

Facilitating Inter-Application Interactions
for OS-level Virtualization

Zhiyong Shan
shanzhiyong@ruc.edu.cn

Xin Wang
xwang@ece.sunysb.edu

Tzi-cker Chiueh
chiueh@cs.sunysb.edu

Xiaofeng Meng
xfmeng@ruc.edu.cn

Key Laboratory of Data Engineering and Knowledge Engineering (Renmin University of China), MOE
Stony Brook University

Industrial Technology Research Institute

Abstract
OS-level virtualization generates a minimal start-up and run-time
overhead on the host OS and thus suits applications that require
both good isolation and high efficiency. However, multiple-
member applications required for forming a system may need to
occasionally communicate across this isolation barrier to
cooperate with each other while they are separated in different
VMs to isolate intrusion or fault. Such application scenarios are
often critical to enterprise-class servers, HPC clusters and
intrusion/fault-tolerant systems, etc. We make the first effort to
support the inter-application interactions in an OS-level
virtualization system without causing a significant compromise on
VM isolation. We identify all interactive operations that impact
inter-application interactions, including inter-process
communications, application invocations, resource name transfers
and application dependencies. We propose Shuttle, a novel
approach for facilitating inter-application interactions within and
across OS-level virtual machines. Our results demonstrate that
Shuttle can correctly address all necessary inter-application
interactions while providing good isolation capability to all sample
applications on different versions of Windows OS.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability; D.4.6 [Operating
Systems]: Security and Protection
General Terms
Reliability, Security

Keywords
OS-Level Virtual Machines, Inter-application Interactions, Cross-
VM Communications, Intrusion/Fault Isolation

1 Introduction
OS-level virtualization partitions the OS name space to form a
number of separated Virtual Machines (VMs), i.e., containers.
VMs on the same OS share a single OS kernel and the host
environment, and each VM only preserves state changes within its
local environment. Programs in a VM run as normal applications
that directly use the host OS' system call interface and do not need
to run on top of an intermediate hypervisor. Accordingly, such
VMs have a minimal startup/shutdown cost, low resource
requirement and high scalability. Thus OS-level virtualization is

applicable for the applications that require both high performance
and good isolation [23][28], including intrusion/fault toleration
[6][28][29], server consolidation [19][27], high performance
system [23][26], distributed hosting organizations like PlanetLab
[5][23], as well as cloud computing in the future [3][23].

These system functions often involve a set of member
applications. To isolate intrusion or fault, the member applications
are distributed into different VMs. On the other hand, the member
applications occasionally require inter-application interactions
which are essential for their execution, thus communications
across VM barriers are inevitable.

The challenge is how to correctly and accurately handle all
necessary inter-application interactions while not significantly
affecting the isolation effectiveness of virtualization. Inter-
application interactions represent the operations between distinct
applications, e.g., register, notify, request, reply, authenticate and
launch. Depending on whether two involved applications are
located in the same VM or the host space, inter-application
interactions can be ascribed into three basic categories: cross-VM,
intra-VM and intra-Host. Intra-Host interactions represent the
original inter-application interactions in the host environment and
thus do not depend on virtualization technology. Cross-VM
interactions need to penetrate the VM boundaries which are
normally forbidden by the virtualization mechanism. Cross-VM
interactions can be further divided into two sub categories, VM-
Host where two involved applications run inside a VM and in the
host environment respectively, and VM-VM where two
applications reside in two different VMs.

The VM-Host interactions apply to all forms of OS-level
virtualization technologies due to their nature. As OS-level VMs
co-located on a host share a single OS kernel and the host
environment, in order to access the essential system services (e.g.,
authentication, application initialization) and resources (e.g.,
Windows registry) in the host environment, an application in a
VM has to interact across the VM boundary with applications in
the host environment. For example, on Linux VServer [13], an
application running in a VM has to authenticate itself to processes
sshd and getty, which are run in the host environment. Likewise,
on FVM [28], an application in a VM needs to authenticate itself
to a host-resident process lsass. Since the authentication operation
violates the isolation principle, the virtualization mechanisms drop
the request, which leads the application in a VM to be suspended.

The VM-VM interactions are needed for cooperating
applications to interact with each other to achieve certain goals.
For example, a high performance computing software may
distribute a group of cooperative programs into different VMs
[9][27] in order to isolate intrusion/fault/performance/function [28]
or concurrently foster multiple instances of the same program in a
single OS. However, the virtualization mechanism will prevent the
required VM-VM conversations from being carried across VM
boundaries. Applications running in separate VMs on a single OS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
VEE'12,�March�3–4,�2012,�London,�England��UK.
Copyright 2012 ACM 978-1-4503-1175-5/12/03…$10.00.

75

might choose to exchange data using network communications to
avoid penetrating through VM boundaries, but this would
dramatically degrade the performance.

The intra-VM interactions are needed when two involved
applications stay in the same VM and thus do not need to penetrate
VM boundaries. However, improper startup sequence of the
involved applications will cause the communications among them
to fail. Accordingly, to prevent these failures, various types of OS-
level virtualization platforms, e.g., Solaris Zones [20], Linux
VServer [23] and FVM [28], invoke many unnecessary daemons
or Windows services when booting and running a VM. This
heavily slows down the booting procedure and increases the
runtime overhead of a VM. As a result, it reduces the scalability of
the OS-level virtualization technology, the main strength against
the hardware-level virtualization [23][28]. Therefore, properly
handling intra-VM interactions is necessary for improving the
scalability of OS-level virtual machines.

In short, cross-VM and intra-VM interactions are often needed
no matter what OS-level virtualization technology is used.
Without a proper treatment, they will affect the running of the
interaction-dependent applications and the scalability of OS-level
VMs.

Moreover, as many interaction-dependent applications are
important, it is necessary to enable their interactions efficiently.
First, some of interaction-dependent applications are fundamental
to the running of numerous other applications, for example,
RPCSS, the RPC binding service; PlugPlay, the plug and play
service; NetDDE, the distributed clipboard service. Second, some
of interaction-dependent applications are critical to business
organizations, such as web servers, database servers, high
performance grid applications, transaction processing applications
and enterprise-class applications. When exploiting the OS-level
virtualization technology to consolidate servers or tolerate
intrusion/fault, these interaction-dependent applications are
deployed inside different VMs and need to communicate with
other applications across the VM boundary or within a VM.

However, accurately identifying all possible inter-application
interactions is not easy, as many applications are complex and
their actual interactions vary across a wide range and are
undocumented. Particularly on a commercial OS, as the OS and
applications are close-sourced and most implementation details are
kept confidential, identifying inter-application interactions poses a
great challenge.

As far as we know, there is no scheme designed to
systematically handle inter-application interactions in the literature.
Existing papers concerning OS-level virtualization mostly focus
on the general architecture of a specific type of OS-level
virtualization [10][20][23][24][28], or exploit OS-level
virtualization to consolidate servers[17][20], isolate intrusions
[28][29] or build high performance systems [23], but never give a
deep insight on the inter-application interactions. A few projects
investigate how to improve cross-VM communications for
hardware-level virtualization [6][9][27][30]. However, the cross-
VM communications between hardware-level VMs only involve
TCP/UDP-based network communications instead of inter-process
communications that often occur across OS-level VMs, e.g.,
named pipe and event.

In this paper, we first investigate the interactive operations that
affect the inter-application interactions using tracing and reverse-
engineering skills. Based on the studies, we ascribe the interactive
operations into four types: inter-process communications,
application invocations, resource name transfers, and application
dependencies. To address these issues, we design Shuttle, a novel
approach that aims to facilitate all categories of inter-application

interactions by intelligently handling four types of interactive
operations while not leading to significant compromise of the
isolation requirement of VMs. To demonstrate its effectiveness,
we implemented Shuttle under the framework of Feather-weight
Virtual Machine (FVM) [28] on different Windows platforms. The
evaluations demonstrate that Shuttle can successfully support all
tested Windows applications that depend on inter-application
interactions with little impact on the VM isolation.

Shuttle is the first approach to handle inter-application
interactions for OS-level virtualization. With this approach
enforced, multiple instances of the RPCSS, Dcomlaunch, SQL
Server and IIS can concurrently run on top of a single Windows
OS, which are believed almost impossible previously [28]. As the
approach depends little on a specific operating system or OS-level
virtualization technology, we believe it can also be generalized
and applicable to different types of OS or OS-level virtualization
technology.

The paper is structured as follows. The next section introduces
the results of our studies on inter-application interactions. The
approaches to handling cross-VM and intra-VM inter-application
interactions are described in Section 3 and 4 respectively. Section
5 presents the implementation of Shuttle on FVM. Section 6
evaluates the prototype with a group of Windows applications on
different versions of Windows OS. Section 7 discusses the
applicability of Shuttle techniques to virtualization on other types
of OS. Section 8 compares this research with other related efforts
in the literature. Section 9 concludes the work.

2 Study on Inter-Application Interactions
As most of the interactive applications are close-sourced, their
internal implementation details, for example, the internal logic,
kernel objects created, registry entries accessed, etc., are rarely
documented and open to the public in the literature. In order to
investigate the exact interactive operations, we have spent several
months to dynamically trace and analyze their behaviors, and
statically reverse-engineer their binaries. Concretely, we take three
investigation methods. First, we trace the kernel-level and
Windows API-level calls that an application invokes at run time in
order to determine the set of resources an application accesses.
Second, we use the tool ProcessExplorer[15] to find out the inter-
application communication objects an application uses to interact
with other applications. Last, we disassemble the application’s
binary code to identify all hard-coded resource names and API
function calls that transfer the hard-coded resource names.

We conclude that there are basically four types of interactive
operations affecting inter-application interactions. Without a proper
treatment of these operations, the interactive applications would fail
or behave abnormally. These operations are as follows:

� Inter-process communications carried between two
applications through IPC (Inter-Process Communication)

Interaction Categories
Cross-VM Interactive Operations

VM-Host VM-VM
Intra-
VM

Intra-
Host

Inter-process communications
Application invocations
Name transfers
Application dependencies

Table 1. Interactive operations affect certain inter-application
interactions. Checks indicate the affected interactions.

76

objects. Such operations include register, authenticate,
request, reply, notify, exchanging data, etc.

� Application invocations where an application in the host
starts other applications in a VM, which include daemons,
Windows services, COM servers, etc.

� Name transfers needed for transferring resource names
among applications running in different VMs. These names
are hard-coded in application binaries and thus may escape
the renaming mechanism of OS-level virtualization.

� Application dependencies when the running of an
application (the dependent application) depends on the
running of another application (the master application) in
the same VM. The master application should run prior to the
dependent application.

Table 1 summarizes our investigation results which associate
the failures of inter-application interactions with the types of
interactive operations. From the table, the former three types of
operations might cause cross-VM interactions to fail while the last
type might cause intra-VM interactions to fail. Further
explanations of these results are presented in Section 3 and 4.

In order to better present the problems and our solutions, we
perform a case study on a classical enterprise application in our
lab using FVM [28]. We deploy two IIS servers and two SQL
Servers in four distinct VMs on a single OS, as shown in Figure 1
(a). The two pairs of IIS and SQL Servers form two websites.
Only with such a deployment, two instances of IIS or SQL Server
can be separated without interfering with each other though they
share a single OS kernel. Moreover, since each application is
contained in a separate VM, the system constructed this way has
the capability of intrusion/fault toleration. Similar deployments
also can be found from Solaris Zones [20], OpenVZ [17] and Fido
on Xen [6]. An alternative deployment scheme might place the
two pairs of IIS and SQL servers into two VMs respectively.
However, this setup not only can not completely avoid carrying
out inter-application interactions cross-VM and intra-VM but also
is not able to provide isolation as good as the former scheme.

Figure 1 (b) illustrates the detailed inter-application
interactions across and within OS-level virtual machines, which
only includes VM 1, VM 2 and the host. RPCSS is a fundamental
Windows service on the Windows platform that provides
RPC/COM/DCOM functions to other Windows services and
applications, and is duplicated in each VM. Windows services are
long-running programs that remain active without interacting with
users, like daemons in a UNIX-style OS. Generally, there are
about 100 services on Windows XP and nearly half of them
depend on RPCSS. An IIS server consists of five Windows

services: W3SVC service for web server, MSFTPSVC service for
FTP server, SMTPSVC service for SMTP server, NNTPSVC
service for network news server, as well as IISADMIN service for
the management of IIS. DCOM1 and DCOM2 are a pair of
DCOM servers started by DcomLaunch, which act as main and
backup DCOM servers respectively. In Figure 1 (b), various
specific inter-application interactions (e.g., register, notify, request,
reply, launch and authenticate) among applications are represented
by lines among them, which include cross-VM, intra-VM and
intra-host interactions. The interactions among the applications are
observed as a result of our efforts in tracing the process and
performing reverse-engineering. However, due to these complex
and hidden inter-application interactions, until now there is no
public record showing a successful approach to making RPCSS or
IIS run inside a VM.

3 Facilitating Cross-VM Interactions

3.1 Inter-Process Communications

According to the isolation principle of virtualization, the cross-
VM inter-process communications should be strictly blocked
although some applications may require interactions between each
other. However, exceptions should be given to some essential
cross-VM inter-process communications as shown in Figure 1 by
solid lines. Hence, a carefully designed mechanism is required to
facilitate these communications. To minimize the affection on VM
isolation, the design should follow a principle: least penetration,
which only allows least essential cross-VM communications.

3.1.1 Analyzing Cross-VM Inter-Process Communications
Corresponding to the Table 1, two categories of necessary cross-
VM inter-process communications should not be blocked. One is
the VM-Host communications between applications in a VM and
the host environment, which possibly affect the VM-Host
interactions. Such communications are often utilized by an
application to get necessary services from core-applications, e.g.,
authentication and registration. The core-applications are the ones
that provide system critical services to other applications, e.g., the
Service Control Manager (SCM) on Windows, “launchd” on Mac
OS and the “klogd”on Linux. They are actually the extensions of
the OS kernel and closely tied with the kernel. They can not be
duplicated in every VM and should stay in the host environment in
order to be available to all VMs. Consequently this type of cross-
VM communication is inevitable whenever an application inside a
VM requests a system critical service.

S C M S A M S S

H o s t E n v i r o n m e n t
C r o s s - V M
i n t e r a c t i o n

I n t r a - V M
i n t e r a c t i o n

R P C S S

R P C S SD c o m L a u n c h

D C O M 1

D C O M 2

I I S A D M I N

W 3 S V C
M S F T PS M T P

N N T P

V M 1 V M 2

S Q L
S e r v e r

R P C S S

D c o m L a u n c h

I n t r a - H o s t
i n t e r a c t i o n

V M 1 V M 2 V M 3 V M 4

I I S I I S S Q L
S e r v e r

S Q L
S e r v e r

H o s t E n v i r o n m e n t

(a) (b)

Figure 1. An illustration of inter-application interactions, running two groups of enterprise applications in different VMs on a single OS.

77

The other is the VM-VM communications between applications
in different VMs, which possibly affect the VM-VM interactions.
In order to provide fault or intrusion isolation for individual
applications, member applications belonging to the same system
need to be placed in separate VMs [6][9][11][27][30]. Thus, the
communications among these applications have to be carried across
VM boundaries as exceptions to the basic isolation principle. For
instance, storage systems (e.g., NetApp and EMC) may have a
group of cooperative programs running in different VMs that need
to communicate with each other. Similarly, a graphics rendering
application in one VM may need to communicate with a display
engine in another VM. Even routine inter-VM communications,
such as file transfers or heartbeat messages may need to be
performed frequently across the VM border.

Some of the VM-VM inter-process communications can be
replaced by network communications, for example, using
TCP/UDP communications to substitute named pipes. However,
this will lead to a significant performance penalty [27] as the
communication data need to go through the whole network stack
twice in the same OS kernel. Therefore, facilitating VM-VM inter-
process communications is indispensable not only for the
successful running but also for better performance of cooperative
programs.

Both categories of cross-VM inter-process communications are
achieved via accessing Inter-Process Communications (IPC)
objects, which have various types in an OS. For example, IPC
objects in Windows include primitive ones (such as mutexes,
events, timers, semaphores, and LPC) and higher-level ones (such
as RPC and DCOM). Moreover, most actual IPCs between
applications are undocumented and dynamic. Hence, it is difficult
to thoroughly discover all the IPCs invoked by a running process,
and decide which IPC should be confined within a VM and which
IPC should not.

For the interaction-dependent applications that have well
documented IPCs, one can manually give exceptions to permit the
cross-VM communications to penetrate the boundaries of VMs.
This is why existing OS-level virtualization technologies can
successfully virtualize some interaction-dependent applications
[23][28]. However, for the ones without documented IPCs, it is
not feasible to manually identify all the cross-VM communications,
especially for an ordinary user.

3.1.2 Handling Cross-VM Inter-Process Communications

In order to find a proper method to automatically handle cross-VM
communications, we performed a study on the cross-VM IPC
objects. The result shows that cross-VM IPC objects (e.g., named
pipe, shared memory, mail slot, mutex, semaphore and socket) act
at the server side of inter-application communications and hence
must keep their names static to help the clients to locate them
despite that the Id numbers of the objects are dynamic. For
example, SQL Server prepares a pipe with static name
“\Device\NamedPipe\sql\query” to wait for the connection request
from local clients. In special situations, the name of an IPC object
may partially change, i.e., with their name strings containing a
number that changes over time. To address this issue, we can use a
wildcard character * to stand for the variable number in the name
string. In addition, a few special types of IPC objects might
change names frequently, e.g., event. We can record the name of
the receiver application rather than the name of the IPC object to
help identify the IPC receiver.

Based on the study results, we devise our first Shuttle
technique to leverage the names of cross-VM IPC objects to
automate cross-VM communications. We employ cross-VM
endpoints to point to the cross-VM IPC objects. A cross-VM

endpoint in a VM is represented as),(ine � , where ne. is the
name of the corresponding cross-VM IPC object and ie. is the Id
of the VM containing the IPC object n . An IPC object is
represented as),(tno � , where no. and to. represent the name and
the type of the IPC object. The object type },{. dsto � , where
s means that the name of the object is static or contains a dynamic
number, and d means that the name of the object is totally
dynamic. An application is represented as)(na � , where na. is the
name of the application. A VM is represented as },,,{ AEOiv � ,
where iv. is the Id, Ov. is the set of local IPC objects for intra-
VM communications, Ev. is the set of endpoints for inter-VM
communications, and Av. is the set of applications of the VM.
Accordingly, the logic to handle cross-VM communications can
be formally described as follows:

);(

);(
)))..,.(.(

))..,.(.((
);(

)))..,.(.(
))..,.(.((

r

rr
rr

r
rr

rr

otionMCommunicaDenyCrossV
else

eonommunicatiDoCrossVMC
nenaEvedto

nenoEvestoifelse
oonommunicatiDoIntraVMC

nanaAvadto
nonoOvostoif

�����
������

�����
������

When an application in a VM v requests to access an IPC
object ro of application ra , we first determine whether the
required communication is intra-VM by checking the local IPC
object list and the application set of the VM. Then, we search for
the IPC object name or the application name in the cross-VM
endpoint list of the VM. If an endpoint is found, we can quickly
locate the corresponding cross-VM IPC object that serves the
communication. We deny all other communication requests
according to the isolation principle of the virtualization
mechanism. The operator � represents that the two involved names
are two instances of the same IPC object. For example, according
to the renaming rule in many OS level virtualization technologies
[20][28], a port named p will be renamed in VM1 as p-VM1 while
in VM2 as p-VM2, thus we say p-VM1 � p-VM2.

3.1.3 Generating Cross-VM Endpoints

The challenge of implementing the technique is how to recognize
all cross-VM IPC objects from thousands of candidate ones in an
OS and form the cross-VM endpoints in a VM. Based on our
studies, the cross-VM IPC objects provided by a type of
application are mostly stable rather than changing over time in
order to wait for connection requests from other applications.
When the cross-VM IPC object name is stable, the corresponding
endpoint uses the name of the IPC object, otherwise uses the name
of the application.

As manually discovering the cross-VM IPC objects is almost
impossible, we develop a tool to complete this task automatically
by monitoring and recording cross-VM IPCs. For every type of
application, we only need to test it once and can use the result in
various application scenarios with different deployments. To
prevent potential security issues (e.g., the occurrence of some
unexpected cross-VM communications), we run the application
only in a secure environment and right after the system and
applications are installed. Moreover, to thoroughly discover all
cross-VM IPC objects of the tested application, we tried various
possible running conditions during the test. When all possible
conditions were tested and there were no new cross-VM IPC
objects appear, we stopped the test for the application.

Given the set of cross-VM IPC objects of different types of
applications, the set of endpoints associated with an application is
the union of the endpoints provided by all master applications that
the application depends on. An application depends on a master

78

application as it has to access a cross-VM IPC object created by
the master application. We say therefore that there is a cross-VM
dependency between the dependent and master applications.

The cross-VM dependencies can be manually configured by
users. The cross-VM dependencies between core-applications in
the host and the applications in VMs are considered as default.
Only the cross-VM dependencies between the cooperative
applications running in different VMs require configuration. For
example, if running a web server and a database server as a pair in
two separate VMs on a single host, the administrator can configure
a cross-VM dependency between the web server and database
server.

However, when an application having a cross-VM IPC object
runs multiple instances in different VMs, multiple instances of the
cross-VM IPC object will confuse the applications which try to
access one of them. Therefore, we introduce VM dependencies to
address this issue. A VM dependency represents the cooperation
between a dependent VM and a master VM. More specifically, an
application running in the dependent VM will initiate a
communication with the application running in the master VM.
VM dependencies are generated by the following two rules:

First, when cooperating applications are deployed into different
VMs, these VMs should have dependencies among them. For
example, in Figure 1, as the IIS web servers and the SQL database
servers are deployed in four VMs separately, the administrator
should configure that VM 1 depends on VM 2 and VM 3 depends
on VM 4 according to the existing cooperations. Second, the
dependencies between the host and any VM are considered as
default since applications in any VM require the services provided
by the core-applications run in the host environment.

Taking into account the VM dependencies, the set of endpoints
of a given application only contains the endpoints of the master
applications running in the master VMs but not the ones running in
other VMs. If a master application runs multiple instances in
different VMs, only the endpoints of the instances in the master
VMs are computed into the endpoint set rather than those from all
VMs. Thus, the set of endpoints of a given VM is the union of the
endpoints of all dependent applications running in the VM.

A question on our cross-VM communications technique is that
the isolation offered by an OS-level VM might be compromised.
There is actually a trade off between isolation and interaction. That
is, virtual machines require isolation while interactive applications
require cooperating with each other across VM boundaries. Hence,
our technology follows the principle: least penetration, by only
permitting the least necessary cross-VM communications. As
presented above, this principle is followed by only allowing the
communications between the applications that have predefined
cross-VM dependencies and at the same time run in the VMs
having predefined VM dependencies. This is in accordance with
the basic principle of security protection: least privilege, which
requires that every program of the system should operate using the
least set of privileges necessary to complete the job [21].

3.2 Application Invocations

As shown in Table 1, cross-VM application invocations may cause
some application failures. More specifically, some applications
need to be cross-VM invocated by core-processes in the host
environment, but the OS-level virtualization mechanism can not
properly handle all of the cross-VM invocations, and thus such
applications fail to be started inside VMs. Cross-VM invocations
are inevitable as the core-applications responsible for launching
such applications can not be virtualized, i.e., be duplicated in each
VM. For example, all Windows services are started by SCM while
SCM has to stay in the host as it is shared by all VMs and tightly

related with the kernel. Linux, FreeBSD and Mac also have core-
applications similar to SCM on Windows, e.g., init, getty and
launchd, which are responsible for launching many daemons.
Having tight relations with the kernel and providing shared
services to many other applications, these core-applications are not
allowed by the kernel to be duplicated in each VM. Hence,
invocating applications cross-VM is also an issue for the OS-level
VMs built on Linux, FreeBSD and Mac, e.g., Jails [10] and Linux
VServer [23].

To handle cross-VM invocations, one can modify the
application configuration database (e.g., Windows registry) or files
to logically add a new instance of the application to be performed
in a VM. Every time the core-application receives a request from a
VM, it will fork a new process in the host, and then move the new
process into the VM. However, as core-applications are not aware
of the OS-level virtualization, it is difficult to decide which VM
the new process should be moved into after the new process is
generated. One can add extra information into the application
configuration database to denote the VM that is requesting the new
process. However, when multiple VMs simultaneously request to
start the same application, we are still unable to correctly
distribute multiple new processes into corresponding VMs.

To address this issue, we devise a novel mechanism that is
illustrated in Figure 2. First, we prepare a distinct binary file for
each application instance which is located in a distinct VM space,
create a configuration entry containing the binary file path for each
instance in the configuration database/file, and record the binary
file path and the VM Id into the mapping table. Second, the core-
application in the host environment starts a new process according
to the corresponding configuration entry after receiving a startup
request from a VM. Third, we intercept a new process and decide
which VM the process should be placed into. The decision is made
by searching the process’ image file path in the mapping table so
as to get the correct VM Id. Finally, we move the process from the
host to the correct VM.

When starting an application from a VM the first time in
response to a user request, Shuttle automatically prepares the
binaries, registry entries and mapping table entry of the application.
Specifically, when a user requests starting an application from a
VM, Shuttle intercepts the request and checks whether the binaries
and entries for the application running in the VM are prepared. If
not, Shuttle prepares them and then forwards the request to the
core application in the host to perform the start operation.

For example, an application CiSvc for indexing files has its
image file at C:\WINNT\system32\cisvc.exe. To achieve cross-
VM startup, we copy the file to the path C:\VMs\VM-
Z\C\WINNT\system32\cisvc.exe that is within the space of VM Z,
insert the path into a registry entry used to store the image path of

Path 1 � VM 1
Path 2 � VM 2
Path 3 � VM 3

……

Instance 1(binary file path 1)

VM 1 VM 2 VM 3

Host Environment

Core-Application

ConfigurationsMapping Table

Instance 1 Instance 2 Instance 3

Binary
file 2

Binary
file 1

Binary
file 3

Instance 2(binary file path 2)
Instance 3(binary file path 3)

Figure 2. The mechanism for invocating applications cross-VM.
It leverages a mapping table to help distribute multiple instances
of the same application into multiple VMs.

79

an application to be cross-VM started, and record the path and VM
Id Z into the mapping table. When starting a process of CiSvc, we
determine the VM that the new process should belong to by
searching the process’ image path in the mapping table and getting
VM Id Z, and then move the process into VM Z.

A special case for cross-VM invocation is that a few
applications are in the form of DLL (Dynamic Link Library). A
DLL-based application runs as a thread inside a host process
instead of an independent process as normal applications do. For
example, the DcomLaunch service is a DLL-based application
running as a thread inside a generic Windows host process called
svchost. However, our mechanism still can handle this special type
of applications. That is, for a DLL-based application, we record
the host process’ image file path in the mapping table to recognize
VM Id rather than the application’s DLL file path, as the thread of
the application and its host process always live together within the
same VM. However, as multiple host processes with the same
image file often foster different DLL-based applications, it is
difficult to differentiate these applications’ VM Ids based only on
the host process’ image file path. We found that, to launch a DLL-
based application, the host process has to use an exclusive
parameter to indicate the running of the application. Accordingly,
we attach the parameter at the end of the host process’ image file
path in the mapping table in order to recognize the application.
Thus, we can determine the VM Id by searching both the new
process’ parameter and image file path in the mapping table, in
order to place the new process into the correct VM.

For example, the DLL-based application DcomLaunch runs
inside a svchost process with a parameter “-k dcomlaunch”. To
achieve cross-VM startup, we record not only the host process’
image file path and VM Id but also the parameter into the mapping
table. When starting a svchost process, we first obtain the Id of the
VM that the new process should belong to by searching the
process’ image path and parameter in the mapping table, and then
move the process into the corresponding VM.

3.3 Resource Name Transfers

When an application in a VM performs a cross-VM
communication, it might need to transfer resource names (e.g., the
application’s name) to the receiver application in another VM or in
the host environment. In some situations, such names are hard-
coded and originated from the application’s binary without being
renamed according to the rules that OS-level virtualizations often
employ [20][28]. When multiple instances of the same application
run in different VMs simultaneously send a hard-coded name to
the same receiver application, unexpected conflicts or errors will
cause the instances to fail.

For example, the RPCSS service on Windows is such an
application with the hard-coded application name (i.e., “RPCSS”).
In its binary, two hard-coded RPCSS service name strings are used
as input arguments by the service management function
OpenServiceW(). When the RPCSS is required to start in VM Z, it
calls OpenServiceW() to send a request to the SCM process
running in the host environment, using the hard-coded RPCSS
name as a parameter. OpenServiceW() in turn communicates
across VM boundaries with the SCM through a named pipe
NtControlPipe. The SCM then checks whether the requested
service name is valid and without conflict. If another instance of
RPCSS is running in the host environment or in another VM, SCM
will refuse the open service request from VM Z since the hard-
coded RPCSS name is already registered in SCM. As a result, the
RPCSS process in the VM Z will fail.

The basic reason is that, the original developers did not
anticipate that a program may be replicated with multiple

application names. They simply hard-coded a fixed application
name in the program codes and used it as an argument in
subsequent calls to Win32 API functions, which send the name
across VM boundary through an IPC channel.

On further investigation, we find hard-coded resource names in
binary files on other OS platforms, e.g., Linux and FreeBSD. As
OS-level virtualization technologies often rely on resource
renaming to separate VM spaces [20][28], this issue is not
exclusive on Windows OS or FVM. However, existing OS-level
virtualization technologies are not aware of this issue, let alone
providing any solution.

A possible solution to this issue is to intercept the related API
functions and change the parameters that are originated from hard-
coded names following the virtualization rules. However, one can
not intercept all the related API functions which use hard-coded
names. If an application in a VM invokes a function that uses a
hard-coded name but is not intercepted, the solution will not be
able to rename the parameters.

A better solution is to intercept only IPC related system calls
that have a limited number in an OS. Once capturing a resource
name in its original form in an inter-process communication,
Shuttle changes it following the renaming rules, e.g., appending a
VM Id to the name. However, filtering the contents of the inter-
process communications to find the names might significantly
slow down the system as the communications are often frequent
and contain a fair amount of content. Fortunately, Shuttle can
differentiate cross-VM from intra-VM inter-process
communications by checking the cross-VM endpoints as presented
in Section 3.1. Thus, we can focus on the cross-VM inter-process
communications. As they represent a very small fraction of the
entire inter-process communications in a system, monitoring
cross-VM inter-process communications only imposes little
overhead on the system. Moreover, transferring hard-coded name
across VM boundaries can be only pursued through IPC objects.
Therefore, the monitoring of IPC in Shuttle is general and can be
extended to apply in other type of OS.

In the previous example, Shuttle monitors the pipe
NtControlPipe and changes the application name string that the
RPCSS writes into the pipe. Then SCM will permit the open
service request with the service name containing the VM Id, as the
changed name will no longer conflict with those used in other
RPCSS instances running in the host environment or other VMs.

4 Facilitating Intra-VM Interactions
Although intra-VM communications between applications are
permitted by OS-level virtualization technology, incorrect startup
sequence of the applications would cause an intra-VM
communication to fail. This is due to the dependencies among
applications in the same VM as shown in the Table 1. In other
words, as some applications (say dependent applications) depend
on the running of other applications (say master applications) in

RPCSSDcomLaunch

IISADMIN

W3SVC MSFTPSMTP NNTP

RPCSSDcomLaunch

SQL Server

(a) In-VM Dependency Graph of VM 1 and 3 (b) In-VM Dependency Graph of VM 2 and 4

Figure 3. The intra-VM dependency graphs resulted from the
enterprise application scenario in Figure 1.

80

the same VM, the master applications should be started prior to the
dependent ones.

This seems to be a standard OS design issue i.e., arranging for
the startup scripts to start applications in the right order to satisfy
their dependencies. However, to achieve VM scalability and thus
increase the number of VMs that can be active concurrently on a
single OS, OS-level virtualization has an extra high requirement
on resolving this issue than that of a standard OS. That is, the
solution of this issue should help to speed up the booting
procedure or reduce system resource occupation of a VM to the
minimum degree.

To avoid a possible application failure resulted from an intra-
VM dependency, existing OS-level virtualization technologies
[20][23][28] start many system applications that often serve as
master applications when booting a VM through manual
configuration, e.g., Linux daemons and Windows services. These
applications then wait for the intra-VM communications initiated
by other applications. This will significantly slow down the
booting procedure of the VM and occupy extra system resources,
e.g., CPU time and memory space. On the other hand, the system
applications not being manually configured to start at the time of
booting VM might later be required by some dependent
applications, which thus causes unexpected failures of the
dependent applications.

To address these issues, we propose a technique that starts
master applications only on demand and stop master applications
upon system idle, so that the master applications no longer slow
down the VM booting procedure and unnecessarily occupy system
resources at run time, as well as cause the failure of the dependent
applications. This will improve the performance and scalability of
OS-level virtualization technology.

As a core part, the technique uses an intra-VM dependency
graph which can be represented as a set of vertices and a set of
directed edges connecting the vertices. A vertex represents an
application. An edge between two vertices represents a
dependency between two applications. Based on the intra-VM
dependency graphs, the start-on-demand and stop-on-idle policies
can be specified as follows:

The start-on-demand policy starts a master application and
increases it’s referred count at the time a corresponding dependent
application starts. The stop-on-idle policy decreases the referred
count of a master application when a corresponding dependent
application stops. Once the last dependent application of a master
application stops, the policy stops the master application when it
does not need to remain active.

The intra-VM dependency graph can be generated from
application configuration files or database. For example, the
registry entries DependOnService and DependOnGroup on
Windows describe the dependencies between services and thus can
be used to generate the graph. To automate the graph creation
procedure, we develop a program to discover intra-VM
dependencies among related applications by scanning the related
entries in the Windows registry. As an example, Figure 3 (a) and
(b) depict the intra-VM dependency graphs of the application
scenario in Figure 1, which are generated by our program.

With these two policies enforced, an OS-level virtual machine
does not need to start system applications at the booting time but
only upon requests. Meanwhile, a VM does not need to foster the
idle system applications. Accordingly, the overhead of booting and
running an OS-level virtual machine can be significantly reduced,
and the potential application failures incurred by the intra-VM
dependencies can be avoided.

5 Shuttle Prototype
We have implemented Shuttle on FVM [28][29] to facilitate

inter-application interactions within a VM or across VMs. Figure 4
shows the Shuttle architecture. All inter-application interactions,
cross- and intra-VM, are captured by intercepting system calls in
the kernel and Win32 APIs in Windows system libraries. Shuttle
mainly intercepts system calls related to IPC, file, registry and
process as they are often invoked for inter-application interactions.
Some inter-application interactions that involve a few IPCs (e.g.,
message) and services can not be identified by intercepting system
calls, we thus intercept the corresponding Win32 APIs.

To intercept the system calls, we modify the system call entry
point in the System Service Dispatch Table (SSDT) within the

Figure 4. Shuttle architecture consists of four modules and six types of information in the kernel, as well as a
management tool at the application level. The four modules handle the four types of interactive operations
respectively based on the six types of information.

 W i n 3 2 A P I I n t e r c e p t i o n

 S y s t e m C a l l I n t e r c e p t i o n

W i n d o w s O S K e r n e l

C r o s s - V M C o m m u n i c a t i o n M o d u l e

C r o s s - V M N a m e M o d u l e

C r o s s - V M I n v o c a t i o n M o d u l e

I n t r a - V M D e p e n d e n c y M o d u l e

C r o s s - V M
E n d p o i n t s

V M D e p e n d e n c i e s

C o n f i g u r a t i o n
D a t a b a s e

I n t r a - V M
D e p e n d e n c y

G r a p h

V M - 1 V M - n

V M A p p l i c a t i o n s V M A p p l i c a t i o n sH o s t A p p l i c a t i o n sC r o s s - V M
I n v o c a t i o n

M a n a g e m e n t
T o o l

U s e r M o d e

K e r n e l M o d e

I n f o r m a t i o n
C r o s s - V M

D e p e n d e n c i e s

A p p l i c a t i o n
E n d p o i n t s

81

kernel. To intercept the Win32 APIs, we modify the library
function entry point in the Import Address Table (IAT) of the
application process. Shuttle adds and changes about 10k lines of
code on FVM at both application level and kernel level.

The intercepted interaction requests are posted to four kernel
modules to make decisions based on six types of information,
which are presented as follows.

The Cross-VM Communication Module handles cross-VM
inter-process communications based on the cross-VM endpoints.

The Cross-VM Name Module handles name transfers across VMs.
It checks cross-VM IPCs to rename the hard-coded resource names
derived from applications’ binaries. The Cross-VM Invocation
Module watches the processes that are cross-VM started and moves
them into the corresponding VMs. Based on the intra-VM
dependency graph, the Intra-VM Dependency Module suspends the
processes to be started and starts their master applications first. It
also monitors the processes to be stopped and requests to stop the
master applications. For example, to stop a Windows service,
Shuttle calls ControlServiceEx() with a control code
SERVICE_CONTROL_STOP to request SCM to stop the service.

The six types of information used by the modules include
cross-VM endpoints, cross-VM dependencies, VM dependencies,
cross-VM endpoints of each type of application, intra-VM
dependency graph and configuration database (i.e., Windows
registry). We have five key data structures to represent the former

Interactive Operations
Samples Cross-VM Inter-

Process
Communications

Cross-VM
Name

Transfers

Cross-VM
Application
Invocations

Intra-VM
Application

Dependencies
RPCSS on Windows 2000
IIS on Windows 2000
RPCSS on Windows XP
Dcomlaunch on Windows XP
IIS on Windows XP
Mysql on Windows XP
Apache on Windows XP
Tlntsvr on Windows XP
CiSvc on Windows XP
ImapiService on Windows XP
SQL Server on Windows XP
Ntsvcs on Windows XP
MS Word on Windows XP
MS PowerPoint on Windows XP
MS Excel on Windows XP
MS Office Assistant on XP
AutoCAD on Windows XP
Adobe installation on Windows XP
MS Office 2003 installation on XP
Regcmd installation on XP
StraceNT on Windows XP
ProcessMonitor on Windows XP

Binary file paths VM Id
c:\fvms\VM1\C\WINNT\system32\inetsrv\inetinfo.exe (IIS) 1

c:\fvms\VM3\C\WINNT\system32\inetsrv\inetinfo.exe (IIS) 3

c:\fvms\VM2\C\PROGRA~1\MI6841~1\MSSQL\binn\sqlservr.exe (SQL Server) 2

c:\fvms\VM4\C\PROGRA~1\MI6841~1\MSSQL\binn\sqlservr.exe (SQL Server) 4

c:\fvms\VM1\C\WINNT\system32\svchost.exe -k rpcss (RPCSS) 1

c:\fvms\VM2\C\WINNT\system32\svchost.exe -k rpcss (RPCSS) 2

c:\fvms\VM3\C\WINNT\system32\svchost.exe -k rpcss (RPCSS) 3

c:\fvms\VM4\C\WINNT\system32\svchost.exe -k rpcss (RPCSS) 4

c:\fvms\VM1\C\WINNT \system32\svchost.exe -k DcomLaunch (DcomLaunch) 1

c:\fvms\VM2\C\WINNT \system32\svchost.exe -k DcomLaunch (DcomLaunch) 2

c:\fvms\VM3\C\WINNT \system32\svchost.exe -k DcomLaunch (DcomLaunch) 3

c:\fvms\VM4\C\WINNT \system32\svchost.exe -k DcomLaunch (DcomLaunch) 4

Applications Changed cross-VM names
RPCSS RPCSS � RPCSS-vmZ

DcomLaunch DcomLaunch � DcomLaunch-vmZ

IIS W3SVC � W3SVC-vmZ

SQL Server sqlservr � sqlservr-vmZ

Endpoints <IPC object name, Master VM Id> VM Id

<\RPC Control\DNSResolver, 0> 1,2,3,4
<\RPC Control\ntsvcs, 0> 1,2,3,4
<\Device\NamedPipe\net\NtControlPipe*, 0> 1,2,3,4
<\Device\NamedPipe\ntsvcs, 0> 1,2,3,4
<\Device\NamedPipe\EVENTLOG, 0> 1,2,3,4
<\Device\NamedPipe\samr, 0> 1,2,3,4
<\Device\NamedPipe\sql\query, 2> 1
<\Device\NamedPipe\sql\query, 4> 3
<\BaseNamedObjects\DBWinMutex, 0> 1,2,3,4
<\BaseNamedObjects\RasPbFile, 0> 1,2,3,4
<\BaseNamedObjects\SHIMLIB_LOG_MUTEX, 0> 1,2,3,4
<\BaseNamedObjects\ShimCacheMutex, 0> 1,2,3,4
<\BaseNamedObjects__R_ 0000000000da_SMem__, 0> 1,2,3,4
<\BaseNamedObjects\DBWIN_BUFFER, 0> 1,2,3,4
<\BaseNamedObjects\ShimSharedMemory, 0> 1,2,3,4
<\BaseNamedObjects\ScmCreatedEvent, 0> 1,2,3,4
<\BaseNamedObjects\SvcctrlStartEvent_A3752DX, 0> 1,2,3,4
<\BaseNamedObjects\crypt32LogoffEvent, 0> 1,2,3,4
<\BaseNamedObjects\userenv: User Profile setup event, 0> 1,2,3,4
<\BaseNamedObjects\DINPUTWINMM, 0> 1,2,3,4
<\BaseNamedObjects\TESTMSSQLSERVER. 2> 1
<\BaseNamedObjects\TESTMSSQLSERVER. 4> 3
<\BaseNamedObjects\TESTMSSQLSERVER_MUTEX. 2> 1
<\BaseNamedObjects\TESTMSSQLSERVER_MUTEX. 4> 3
<\SECURITY\LSA_AUTHENTICATION_INITIALIZED, 0> 1,2,3,4

Table 2. Testing results of running interaction-dependent
applications in VMs with the support of Shuttle. After addressing
the interactive operations marked, all the applications can perform
inside VMs and cooperate across VMs correctly.

Table 5. Mapping table for cross-VM application invocations.
Shuttle searches a new process’ image file path within the table in
order to get the corresponding VM Id, so that Shuttle can distribute
the new process into the correct VM.

Table 3. Endpoints for cross-VM inter-process communications.
Every endpoint consists of the name of the cross-VM IPC object
and the Id of the VM containing the object. The VM Ids listed on
the right column indicate the VMs containing the corresponding
endpoint.

Table 4. Cross-VM names that are derived from hard-coded
resource names and sent across VM boundaries by the
corresponding applications, and in turn intercepted and renamed
by Shuttle. Z indicates the Id of the VM that the corresponding
applications live in.

82

five types of information. The cross-VM endpoints are generated
by the Cross-VM Communication Module and management tool
based on the cross-VM endpoints of each type of application,
cross-VM dependencies and VM dependencies, using the method
presented in Section 3.1. The intra-VM dependency graph is
generated by the Intra-VM Dependency Module and management
tool by scanning certain registry entries, e.g., DependOnServ-
ice and DependOnGroup.

Shuttle was implemented in two different versions of Windows
OS, i.e., Windows 2000 and Windows XP, as FVM was
implemented in these two versions. We believe with minor
changes Shuttle also can be implemented in a newer version of
Windows, e.g., Vista, because the architecture of Shuttle does not
contain technical details about specific version of Windows OS.

6 Evaluation
In this section, we present details on the experimental evaluations
of our Shuttle prototype which consists of three parts. First, we
investigate the effectiveness of Shuttle approach using a number
of interaction-dependent applications and an enterprise application
as the case to study. Second, we test whether Shuttle will cause a
significant degradation of the isolation capability of an OS-level
virtualization system. Third, we evaluate the performance
overhead of our Shuttle prototype. The test-bed used in the
evaluation consists of two machines. Machine A contains a
Pentium-4 2.8GHz CPU with 1GB memory running both
Windows 2K and XP and machine B contains an Intel Core 2 Duo
2GHz CPU with 2GB memory running both Windows 2K and XP.
We installed FVM and Shuttle on both machines.

6.1 Effectiveness

The objective of the Shuttle approach is to facilitate inter-
application interactions cross- and intra-VM so that the
applications depending on these interactions can perform inside
VMs without failures. To demonstrate the effectiveness of the
Shuttle approach, we have run 22 interaction-dependent
applications in the Shuttle prototype. Many of the sample
applications have failed to perform inside a VM without the
support of Shuttle so far, e.g., RPCSS, IIS, SQL Server, Ntsvcs,
AutoCAD, Adobe installation and MS Office assistant. To
sufficiently test all potential interferences among separate
instances of the same application, each sample application at least
runs three instances simultaneously on a single host. One instance
runs in the host environment and the other two run in two different
VMs respectively. Table 2 shows the evaluation results. Each row
presents an application and the interactive operations appeared
when running the application inside a VM. With these interactive
operations resolved by Shuttle, all samples tested can successfully
run three instances simultaneously on a single host.

Moreover, the sample applications running in VMs behaved
correctly, which was verified as follows. RPCSS, Dcomlaunch and
Ntsvcs were verified by the successful running of many other
tested samples that depend on these three applications. IIS,
Apache, Mysql and SQL Server were verified by building and
operating websites. Tlntsvr was verified by supporting a telnet site.
The installation programs were verified by the successful
messages appeared at the end of installation procedures. StraceNT,
Regcmd, CiSvc and ProcessMonitor were verified by checking
whether they can work properly. The remaining samples were
verified by opening and editing corresponding type of files.

As a case study, we further set up an enterprise application
scenario that runs two pairs of web server and database server in
four VMs respectively on a single Windows XP OS, as presented in
Section 2. The applications worked properly and quickly. In the

VMs, we performed various operations including browsing web
pages, submitting web forms filled, downloading and uploading
files. To handle some operations, the web servers cross-VM
accessed the backend database server deployed in another VM. By
calling the function DbgPrint() in the kernel and analyzing the
results displayed with a debugging tool DbgView, we obtained the
information used by Shuttle to handle the four types of operations
that impact application interactions, which are presented as follows.

For cross-VM inter-process communications, the endpoints of
every VM are listed in Table 3. In the table, all VMs have almost
the same endpoints, except that VM 1 and 3 have more endpoints to
access corresponding SQL Server in VM 2 and 4. The * character
following the IPC object NtControlPipe indicates an arbitrary
number that changes over time, as introduced in Section 3.1. The
IPC objects DBWinMutex and DBWIN_BUFFER are specially
generated by the DbgView for printing messages. The cross-VM
names intercepted and changed are listed in Table 4. For the cross-
VM application invocations, Table 5 presents the mapping table
that records the binary file paths of the applications to be cross-VM
started and their corresponding VM Ids. The intra-VM dependency
graphs of all VMs are depicted in Figure 3 (a) and (b).

Therefore, Shuttle can successfully support all four types of
interactive operations summarized in Table 1, which in turn
supports all necessary cross-VM interactions.

6.2 Isolation

In order to evaluate the impact on the isolation capability of FVM
caused by Shuttle, we prepared 19 pairs of small programs to test
all possible forms of cross- and intra-VM operations. Each pair of
programs is responsible for testing one type of Windows OS
object, which consists of a client and a server. The testing results
are shown in Table 6. The Intra-VM column indicates the results
of the accesses from a client to a server both of which are placed
within the same VM. All Intra-VM accesses are permitted. The
VM-VM and VM-Host columns indicate the access results from a
VM to another VM and from a VM to the host, which mostly are
refused. In other words, cross-VM operations are correctly
blocked and thus the VM isolation is preserved.

There are two exceptions in the table. One is at the rows for
socket, which allows connect and send operations to cross VM
boundary, because network communications should be permitted.
The other is at the rows for file, registry and device, which allows
read operations to be carried from a VM to the host. This is the
result of the copy-on-write policy of FVM which aims to avoid
duplicating a huge volume of OS objects from the host to each
VM environment. However, this should not affect the isolation
since any write result is saved separately within the corresponding
VM. In addition, for many types of objects, e.g., event, we test
open operation instead of read and write, because read and write
operations need object handles that are obtained by open
operations.

We also tested 30 more individual applications. Every
application can smoothly run three instances simultaneously in
two VMs and the host environment separately. The applications
are as follows: Google Chrome, Windows command prompt,
Internet Explorer, Microsoft Clip Organizer, MS Outlook Express,
MS Messenger, mIRC, Visual C++, Firefox, Adobe Reader,
Bitcomet, Foxmail, Windows Media Player, Putty SSH client,
WinRAR, Skype, Windows FTP client, Beyond Compare, Source
Insight, Calculator, Utility Manager, Notepad, Minesweeper,
Hearts, WebBench Client, Winamp, Internet Backgammon,
Diffutils Installation, Registry Commander, fvmsetup.

Moreover, our former test in Section 6.1 also shows that
Shuttle can provide enough isolation even when facilitating cross-

83

VM interactions, as multiple instances of the same application can
simultaneously perform inside different VMs and the host.

In short, the three serials of testing results above show that,
Shuttle can successfully offer isolation functionality while
providing necessary exceptions for essential cross-VM interactions.
The major reason lies in our principle of least penetration. That is,
we only allow the cross-VM communications with specific IPC
object names between predefined applications run in predefined
VMs. Therefore, the chance of compromising the isolation of a
VM is reduced to the minimum level.

6.3 Performance

In this section, we show the impact of Shuttle on the performance
of virtualized applications and virtual machines. As the
performance overhead of Shuttle results mainly from executing

additional instructions when intercepting system calls and API
functions, we measure specifically the interception overhead of the
corresponding system calls and API functions. First we disable the
FVM layer, run a group of applications natively in the host
environment, and count the average number of CPU cycles spent in
each system call and API function with the rtdsc instruction. Then,
we enable the FVM layer without Shuttle, run the same
applications in a VM and take the same measurements. Finally, we
enable the FVM layer with Shuttle, run the same applications and
take the same measurements. Each of the reported numbers shown
in Table 7 is an average of the results of 100 runs on machine A
running Windows 2K.

Table 7 shows the interception overheads in terms of CPU
cycles of a set of intercepted system calls and Win32 API

Objects Operations VM-VM VM-Host Intra-VM Objects Operations VM-VM VM-Host Intra-VM

Read Create
Write Open

File/
Directory

Create
Service

Start
FileMapping Open Window Find
Data Copy Send Mutant Open

Read Create
Write

Semaphore
Open Registry

Create Read
RPC Send

Named Pipe
Write

Read Get Data
Write

Clipboard
Set Data Device

Create Bind
Process Open Connect
Mailslot Open

Socket

Send
Event Open Message Send
COM Request Connect
Timer Open

Port
Request

System calls and Win32 API functions Native
(CPU Cycles)

FVM
(CPU Cycles)

Shuttle
(CPU Cycles)

Overhead
(%)

NtCreateFile 334,492 401,931 (20%) 403,297 (21%) 0.3%

NtOpenFile 167,620 216,895 (29%) 218,435 (30%) 0.7%

NtCreateNamedPipeFile 183,574 223,960 (21%) 240,481 (31%) 7.4%
File

NtCreateMailslotFile 40,790 42,015 (3%) 47,807 (17%) 13.8%

NtOpenSemaphore 30,234 64,286 (113%) 69,840 (131%) 8.6%

NtCreatePort 37,241 72,309 (94%) 79,901 (115%) 10.5% IPC

NtOpenSection 38,134 72,742 (91%) 80,234 (110%) 10.3%

StartService 2,166,808,231 2,166,819,311 (<0.1%) 2,166,818,157 (<0.1%) <0.1%

RegisterServiceCtrlHandlerEx 2,865,374 2,865,609 (<0.1%) 2,865,481 (<0.1%) <0.1%

QueryServiceStatusEx 2,011,945 2,011,960 (<0.1%) 2,011,959 (<0.1%) <0.1%

CreateService 8,264,623 8,406,775 (1.7%) 8,264,803 (<0.1%) -1.7%

Service

OpenService 5,490,443 5,490,570 (<0.1%) 5,589,401 (1.8%) 1.8%

Table 6. Testing results of the isolation capability of FVM enforced with Shuttle, which can correctly block general cross-VM
interactions including both VM-VM and VM-Host interactions. and represent blocked and allowed operations, respectively.

Table 7. Interception overhead of system calls and Win32 API functions. Compared with old FVM without Shuttle, the new FVM
enforced with Shuttle adds less than 13.8% extra CPU cycles for file-related system calls, less than 10.5% for IPC-related system calls,
and less than 1.8% for service related API functions.

84

functions, including four file-related system calls, three IPC-
related system calls and five service related API functions. The
new FVM with Shuttle enforced takes up to 31% more CPU
cycles than the native configuration for file-related system calls,
up to 131% for IPC-related system calls and 1.8% for service
related API functions. Although the per-system call overhead
seems to be significant for IPC-related system calls, the end-to-end
impact on the overall system performance is much smaller,
because IPC-related system calls account for lower than 0.2% of
all invoked system calls in our test applications. Moreover,
compared with old FVM without Shuttle, the current
implementation of the proposed Shuttle approach adds less than
13.8% extra CPU cycles for file-related system calls and less than
10.5% for IPC-related system calls. For most service related API
functions, the new FVM is actually as fast as the old one or even
slightly faster, because service names used in API functions do not
need to be renamed when Shuttle is in place. From these results,
we can conclude that the performance cost of Shuttle is quite
acceptable.

7 Discussion
As Shuttle prototype is based on Windows OS, one might question
whether it is applicable to the OS-level virtualization based on
other OSes, e.g., Linux. First, the issues resolved by Shuttle should
also appear in other OS-level virtualization systems, because they
are irrelevant to specific OS or virtualization technique. As
analyzed in Section 3.1.1, Section 3.2, Section 3.3 and Section 4,
these issues are actually derived from the nature of OS-level
virtualization or applications, and thus also occur in Linux-based
virtualization systems. As some concrete examples, there is a list
of programs that have problems with Linux-VServer [14]. Some of
the problems correspond to the issues resolved in this paper, for
example, the problem “OpenLDAP Startup” is caused by
application dependency, “rndc” is caused by hard-coded name and
“Links inside screen inside a V-Server” is caused by cross-VM
invocation. The techniques in this paper should be useful when
resolving these problems in Linux-VServer. Second, the shuttle
solutions for these issues actually do not depend on specific OS,
though we often use Windows OS as examples in order to present
the techniques more clearly. Therefore, we believe Shuttle should
be applicable to the OS-level virtualization systems on other OSes.

8 Related Work
As far as we know, there is no such a project that can successfully
handle all types of inter-application interactions across and within
OS-level VMs in the literature. There are three categories of
projects close to our work.

The first category is OS-level virtualization projects that
include FreeBSD Jail [10], Linux-VServer [23], Solaris Zones [20],
Open VZ [24], FVM[28], Zap [16], PDS [1] and Cells [2] etc.
These projects successfully partition a single OS environment into
multiple VMs more extensively and efficiently. However, very
limited efforts have been made on application interactions cross-
VM and intra-VM, although they are required by many
cooperative applications. FVM [28] hard-codes a few IPC object
names as exceptions in its virtualization layer, so that it can
partially support the cross-VM communications between
applications in a VM and in the host environment. However, it can
not flexibly support the types of cross-VM communications that
are not hard-coded. Moreover, it can not support other types of
interactive operations, e.g., cross-VM names and intra-VM
dependencies. As a result, it is able to only virtualize a limited
number of ordinary Windows services, whereas, it can not
virtualize Windows system services such as RPCSS and ordinary

Windows services that require complex inter-service interactions,
e.g. IIS service group. To virtualize system services, we propose a
service virtualization scheme in our former work [22]. In contrast,
this paper focuses on inter-application interactions. As service
virtualization also involves inter-application interactions, some
issues might be similar. However, the resolutions to these issues
are different. Moreover, the most important issue addressed in this
paper is on VM-VM interactions, while it was not considered in
our former work.

Zap [16] introduces pods, which are groups of processes that
are provided a consistent, virtualized view of the system.
Processes outside a pod can only interact with processes inside the
pod using network communication and shared files instead of IPC.
Shuttle provides a possible solution to facilitate inter-application
interactions across pod boundary when pursuing a better
performance. Cells [2] is a virtualization architecture for enabling
multiple virtual smartphones to run simultaneously on the same
physical cellphone. It sets up IPC sockets to facilitate
communication between VM and the host. Shuttle, however, also
address issues related to VM-VM communication, cross-VM
invocation and transferring hard-coded names. These extended
functions may allow Cells to work in more application scenarios.

The second category of projects similar to our work focuses on
how to achieve inter-VM communications for a hardware-level
virtualization system. For example, the Xen [4] platform enables
applications to transparently communicate across VM boundaries
using standard TCP/IP sockets and traversing the network
communication path via Dom0. In order to improve the
performance of cross-VM communications, XenSocket [30], IVC
[9], XWay [11], XenLoop [27] and Fido [6] have exploited the
inter-domain shared memory provided by the Xen hypervisor.
However, these techniques in Xen intercepts outgoing network
packets beneath the network layer, and thus can not handle the
inter-process communication (IPC) in OS-level VM as most IPC
data will not go beneath the network layer. Different from these
projects, Shuttle focuses on facilitating IPCs between OS-level
VMs. Moreover, it handles not only cross-VM communications
but also cross-VM names and startups, as well as intra-VM
dependencies, which are mainly resulted from the characteristic of
OS-level virtualization when multiple VMs share the single OS
kernel.

The third category of projects is library operating systems
[7][8][12]. The idea is that the entire personality of the OS on
which an application depends runs in its address space as a library.
A recent project, Drawbridge [19], shows the library OS can offer
better system security and more rapid independent evolution of OS
components. As a structuring principle, Drawbridge identifies
three categories of services in OS implementations: hardware
services, user services, and application services. Then, it uses
these service categories to drive the refactoring of Windows into
the Drawbridge library OS. Drawbridge packages application
services into the library OS and leaves user and hard-ware services
in the host OS. The scheme of Shuttle to handle inter-process
interactions across VM boundary can be useful to resolve the
multi-process applications problem in Drawbridge.

9 Conclusion
Advances in OS-level virtualization technology have strengthened
the isolation between VMs. However, many interaction-intensive
applications require penetrating the isolation boundaries to
cooperate with the applications in other VMs. In this paper, we
make the first step towards supporting the application interactions
in an OS-level virtualization system by facilitating four types of
interactive operations, including cross-VM inter-process

85

communications, cross-VM name transfers, cross-VM application
invocations and intra-VM application dependencies. Specifically,
we design a novel approach, Shuttle, that consists of four
techniques, each of which intends to handle a corresponding
interactive operations. As a result, a number of interaction-
depending applications that can not run within a VM previously,
e.g., RPCSS, IIS, can now run under the support of Shuttle.
Empirical performance measurements on the prototype
implementation of the proposed Shuttle approach show that the
compromise on isolation are negligible and the additional
performance overhead is rather minor, when compared with that of
the original version of FVM.

Acknowledgement
We would like to thank our shepherd Galen Hunt and all the
anonymous reviewers for their insightful comments and feedbacks.
This work is supported by Natural Science Foundation of China
under grants No. 60703103 and No. 60833005, US National
Science Foundation under grants CNS-0751121, CNS-0751121
and CNS-0628093.

References
[1] B. Alpern, J. Auerbach, V. Bala, T. Frauenhofer, T. Mummert, and M.

Pigott, “Pds: A virtual execution environment for software
deployment,” in Proceedings of the 1st International Conference on
Virtual Execution Environments, 2005.

[2] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh. Cells: a virtual
mobile smartphone architecture. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles (SOSP '11). ACM,
New York, NY, USA, 173-187.

[3] M. Armbrust, A. Fox, R. Griffith et al., Above the Clouds: A Berkeley
View of Cloud Computing, Unversity of California, Berkeley,
Berkeley, CA, 2009.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.
Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In Proceedings of the 19th ACM Symposium on
Operating Systems Principles, pages 164–177. ACM Press, 2003.

[5] A. Bavier , M. Bowman , B. Chun , D. Culler , S. Karlin, S. Muir,
L. Peterson, T. Roscoe, T. Spalink, M. Wawrzoniak, Operating
system support for planetary-scale network services, Proceedings of
the 1st conference on Symposium on Networked Systems Design and
Implementation, p.19-19, March, 2004, California.

[6] A. Burtsev, K. Srinivasan, P. Radhakrishnan, L. N. Bairavasundaram,
K. Voruganti, and G. R. Goodson, “Fido: Fast inter-virtual-machine
communication for enterprise appliances,” in Proceedings of the
USENIX Annual Technical Conference, San Diego, USA, 2009.

[7] D. R. Cheriton and K. J. Duda. A Caching Model of Operating
System Kernel Functionality. In Proceedings of the 1st USENIX
Symposium on Operating Systems Design and Implementation, 1994.

[8] D. R. Engler, M. F. Kaashoek, and J. O'Toole, Jr.. 1995. Exokernel: an
operating system architecture for application-level resource
management. In Proceedings of the fifteenth ACM symposium on
Operating systems principles (SOSP '95), Michael B. Jones (Ed.).
ACM, New York, NY, USA, 251-266.

[9] W. Huang, M. Koop, Q. Gao, and D.K. Panda. Virtual machine aware
communication libraries for high performance computing. In
Proceedings of SuperComputing, Reno, NV, Nov. 2007.

[10] P.-H. Kamp and R. N. M. Watson. Jails: Confining the omnipotent
root. In Proceedings of the 2nd International SANE Conference, 2000.

[11] K. Kim, C. Kim, S.-I. Jung, H.-S. Shin, and J.-S. Kim. Inter-domain
socket communications supporting high performance and full binary
compatibility on Xen. In Proceedings of the fourth ACM
International Conference on Virtual Execution Environments, 2008.

[12] I. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham, D. Evers, R.
Fairbairns, and E. Hyden. The Design and Implementation of an
Operating System to Support Distributed Multimedia Applications.
IEEE Journal on Selected Areas In Communications, 14 (7), 1996.

[13] Linux VServer, http://linux-vserver.org/Documentation, 2010.
[14] Linux VServer, http://linux-vserver.org/Problematic_Programs, 2011
[15] Microsoft. Process Explorer. http://technet.microsoft.com/en-us/

sysinternals/bb896653.aspx
[16] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and

Implementation of Zap: A System for Migrating Computing
Environments. In Proceedings of the 5th USENIX Symposium on
Operating Systems Design and Implementation (OSDI02), pages
361–376, Boston, MA, Dec 2002.

[17] P. Padala, X. Zhu, Z.Wang, S. Singhal, and K. Shin. Performance
Evaluation of Virtualization Technologies for Server Consolidation.
Technical Report HPL-2007-59, HP Labs, April 2007.

[18] PC Magazine, PC Magazine benchmarks, http://www.pcm-
ag.com/encyclopedia_term/0,2542,t=WebBench&i=48947,00.asp

[19] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C. Hunt.
2011. Rethinking the library OS from the top down. In Proceedings of
the sixteenth international conference on Architectural support for
programming languages and operating systems (ASPLOS '11). ACM,
New York, NY, USA, 291-304.

[20] D. Price and A. Tucker. Solaris Zones: Operating system support for
consolidating commercial workloads. In Proceedings of the 18th
Large Installation System Administration Conference (LISA),
USENIX, 2004.

[21] J.H. Saltzer and M.D. Schroeder. The protection of information in
computer systems. In Proceedings of the IEEE, 63(9):1278-1308,
September 1975.

[22] Z. Shan, T. Chiueh, and X. Wang. Virtualizing system and ordinary
services in Windows-based OS-level virtual machines. In
Proceedings of the 2011 ACM Symposium on Applied Computing
(SAC '11). ACM, New York, NY, USA, 579-583.

[23] S. Soltesz , H. Pötzl , M. E. Fiuczynski, A. Bavier, L. Peterson,
Container-based operating system virtualization: a scalable, high-
performance alternative to hypervisors, In Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on Computer Systems
2007, March 21-23, 2007, Lisbon, Portugal.

[24] SWSoft, “OpenVZ - Server Virtualization,” 2006, http://www.
openvz.org/.

[25] VMware. Vmware products. http://www.vmware.com/products/
home.html.

[26] P. Walters, V. Chaudhary, M. Cha, S. Guercio Jr., S. Gallo, "A
Comparison of Virtualization Technologies for HPC," In Proceedings
of the 22nd International Conference on Advanced Information
Networking and Applications (aina 2008), pp.861-868.

[27] J. Wang, K.-L. Wright, and K. Gopalan. Xenloop: A transparent high
performance inter-VM network loopback. In Proceedings of the 17th
International Symposium on High Performance Distributed
Computing (HPDC), 2008.

[28] Y. Yu, F. Guo, S. Nanda, L. Lam, T. Chiueh, ``A Feather-weight
Virtual Machine for Windows Applications'', in Proceedings of the
2nd ACM/USENIX Conference on Virtual Execution Environments
(VEE'06), June 2006.

[29] Y. Yu, H. K. Govindarajan, L. Lam, T. Chiueh "Applications of
Feather-Weight Virtual Machine", In Proceedings of the ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE08), Seattle WA, March 2008.

[30] X. Zhang, S. McIntosh, P. Rohatgi, and J.L. Griffin. Xensocket: A
high-throughput interdomain transport for virtual machines. In
Proceedings of Middleware, 2007.

86

