declassification
We have defined how to ensure the secrecy and integrity of infor-
mation through the manipulation of its associated labels and tags.
As mentioned in section 2.2 it is also necessary to be able to de-
classify information. Declassifying is equivalent to removing a tag
from the information in order to allow it to flow to an entity where
this would otherwise not be allowed.

Suppose the classified information is stored in data with asso-
ciated label S : {secret+}, R : {}. To declassify the informa-
tion we pass the data through a method with the following label
S : {secret−}, R : {}. This would mean that the returned value
would not carry the secret+ tag and could be used freely. An ex-
ample of declassification was given above in section 3.3, where a
method was defined to input a medical record and output a corre-
sponding declassified, anonymised medical record. Another exam-
ple is given in section 4.

4. FlowR implementation
We saw in section 3.2, that flows are enforced in two phases: on
method call and on method return. This corresponds exactly to the
AOP standard around advice [23] (discussed in section 2.1). We
describe the process in algorithm 2. O is the callee, C is the caller,
M the method called, As is the set of attributes and join point is
the join point to be executed. We now describe the step described in
algorithm 2; 1) we verify that information is allowed to flow from
the caller to the method and we also verify that the information
contained in the parameters is allowed to flow in the method; 2)
we propagate the labels from the caller and the parameters to the

paper submitted for Modularity’14 5 2014/1/10

password
R:

S: Credential+

IO
R: Credential-

S:

Digest::Class.digest
R:

S: Credential-

puts password

Fail

digest = Digest::MD5.digest password
puts digest

Success

Figure 8. Example 1: Protecting passwords

callee; 3) we execute the join point; 4) we propagate the method
label to the returned value; 5) we verify that the information
contained in the returned value is allowed to flow to the caller; 6)
we propagate the returned value’s labels to the caller. If the flows
are found not to be allowed the program is aborted.

We used the AOP library Aquarium [53] to implement this in
Ruby. We place an advice around any public method of a tracked
object (an object is considered to be tracked when there are tags
associated with this object). Regardless of the actual object imple-
mentation we are therefore able to protect information flow.

Algorithm 2 IFC Around Advice
function AROUND(O, C, As, join point)

if ALLOW (C,M) then . step 1 start
for all A in As do

if ¬ALLOW (A,M) then
FAIL

end if
end for . step 1 end
PROPAGATE(C,O) . step 2 start
for all A in As do

PROPAGATE(A,O)
end for . step 2 end
RV = join point.execute . step 3
PROPAGATE(M,RV) . step 4
if ¬ALLOW (RV,C) then . step 5

Fail
end if
PROPAGATE(RV,C) . step 6
return RV

else
FAIL

end if
end function

In order to implement the concepts described in our model (sec-
tion 3) we provided the API described in table 2. We have instruc-
tions to start and stop the tracking of basic variables. Indeed, in
some cases, it may be required to activate tracking only on some
portion of the code. For example, the loading of a large configura-
tion file could be done before the tracking is activated in order to
improve performance. Similarly, execute procedure untracked
allows a single procedure to be executed with tracking deactivated

order1
R:

S: user2+

user1
R: user1+, default-

S:

order2
R:

S: user1+

user1.price = order1.get_price

Fail

user1.price = order2.get_price

Success

Figure 10. Example 2: Isolating a user’s data

(an illustration of why this may be useful can be found in section 6).
Although untracked procedures are executed in Ruby safe mode,
the programmer is relied upon to understand the IFC implication
of executing a portion of code untracked. The manipulation of this
API is illustrated in Fig. 9.

In addition to this API we also support object methods manip-
ulating their labels directly as this may be useful in some circum-
stances. In Fig. 7 we illustrate how such direct manipulation can be
used to prevent information leak on standard output. In this exam-
ple, we declare that credentials are not allowed to be displayed on
the standard output and try to print a password that we previously
associated with the credential tag, which causes the program to fail.

A developer should be able to develop an application without
initially being concerned about IFC, and with the ability to use
a legacy library that was built without IFC in mind. Once the
application is developed, the original developer, or another expert,
can add IFC rules to ensure that the application behaves correctly
with respect to information flow.

In this simple example we consider how to protect the user pass-
word from being disclosed unintentionally within our application
by printing it out “in clear” in the log, displaying it on a page or
saving it “in clear” in a database.

Fig. 9 illustrates a simple way to achieve this without any mod-
ification to the code of the original application. We first add a
method which is executed before the routing of any request re-
ceived from a client. In this method we associate with the parameter
password sent by the client, the send tag credential, thus ensuring
that any data derived from this information will be tracked in our
application.

The second step is to activate tracking for our application which
is done by calling FlowR.start variable tracking. Then we need
to specify that we do not want credential information to leave
our application. This is done simply by invoking the method
FlowR.protect class IO, nil, credential: false. Here, we say that
any information associated with the send tag credential is forbid-
den to flow towards any I/O (files, logs, etc.).

We were able to express policy to protect the user password in
six lines of code, with minimal knowledge of the application imple-
mentation and without modifying the functional implementation. In
addition, we also successfully separated security concerns from the
implementation itself.

We have confined our password information to our applica-
tion. However, in order to provide a useful application we should

paper submitted for Modularity’14 6 2014/1/10

FlowR API call Description
start variable tracking start basic variable tracking.
stop variable tracking stop basic variable tracking.
protect class / protect classes protect all public method of a class(es).
protect object / protect objects protect all public method of an instanc(es).
protect methods in class protect a defined set of methods in a class.
protect methods in object protect a defined set of methods in a single instance.
execute procedure untracked allow a procedure to execute without variable tracking for per-

formance reasons detailed in section 6.

Object methods Description
add receive tag / add receive tags add a single or a set of tags to the receive label associated with

an object instance or class depending on the context of the call.
add send tag / add send tags add a single or a set of tags to the send label associated with an

object instance or class depending on the context of the call.
declassify remove specified tag from the send label.
get send label / get receive label get the receive or send label associated with the object/class

Table 2. FlowR API

be able to save the password into the database during the regis-
tration and verify the password is correct during authentication.
The proper thing to do to store a password is to hash it with the
salt. Therefore, we determine that once hashed, the data associ-
ated with the send tag credential loses its secrecy and becomes
safe. We can express this with the following method invocation
FlowR.protect methods in class ([:digest], Digest::Class, creden-
tial: false, nil). This states that the invocation of the method Di-
gest::Class.digest declassifies with respect to the credential tag. We
illustrate these points in Fig. 8.

We now look at another example. In this case a user class is
trying to access an order made on a website and stored in the
database. In addition to the usual information associated with the
order, we maintain in our database the label associated with each
entry. When writing to or reading from the database, we ensure that
the label associated with instances of orders are propagated to the
database by modifying the ActiveRecord::Base implementation.
An idea of how this is implemented is illustrated in Fig. 11. Again,

here we do not need to modify any implementation code, it would
work for any children of ActiveRecord::Base and this can easily be
added after application development.

In the simple example illustrated in Fig. 10, the instances of
the order are associated with a Receive label containing the tag
representing the user to whom the order belongs. Furthermore,
the user1 instance of the user class can only read information
associated with its own tag user1. Therefore, if the user tries to
read information belonging to another user the program will simply
fail. During the development and testing phases this allows the
programmer to detect bugs in the application, and during the release
phase to prevent the user accessing data they do not own.

As attributes are also objects it is also possible to assign labels
to each attribute. This would represent the different security and
confidentiality requirements of the different fields of this structured
document. For example, medical records might be shared between
medical professionals and social services. Some sensitive informa-
tion such as HIV status may be restricted to medical professionals

FlowR . s t a r t v a r i a b l e t r a c k i n g
FlowR . p r o t e c t o b j e c t $ s t d o u t , n i l , { c r e d e n t i a l : f a l s e }
p u t s ’ n o t h i n g happens here ’ # no problem h e r e
s = ’ I can say t h a t ! ’
s . a d d s e n d t a g : l a b e l s
p u t s s # no problem h e r e
password = ’123456789 ’
password . a d d s e n d t a g : c r e d e n t i a l
p u t s password # h e r e t h e program f a i l s

Figure 7. Example: Applying flow constraints on standard output

b e f o r e do
params [: password] . a d d s e n d t a g : c r e d e n t i a l u n l e s s params [: password] . n i l ?
params [: v e r i f y p a s s w o r d] . a d d s e n d t a g : c r e d e n t i a l u n l e s s params [: v e r i f y p a s s w o r d] . n i l ?

end

FlowR . s t a r t v a r i a b l e t r a c k i n g
FlowR . p r o t e c t c l a s s IO , n i l , { c r e d e n t i a l : f a l s e }
FlowR . p r o t e c t m e t h o d s i n c l a s s ([: d i g e s t] , D i g e s t : : C las s , { c r e d e n t i a l : f a l s e } , n i l)

Figure 9. Example: Preventing password leak with FlowR

paper submitted for Modularity’14 7 2014/1/10

module Act ive IFC
d e f b e f o r e s a v e

r e c e i v e l a b e l = s e l f . g e t r e c e i v e l a b e l
s e n d l a b e l = s e l f . g e t s e n d l a b e l
save l a b e l s t o d a t a b a s e

end

d e f a f t e r i n i t i a l i z e
r e a d l a b e l from d a t a b a s e
FlowR . p r o t e c t o b j e c t s e l f , s e n d l a b e l , r e c e i v e l a b e l

end

d e f a f t e r c r e a t e
r e c e i v e l a b e l = s e l f . g e t r e c e i v e l a b e l
s e n d l a b e l = s e l f . g e t s e n d l a b e l
save l a b e l s t o d a t a b a s e

end
end

c l a s s A c t i v e R e c o r d : : Base
i n c l u d e Act ive IFC

end

Figure 11. Example: Integrating IFC in ActiveRecord

only, while more general information may be accessible to social
services, for example to detect signs of child abuse. Another use of
attribute labelling could be to build an event processing system as
described in the DEFcon work [31].

5. Use case: Building a medical web portal
In 2012 we developed a web portal, in collaboration with the
Eastern Cancer Registry and Information Centre (ECRIC) – now
part of Public Health England – to grant access by brain cancer
patients to their records [34]. We used IFC to track the flow of
data end-to-end through the system. For this purpose, we used
RubyTrack, developed by the SafeWeb project [17]. In the work
presented here, we have replaced RubyTrack in the web portal by
FlowR.

All cancer patients within an administrative region have their
data stored in a data centre managed by the cancer registries. Pa-
tients within the Eastern Region who have a brain tumour can opt
to have their data made accessible to them on an external website
managed by the BrainTrust charity.

The data of those patients are encrypted with a unique key per
patient. The keys are stored in a dedicated key server, while the
individual patients’ anonymised medical data, in transit to them,
are stored in a separate server. Any patient-provided data is also
held separately, thus maintaining a clear separation between patient
data associated with the web portal application and the local image
of the data held by the cancer registries. Furthermore, patients are
invited periodically to respond to a quality of life survey, in order
to track the evolution of their condition over time. Those data are
regularly retrieved and added to the Cancer Registry’s database to
improve statistical data about the patient.

We ensure through the use of IFC, that even in the case of unex-
pected program behaviour, the integrity of patient data is assured,
and patients can access only their own data. That is, we ensure iso-
lation of data per purpose and per user. A single request of the data
store can manipulate only data for one patient; moreover, the medi-
cal data is anonymous and the associated personal data is held sep-
arately in isolation.

The requirement for isolating data per patient is an obvious
necessity as we want to ensure that patients can only access or
amend their own data. The separation and isolation of medical and
personal data for a single patient is there to decrease the risk of re-
identification. Indeed, very little information is required to uniquely
identify an individual [5]. Through encrypting data with a unique
key per patient and per usage, and through ensuring isolation of
information per patient and per usage, we can reduce the risk that
an attacker who gains access to our data store is able to gain medical
information on an identified patient.

Fig. 12 illustrates the architecture of our data store. At reception
of data we ensure that the user is authenticated. From this authenti-
cation, we are able to build what we call the user context. We iden-
tify the purpose of the request and associate the appropriate tags
(medical, private, etc.) to the parameters transmitted in the HTTP
request. In addition, our database models and our controllers have
their own set of IFC constraints.

Registry Database

Braintrust Image

Portal
Application

Trusted Code Base

User Context
IFC Isolation

Registry Application

Public Internet

NHS Network

Figure 12. Data store architecture

paper submitted for Modularity’14 8 2014/1/10

RubyTrack FlowR
Label a single label integrity and secrecy
Tag simple string symbol + capability
Enforcement manual by developer at strategic points at public method call on tracked objects
Engineering requires overwriting of classes that need

to be tracked
minimum

Table 3. Feature comparison of FlowR and RubyTrack

We create an isolation bubble by limiting application access
to IO classes according to the user context labels and controller
labels (in a similar fashion as shown in section 4). In order to
propagate labels into and out of the database we store the labels
along with the record, i.e. in a row in the database. (We do not
support an individual label per column (record field), only per
database entry.) We intercept database read and write method calls
using the ActiveRecord library feature and add the necessary IFC
labelling.

Supporting IFC was again done separately from building the
actual application, allowing a clear distinction and separation be-
tween functional and security concerns.

6. Evaluation
Our tests measure the performance of our solution, FlowR, com-
pared with an equivalent solution, that extends native Ruby with
RubyTrack, developed for the SafeWeb project [17]. It is important
to note the feature differences that explain the performance differ-
ence of FlowR when compared with RubyTrack, as illustrated in
table 3.

Our first series of tests concern computing intensive tasks. We
demonstrate that FlowR does not perform significantly worse than
its equivalent using RubyTrack. In addition, no performance opti-
misation has been attempted for FlowR, which is beyond the scope
of this paper.

Our second series of tests is made on a web application, built
to provide patient medical records and similar to the one we built
in a previous project [34]. We demonstrate that the performance
loss compared with native Ruby is of the same order as the earlier
implementation, and acceptable from an end user point of view.

All tests have been performed on an i7 2.2GHz 6GB RAM
Fedora 17 GNU/Linux Machine.

6.1 Compute-intensive tasks
We designed two simple tests. The first consists of counting the
number of words in text stored in a file on disk (“Les Contempla-
tions” by Victor Hugo). The second test consists of calculating the
first n prime numbers. The execution time of the native Ruby code
is our time unit. We compare RubyTrack, FlowR and FlowR using
untracked procedure calls (section 4).

The results, shown in table 4, show the same order of magni-
tude for RubyTrack and FlowR. We did not attempt to optimise
performance, and the Aquarium library is known to suffer from
performance issues [56]. This is because, at present, Aquarium
applies advices at runtime whereas AspectJ and AspectC++ ap-
ply them at compile time. Furthermore, it is commonly accepted
that performing IFC is generally not a good idea while performing

test native RubyTrack FlowR untracked
word count 1 6.3 9.8 7.7
prime 1 27 70 1.8

Table 4. Performance comparison of compute-intensive tasks

computing intensive tasks. Using untracked procedure calls pro-
vides much better performance. This figure includes the switch-
ing of tracking on, off and on again which induces some overhead.
However, this overhead becomes negligible as the execution time
becomes large. Therefore, untracked procedure calls can provide
performance identical to native Ruby in the case of long computing
intensive tasks.

We also measured the execution time for some key primitives
which were: starting tracking 325 ms; stopping tracking 108 ms;
protecting an additional class 180 ms; adding protection to a single
method 5 ms. As mentioned above, adding AOP advices at run-
time, as in Ruby/Aquarium, incurs performance overhead, and care
should be taken in deciding when this is necessary. IFC advices
should be added during initialization as much as possible.

On the other hand, the cost of adding a label to an existing
object is insignificant (it is simply adding an entry to a hash table).
Therefore, adding or removing labels during the lifetime of an
application does not amount to a significant performance loss.

6.2 Brain portal: a web portal application
In order to evaluate our library under realistic conditions we used
the data store described in section 5. In order to evaluate the perfor-
mance of our implementation we queried our data store 1000 times,
asking for 50 different, randomly chosen data items. We compare
the averaged values obtained with native Ruby, RubyTrack and
FlowR, as shown in table 5.

We used the “thin” Ruby web server as it provides quite good
performance. We first display an unlabelled static page to measure
the influence of tracking without flow enforcement. RubyTrack and
FlowR add an overhead of 7% and 12% respectively compared to
native Ruby. The performance penalties for retrieving a medical
record from our database are of the same order (10% and 15%
respectively).

We add the IFC advice at initialization; the web server executes
the initialization script only once. This removes the very significant
overhead generated when creating the advices. Furthermore, as dis-
cussed previously, our tracking algorithm is slightly more compli-
cated than RubyTrack and flows are controlled for every protected
object (including basic variables), while RubyTrack only enforces
flow at strategic points. This explains our performance decrease
compared to RubyTrack.

Obtaining more precise results on exactly where compute-time
was being spent in our library proved to be impractical, or at least
to require too much engineering in the time available. As discussed
above in section 6.1, switching on and off advices takes time, i.e.
activating IFC slows down the library usually used to trace Ruby
application performance. Secondly, activating undiscriminated I/O

test native RubyTrack FlowR
hello world 4.1 ms 4.4 ms (+7%) 4.6 ms(+12%)
medical record 62 ms 68 ms (+10%) 71 ms (+15%)

Table 5. Performance comparison for a web portal

paper submitted for Modularity’14 9 2014/1/10

protection made the required tracing impossible. This is because
the tracer manipulates protected data, which IFC currently prevents
it from obtaining via output from the application. We are already
working on integrating an IFC-aware, message-passing middleware
capable of controlling which connections out of an application are
allowed. This will be used to implement debugging and perfor-
mance monitoring, as well as inter-component communication. At
this stage, we can only observe and measure performance “from the
outside”.

7. Related Work
7.1 Aspect Oriented Programming
Critics of aspect oriented programming [44] argue that AOP re-
duces the understandability of a program. In our case we are quite
confident that expressing constraints in a well-defined and compact
fashion in a single file is a better approach than merging them with
functional code. Indeed, in standard IFC library, one would need to
explore the code in order to understand where IFC constraints are
applied.

Others argue [14, 21, 47] that AOP leads to software that is
harder than usual to evolve. In our opinion and from experience,
the solution we propose is easier to maintain. Indeed, changes to
an underlying library implementation do not affect the policy rules
defined. The only changes that the security expert needs to keep
track of are changes of interface in the case of constraints expressed
on methods.

Ramachandran et al. [36] proposed to implement access control
using AspectJ [23] around object method calls. In their work each
thread is associated with a certain level of clearance, and each
object as well. If the current thread level of clearance matches
the object on which the program is trying to perform a method
call, then the program executes, otherwise it fails. Although our
algorithms bear some similarity, [36] does not address information
flow control. AspectJ has also been used to implement some of the
IFC features of DEFCon [31].

Masuhara et al. [30] discuss the difficulty of implementing
crosscutting security features through AOP based on data origin.
They propose a new point-cut that they named dflow. This point
cut allows some procedures to execute on data which flow from
object a to b. Although we considered implementing the execution
of some programmer-determined procedure on some data with
a specific label when it reached a certain object b (effectively
providing the same end result), we decided that it was going beyond
IFC and therefore beyond the scope of our library.

AOP has been used to implement security features: access con-
trol [36, 46], error detection and handling [28], automatic login
[50], hardening the security of existing libraries [32] or prevent-
ing buffer overflow [42] are some examples where AOP has been
used successfully. AOP proves itself a useful and powerful tool as it
allows the expression of security concerns that should apply to the
whole application while completely decoupling their specification
from the application functionality.

7.2 Information Flow Control
Dynamic Library IFC generally presents poor support for implicit
flow, as discussed in section 2.3. There are obvious exceptions such
as implementation for a purely functional language [38]. In other
types of language, solutions include going through static techniques
[33] or code rewriting to transform implicit flows into explicit ones
[48]. However, AOP techniques present potential alternatives to
address implicit flow. Indeed the new “join-point on loop” proposed
by Harbulot et al. [16] or “join-point on region” by Akai et al. [1]
may be interesting directions to investigate for dynamic implicit
flow tracking. We have not yet addressed implicit flow in our work.

Information Flow Control was first enforced statically [9], then
Myers introduced some dynamic elements [33] to provide more
flexibility at runtime and a decentralised model. More recent work
such as SafeWeb [17] or GIFT [25] provides dynamic taint track-
ing.

We have investigated the provision of IFC at the language level,
with its associated tradeoffs. IFC can be provided at other sys-
tem levels, with different tradeoffs. For example Suh et al. [45]
propose a specific hardware architecture to support information
flow. Asbestos [13] is an operating system design to provide IFC
mechanisms. Finally, there are solutions running on top of a Linux
OS [24] or providing a platform for distributed systems [7, 58].
These different levels of implementation, which we discuss in de-
tail in [3], do not necessarily address the same issues. Indeed, while
OS level implementation of IFC allows better and easier protection
of I/O than the language level, it would require more engineering to
create isolation within the application. IFC concerns could have an
influence on the application architecture that might be considered
too strong.

8. Conclusions and future work
Regardless of the precise implementation properties, we believe
that the primitives we propose here are a natural way to express
flow constraints within an application in an OO Language. We also
believe that the AOP approach discussed in this paper is a good
solution to providing IFC when control over the system running an
application is not available. That is, our IFC runs above unmodified
platforms as well as potentially extending unmodified applications.

We assume a benevolent developer, which is standard for all
library-level IFC implementations; and we do not support implicit
flow tracking, again, the case for most library-level IFC. We will
continue to evaluate the tradeoffs involved in taking the AOP ap-
proach compared with using more disruptive and less maintainable
mechanisms that might provide higher security and performance.
The Brain-Portal implementations using RubyTrack and FlowR
have provided a first case study.

Our current implementation does not support multi-threading
but this is not inherent to our proposed model. Rather, it is con-
strained by the AOP library implementation we used and the gen-
eral poor support of real multithreading in the standard Ruby im-
plementation.

Another issue that may arise when using AOP to enforce IFC is
when several AOP advice are implemented over the same object;
for example enforcing IFC, logging and authentication. In such a
scenario it may be necessary to determine whether composition
issues arise, as discussed in [12, 35].

It is important to note that our library does not require the rewrit-
ing of any code and therefore does not modify program behaviour,
except when IFC constraint violation forces the process to abort.
So when performance is a critical issue, the library can be used
during development, to track unexpected data flows, and ignored
in deployment. Again, a tradeoff is involved between performance
and security.

In this paper we presented an IFC library implementation using
AOP, with primitives to provide IFC concepts, and mechanisms to
enforce IFC. We separated application functionality from security
concerns. Programmers need not be aware of IFC during applica-
tion development, and a security specialist can add IFC as a sep-
arate phase. This is good engineering practice and achieves better
maintainability. However, we described our model informally and
a more formal model would be required before substantial future
work was carried out.

We believe that using AOP to provide IFC has many advantages
which we intend to evaluate further in future work, especially in the
context of cloud deployment.

paper submitted for Modularity’14 10 2014/1/10

Acknowledgments
This work was supported by the UK Engineering and Physical Sci-
ences Research Council under grant EP/K011510, CloudSafetyNet.
We thank Dr Olivier Hermant from MINES ParisTech for his in-
valuable feedback.

References
[1] S. Akai, S. Chiba, and M. Nishizawa. Region pointcut for AspectJ. In

Proceedings, 8th workshop on Aspects, components, and patterns for
infrastructure software, ACP4IS ’09, pages 43–48. ACM, 2009.

[2] T. Austin and C. Flanagan. Efficient purely-dynamic information
flow analysis. In Programming Languages and Analysis for Security
(PLAS), Dublin, Ireland, 2009. ACM.

[3] J. Bacon, D. Eyers, T. F. Pasquier, J. Singh, I. Papagiannis, and
P. Pietzuch. Information Flow Control for secure cloud computing.
submitted to: IEEE Transactions on Network and Service Manage-
ment,Special Issue on Management of Cloud Services, 2014.

[4] D. Bell. The Bell-LaPadula model. Journal of computer security, 4
(2):3, 1996.

[5] K. Benitez and B. Malin. Evaluating re-identification risks with
respect to the HIPAA privacy rule. Journal of the American Medical
Informatics Association, 17(2):169–177, 2010.

[6] K. J. Biba. Integrity considerations for secure computer systems.
Technical report, DTIC Document, 1977.

[7] W. Cheng, D. R. Ports, D. Schultz, V. Popic, A. Blankstein, J. Cowl-
ing, D. Curtis, L. Shrira, and B. Liskov. Abstractions for usable in-
formation flow control in Aeolus. In Proceedings, USENIX Annual
Technical Conference (Usenix ATC ’12), 2012.

[8] D. Denning. Secure Information Flow in Computer Systems, 1975.
Dissertations Publishing 1975.

[9] D. E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, May 1976.

[10] D. E. Denning and P. J. Denning. Certification of programs for secure
information flow. Commun. ACM, 20(7):504–513, July 1977.

[11] B. DeWin, B. DeVanhaute, and B. DeDecker. Security Through
Aspect-Oriented Programming. In Advances in Network and Dis-
tributed Systems Security, volume 78 of IFIP, pages 125–138.
Springer US, 2002.

[12] C. Disenfeld and S. Katz. A closer look at aspect interference and
cooperation. In Proceedings of the 11th annual international con-
ference on Aspect-oriented Software Development, AOSD ’12, pages
107–118, New York, NY, USA, 2012. ACM.

[13] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazières, F. Kaashoek, and R. Morris. Labels and event
processes in the Asbestos operating system. In Proceedings, 20th ACM
Symposium on Operating Systems Principles, SOSP ’05, pages 17–30.
ACM, 2005.

[14] E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza,
A. Garcia, S. Soares, F. Ferrari, S. Khan, F. Filho, and F. Dantas.
Evolving software product lines with Aspects. In Software Engineer-
ing, 2008. ICSE ’08. ACM/IEEE 30th International Conference on,
pages 261–270, 2008.

[15] M. Gyung, S. McCamant, P. Poosankam, and D. Song. DTA++:
Dynamic Taint Analysis with Targeted Control-Flow Propagation. In
Network and Distributed System Security Symposium (NDSS), San
Diego, CA, 2011. Internet Society.

[16] B. Harbulot and J. R. Gurd. A join point for loops in AspectJ. In Pro-
ceedings, 5th international conference on Aspect-oriented software
development, AOSD ’06, pages 63–74. ACM, 2006.

[17] P. Hosek, M. Migliavacca, I. Papagiannis, D. Eyers, D. Evans,
B. Shand, J. Bacon, and P. Pietzuch. SafeWeb: A middleware for se-
curing Ruby-based web applications. In Middleware, pages 491–512,
2011.

[18] S. Jajodia and B. Kogan. Integrating an object-oriented data model
with multilevel security. In Proceedings, IEEE Symposium on Security
and Privacy, pages 76–85, 1990.

[19] S. Jajodia, B. Kogan, and R. Sandhu. A multilevel-secure object-
oriented data model. Abrams et al.[AJP95], 1995.

[20] V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and
termination-sensitive secure information flow: exploring a new
aproach. In Symposium on Security and Privacy, Berkeley, CA, 2011.
IEEE.

[21] C. Kastner, S. Apel, and D. Batory. A case study implementing
features using AspectJ. In Software Product Line Conference, 2007.
SPLC 2007. 11th International, pages 223–232, 2007.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-Oriented Programming. Springer,
1997.

[23] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of AspectJ. In J. L. Knudsen, editor, ECOOP
2001 Object-Oriented Programming, volume 2072 of Lecture Notes
in Computer Science, pages 327–354. Springer, 2001.

[24] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris. Information Flow Control for standard OS abstractions.
SIGOPS Oper. Syst. Rev., 41(6):321–334, Oct 2007.

[25] L. C. Lam and T. cker Chiueh. A general dynamic information flow
tracking framework for security applications. In Computer Security
Applications Conference, 2006. ACSAC ’06. 22nd Annual, pages 463–
472, 2006.

[26] B. W. Lampson. A note on the confinement problem. Commun. ACM,
16(10):613–615, Oct. 1973.

[27] S. B. Lipner. A comment on the confinement problem. SIGOPS Oper.
Syst. Rev., 9(5):192–196, Nov. 1975.

[28] M. Lippert and C. Lopes. A study on exception detection and handling
using Aspect-Oriented Programming. In Software Engineering, 2000.
Proceedings of the 2000 International Conference on, pages 418–427,
2000.

[29] F. Marchand de Kerchove, J. Noyé, and M. Südholt. Aspectizing
javascript security. In Proceedings of the 3rd Workshop on Modularity
in Systems Software, MISS ’13, pages 7–12, New York, NY, USA,
2013. ACM.

[30] H. Masuhara and K. Kawauchi. Dataflow pointcut in Aspect-Oriented
Programming. In Proceedings, First Asian Symposium on Program-
ming Languages and Systems, APLAS, pages 105–121. Springer,
2003.

[31] M. Migliavacca, I. Papagiannis, D. M. Eyers, B. Shand, J. Bacon,
and P. Pietzuch. DEFCon: High-performance event processing with
information security. USENIX Annual Technical Conference, June
2010.

[32] A. Mourad, M.-A. Laverdière, and M. Debbabi. An aspect-oriented
approach for the systematic security hardening of code. Computers &
Security, 27(3):101–114, 2008.

[33] A. C. Myers. JFlow: practical mostly-static information flow control.
In Proceedings, 26th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’99, pages 228–241. ACM,
1999.

[34] T. Pasquier, B. Shand, and J. Bacon. Information Flow Control for a
Medical Web Portal. In e-Society 2013. IADIS, March 2013.

[35] R. Pawlak, L. Duchien, and L. Seinturier. Compar: Ensuring safe
around advice composition. In Formal Methods for Open Object-
Based Distributed Systems, pages 163–178. Springer, 2005.

[36] R. Ramachandran, D. J. Pearce, and I. Welch. AspectJ for multilevel
security. ACP4IS ’06, 20:13–17, March 2006.

[37] D. E. Robling Denning. Cryptography and data security. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1982.

[38] A. Russo, K. Claessen, and J. Hughes. A library for lightweight
information-flow security in Haskell. SIGPLAN Notices, 44(2):13–24,
Sept. 2008.

paper submitted for Modularity’14 11 2014/1/10

[39] A. Sabelfeld and A. Myers. Language-based information-flow secu-
rity. IEEE Journal on Selected Areas in Communications (JSAC), 21
(1):5–19, 2003.

[40] A. Sabelfeld and A. Russo. From dynamic to static and back: Riding
the roller coaster of information-flow control research. In Andrei Er-
shov International Conference on Perspectives of System Informatics,
Akademgorodok, Novosibirsk, Russia, 2009.

[41] J. Saltzer and M. D. Schroeder. The protection of information in
computer systems. Proc. IEEE, 63(9):1278–1308, 1975.

[42] V. Shah and F. Hill. An aspect-oriented security framework. In
DARPA Information Survivability Conference and Exposition, 2003.
Proceedings, volume 2, pages 143–145 vol.2, 2003.

[43] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. AspectC++: an
aspect-oriented extension to the C++ programming language. In
Proceedings, 40th International Conference on Technology of Object-
Oriented Languages and Systems (TOOLS Pacific 2002), volume 10
of CRPIT ’02, pages 53–60. Australian Computer Society, Inc., 2002.

[44] F. Steimann. The paradoxical success of aspect-oriented program-
ming. SIGPLAN Not., 41(10):481–497, Oct. 2006.

[45] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. SIGOPS Oper. Syst.
Rev., 38(5):85–96, Oct. 2004.

[46] R. Toledo and E. Tanter. Secure and modular access control with
Aspects. In Proceedings of the 12th annual international conference
on Aspect-oriented software development, AOSD ’13, pages 157–170,
New York, NY, USA, 2013. ACM.

[47] T. Tourwé, J. Brichau, and K. Gybels. On the existence of the AOSD-
evolution paradox. SPLAT: Software engineering Properties of Lan-
guages for Aspect Technologies, 2003.

[48] N. Vachharajani, M. Bridges, J. Chang, R. Rangan, G. Ottoni,
J. Blome, G. Reis, M. Vachharajani, and D. August. Rifle: An ar-
chitectural framework for user-centric information-flow security. In
Microarchitecture, 2004. MICRO-37 2004. 37th International Sympo-
sium on, pages 243–254, 2004.

[49] J. Viega and J. Vuas. Can Aspect-Oriented Programming lead to more
reliable software? Software, IEEE, 17(6):19–21, 2000.

[50] J. Viega, J. Bloch, and P. Chandra. Applying Aspect-Oriented Pro-
gramming to security. Cutter IT Journal, 14(2):31–39, 2001.

[51] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vi-
gna. Cross site scripting prevention with dynamic data tainting and
static analysis. In Network and Distributed System Security Sympo-
sium (NDSS), San Diego, CA, 2007. Internet Society.

[52] D. Volpano and G. Smith. Eliminating covert flows with minimum
typings. In Computer Security Foundations Workshop, 1997. Proceed-
ings., 10th, pages 156 –168, jun 1997.

[53] D. Wampler. Aquarium: AOP in Ruby. In Proceedings, Aspect
Oriented Software Development (AOSD), volume 4, 2008.

[54] H. Washizaki, A. Kubo, T. Mizumachi, K. Eguchi, Y. Fukazawa,
N. Yoshioka, H. Kanuka, T. Kodaka, N. Sugimoto, Y. Nagai, and
R. Yamamoto. AOJS: An Aspect-Oriented Javascript programming
framework for web development. In Proceedings, 8th workshop on As-
pects, Components, and Patterns for Infrastructure Software, ACP4IS,
pages 31–36. ACM, 2009.

[55] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving
application security with data flow assertions. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles,
SOSP ’09, pages 291–304, New York, NY, USA, 2009. ACM.

[56] A. Zambrano, A. Alvarez, J. Fabry, and S. Gordillo. Aspect Coor-
dination for Web Applications in Java/AspectJ and Ruby/Aquarium.
Proceedings, 28th International Conference of Chilean Computer So-
ciety, Nov. 2009.

[57] S. Zdancewic. Challenges for information-flow security. In Proceed-
ings of the 1st International Workshop on Programming Language In-
terference and Dependence (PLID04), 2004.

[58] N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres. Securing dis-
tributed systems with information flow control. In Networked Systems
Design and Implementation (NSDI), pages 293–308. Usenix, April
2008.

paper submitted for Modularity’14 12 2014/1/10

	Introduction
	Background
	Aspect Oriented Programming and Security
	Information Flow Control
	Implicit Flow and Covert Channels

	The FlowR IFC Model
	Security labels
	Allowed flows and label propagation
	Methods, instances, class labels
	Ensuring secrecy and integrity
	Integrity
	Secrecy
	Declassification

	FlowR implementation
	Use case: Building a medical web portal
	Evaluation
	Compute-intensive tasks
	Brain portal: a web portal application

	Related Work
	Aspect Oriented Programming
	Information Flow Control

	Conclusions and future work

