
Swift: A Register-based JIT
Compiler for Embedded JVMs

Yuan Zhang, Min Yang, Bo Zhou, Zhemin Yang,

Weihua Zhang, Binyu Zang

Fudan University

Eighth Conference on Virtual Execution Environment (VEE 2012)

DEX: a new Java bytecode format

Android platform
Built in Java language

Using Java to develop applications

Dalvik Virtual Machine, support Android applications

DEX: bytecode format in Android
Register-based bytecode format

Not compatible with traditional stack-based bytecode

dx: a tool to transform traditional bytecode to DEX

2

DX: translation tool

Android platform
Built in Java language

Using Java to develop Java applications

DEX: bytecode format in Android
Register-based bytecode format

Not compatible with traditional stack-based bytecode

dx: a tool to transform traditional bytecode to DEX

3

Traditional Bytecode versus DEX

Traditional bytecode
Stack-based bytecode, widely supported

All operations are aided by a virtual stack

E.g. iadd instruction for integer addition

DEX: Android bytecode
Register-based, becoming popular with Android

Each method has unlimited virtual registers

Each instruction can directly reference any register

4

Why register-based bytecode format?

First proposed by Davis et al. [IVME’03]
reduce instruction count by 34.9%

increase bytecode size by 44.9%

5

First proposed by Davis et al. [IVME’03]
reduce instruction count by 34.9%

increase bytecode size by 44.9%

Impact on VM Interpreter
Virtual machine showdown: stack vs register [VEE’05]

reduce execution time by 26.5% on a C interpreter

6

Why register-based bytecode format?

First proposed by Davis et al. [IVME’03]
reduce instruction count by 34.9%

increase bytecode size by 44.9%

Impact on VM Interpreter
Virtual machine showdown: stack vs register [VEE’05]

reduce execution time by 26.5% on a C interpreter

Impact on JIT Compilers
Unknown yet, this paper’s topic

7

Why register-based bytecode format?

JIT-Droid, Google’s JIT Compiler

CFG
Construction

Register-based bytecode

Register-based binary

8

Register
Allocation

Low-IR
Generation

Code
Generation

SSA
Conversion

JIT-Droid, Google’s JIT Compiler

CFG
Construction

Register-based bytecode

Register-based binary

9

Register
Allocation

Low-IR
Generation

Code
Generation

SSA
Conversion

Long
Pipeline!!

JIT-Droid, Google’s JIT Compiler

CFG
Construction

Register-based bytecode

Register-based binary

10

Register
Allocation

Low-IR
Generation

Code
Generation

SSA
Conversion

Question: How to exploit the homogeneity between

register-based bytecode and register-based machine code?

Long
Pipeline!!

CFG
Construction

Register
Allocation

Low-IR
Generation

Code
Generation

SSA
Conversion

JIT-Droid, Google’s JIT Compiler

Register-based bytecode

Register-based binary

11

Strategy: Why not straightforward translation?

Straightforward
translation

CFG
Construction

Register
Allocation

Low-IR
Generation

Code
Generation

SSA
Conversion

JIT-Droid, Google’s JIT Compiler

Register-based bytecode

Register-based binary

12

Strategy: Why not straightforward translation?

Straightforward
translation

Challenge: How to guarantee code quality with fast compilation

speed?

Outline

Java Method Characteristics

Register-based JIT

Our Prototype

Evaluation Results

Conclusion

13

Java Method Characteristics

How many registers are enough for most

methods?
Most Java methods are small

Each method handle one specific logic

Experiment
Record all the methods executed and their count

Benchmarks: SPECjvm98 & real Android App.

14

Java Method Characteristics-JVM98

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P
e

rc
e

n
t

o
f

M
e

th
o

d
s
 C

a
ll

e
d

Number of Virtual Registers Used

compress

jess

raytrace

db

javac

mtrt

jack

15

Java Method Characteristics-App.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P
e

rc
e

n
t

o
f

M
e

th
o

d
s
 C

a
ll

e
d

Number of Virtual Registers Used

system_server

app_process

input_method

calendar

setting

email

16

Java Method Characteristics-App.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P
e

rc
e

n
t

o
f

M
e

th
o

d
s
 C

a
ll

e
d

Number of Virtual Registers Used

system_server

app_process

input_method

calendar

setting

email

Observation

1. More than 90% Java methods use less than 11 virtual registers

2. Almost all embedded processors feature more than 11 registers

17

Outline

Java Method Characteristics

Register-based JIT

Our Prototype

Evaluation Results

Conclusion

18

Swift Perform near-optimal
register-allocation, and
heavy optimizations

19

Swift Perform near-optimal
register-allocation, and
heavy optimizations

Class
Loader

Compile
Stub

Recompile
Stub

Code
Unload

Register
Mapping

Code
Selector

Thread-local
Code Cache

Dynamic Translator

Global Shared Code Cache

Thread
Manager

Exception
Handling

Garbage
Collection

20

Register-Mapping Table

Regular Method
Def: all virtual regs. can be mapped to physical regs.

1-1 mapped between virtual regs. and physical regs.

Irregular Method
Def: more virtual regs. than available physical regs.

Some virtual regs are mapped to spill area in stack

1-1 mapped between virtual regs. and physical regs.

or spill area location

21

Template-based Code Selector

Generate code by traverse DEX Instruction
Computation Instruction

189/232, such as addition, division, subtraction, etc

Easy to find corresponding machine instruction

VM-Related Instruction

43/232, such as object lock operation, object creation

Generate call to VM function

Handle Spill Area

Generate load instr. Before read

Generate store instr. After write

22

Outline

Java Method Characteristics

Register-based JIT

Our Prototype

Evaluation Results

Conclusion

23

Swift on ARM

Instruction Set
ARM, 32 bits, support by all variants

Thumb, 16 bits, support by armv6

Thumb2, 16-32 bits mixed, support by armv7 or higher

Physical Registers
16 general purpose registers

r13-stack register, r14-link register, r15-program counter

remain 13 free registers, {r0-r12}

24

Translation Example

Regular Method

Irregular Method

000 : const/4 v0, #0

001 : move v1, v3

002 : if-ge v1, v4, 008

004 : add-int/2addr v0, v1

005 : add-int/lit8 v1, v1, #1

007 : goto 002

0000: mov r3, #0

0004: mov r4, r1

0008: cmp r4, r2

000b: bge 001b

0010: add r3, r3, r4

0014: add r4, r4, #1

0018: b 0008

000 : add-int/lit8 v15, v15, #1

0000: ldr r10, [sp, #12]

0004: add r10, r10, #1

0008: str r10, [sp, #12]
25

Code Unloader

Unloading Strategies(Zhang et al. LCTES’04, PPPJ’04)
Good Strategy: precisely select unload candidate

Drawback: complex the design, adds runtime

overhead

Unload Strategy in Swift
A simple but maybe imprecise strategy

Mark all methods on the stack at GC time

Unload those methods unmarked twice

26

Lightweight Optimizations

Optimization for Irregular Method
Bad Scenario: frequently referenced variable is

mapped to stack area

Solution: detect all the loops and map virtual

registers in the loop to physical registers first

Optimization for interface-call
interface-call is heavy

Solution: use a class-test to exploit the object type

locality at the call-site

27

Outline

Java Method Characteristics

Register-based JIT

Our Prototype

Evaluation Results

Conclusion

28

Experimental Environment

Hardware Platform

Benchmarks
SPECjvm98, JemBench2, EmbeddedCaffeineMark3

Software Platform
Swift, Android 2.1

Fast Interpreter, Android 2.3.4

JIT-Droid, Android 2.3.4

ARM Chip CPU Feature Other

S3C6410 Armv6, 800MHz 16KB I-Cache, D-Cache

OMAP3530 Armv7, 600MHz 16KB I-Cache, D-Cache; 256KB L2 Cache

29

Performance-with Fast Interpreter

30

4.734
4.474

1.613 1.755

4.180

3.716

3.13

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
e

r
fo

r
m

a
n

c
e

 R
a

t
io

Compared with Fast Interpreter

Performance-with JIT-Droid

31

1.746

1.385 1.423

1.266

1.545

1.214

1.42

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
e

r
fo

r
m

a
n

c
e

 R
a

t
io

Compared with JIT-Droid

Performance-with Swift/no-opt

32

1.019

1.011

1.034

1.013

1.071

1.046

1.03

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

P
e

r
fo

r
m

a
n

c
e

 R
a

ti
o

Compared with Swift/no-opt

Translation Time

Benchmark Trans. Time(s) Exec. Time(s) Percent
S
P
E
C
jv
m
9
8

compress 0.117 1.613 0.128%

jess 0.185 77.924 0.237%

db 0.124 64.753 0.191%

javac 0.274 113.124 0.243%

mtrt 0.178 66.280 0.268%

jack 0.175 87.321 0.201%

ECM3 0.098 23.930 0.409%

JemBench2 0.092 27.400 0.334%

Table 1: Translation Time of Swift on OMAP3530

Swift costs no more than 0.3s to translate all the
methods in each case, occupying less than 0.5% of
total execution time.

33

Translation Time Comparison

Benchmark Swift(s) JIT-Droid(s) Percent
S
P
E
C
jv
m
9
8

compress 0.117 0.257 45.5%

jess 0.185 0.850 21.8%

db 0.124 0.270 45.9%

javac 0.274 2.638 10.4%

mtrt 0.178 0.948 18.8%

jack 0.175 1.154 15.2%

ECM3 0.098 0.433 22.6%

JemBench2 0.092 2.184 4.2%

Table 2: Translation Time of Swift and JIT-Droid

34

Code Size

Benchmark Unload On(KB) Unload Off(KB) Save Percent

S
P
E
C
jv
m
9
8

compress 122.442 313.229 60.9%

jess 154.969 549.314 71.8%

db 104.468 336.174 68.9%

javac 484.338 875.173 44.7%

mtrt 142.130 443.936 68.0%

jack 212.583 577.368 63.2%

ECM3 150.483 251.656 40.2%

JemBench2 193.340 233.205 17.1%

Table 3: Translated Code Size of Swift on OMAP3530

The code unloader saves 50.1% code space in average,
and it has only 3.9% performance degradation(see our
paper).

35

Outline

Java Method Characteristics

Register-based JIT

Our Prototype

Evaluation Results

Conclusion

36

Contribution

A study on Java method characteristics
More than 90% methods use less than 11 registers

Propose an efficient & effective JIT compiler

for register-based bytecode
Register mapping & straightforward translation

Evaluate proposed JIT in Android system
OMAP3530, S3C6410

SPECjvm98, JemBench2, EmbeddedCaffeineMark3

42% faster than default Android JIT compiler
37

Discussion

Register-based versus stack-based
Complement of previous research [IVME’03, VEE’05]

Register-based JIT Compiler
Embedded JIT, non-optimizing compiler

Register-based bytecode
Responsibility division between offline static compiler

and online dynamic compiler

Balance between AOT Compiler and JIT Compiler

38

Q & A

Parallel Processing Institute

http://ppi.fudan.edu.cn

39

