Swift: A Register-based JIT
Compiler for Embedded JVMs

Yuan Zhang, Min Yang, Bo Zhou, Zhemin Yang,
Weihua Zhang, Binyu Zang

Fudan University

Eighth Conference on Virtual Execution Environment (VEE 2012)

DEX: a new Java bytecode format

Android platform
> Built in Java language
» Using Java to develop applications
» Dalvik Virtual Machine, support Android applications

DEX: bytecode format in Android

» Register-based bytecode format
> Not compatible with traditional stack-based bytecode
> dx: a tool to transform traditional bytecode to DEX

DX: translation tool

class) loader

alvik Virtual
(D hiac;nmc)
DEX: bytecode format in Android

» Register-based bytecode format

» Not compatible with traditional stack-based bytecode
» dx: a tool to transform traditional bytecode to DEX

Traditional Bytecode versus DEX

Traditional bytecode
» Stack-based bytecode, widely supported

» All operations are aided by a virtual stack

> E.g. jadd instruction for integer addition

DEX: Android bytecode

» Register-based, becoming popular with Android
» Each method has unlimited virtual registers
» Each instruction can directly reference any register

Why register-based bytecode format?

First proposed by Davis et al. [IVME 03]
» reduce instruction count by 34.9%

> increase bytecode size by 44.9%

Why register-based bytecode format?

First proposed by Davis et al. [IVME 03]
» reduce instruction count by 34.9%

> increase bytecode size by 44.9%

Impact on VM Interpreter
> Virtual machine showdown: stack vs register [VEE'035]

> reduce execution time by 26.5% on a C interpreter

Why register-based bytecode format?

First proposed by Davis et al. [IVME 03]
» reduce instruction count by 34.9%

> increase bytecode size by 44.9%

Impact on VM Interpreter
> Virtual machine showdown: stack vs register [VEE'035]

> reduce execution time by 26.5% on a C interpreter

Impact on JIT Compilers
» Unknown yet, this paper’s topic

JIT-Droid, Google's JIT Compiler

Register-based bytecode

SSA
Conversion

Register

Allocation
Register-based binary

Code Low-IR

Generation Generation

JIT-Droid, Google's JIT Compiler

Register-based bytecode

CFG SSA
ffons’rLuf *ion Conversion

I,‘+2r‘
. Ycation

Register-based binary

Code Low-IR
Generation Generation

JIT-Droid, Google's JIT Compiler

Register-based bytecode

CFG SSA
ffons‘rLuf *ion Conversion

I,‘+2r‘
. Ycation

Register-based binary
Code Low-IR
Generation Generation

Question: How to exploit the homogeneity between

register-based bytecode and register-based machine code?

10

JIT-Droid, Google's JIT Compiler

Register-based bytecod

Straightforward
translation

Register-based binary

Strategy: Why not straightforward translation?

11

JIT-Droid, Google's JIT Compiler

Register-based bytecode

hfr'war'd

Strategy: Why not straightforward translation?

Challenge: How to guarantee code quality with fast compilation

speed?
12

Outline

Java Method Characteristics
Register-based JIT

Our Prototype

Evaluation Results

Conclusion

13

Java Method Characteristics

How many registers are enough for most

methods?
» Most Java methods are small

» Each method handle one specific logic

Experiment
» Record all the methods executed and their count

» Benchmarks: SPECjvm98 & real Android App.

14

Java Method Characteristics-JVM98

1

(L if

-
v

n
| | | u | | | |

|
1 2 3 45 6 7 8 91011121314151617 1819

[
Number af Virtual Registers Used
[

——compress
-#-jess
—+-raytrace
=<db
—¥=javac
-o-mtrt

——jack

15

Java Method Characteristics-App.

——system_server

-m-app_process

-+input_method

—<calendar
—#=setting
-o-email
0.1 -
I
0

n
I I I I I I i I I I I I I I 1

1 2 3 456 7 8 91011121314151617 1819
Number of Virtual Registers Used

I 16

Java Method Characteristics-App.

Observation

1. More than 90% Java methods use less than 11 virtual registers

2. Almost all embedded processors feature more than 11 registers

0.1 -
{ |
O [I I I I I I .I I I I I I I I |

1 2 3 456 7 89 10]!11213141516171819
Number of Virtual Registers Used

17

Outline

Java Method Characteristics
Register-based JIT

Our Prototype

Evaluation Results

Conclusion

18

Swift

Java

javac

Perform near-optimal
register-allocation, and
heavy optimizations

Dalvik Virtual
Machine

19

Swift

Perform near-optimal
register-allocation, and
heavy optimizations

Class
Loader

Compile
Stub

Recompile
Stub

Dynamic Translator

Register
Mapping

Code
Selector

Thread-local
Code Cache

Code
Unload

Global Shared Code Cache

Thread Exception Garbage
Manager Handling Collection

Dalvik Virtual
Machine

20

Register-Mapping Table

Regular Method

> Def: all virtual regs. can be mapped to physical regs.
> 1-1 mapped between virtual regs. and physical regs.

Irregular Method

> Def: more virtual regs. than available physical regs.

» Some virtual regs are mapped to spill area in stack

> 1-1 mapped between virtual regs. and physical regs.
or spill area location

21

Template-based Code Selector

Generate code by traverse DEX Instruction
Computation Instruction

» 189/232, such as addition, division, subtraction, etc
» Easy to find corresponding machine instruction
VM-Related Instruction
» 43/232, such as object lock operation, object creation
> Generate call to VM function
Handle Spill Area
» Generate load instr. Before read

» (Generate store instr. After write

22

Outline

Java Method Characteristics
Register-based JIT

Our Prototype

Evaluation Results

Conclusion

23

Swift on ARM

Instruction Set
> ARM, 32 bits, support by all variants

» Thumb, 16 bits, support by armv6
> Thumb2, 16-32 bits mixed, support by armv7 or higher

Physical Registers

> 16 general purpose registers
» r13-stack register, r14-link register, r15-program counter
»remain 13 free registers, {r0-r12}

24

Translation Example

Regular Method
000 : const/4 vO, #0 0000: mov r3, #0
001 : move v1,v3 0004: mov r4, r1
002 :if-ge v1, v4, 008 0008: cmp r4, r2
000b: bge 001b
004 : add-int/2addr vO, v1 0010:add r3,r3, r4
005 : add-int/Iit8 v1, v1, #1 0014: add r4, r4, #1
007 : goto 002 0018: b 0008
Irregular Method
0000: Idr r10, [sp, #12]

000

. add-int/lit8

v15, v15, #1

0004:
0008:

add r10, r10, #1
strrl0, [sp, #12]

25

Code Unloader

Unloading Strategies(zhang et al. LCTES 04, PPPJ04)
» Good Strateqgy: precisely select unload candidate

> Drawback: complex the design, adds runtime
overhead

Unload Strategy in Swift

> A simple but maybe imprecise strategy
» Mark all methods on the stack at GC time
» Unload those methods unmarked twice

Lightweight Optimizations

Optimization for Irreqular Method
» Bad Scenario: frequently referenced variable is

mapped to stack area
» Solution: detect all the loops and map virtual

registers in the loop to physical registers first

Optimization for interface-call
> interface-call is heavy

» Solution: use a class-test to exploit the object type

locality at the call-site

27

Outline

Java Method Characteristics
Register-based JIT

Our Prototype

Evaluation Results

Conclusion

28

Experimental Environment

Hardware Platform

ARM Chip | CPU Feature Other

S3C6410 Armv6, BO0MHz | 16KB I-Cache, D-Cache

OMAP3530 | Armv7, 600MHz | 16KB I-Cache, D-Cache; 256KB L2 Cache

Benchmarks
> SPECjvm98, JemBench2, EmbeddedCaffeineMark3

Software Platform
» Swift, Android 2.1
» Fast Interpreter, Android 2.3.4
» JIT-Droid, Android 2.3.4

Performance-with Fast Interpreter

Compared with Fast Interpreter

a.-7324
"Teld IV

92}

4.474

B
U

w
w n b

N
w

Performance Ratio
=
= U1 N

o
U

o

30

Performance-with JIT-Droid

Compared with JIT-Droid

1.746

S popopp
O L N B O 0N

0.6

Performance Ratio

o
~

o
o

o

31

Performance-with Swift/no-opt

Performance Ratio

1.08
1.07
1.06
1.05
1.04
1.03
1.02
1.01

0.99
0.98

Compared with Swift/no-opt

1.071

32

Translation Time
Table 1: Translation Time of Swift on OMAP3530

Benchmark Trans. Time(s) | Exec. Time(s) | Percent
compress 0.117 1.613 0.128%

> jess 0.185 77.924 0.237%
_g db| 0.124 64.753 | 0.191%
w javac 0.274 113.124 0.243%
2 mtrt 0.178 66.280 0.268%
jack 0.175 87.321 0.201%

ECM3 0.098 23.930 0.409%
JemBench2 0.092 27.400 0.334%

Swift costs no more than 0.3s to translate all the
methods in each case, occupying less than 0.5% of
total execution time.

Translation Time Comparison
Table 2: Translation Time of Swift and JIT-Droid

Benchmark Swift(s) JIT-Droid(s) Percent
compress 0.117 0.257 45.5%

9 jess 0.185 0.850 21.8%
-(% db| 0.124 0.270 45.9%
It javac 0.274 2.638 10.4%
2 mtrt 0.178 0.948 18.8%
jack 0.175 1.154 15.2%

ECM3 0.098 0.433 22.6%
JemBench2 0.092 2.184 4.2%

Code Size

Table 3: Translated Code Size of Swift on OMAP3530

Benchmark Unload On(KB) | Unload Off(KB) | Save Percent
compress | 122,442 313.229 60.9%
> jess| 154.969 949.314 71.8%
-§- db| 104.468 336.174 68.9%
) javac| 484.338 875.173 44.7%
2 mirt| 142.130 443.936 68.0%
Jjack| 212.583 577.368 63.2%
ECM3| 150.483 251.656 40.2%
JemBench2| 193.340 233.205 17.1%

The code unloader saves 50.1% code space in average,
and it has only 3.9% performance degradation(see our

paper).

Outline

Java Method Characteristics
Register-based JIT

Our Prototype

Evaluation Results

Conclusion

36

Contribution

A study on Java method characteristics
» More than 90% methods use less than 11 registers

Propose an efficient & effective JIT compiler

for register-based bytecode
> Register mapping & straightforward translation

Evaluate proposed JIT in Android system
» OMAP3530, S3C6410
» SPECjvm98, JemBench2, EmbeddedCaffeineMark3

» 42% faster than default Android JIT compiler

Discussion

Register-based versus stack-based
» Complement of previous research [IVME’03, VEE’05]

Register-based JIT Compiler

» Embedded JIT, non-optimizing compiler

Register-based bytecode

» Responsibility division between offline static compiler
and online dynamic compiler
» Balance between AOT Compiler and JIT Compiler

Parallel Processing Institute
http://ppi.fudan.edu.cn

39

