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General Terms

Many popular relational database management systems (RDBMS) Design, Experimentation, Performance, Reliability

provide features for operating in a distributed environment,
such as remote table queries and updates, and support for
distributed transactions. In practice, however, much appli-
cation software targets a more minimal set of functional-
ity than is offered by the SQL standards. Independently
of the database tier, engineering concepts such as the en-
terprise service bus and service oriented architecture have
led to the development of communication middleware to
support distributed applications. For applications that re-
quire reliable delivery of messages complex event processing,
and integrated archiving of data, impedance mismatches are
likely to emerge between the database system and the com-
munications middleware—for example with respect to data-
types, and event filtering that is based on information in
the database. This paper describes event-based middleware
functionality that is supported directly within the database
system. In contrast to previous approaches (e.g. being able
to name remote tables in SQL statements), the program-
ming of event-based communication operations within the
database is explicit. We present initial performance results
that compare an augmented PostgreSQL database system
to an environment in which a database and an event-based
middleware package are used side-by-side.

Categories and Subject Descriptors

C.2 [Computer Communication Networks|: Distrib-
uted Systems; H.3 [Information Storage and Retrieval]:
Systems and Software
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1. INTRODUCTION

Research into the design and implementation of distrib-
uted relational database systems gained momentum in the
1980s. As in early middleware research, distribution trans-
parency was soon seen to be an unrealistic goal because of
the independent failure modes of components and connec-
tions, fundamental to distributed systems. In many organi-
sations, failures within their distributed systems—e.g. com-
munication link failures—are significant events. Commu-
nication middleware products are designed to handle such
failures.

Above the database layer, the scale of software packages
in many organisations necessitates distributed design and
operation. There are now communication middleware prod-
ucts to coordinate these heterogeneous software packages,
regardless of the extent of their distribution. This middle-
ware can be used to engineer service oriented architectures,
e.g. building an enterprise service bus or other forms of soft-
ware as a service, but these solutions carry overheads.

There is a lot of duplication in the capabilities of the
database software and the communications middleware. Both
must be able to effect reliable, transactional updates, both
need sophisticated data-type, security, audit, serialisation
and storage frameworks, and both must incorporate flexi-
ble application-specific means to fine-tune operation of the
system. Concerns such as archiving and logging data and
changes to data, and ensuring reliable operation, are also
shared.

For some commercial organisations, such as retail out-
lets, while their specific stock and logistical data will change
massively from place to place, the overall data schemas,
and thus software requirements, are constrained to be uni-
form by the need to interoperate. Instead, we have fo-
cused on organisations that operate as a federation of many
partially-autonomous administrative domains: for example



those in healthcare, and other government bodies such as
transport and police services. In these large-scale distrib-
uted applications, both the communications middleware and
the database engines must make decisions based on informa-
tion contained in other software packages. For example, in
healthcare, it is likely that the delivery of messages by com-
munications middleware should be filtered and transformed
on the basis of information contained within other databases
within the healthcare system [19].

We are investigating how best to incorporate ezplicit sup-
port for distributed coordination into database systems. We
distinguish between database systems that facilitate nam-
ing of remote tables (many existing database systems al-
low this), and database systems that allow a programmer to
manage distributed operation, and recovery from failures.

We first discuss how to use active database tables to effect
distributed coordination. Our prior work in this area related
primarily to structured management of triggers. Secondly,
we extend the open source PostgreSQL database system di-
rectly. New database features are added to allow clients to
interact with the database server as if it were communica-
tion middleware, and the SQL syntax is extended to incor-
porate statements that control such middleware. Database
programmers can thus direct the delivery of events within a
distributed system composed of database nodes.

Factoring communication middleware functionality into a
database simplifies software engineering. There is a poten-
tial advantage in terms of performance: there is no need to
serialise communication between the database system and
the communication middleware. We present initial perfor-
mance results that demonstrate these efficiency benefits by
comparing an augmented PostgreSQL system with an envi-
ronment in which a database and an event-based middleware
package are used side-by-side.

This paper is organised as follows. After introducing some
application domains, section [2] provides background in the
type of event-based middleware and database software we
use, and provides an overview of related work. Section [3]
discusses incorporation of communication controls through
the overloading of existing database structures. Section E|
takes the next logical step, and incorporates communication
controls within the database language directly. We present
the design and various implementation details of our aug-
mented version of the PostgreSQL database system in sec-
tion |5} We evaluate the performance of this software in sec-
tion [6} a comparison is made between an approach using a
separate database and communication middleware, with an
approach incorporating both functions in the same database
server. Finally, section [7| provides concluding remarks.

1.1 Multi-domain application scenarios

This section discusses two typical multi-domain applica-
tion scenarios. In the first we consider a large-scale, glob-
ally distributed financial services company: a hypothetical
deployment is illustrated in figure[I} It is commonplace for
regional offices to be largely autonomous, and to focus on
interacting with the markets local to each office. In the sec-
ond, we highlight the different types of domains within a
national healthcare system.

The monitoring of stock prices is often cited as a complex
event-processing application for which publish/subscribe com-
munication is ideal. Stock quotes are a compact, commer-
cially significant event stream: each quote will have at-
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Figure 1: A large-scale financial services firm

tributes including the identifying symbol for that stock, the
price, the volume available at that price, and a time-stamp.

Recently, stream processing systems have become the in-
frastructure of choice for performing analyses of stock quotes,
e.g. for algorithmic trading. Our infrastructure provides full
online transactional processing (OLTP) facilities, however.
Front-line processing of stock streams would not take full
advantage of the transactional capabilities on offer in our
infrastructure, indeed sometimes it is not even necessary to
store the stock price data, and would suffer from processing
overheads caused by these extra capabilities.

A related use case that is appropriate, however, is how
distributed financial organisations coordinate their reaction
to current market data. They will want to store and pro-
cess the way in which the regional offices make decisions,
and use this information to coordinate the control of their
algorithmic trading parameters.

Our infrastructure would facilitate the storage and pro-
cessing of the reactions of the firm to the market, and to syn-
chronise the event streams between different regional offices.
This process will benefit from a database infrastructure that
incorporates communication middleware capabilities. The
specific cross-site links are small in number and are closely
managed, so explicit control over distribution is desirable,
as opposed to transparent distribution. However, the data-
driven interaction offered by publish/subscribe communica-
tion is still required.

1.2 Healthcare

The operation of large-scale healthcare environments de-
pends on the collaboration of many specialised but highly
distinct organisations. On the one hand, information shar-
ing is key to providing good patient care. On the other,
the privacy and security requirements on patient data are
stringent [18].

Recent trends in healthcare are to decentralise operation
as far as possible, e.g. to perform more healthcare in pa-
tients’ homes. This further complicates the multi-domain
operation of such environments, although it is highly ben-
eficial in terms of patients’ recovery. Figure [2] illustrates a
typical multi-domain healthcare environment. The ‘home’
domain on the left is interacting with a ‘hospital’ domain in
the centre. The two other domains are the domain for the
medical ‘auditor’ and the ‘pharmacy’ domain, which needs
less information about patients than the hospital.
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Figure 2: Healthcare environment

‘We use this domain configuration to illustrate the manage-
ment of prescriptions. In hospitals, doctors prescribe medi-
cation as and when it is necessary. Each prescription for a
drug includes the drug identifier and a recommended dosage.
The hospital database maintains further information such as
the symptoms that led the doctor to make the prescription
in the first place. A home-care nurse may record information
relating to the patient’s health that is relevant to a particu-
lar prescription: the hospital doctor should be kept informed
of the relevant information obtained in the patient’s home.

Only limited information needs to flow to the pharmacy
domain. The pharmacy may be required to summarise pre-
scriptions from different hospitals; each prescription record
will include the identity of the prescriber and only the min-
imum necessary personal information on the patient. The
auditor domain must maintain a persistent record of con-
trolled drug prescriptions. The analysis of the auditor fo-
cuses on prescription details, and does not need to involve
the identity of the patient.

Again, this scenario is inherently event-driven, but does
not necessarily suit transparent distribution: the edges in
figure [2| are few in number, and specific in purpose.

The data protection requirements of the healthcare do-
main makes this example particularly relevant to the incor-
poration of communication middleware features directly into
the database engine. Each care provider is legally respon-
sible for protecting data, and controlling the ways in which
that data is released to other parties. Legislation relating to
electronic healthcare records in the UK NHS, for example,
requires that patients must be able to exercise fine-grained
control over the release of their records. An infrastructure
to support particular patient data controls will necessarily
need to involve detailed interaction between the event-based
communication software, the databases containing patient’s
healthcare data, and the infrastructure that stores the pa-
tients’ policy specifications.

2. BACKGROUND

This section gives background on terms and technologies
used. We provide a brief overview of the type of communi-
cation middleware we require and introduce the PostgreSQL
database system used in the performance evaluation in sec-
tion

2.1 Event-based Middleware systems and the
Publish/Subscribe paradigm

We believe that the above applications are well served by

the publish/subscribe communication paradigm [8].

The publish/subscribe paradigm encodes self-contained
representations of happenings of interest in a system into
events that can be delivered from event producers, i.e. pub-
lishers, to event consumers, i.e. subscribers. The publish/
subscribe paradigm effects asynchronous many-to-many com-
munication. The publishers and subscribers are decoupled,
although in some cases it is useful for the event representa-
tion to facilitate point-to-point communication or replies [7].

A client is an entity that is connected to a publish/subs-
cribe system. Clients may be publishers, subscribers, or
both. Publish/subscribe systems are often divided into two
broad types: topic-based and content-based. Topic-based
publish/subscribe systems use particular attributes of events
to determine what content will be delivered from publish-
ers to subscribers. Content-based publish/subscribe systems
make event routing decisions based on data contained in the
event more generally. It is usually the case that content-
based publish/subscribe systems will have more expressive
filtering specifications, and the building of spanning trees
that dictate event-delivery paths may take advantage of sub-
sumption of event filter expressions.

Many publish/subscribe systems require a publisher to ad-
vertise events before they can be published. This allows the
system to allocate the appropriate resources to support sub-
sequent event delivery.

Wide-area, distributed publish/subscribe systems often
deploy an event-broker network. Here, broker nodes act as
intermediaries, routing events between publishers and sub-
scribers. Thus the spanning trees for event delivery act over
edges that are fallible links in the underlying distributed
system.

In multi-domain distributed publish/subscribe systems,
the level of trust between the domains will determine whether
or not it is acceptable to share brokers across the whole
distributed system, or whether gateways are required be-
tween the different administrative domains [15].

In the above we have used the terminology of the aca-
demic middleware community. The event-driven architec-
ture (EDA) work discussed by Luckham [11] and others
embodies the same notions for building a distributed sys-
tem, namely producing, detecting, consuming and reacting
to events, albeit using a slightly different terminology.

2.2 PostgreSQL

PostgreSQL [22] is a free and open-source, object-relational
database system written in C. It is a mature product: start-
ing in 1985, based on Stonebraker’s team’s experience with
the Ingres commercial database system. It has used SQL as
its query language since 1995. Its code-base is still under ac-
tive development, and new features are frequently released.

PostgreSQL has a high degree of compliance with the SQL
standards, and works well in multi-user environments due to
its multi-version concurrency control. It offers features one
would expect in any serious database product: domain, ref-
erential, and transactional integrity, and sophisticated data-
type and index support.

PostgreSQL is a good choice for academic work due to its
high degree of extensibility. The database uses system cat-
alogues to store schema metadata specifying the database
structure. In PostgreSQL, catalogues are implemented as
regular data tables, supporting the convenient addition of
new data types and functions. A variety of procedural lan-



guages are supported for database-server-side programming.
Any installation of the core distribution currently includes
procedural SQL (PgSQL), Tcl, Perl, and Python, however
extensions are available for incorporating Java, PHP, R,
Ruby, Scheme and Unix shell scripts. It is apparently rea-
sonably straightforward to integrate other languages into
PostgreSQL.

These procedural languages can provide the functionality
of active databases through triggers and active rules. Ac-
tive rules in the PostgreSQL system allow procedural code
to make modifications to the syntax tree of a query—their
implementation is discussed by Stonebraker et al. [21].

2.3 Related work in database-messaging

It was observed over ten years ago that queues of events
can be represented using databases |9]. Thus it is unsurpris-
ing that some software vendors have incorporated message
queueing functionality of some form into their database sys-
tems.

For example, the Microsoft SQL Server Service Broker |3]
allows databases to participate in asynchronous dialogue.
In contrast to our work, the communication is not publish/
subscribe.

The Oracle Streams [12| system supports one-to-many
asynchronous replication. The propagation of data is on the
basis of specification using content-based rules. However
the rules are only managed within the scope of directly-
connected systems. The work presented in this paper facili-
tates the unified management of event propagation over an
entire distributed database network.

Distributed stream processing systems [10l [20] have re-
ceived increasing research attention recently, and may emerge
as a new type of large-scale event-based middleware. So far,
however, there has not yet been sufficient consensus as to
their query languages or data models for their use to be-
come widespread. In contrast to stream processing systems,
we focus on environments that require more heavyweight
processing per event notification. As a consequence, we can
use existing database server software and query languages.

We have previously described features of an integrated pu-
blish/subscribe-database infrastructure [23) [24], and some
associated security extensions necessary to support distrib-
uted healthcare |19, [18] 17]. In this paper we fully describe
the motivation for integrating publish/subscribe with rela-
tional databases, in addition to presenting implementation
and performance specifics.

3. DATABASE-TABLE SIDE-EFFECTS

This section shows how to incorporate event-based com-
munication features into a database system while causing a

comparatively small impact on the database software. RDBMSs

have always included mechanisms to manage transactional
changes to sets of rows within tables. Database systems
that have active database features can additionally trigger
actions when changes are made to tables. Active database
systems can be used to build software that reacts to events.
Database engines also provide a type system—a particularly
flexible and expressive one in the case of PostgreSQL. It
may be possible to re-use the serialisation code within the
database to assist with placing a representation of the events
on the wirel[T]

!Note that the PostgreSQL-PS implementation used in this

In the case of communication middleware, each row in a
designated table can be related to an event in transit. A
worker process that effects distributed communication can
perform confirmed or best-effort delivery of data across a
network link, and update the tables appropriately (within
a transaction if appropriate). Likewise, the management of
event routing can be done within database tables. Doing
so has the advantage that modifications to event routing
configuration can be done within transactions. The notion
of using tables as queues of events is employed (behind the
scenes) by the PostgreSQL-PS software discussed in section

The worker processes that effect network communication
of events are likely to be the only aspects that require soft-
ware design outside the database system. Much of the rest
of the interaction within the database of a publish/subscribe
system built this way can use existing active database fea-
tures such as trigger functions.

An example of this type of overloading of database tables
is given in the ‘t5” Active Predicate Store [4]. Certain tables
in the database were used to control database triggers dy-
namically. Whenever a row was added to the ‘t5’ tables, an
instance of a database trigger would be dynamically created.
The fields in the table determined parametrization of each
trigger instance.

When managing communication over network links ex-
plicitly, communication and link failures must be handled.
In the case of a wide-area financial organisation, we suggest
that a small number of redundant links should exist between
the organisation’s sites. If serialising rows from a table over
one link fails, the communication software can be designed
to serialise information over an alternative link. If no al-
ternative links are available, the event should be queued so
that appropriate recovery or compensation actions can be
taken.

Another area in which database tables with overloaded
semantics can potentially be employed is for event routing
within brokers. The database engine allows updates to be
made to the tables containing representations of events—i.e.
performing event deliveries—within transactions. Likewise,
the event delivery transactions can be synchronised with any
changes to the routing data contained within the control
table.

The approach discussed in this section should make it pos-
sible to incorporate messaging facilities into active database
engines that are closed-source, or not sufficiently extensible
to support the addition of explicit communication directives
into the database API. The danger of incorporating commu-
nication facilities at the same level of abstraction as regular
database applications is that the separate software layers
are not made clear—the communication functions are per-
forming a task that should be abstracted and isolated from
normal database operations. Connecting elements of the
database to elements of communication middleware under-
lies the work described in the next section. This involves
a more comprehensive modification of the database infras-
tructure to incorporate communication primitives directly.

paper employs a fairly minimal type-system. This is to ease
the process of maintaining type correspondence between the
Java and SQL parts of the software.



4. THE POSTGRESQL-PS DATABASE AND
MIDDLEWARE SYSTEM

This section describes the PostgreSQL-PS database sys-
tem. This is a variant of the PostgreSQL database system,
introduced above, that incorporates distributed, content-
based publish/subscribe functionality. PostgreSQL-PS ex-
tends PostgreSQL by providing the database system with
event-broker functionality. This means that each database
instance (node) also fulfills the role of an event broker in a
distributed publish/subscribe system. We now describe the
key aspects of its design, and then discuss its implementa-
tion.

4.1 Event Types

The publish/subscribe event types in the PostgreSQL-PS
system all have a system-wide unique name and a schema
that define them. This builds on our work [14] on managing
a wide-area, multi-domain publish/subscribe infrastructure.

The schema for each event type is a set of pairs of attribute
name and data type. The data types in our PostgreSQL-PS
implementation are from the SQL92 specification [1]. A ded-
icated table in the system catalogue maintains event type
schemata. The schema of an event type is used to check
that received events are well-formed. Also, subscription fil-
ters can be checked for validity against the event type’s at-
tributes. Finally, if the filter contains any functions or op-
erators, these can be verified against what is valid for the
attribute type stored in the event type schema.

4.2 Events

Each instance of an event in PostgreSQL-PS is represented
as a database tuple structure. Each tuple consists of at-
tribute name and value pairs, corresponding to the event
type schema. The database has options that alter the vis-
ibility and reliability level for each event. In terms of vis-
ibility, an event can be set to be immediate in which case
it is emitted as soon as possible, without respecting trans-
actional properties (see §5.2). The alternative is deferred
events, which are not emitted until the transaction in which
they are published has committed. In terms of reliability
levels, event delivery can either use a guaranteed or a non-
guaranteed approach. In the latter, events are delivered zero
or one time. In the former, events are delivered exactly once
to each subscriber, and the delivery order matches the pub-
lication order for each event producer (see section .

4.3 Subscriptions

All subscriptions in the PostgreSQL-PS system are given
a unique identifier. Each subscription indicates the event-
type, and may optionally specify a filter expression. Filter
expressions are SQL predicates that are evaluated by the
database system’s query engine in the context of an event
instance. Thus filter predicates, in addition to event content,
may also access locally stored data and functions through
standard SQL operators.

Each subscription also indicates whether it comes from
an internal or an external source. The former are used by
that particular database engine to process events, operating
like an active rule. The latter may be received from client
software, or from other database-brokers in the distributed
system. Subscriptions also indicate their scope: either local
or global. Subscriptions that use local scope will only receive
events that are known to that particular database node. A

global subscription indicates an interest in events that may
be known to other databases in the distributed environment.

In order to survive software and hardware failures and
network link failure, each database-broker persists subscrip-
tions pertaining to its direct connections in its local system
catalogue.

4.4 Queues

For each event type three event queues are maintained.
The in queue accumulates events that are produced locally,
or received from other network locations. The out queue
contains events that have matched against subscriptions.
These events will either be delivered externally, or used in
local processing. If failures occur in the processing of events,
they are placed into the exception queue.

Queues can be either persistent or non-persistent. Persis-
tent queues are stored on disk using the database engine.
They are placed within a special table that does not per-
mit INSERT, UPDATE or DELETE statements. Non-persistent
queries are stored in volatile memory only.

Persistent queues support SELECT statements over the event
type schema of the data in that queue, as well as additional
system information such as the enqueue time. Persistent
queues can either be auditable or non-auditable. An event
in a non-auditable queue is deleted as soon as it is no longer
needed—e.g. it has been successfully (reliably) delivered to
another node. Auditable queues are for keeping long-term
records or for when fine-grained management of the events
in the queue is required.

4.5 Advertisements

The PostgreSQL-PS system stores advertisements in the
system catalogue of the database engine. As discussed in
section 2] advertisements are required before a publisher is
permitted to emit events into the system.

4.6 Links

The connections between databases are stored in the sys-
tem catalogue as links. Each link indicates the necessary
connection and authentication information required to de-
liver events across that link. When a PostgreSQL-PS node
starts up, it will connect to all the links for which it has
definitions saved in its catalogue. Advertisements, (global)
subscriptions and events can be propagated over these links.

The specification of links means that PostgreSQLPS net-
work topology is predefined. Unlike infrastructure aimed at
supporting unconstrained peer-to-peer applications, database
infrastructure is carefully managed by an organisation. Here,
each broker is a database system with specific data-handling
responsibilities. Nodes do not anonymously join the net-
work and participate in routing; instead, connections be-
tween databases are defined for a reason, i.e. to store and
route particular information.

The following sections explores local broker processes and
database-brokers connect to form a distributed event-based
system.

4.7 Subscription/Advertisement Processing

Figure [3] illustrates the interactions between the compo-
nents of a database-broker in processing a subscription. On
receipt of a subscription the event type and subscription fil-
ters (if any) are validated against the type and database
schemata through the query planner. If the subscription is



valid, it is activated by being persisted in the subscription
catalogue. To ensure reliability and atomicity, this process
takes place inside a transaction. After acknowledging the
subscription, it must be forwarded to the directly connected
brokers advertising the subscription’s event type. Such in-
formation is determined by querying the advertisement cat-
alog. A copy of the subscription is added to the out queue,
in a separate transaction, for transmission to each relevant
broker.

' PostgreSQL engine :

: i
] OUT queue :

PostgreSQL-PS broker

1:sub Subscription
________________ — catalogue
! subscriptions
1
1 .

: Advertisement

1 Messaging ) .
! 3:read advertisements catalogue
1 g
! Process matching type
1
1
1
[}

Figure 3: Subscription sequence

The processing of advertisements in similar, except that
advertisements are forwarded to all connected brokers that
have not already received an advertisement for the event

type.

4.8 Event Notification Process

Figure[illustrates the steps a database-broker undertakes
in processing a publication. The first task concerns event
validation. This involves checking that the publication’s
values and types adhere to the event type and database
schemata. The advertisement catalogue is then queried to
ensure that the publisher has previously issued an advertise-
ment for the type. If the event is validated, it is persisted
in the in queue and the publication is acknowledged. This
process occurs in a single transaction.

i 3 persist R S

i évent . PostgreSQL engine . |

1 . 1

( sgpreren .

| 9:deliver . C

4:ACK , reAtote event OUT queue .

i 10:delete oo

1: publjcation d event | Subscription !

__________ _ . catalogue co

1 8: enqueus . o

: matetting y - :

: Messaging event 6:get sutss. Advetrt:sement !

: Process Otype * catalogue D

1 2:check for ' C

: relevant adv ) Query ' !

I 7: evaluate engine Co

| PostgreSQL-PS broker ters - - C
1

Figure 4: Notification sequence

The next stage of processing concerns delivery. In a sep-
arate transaction, an event is taken from the in queue, and
the relevant subscriptions to the event type are determined

from the subscription catalogue. The filters of each sub-
scription are evaluated by the query engine in the context
of the event instance. If the filter matches, a copy of the
event is placed on the out queue for delivery to the partic-
ular subscriber. Once all subscription filters are evaluated,
the event is deleted from the in queue and the transaction
commits.

4.9 PostgreSQL-PS Cooperative Event Distri-
bution

This section explores how the interconnected databases
(brokers) determine how to distribute events cooperatively.
Databases are considered to communicate as peers. When
designing the initial distributed system, it is important to
consider how to minimise the event delivery latency due to
different network environments. It is also desirable to struc-
ture the networked databases so that event-processing local-
ity is preserved where possible.

An event dissemination tree is built by propagating ad-
vertisements and subscriptions in an advertisement-based
forwarding scheme that is similar to the one used in the
Siena publish/subscribe system [5]. This requires each bro-
ker to maintain state regarding its position in the network,
regarding the advertisements and subscriptions of its direct
connections. Considering that a broker is running a com-
plete database system, these storage requirements should be
non-problematic. Reverse path forwarding 6] is employed to
ensure that the dissemination tree is free of cycles. The pro-
cess for building the event dissemination trees is as follows:

1. An advertisement is flooded along each of a database’s
links for each event type. The receiving database ei-
ther stores this advertisement, along with information
about the source, or discards those advertisements that
the receiving database already knows about.

2. Any subscription for an event type propagates along
the reverse path of the advertisements for that event
type. As for advertisements, each database only stores
each particular subscription filter from a given remote
database once.

After the receipt of an event, a database determines the
active, locally-registered subscriptions relevant to the event
type. The filters of each subscription are then evaluated
in the context of the event. If a matching subscription is
an internal database function, the subscribing function is
executed on a copy of the event instance. Otherwise, each
subscriber with a matching subscription is forwarded a copy
of the event instance. The matching and forwarding process
is the same regardless of whether the subscriber is a local
client or another linked database. However, if the recipient
is a database, the same process repeats—allowing wide-area
event distribution.

Figureillustrates the event distribution mechanism. Con-
sider an event type t. There are six connected databases
labelled DBy _¢ and a set of applications labelled Appi_6. As-
sume that App: and DBy produce events of type t, and Apps
and DBg are event consumers. When the databases start,
App: will advertise t via its local database DB;. This is shown
on ﬁgure@ as aj. As described above, a; will be flooded to,
and will be stored by, all of the databases labelled DB2_g.
Next DBy creates an advertisement for t, labelled az. This
advertisement will only be stored by DBs, since the other



Figure 5: Cooperative event distribution

paths already contain the same filter. Consider DBg creat-
ing a global subscription to t, labelled s¢. By reversing the
paths of the two advertisements a; and a2, the subscription
will be stored by DB1_4. If Apps, connected to DB3, then cre-
ates the global subscription to t, ss, it will be stored by DBy
and DB,. This will extend the event dissemination route for
t. When DB; receives an instance of t from App; the event
labelled e, it will be propagated to Apps and DBg.

4.10 PostgreSQL-PS Programming Interface

Two independent programming interfaces are provided to
the PostgreSQL-PS system. The database API is provided
for event-processing within the database server. System ad-
ministration, such as the management of event types, is
performed through this interface. In a similar manner to
triggers, the database API enables the database system to
automatically respond to events as they occur. This allows
applications, or parts thereof, to be written to run within
the database engine itself. This has the advantage of avoid-
ing potential impedance mismatches between the database
and application code—e.g. the database query optimiser can
see the application logic directly.

It is not always desirable for an application to directly im-
plement (some) functionality within the database. As such,
the external client API allows applications to produce and
consume events using only the publish/subscribe function-
ality of PostgreSQL-PS.

4.10.1 Database API

The extension of SQL that supports syntax that is directly
related to publish/subscribe is presented in table It can
be used from the usual PostgreSQL database console (psql),
as well as via language interfaces that support delivery of
query strings, such as Java’s JDBC interface.

Note that our extension of SQL is not a suggestion that
we intend the SQL standards to be extended with commu-
nications facilities. Indeed the syntactical requirements of
publish/subscribe communication can be largely met using
database functions and tables. The extension of the parser
relates to conveniences provided by doing so in the Post-

greSQL environment specifically. For example, tab-completion

operates only on valid communication parts in the command
line interface. Also, syntax-checking only allows communica-
tions operations to occur using appropriate catalog entries.

First, event types are created using the CREATE EVENT
TYPE statement. The necessary queues will be created for
that event type. The auditable behaviour of a queue can be
set with the ALTER QUEUE statement.

Before events of a type can be published or subscribed to,
the ADVERTISE statement must be used. Events can be pub-
lished using the PUBLISH statement, which is parametrised
with the event visibility and reliability, and can be used

within transactions. The publish statement can also be set
as the action of an active rule. When production of events
is automated in this way, transition tables NEW and OLD are
available.

Databases subscribe to an event type using the SUBSCRIBE
statement, which takes the subscription scope as a param-
eter. A WHERE clause on the event type’s attributes can be
used to specify a subscription filter.

Any subscription created within the database will be treated
as internal and must specify a database function to receive
events. As mentioned in section [2| these functions can be
written in any of a number of procedural programming lan-
guages. The different languages are passed events in differ-
ent ways. The C language receives a pointer to an Event
structure. A RECORD variable is provided to PgSQL. Any
subscription may choose to specify a priority—this will de-
termine the order of evaluation within the set of subscrip-
tions for the same event type.

Finally, links between databases are created using the
CREATE LINK statement. The address and port of the remote
database’s publish/subscribe connection must be specified,
and user credentials supplied that are authorised on the re-
mote node.

Because the above statements are incorporated directly
into PostgreSQL, its standard privilege management scheme
applies to users and roles. Privileges are altered using GRANT
and REVOKE statements.

Also, information about publish/subscribe system objects
are available in restricted catalogue views.

4.10.2 External client API

The external client API is shown in table It allows
access from outside the database system to the PostgreSQL-
PS publish/subscribe features. For the prototype discussed
in this paper, a Java implementation of the API was used
that provides a Client class.

Connecting to the database system is done using the Client
object’s connect method. The address and port of the
database publish/subscribe service must be provided, along
with valid authentication details.

The EventType class is used to represent event types. It
provides the type name, and a Map object for attribute name
and type. In this implementation, valid types are String,
Date and all subclasses of the Number class. Corresponding
SQLI2 data types are used.

Events can be instantiated using the Event class. This
class has a Map for attribute name and value. Once an event
is created it can be published using the publish method.
Subscriptions can be registered using the subscribe method.
A string can be provided to the subscribe method that is
interpreted as an SQL filter. Note that a subscriber must
provide a class that implements the Callback interface.

S. IMPLEMENTING POSTGRESQL-PS

The implementation of PostgreSQL-PS discussed here is
an extension to version 8.0.3 of the PostgreSQL [22] code-
base. In this section we describe the process structure em-
ployed, and examine aspects of transactional behaviour, and
guaranteed delivery.

5.1 Process Architecture

The PostgreSQL-PS process architecture is shown in fig-
ure[6] The list on the left-hand-side of this figure indicates



CREATE EVENT TYPE event_type AS (attl datatype, att2 datatype, ..)

ALTER QUEUE queue_name SET [NON-AUDITABLE|AUDITABLE]

ADVERTISE ewvent_type

(attvaluel, attvalue2, .. )

PUBLISH [IMMEDIATE|DEFERRED] [NON-GUARANTEED |GUARANTEED] event_type

CREATE RULE rule_name AS ON {INSERT|UPDATE|DELETE} TO table
[WHERE filter] PUBLISH event_type (attvaluel, attvalue2, .. )

CREATE [LOCAL|GLOBAL] SUBSCRIPTION sub_name ON event_type
[WHERE filter] EXECUTE func_name (args) [WITH priority]

CREATE LINK link_name TO address port USING user password

GRANT [PUBLISH|SUBSCRIBE] ON EVENT TYPE event_type TO {user|role}

Table 1: Database Programming Interface

Client.connect(address, port, user, password)

Client.advertise(EventType)

Client.publish(reliability, Event)

Client.subscribe(sub_name, EventType, scope, filter, Callback)

Table 2: External client API
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Figure 6: PostgreSQL-PS process architecture

components reused from the PostgreSQL code-base.

The core database daemon remains unchanged: a post-
master process listens on a well-known port. Each database
client, connecting via TCP, will cause the spawning of a
database-serving process. These clients are served using
synchronous request-reply. Extensions to the PostgreSQL
parser allow these clients to take advantage of the publish/
subscribe features.

To handle non-database clients, a separate and additional
publish/subscribe process was introduced. In PostgreSQL-
PS, the postmaster process forks the publish/subscribe pro-
cess at start-up. In contrast to the way in which PostgreSQL
interacts with database-clients, interaction with the publish/
subscribe process is message-oriented and asynchronous, us-
ing non-blocking sockets. Messages are serialised in XML,
to maximise the potential ease of interaction with different
client language environments.

The publish/subscribe process also needs to know about
publish/subscribe operations issued by the database-serving
processes. A shared memory segment is used to coordinate
this interaction. Notifications are internally enqueued by
the database-serving processes.

In a distributed infrastructure, each broker node will be
running both the postmaster process, and the publish/subs-
cribe process. However, the overhead in terms of communi-
cations latency introduced by this pub/sub process is min-
imised through the use of non-blocking sockets, and shared

memory interactions between the two server processes.

5.2 Transactional Event Management

Transactions are local to a particular broker, to ensure
reliable and atomic performance of messaging operations.
Providing the choice of immediate or deferred and guar-
anteed event delivery is expected to cover most applica-
tion requirements. Note that immediate delivery still uses
queues to organise event distribution. As mentioned previ-
ously, the queues for immediate event delivery do not en-
force any dependencies or transactional effects—events are
rapidly copied to the appropriate, non-persistent out queues.

For events with guaranteed delivery, the node’s local run-
ning transaction includes the enqueueing of a published event.
This ensures atomicity of the publication alongside other op-
erations in the transaction. Failure to deliver an event causes
the whole transaction to roll-back. For audit purposes, per-
sistent event queues also record the ID of the publication’s
transaction.

A control queue is maintained that retains the transaction
IDs that have successfully committed. This is achieved by
incorporating on-commit hooks, in the manner of Paton et
al. [13]. For each such transaction ID, the dedicated pu-
blish/subscribe process starts a transaction in which the ID
is dequeued, copies are created of the committed event for
every matching subscriber in the appropriate out queues,
and then the event is removed from the persistent in queue.

When multiple functions are provided as callbacks for de-
livery of a matching event, each is run in its own transaction.
The different functions are executed in order, determined by
the subscription’s priority. If processing of an event in one
call-back fails, e.g. because of a violated database constraint,
the other event processing callback functions will be isolated
from this failure. The failed event processing step will be
enqueued in the appropriate exception-queue along with a
description of the error. Designers of the distributed system
will need to consider the effect of the separate transactions
used in event delivery: it is not the case that the trans-
actions indicate that delivery of the event throughout the
whole distributed system is atomic. Instead, each separate
subscription has atomic delivery. In order to avoid consis-



tency problems, application designers will need to keep this
in mind when determining how to recover from the failure
of individual subscribers’ systems.

Here we have described transactions as local, with respect
to protecting the processing of a particular node. For in-
formation concerning distributed transactions, see |25] and
[16).

5.3 Guaranteed Event Delivery

Guaranteed event delivery concerns the transmission of
events. To ensure exactly-once, ordered delivery, the de-
livery process employs an acknowledgement-based protocol
with unbounded sequence numbers, similar to that described
in [6]. External producers include a sequence number with
their publications, which the (connected) broker returns in
an acknowledgement.

Brokers maintain a (persisted) sequence number relevant
to their connection for each subscriber/link. These sequence
numbers are transmitted as metadata with an event. The
recipient acknowledges the sequence number of each event
as they are received.

Brokers maintain timeouts for the events they transmit.
These were initially set at four seconds. Exponential back-
off is employed until a 64 second timeout is reached. Pro-
ducers can retransmit should their publications remain un-
acknowledged, in a manner as appropriate to the particular
application. Administrators will need to tune the timeout
parameters to suit any particular network environment and
event workload.

5.4 Scalability considerations

Each database broker maintains state to manage publish/
subscribe routing specifics. In order to increase the scala-
bility of PostgreSQL-PS, a broker caches a number of key
structures in main memory, rather than relying on its per-
sistent storage engine.

In particular, the publish/subscribe process maintains a
hash index of all event types by name. This index stores
the event type schemas, the identifiers of its queues, and the
subscriptions that are relevant to that time. Note that the
PostgreSQL-PS system can reuse the existing indexing fea-
tures of the underlying database over the persistent storage.

The database will form a query execution plan to compute
the result of each subscription’s filter expression (if present).
In the PostgreSQL-PS system, each broker caches the query
plans related to its local subscriptions. This provides a sig-
nificant performance gain in the cases where data from local
tables is incorporated into the decision-making function.

Given that brokers are databases, storage is less of a con-
cern than in implementations where brokers solely route
data. For speed, the PostgreSQL database engine does not

reclaim space from deletions immediately—records are marked

as deleted, and periodic “vacuum” operations can reclaim the
space if necessary. Since the event queues reuse the database
storage engine, deletion of events from event queues will also
maintain this high-speed but space-inefficient mode of oper-
ation. Database administrators will need to tune their local
systems to perform vacuuming appropriate to the event de-
livery load.

6. PERFORMANCE RESULTS

In this section we provide some performance results from
our PostgreSQL-PS implementation. We compare the per-
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Figure 7: Test environment

formance of an environment that uses a distributed, pu-
blish/subscribe middleware, where each node communicates
with a local database instance for its storage needs, with a
distributed system built from PostgreSQL-PS nodes. Events
in many enterprise scenarios require not only transmission,
but often storage and reactive processing. The motivation
for these experiments is to quantify the performance advan-
tages of a coupled publish/subscribe-storage infrastructure.

ActiveMQ 5.0 |2] is the publish/subscribe messaging mid-
dleware that we have used. It is a popular, open-source
software package that implements the Java Message Service
(JMS) standard. To facilitate reliable delivery of events, an
JDBC connection to a database is used to store events and
event delivery information.

The test environment consisted of one server node and six
client nodes, all of which are interconnected by Fast Ether-
net (100Mbit/s). Each node has an Intel Core Duo 3.2GHz
CPU and 2GiB of RAM. All were running Fedora Core 6
(kernel version 2.6.22). The environment is illustrated in
figure [7

Five of the client nodes host twenty event subscribers each,
and one of the client nodes hosts twenty event publishers.
All of the event clients, and the ActiveMQ server, run on
version 1.6.0 of the Java runtime environment.

6.1 Experimental design

In this paper we are interested to assess the overall mes-
sage throughput statistics. That is, the total number of
events per second that are successfully received by all of
the event subscribers. Although PostgreSQL-PS explicitly
facilitates the construction of distributed, event-based mid-
dleware, the performance evaluation here focuses on the be-
haviour of a single node. Our goal is to demonstrate that
the performance of PostgreSQL-PS is comparable to that
of dedicated event-based middleware systems—particularly
when events are being written to persistent storage.

It was determined through experimentation that a load of
20 publishers kept the server in all experiments at close to
100% CPU load. The tools ntop and top were used to verify
that the network and the memory on the system were not
bottlenecks in any of the computers used in the experiments.

The event publishers in these experiments publish events
as quickly as they can for a period of five minutes. The num-
ber of messages that the subscribers receive are counted,
although the first ten seconds of each experiment are dis-
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Figure 8: Filters on stored data

carded as “warm up” time. All experimental measurements
are averaged over ten executions.

We use a workload along the lines of the financial services
application discussed in section The workload consists
of subscribers receiving StockQuote events from a random
portfolio of stocks. Each subscriber specification is of the
form—

StockQuote.symbol IN
( SELECT symbol FROM Portfolios
WHERE portfolioIld = [value] )

—where value is selected randomly from one hundred port-
folios.

Because each portfolio contains all of the stock symbols,
all of the StockQuote events are dispatched to all subscribers.

Figure |8 shows the impact of evaluating complex filters
on stored data. In the ActiveM(Q + PostgreSQL case, de-
termining whether a symbol in a StockQuote is of interest
requires ActiveM@Q to query the PostgreSQL database. In
our experiments, the ActiveMQ software maintained a per-
sistent connection to its database, and the execution plan
of the database queries was prepared and cached in ad-
vance. Nonetheless, it is clear that the PostgreSQL-PS soft-
ware provides a significantly higher throughput—by a fac-
tor of two in the most general case. Unsurprisingly, the
PostgreSQL-PS system benefits from being able to prepare
execution plans that incorporate both the publish/subscribe
communication aspects, and the querying of persistent data
from the database.

In situations where some of the subscribers are interested
in exactly the same portfolio, the PostgreSQL-PS system
can take advantage of these subscription covering relation-
ships in a way that the separate ActiveMQ system cannot.
The other PostgreSQL-PS series in figure [8] indicate that in
situations where subscriptions have a common intersection,
the throughput of the PostgreSQL-PS system is even higher
than in the general case. The tests in this figure set set 10%,
20%, and 30% of the subscribers to be interested in the same
portfolio in turn.

In figure [J] we explore the throughput when events must
be delivered reliably. Predictably, there is a significant drop
in performance, given that a persistent storage system now
needs to be synchronised for a large number of INSERT and
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Figure 10: Throughput for transactional event con-
sumption

DELETE statements. In the test shown in figure [J] there are
no filter expressions, and thus every event is delivered to all
of the subscribers.

The ActiveMQ system provides for reliable delivery of
events by storing event-subscriber matched pairs in a Post-
greSQL database, deleting the records when delivery is com-
pleted. A persistent JDBC connection is maintained to
the database, but the ActiveMQ system has to send sep-
arate INSERT requests for each subscriber that is matched
with an event. In contrast with the ActiveMQ system, the
PostgreSQL-PS system can store all matched pairs at the
same time, within the same transaction. It is for this rea-
son that we see a more rapid increase in throughput as the
number of subscribers rises to twenty.

Finally, figure [I0] shows the throughput of both message
delivery approaches when distributed transactions are re-
quired for event consumption.

The experiment involves a simple PostgreSQL stored pro-
cedure that inserts an event into a table (that belongs to a
hypothetical application). Each subscriber uses this func-
tion as the callback when they receive events. The number
of events stored per second in the hypothetical application’s
table is measured.



A significant drop in throughput is seen for both envi-
ronments. In the case of PostgreSQL-PS, there are now
a significantly larger number of table operations involved.
As expected, for a small number of subscribers, there is a
smaller difference in performance between figures [I0] and [
than for large numbers of subscribers: for small numbers of
subscribers there are not yet very many application tables
to be maintained.

In the case of ActiveMQ), extra infrastructure is required
to coordinate a distributed (XA) transaction across the two
pieces of software. JBoss 5.0 is a popular, open-source, J2EE
application server. It is used here to perform the distrib-
uted transaction. However now no less than five disk syn-
chronisations are required per event (two for ActiveMQ and
PostgreSQL respectively, and one of JBoss) in order to en-
sure that the system can recover from failure. In contrast,
PostgreSQL-PS can use local transactions (one disk synchro-
nisation) to ensure that the function execution and the re-
moval of an event from the queue is performed atomically.
This leads to a order of magnitude difference in throughput
in cases that have ten to twenty subscribers.

7. CONCLUSION

In many application domains, data requires both storage
and persistence. Relational databases are often an integral
component of enterprise infrastructure, recording the state
of various processes. Events impact on this state. By build-
ing messaging capabilities into relational databases, events
can directly effect the appropriate state changes, by updat-
ing relevant tables, in addition to being persisted in a form
that eases subsequent query and analysis. Such a coupling
simplifies administration, through a common interface and
type system, enables reliable data processing and delivery
and removes the overheads of maintaining separate messag-
ing and storage substrates.

By describing cases of wide-area distributed systems com-
prising multiple administrative domains, we motivate our
case for this integration of function. There will be mu-
tual dependence between the communications middleware
(e.g. filters on event delivery), and the data that is stored in
distributed applications’ databases.

We discuss the way in which certain types of event-based
middleware can be built into any relational database sys-
tem by overloading the functions of tables. The potential
risk of conflicts between the communication functions and
applications using the database means that, in general, this
approach will only suit specialised applications. Instead,
we integrate certain middleware features directly into the
database engine.

For simple communication tasks, the overhead of using a
database engine as communication middleware may be un-
acceptable. However, for the complex distributed applica-
tions discussed in this paper, an approach that augments
the database with middleware functionality can actually in-
crease the efficiency of the system. This is because more
complex event processing decisions are based on data from
both the middleware and the database; the interaction of
separate middleware and database software can quickly be-
come a performance bottleneck. Merging the runtime sys-
tem of the communication middleware with a database en-
gine may seem to be integrating heterogeneous concerns, e.g.
with respect to modularity in terms of software engineering.
In fact many of the internal functions of communications

middleware systems and database engines overlap. Further,
only one type system is required, and through shared mem-
ory expensive serialisation can be avoided.

We present some performance results that compare our
augmented version of the PostgreSQL database system with
an environment that uses separate database and event-based
middleware software components. The results presented
provide promising indicators that decreasing software com-
plexity can provide significant increases in performance.
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