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Abstract 
OS-level virtualization generates a minimal start-up and run-time 
overhead on the host OS and thus suits applications that require 
both good isolation and high efficiency. However, multiple-
member applications required for forming a system may need to 
occasionally communicate across this isolation barrier to 
cooperate with each other while they are separated in different 
VMs to isolate intrusion or fault. Such application scenarios are 
often critical to enterprise-class servers, HPC clusters and 
intrusion/fault-tolerant systems, etc. We make the first effort to 
support the inter-application interactions in an OS-level 
virtualization system without causing a significant compromise on 
VM isolation. We identify all interactive operations that impact 
inter-application interactions, including inter-process 
communications, application invocations, resource name transfers 
and application dependencies. We propose Shuttle, a novel 
approach for facilitating inter-application interactions within and 
across OS-level virtual machines. Our results demonstrate that 
Shuttle can correctly address all necessary inter-application 
interactions while providing good isolation capability to all sample 
applications on different versions of Windows OS. 

Categories and Subject Descriptors 
D.4.5 [Operating Systems]: Reliability; D.4.6 [Operating 
Systems]: Security and Protection 
General Terms  
Reliability, Security 

Keywords 
OS-Level Virtual Machines, Inter-application Interactions, Cross-
VM Communications, Intrusion/Fault Isolation 

1 Introduction 
OS-level virtualization partitions the OS name space to form a 
number of separated Virtual Machines (VMs), i.e., containers. 
VMs on the same OS share a single OS kernel and the host 
environment, and each VM only preserves state changes within its 
local environment. Programs in a VM run as normal applications 
that directly use the host OS' system call interface and do not need 
to run on top of an intermediate hypervisor. Accordingly, such 
VMs have a minimal startup/shutdown cost, low resource 
requirement and high scalability. Thus OS-level virtualization is 

applicable for the applications that require both high performance 
and good isolation [23][28], including intrusion/fault toleration 
[6][28][29], server consolidation [19][27], high performance 
system [23][26], distributed hosting organizations like PlanetLab 
[5][23], as well as cloud computing in the future [3][23]. 

These system functions often involve a set of member 
applications. To isolate intrusion or fault, the member applications 
are distributed into different VMs. On the other hand, the member 
applications occasionally require inter-application interactions 
which are essential for their execution, thus communications 
across VM barriers are inevitable. 

The challenge is how to correctly and accurately handle all 
necessary inter-application interactions while not significantly 
affecting the isolation effectiveness of virtualization. Inter-
application interactions represent the operations between distinct 
applications, e.g., register, notify, request, reply, authenticate and 
launch. Depending on whether two involved applications are 
located in the same VM or the host space, inter-application 
interactions can be ascribed into three basic categories: cross-VM, 
intra-VM and intra-Host. Intra-Host interactions represent the 
original inter-application interactions in the host environment and 
thus do not depend on virtualization technology. Cross-VM 
interactions need to penetrate the VM boundaries which are 
normally forbidden by the virtualization mechanism. Cross-VM 
interactions can be further divided into two sub categories, VM-
Host where two involved applications run inside a VM and in the 
host environment respectively, and VM-VM where two 
applications reside in two different VMs. 

The VM-Host interactions apply to all forms of OS-level 
virtualization technologies due to their nature. As OS-level VMs 
co-located on a host share a single OS kernel and the host 
environment, in order to access the essential system services (e.g., 
authentication, application initialization) and resources (e.g., 
Windows registry) in the host environment, an application in a 
VM has to interact across the VM boundary with applications in 
the host environment. For example, on Linux VServer [13], an 
application running in a VM has to authenticate itself to processes 
sshd and getty, which are run in the host environment. Likewise, 
on FVM [28], an application in a VM needs to authenticate itself 
to a host-resident process lsass. Since the authentication operation 
violates the isolation principle, the virtualization mechanisms drop 
the request, which leads the application in a VM to be suspended. 

The VM-VM interactions are needed for cooperating 
applications to interact with each other to achieve certain goals. 
For example, a high performance computing software may 
distribute a group of cooperative programs into different VMs 
[9][27] in order to isolate intrusion/fault/performance/function [28] 
or concurrently foster multiple instances of the same program in a 
single OS. However, the virtualization mechanism will prevent the 
required VM-VM conversations from being carried across VM 
boundaries. Applications running in separate VMs on a single OS 
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might choose to exchange data using network communications to 
avoid penetrating through VM boundaries, but this would 
dramatically degrade the performance. 

The intra-VM interactions are needed when two involved 
applications stay in the same VM and thus do not need to penetrate 
VM boundaries. However, improper startup sequence of the 
involved applications will cause the communications among them 
to fail. Accordingly, to prevent these failures, various types of OS-
level virtualization platforms, e.g., Solaris Zones [20], Linux 
VServer [23] and FVM [28], invoke many unnecessary daemons 
or Windows services when booting and running a VM. This 
heavily slows down the booting procedure and increases the 
runtime overhead of a VM. As a result, it reduces the scalability of 
the OS-level virtualization technology, the main strength against 
the hardware-level virtualization [23][28]. Therefore, properly 
handling intra-VM interactions is necessary for improving the 
scalability of OS-level virtual machines. 

In short, cross-VM and intra-VM interactions are often needed 
no matter what OS-level virtualization technology is used. 
Without a proper treatment, they will affect the running of the 
interaction-dependent applications and the scalability of OS-level 
VMs.  

Moreover, as many interaction-dependent applications are 
important, it is necessary to enable their interactions efficiently. 
First, some of interaction-dependent applications are fundamental 
to the running of numerous other applications, for example, 
RPCSS, the RPC binding service; PlugPlay, the plug and play 
service; NetDDE, the distributed clipboard service. Second, some 
of interaction-dependent applications are critical to business 
organizations, such as web servers, database servers, high 
performance grid applications, transaction processing applications 
and enterprise-class applications. When exploiting the OS-level 
virtualization technology to consolidate servers or tolerate 
intrusion/fault, these interaction-dependent applications are 
deployed inside different VMs and need to communicate with 
other applications across the VM boundary or within a VM. 

However, accurately identifying all possible inter-application 
interactions is not easy, as many applications are complex and 
their actual interactions vary across a wide range and are 
undocumented. Particularly on a commercial OS, as the OS and 
applications are close-sourced and most implementation details are 
kept confidential, identifying inter-application interactions poses a 
great challenge. 

As far as we know, there is no scheme designed to 
systematically handle inter-application interactions in the literature. 
Existing papers concerning OS-level virtualization mostly focus 
on the general architecture of a specific type of OS-level 
virtualization [10][20][23][24][28], or exploit OS-level 
virtualization to consolidate servers[17][20], isolate intrusions 
[28][29] or build high performance systems [23], but never give a 
deep insight on the inter-application interactions. A few projects 
investigate how to improve cross-VM communications for 
hardware-level virtualization [6][9][27][30]. However, the cross-
VM communications between hardware-level VMs only involve 
TCP/UDP-based network communications instead of inter-process 
communications that often occur across OS-level VMs, e.g., 
named pipe and event.  

In this paper, we first investigate the interactive operations that 
affect the inter-application interactions using tracing and reverse-
engineering skills. Based on the studies, we ascribe the interactive 
operations into four types: inter-process communications, 
application invocations, resource name transfers, and application 
dependencies. To address these issues, we design Shuttle, a novel 
approach that aims to facilitate all categories of inter-application 

interactions by intelligently handling four types of interactive 
operations while not leading to significant compromise of the 
isolation requirement of VMs. To demonstrate its effectiveness, 
we implemented Shuttle under the framework of Feather-weight 
Virtual Machine (FVM) [28] on different Windows platforms. The 
evaluations demonstrate that Shuttle can successfully support all 
tested Windows applications that depend on inter-application 
interactions with little impact on the VM isolation.  

Shuttle is the first approach to handle inter-application 
interactions for OS-level virtualization. With this approach 
enforced, multiple instances of the RPCSS, Dcomlaunch, SQL 
Server and IIS can concurrently run on top of a single Windows 
OS, which are believed almost impossible previously [28]. As the 
approach depends little on a specific operating system or OS-level 
virtualization technology, we believe it can also be generalized 
and applicable to different types of OS or OS-level virtualization 
technology. 

The paper is structured as follows. The next section introduces 
the results of our studies on inter-application interactions. The 
approaches to handling cross-VM and intra-VM inter-application 
interactions are described in Section 3 and 4 respectively. Section 
5 presents the implementation of Shuttle on FVM. Section 6 
evaluates the prototype with a group of Windows applications on 
different versions of Windows OS. Section 7 discusses the 
applicability of Shuttle techniques to virtualization on other types 
of OS. Section 8 compares this research with other related efforts 
in the literature. Section 9 concludes the work. 

2 Study on Inter-Application Interactions 
As most of the interactive applications are close-sourced, their 
internal implementation details, for example, the internal logic, 
kernel objects created, registry entries accessed, etc., are rarely 
documented and open to the public in the literature. In order to 
investigate the exact interactive operations, we have spent several 
months to dynamically trace and analyze their behaviors, and 
statically reverse-engineer their binaries. Concretely, we take three 
investigation methods. First, we trace the kernel-level and 
Windows API-level calls that an application invokes at run time in 
order to determine the set of resources an application accesses. 
Second, we use the tool ProcessExplorer[15] to find out the inter-
application communication objects an application uses to interact 
with other applications. Last, we disassemble the application’s 
binary code to identify all hard-coded resource names and API 
function calls that transfer the hard-coded resource names. 

We conclude that there are basically four types of interactive 
operations affecting inter-application interactions. Without a proper 
treatment of these operations, the interactive applications would fail 
or behave abnormally. These operations are as follows: 

� Inter-process communications carried between two 
applications through IPC (Inter-Process Communication) 

Interaction Categories 
Cross-VM Interactive Operations 

VM-Host VM-VM
Intra-
VM

Intra-
Host 

Inter-process communications     
Application invocations     
Name transfers     
Application dependencies     

Table 1. Interactive operations affect certain inter-application 
interactions. Checks indicate the affected interactions. 
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objects. Such operations include register, authenticate, 
request, reply, notify, exchanging data, etc. 

� Application invocations where an application in the host 
starts other applications in a VM, which include daemons, 
Windows services, COM servers, etc. 

� Name transfers needed for transferring resource names 
among applications running in different VMs. These names 
are hard-coded in application binaries and thus may escape 
the renaming mechanism of OS-level virtualization. 

� Application dependencies when the running of an 
application (the dependent application) depends on the 
running of another application (the master application) in 
the same VM. The master application should run prior to the 
dependent application. 

Table 1 summarizes our investigation results which associate 
the failures of inter-application interactions with the types of 
interactive operations. From the table, the former three types of 
operations might cause cross-VM interactions to fail while the last 
type might cause intra-VM interactions to fail. Further 
explanations of these results are presented in Section 3 and 4. 

In order to better present the problems and our solutions, we 
perform a case study on a classical enterprise application in our 
lab using FVM [28]. We deploy two IIS servers and two SQL 
Servers in four distinct VMs on a single OS, as shown in Figure 1 
(a). The two pairs of IIS and SQL Servers form two websites. 
Only with such a deployment, two instances of IIS or SQL Server 
can be separated without interfering with each other though they 
share a single OS kernel. Moreover, since each application is 
contained in a separate VM, the system constructed this way has 
the capability of intrusion/fault toleration. Similar deployments 
also can be found from Solaris Zones [20], OpenVZ [17] and Fido 
on Xen [6]. An alternative deployment scheme might place the 
two pairs of IIS and SQL servers into two VMs respectively. 
However, this setup not only can not completely avoid carrying 
out inter-application interactions cross-VM and intra-VM but also 
is not able to provide isolation as good as the former scheme. 

Figure 1 (b) illustrates the detailed inter-application 
interactions across and within OS-level virtual machines, which 
only includes VM 1, VM 2 and the host. RPCSS is a fundamental 
Windows service on the Windows platform that provides 
RPC/COM/DCOM functions to other Windows services and 
applications, and is duplicated in each VM. Windows services are 
long-running programs that remain active without interacting with 
users, like daemons in a UNIX-style OS. Generally, there are 
about 100 services on Windows XP and nearly half of them 
depend on RPCSS. An IIS server consists of five Windows 

services: W3SVC service for web server, MSFTPSVC service for 
FTP server, SMTPSVC service for SMTP server, NNTPSVC 
service for network news server, as well as IISADMIN service for 
the management of IIS. DCOM1 and DCOM2 are a pair of 
DCOM servers started by DcomLaunch, which act as main and 
backup DCOM servers respectively. In Figure 1 (b), various 
specific inter-application interactions (e.g., register, notify, request, 
reply, launch and authenticate) among applications are represented 
by lines among them, which include cross-VM, intra-VM and 
intra-host interactions. The interactions among the applications are 
observed as a result of our efforts in tracing the process and 
performing reverse-engineering. However, due to these complex 
and hidden inter-application interactions, until now there is no 
public record showing a successful approach to making RPCSS or 
IIS run inside a VM. 

3 Facilitating Cross-VM Interactions 

3.1 Inter-Process Communications 

According to the isolation principle of virtualization, the cross-
VM inter-process communications should be strictly blocked 
although some applications may require interactions between each 
other. However, exceptions should be given to some essential 
cross-VM inter-process communications as shown in Figure 1 by 
solid lines. Hence, a carefully designed mechanism is required to 
facilitate these communications. To minimize the affection on VM 
isolation, the design should follow a principle: least penetration, 
which only allows least essential cross-VM communications. 

3.1.1 Analyzing Cross-VM Inter-Process Communications 
Corresponding to the Table 1, two categories of necessary cross-
VM inter-process communications should not be blocked. One is 
the VM-Host communications between applications in a VM and 
the host environment, which possibly affect the VM-Host 
interactions. Such communications are often utilized by an 
application to get necessary services from core-applications, e.g., 
authentication and registration. The core-applications are the ones 
that provide system critical services to other applications, e.g., the 
Service Control Manager (SCM) on Windows, “launchd” on Mac 
OS and the “klogd”on Linux. They are actually the extensions of 
the OS kernel and closely tied with the kernel. They can not be 
duplicated in every VM and should stay in the host environment in 
order to be available to all VMs. Consequently this type of cross-
VM communication is inevitable whenever an application inside a 
VM requests a system critical service. 

S C M S A M S S

H o s t  E n v i r o n m e n t
C r o s s - V M  
i n t e r a c t i o n

I n t r a - V M  
i n t e r a c t i o n

R P C S S

R P C S SD c o m L a u n c h

D C O M 1

D C O M 2

I I S A D M I N

W 3 S V C
M S F T PS M T P

N N T P

V M  1 V M  2

S Q L  
S e r v e r

R P C S S

D c o m L a u n c h

I n t r a - H o s t  
i n t e r a c t i o n

V M  1 V M  2 V M  3 V M  4

I I S I I S S Q L  
S e r v e r

S Q L  
S e r v e r

H o s t  E n v i r o n m e n t

( a ) ( b )

Figure 1. An illustration of inter-application interactions, running two groups of enterprise applications in different VMs on a single OS.
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The other is the VM-VM communications between applications 
in different VMs, which possibly affect the VM-VM interactions. 
In order to provide fault or intrusion isolation for individual 
applications, member applications belonging to the same system 
need to be placed in separate VMs [6][9][11][27][30]. Thus, the 
communications among these applications have to be carried across 
VM boundaries as exceptions to the basic isolation principle. For 
instance, storage systems (e.g., NetApp and EMC) may have a 
group of cooperative programs running in different VMs that need 
to communicate with each other. Similarly, a graphics rendering 
application in one VM may need to communicate with a display 
engine in another VM. Even routine inter-VM communications, 
such as file transfers or heartbeat messages may need to be 
performed frequently across the VM border. 

Some of the VM-VM inter-process communications can be 
replaced by network communications, for example, using 
TCP/UDP communications to substitute named pipes. However, 
this will lead to a significant performance penalty [27] as the 
communication data need to go through the whole network stack 
twice in the same OS kernel. Therefore, facilitating VM-VM inter-
process communications is indispensable not only for the 
successful running but also for better performance of cooperative 
programs. 

Both categories of cross-VM inter-process communications are 
achieved via accessing Inter-Process Communications (IPC) 
objects, which have various types in an OS. For example, IPC 
objects in Windows include primitive ones (such as mutexes, 
events, timers, semaphores, and LPC) and higher-level ones (such 
as RPC and DCOM). Moreover, most actual IPCs between 
applications are undocumented and dynamic. Hence, it is difficult 
to thoroughly discover all the IPCs invoked by a running process, 
and decide which IPC should be confined within a VM and which 
IPC should not. 

For the interaction-dependent applications that have well 
documented IPCs, one can manually give exceptions to permit the 
cross-VM communications to penetrate the boundaries of VMs. 
This is why existing OS-level virtualization technologies can 
successfully virtualize some interaction-dependent applications 
[23][28]. However, for the ones without documented IPCs, it is 
not feasible to manually identify all the cross-VM communications, 
especially for an ordinary user.  

3.1.2 Handling Cross-VM Inter-Process Communications 

In order to find a proper method to automatically handle cross-VM 
communications, we performed a study on the cross-VM IPC 
objects. The result shows that cross-VM IPC objects (e.g., named 
pipe, shared memory, mail slot, mutex, semaphore and socket) act 
at the server side of inter-application communications and hence 
must keep their names static to help the clients to locate them 
despite that the Id numbers of the objects are dynamic. For 
example, SQL Server prepares a pipe with static name 
“\Device\NamedPipe\sql\query” to wait for the connection request 
from local clients. In special situations, the name of an IPC object 
may partially change, i.e., with their name strings containing a 
number that changes over time. To address this issue, we can use a 
wildcard character * to stand for the variable number in the name 
string. In addition, a few special types of IPC objects might 
change names frequently, e.g., event. We can record the name of 
the receiver application rather than the name of the IPC object to 
help identify the IPC receiver. 

Based on the study results, we devise our first Shuttle 
technique to leverage the names of cross-VM IPC objects to 
automate cross-VM communications. We employ cross-VM 
endpoints to point to the cross-VM IPC objects. A cross-VM 

endpoint in a VM is represented as ),( ine � , where ne. is the 
name of the corresponding cross-VM IPC object and ie. is the Id 
of the VM containing the IPC object n . An IPC object is 
represented as ),( tno � , where no. and to.  represent the name and 
the type of the IPC object. The object type },{. dsto � , where 
s means that the name of the object is static or contains a dynamic 
number, and d  means that the name of the object is totally 
dynamic. An application is represented as )(na � , where na. is the 
name of the application. A VM is represented as },,,{ AEOiv � , 
where iv.  is the Id, Ov.  is the set of local IPC objects for intra-
VM communications, Ev. is the set of endpoints for inter-VM 
communications, and Av. is the set of applications of the VM. 
Accordingly, the logic to handle cross-VM communications can 
be formally described as follows: 
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When an application in a VM v requests to access an IPC 
object ro of application ra , we first determine whether the 
required communication is intra-VM by checking the local IPC 
object list and the application set of the VM. Then, we search for 
the IPC object name or the application name in the cross-VM 
endpoint list of the VM. If an endpoint is found, we can quickly 
locate the corresponding cross-VM IPC object that serves the 
communication. We deny all other communication requests 
according to the isolation principle of the virtualization 
mechanism. The operator � represents that the two involved names 
are two instances of the same IPC object. For example, according 
to the renaming rule in many OS level virtualization technologies 
[20][28], a port named p will be renamed in VM1 as p-VM1 while 
in VM2 as p-VM2, thus we say p-VM1 � p-VM2.  

3.1.3 Generating Cross-VM Endpoints 

The challenge of implementing the technique is how to recognize 
all cross-VM IPC objects from thousands of candidate ones in an 
OS and form the cross-VM endpoints in a VM. Based on our 
studies, the cross-VM IPC objects provided by a type of 
application are mostly stable rather than changing over time in 
order to wait for connection requests from other applications. 
When the cross-VM IPC object name is stable, the corresponding 
endpoint uses the name of the IPC object, otherwise uses the name 
of the application.  

As manually discovering the cross-VM IPC objects is almost 
impossible, we develop a tool to complete this task automatically 
by monitoring and recording cross-VM IPCs. For every type of 
application, we only need to test it once and can use the result in 
various application scenarios with different deployments. To 
prevent potential security issues (e.g., the occurrence of some 
unexpected cross-VM communications), we run the application 
only in a secure environment and right after the system and 
applications are installed. Moreover, to thoroughly discover all 
cross-VM IPC objects of the tested application, we tried various 
possible running conditions during the test. When all possible 
conditions were tested and there were no new cross-VM IPC 
objects appear, we stopped the test for the application. 

Given the set of cross-VM IPC objects of different types of 
applications, the set of endpoints associated with an application is 
the union of the endpoints provided by all master applications that 
the application depends on. An application depends on a master 
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application as it has to access a cross-VM IPC object created by 
the master application. We say therefore that there is a cross-VM 
dependency between the dependent and master applications.  

The cross-VM dependencies can be manually configured by 
users. The cross-VM dependencies between core-applications in 
the host and the applications in VMs are considered as default. 
Only the cross-VM dependencies between the cooperative 
applications running in different VMs require configuration. For 
example, if running a web server and a database server as a pair in 
two separate VMs on a single host, the administrator can configure 
a cross-VM dependency between the web server and database 
server. 

However, when an application having a cross-VM IPC object 
runs multiple instances in different VMs, multiple instances of the 
cross-VM IPC object will confuse the applications which try to 
access one of them. Therefore, we introduce VM dependencies to 
address this issue. A VM dependency represents the cooperation 
between a dependent VM and a master VM. More specifically, an 
application running in the dependent VM will initiate a 
communication with the application running in the master VM. 
VM dependencies are generated by the following two rules:  

First, when cooperating applications are deployed into different 
VMs, these VMs should have dependencies among them. For 
example, in Figure 1, as the IIS web servers and the SQL database 
servers are deployed in four VMs separately, the administrator 
should configure that VM 1 depends on VM 2 and VM 3 depends 
on VM 4 according to the existing cooperations. Second, the 
dependencies between the host and any VM are considered as 
default since applications in any VM require the services provided 
by the core-applications run in the host environment. 

Taking into account the VM dependencies, the set of endpoints 
of a given application only contains the endpoints of the master 
applications running in the master VMs but not the ones running in 
other VMs. If a master application runs multiple instances in 
different VMs, only the endpoints of the instances in the master 
VMs are computed into the endpoint set rather than those from all 
VMs. Thus, the set of endpoints of a given VM is the union of the 
endpoints of all dependent applications running in the VM. 

A question on our cross-VM communications technique is that 
the isolation offered by an OS-level VM might be compromised. 
There is actually a trade off between isolation and interaction. That 
is, virtual machines require isolation while interactive applications 
require cooperating with each other across VM boundaries. Hence, 
our technology follows the principle: least penetration, by only 
permitting the least necessary cross-VM communications. As 
presented above, this principle is followed by only allowing the 
communications between the applications that have predefined 
cross-VM dependencies and at the same time run in the VMs 
having predefined VM dependencies. This is in accordance with 
the basic principle of security protection: least privilege, which 
requires that every program of the system should operate using the 
least set of privileges necessary to complete the job [21]. 

3.2 Application Invocations 

As shown in Table 1, cross-VM application invocations may cause 
some application failures. More specifically, some applications 
need to be cross-VM invocated by core-processes in the host 
environment, but the OS-level virtualization mechanism can not 
properly handle all of the cross-VM invocations, and thus such 
applications fail to be started inside VMs. Cross-VM invocations 
are inevitable as the core-applications responsible for launching 
such applications can not be virtualized, i.e., be duplicated in each 
VM. For example, all Windows services are started by SCM while 
SCM has to stay in the host as it is shared by all VMs and tightly 

related with the kernel. Linux, FreeBSD and Mac also have core-
applications similar to SCM on Windows, e.g., init, getty and 
launchd, which are responsible for launching many daemons. 
Having tight relations with the kernel and providing shared 
services to many other applications, these core-applications are not 
allowed by the kernel to be duplicated in each VM. Hence, 
invocating applications cross-VM is also an issue for the OS-level 
VMs built on Linux, FreeBSD and Mac, e.g., Jails [10] and Linux 
VServer [23]. 

To handle cross-VM invocations, one can modify the 
application configuration database (e.g., Windows registry) or files 
to logically add a new instance of the application to be performed 
in a VM. Every time the core-application receives a request from a 
VM, it will fork a new process in the host, and then move the new 
process into the VM. However, as core-applications are not aware 
of the OS-level virtualization, it is difficult to decide which VM 
the new process should be moved into after the new process is 
generated. One can add extra information into the application 
configuration database to denote the VM that is requesting the new 
process. However, when multiple VMs simultaneously request to 
start the same application, we are still unable to correctly 
distribute multiple new processes into corresponding VMs. 

To address this issue, we devise a novel mechanism that is 
illustrated in Figure 2. First, we prepare a distinct binary file for 
each application instance which is located in a distinct VM space, 
create a configuration entry containing the binary file path for each 
instance in the configuration database/file, and record the binary 
file path and the VM Id into the mapping table. Second, the core-
application in the host environment starts a new process according 
to the corresponding configuration entry after receiving a startup 
request from a VM. Third, we intercept a new process and decide 
which VM the process should be placed into. The decision is made 
by searching the process’ image file path in the mapping table so 
as to get the correct VM Id. Finally, we move the process from the 
host to the correct VM. 

When starting an application from a VM the first time in 
response to a user request, Shuttle automatically prepares the 
binaries, registry entries and mapping table entry of the application. 
Specifically, when a user requests starting an application from a 
VM, Shuttle intercepts the request and checks whether the binaries 
and entries for the application running in the VM are prepared. If 
not, Shuttle prepares them and then forwards the request to the 
core application in the host to perform the start operation. 

For example, an application CiSvc for indexing files has its 
image file at C:\WINNT\system32\cisvc.exe. To achieve cross-
VM startup, we copy the file to the path C:\VMs\VM-
Z\C\WINNT\system32\cisvc.exe that is within the space of VM Z, 
insert the path into a registry entry used to store the image path of 

Path 1 � VM 1 
Path 2 � VM 2 
Path 3 � VM 3 

…… 

Instance 1(binary file path 1)

VM 1 VM 2 VM 3

Host Environment

Core-Application 

ConfigurationsMapping Table 

Instance 1 Instance 2 Instance 3 

Binary 
file 2 

Binary 
file 1

Binary 
file 3

Instance 2(binary file path 2)
Instance 3(binary file path 3)

Figure 2. The mechanism for invocating applications cross-VM. 
It leverages a mapping table to help distribute multiple instances 
of the same application into multiple VMs.  
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an application to be cross-VM started, and record the path and VM 
Id Z into the mapping table. When starting a process of CiSvc, we 
determine the VM that the new process should belong to by 
searching the process’ image path in the mapping table and getting 
VM Id Z, and then move the process into VM Z. 

A special case for cross-VM invocation is that a few 
applications are in the form of DLL (Dynamic Link Library). A 
DLL-based application runs as a thread inside a host process 
instead of an independent process as normal applications do. For 
example, the DcomLaunch service is a DLL-based application 
running as a thread inside a generic Windows host process called 
svchost. However, our mechanism still can handle this special type 
of applications. That is, for a DLL-based application, we record 
the host process’ image file path in the mapping table to recognize 
VM Id rather than the application’s DLL file path, as the thread of 
the application and its host process always live together within the 
same VM. However, as multiple host processes with the same 
image file often foster different DLL-based applications, it is 
difficult to differentiate these applications’ VM Ids based only on 
the host process’ image file path. We found that, to launch a DLL-
based application, the host process has to use an exclusive 
parameter to indicate the running of the application. Accordingly, 
we attach the parameter at the end of the host process’ image file 
path in the mapping table in order to recognize the application. 
Thus, we can determine the VM Id by searching both the new 
process’ parameter and image file path in the mapping table, in 
order to place the new process into the correct VM. 

For example, the DLL-based application DcomLaunch runs 
inside a svchost process with a parameter “-k dcomlaunch”. To 
achieve cross-VM startup, we record not only the host process’ 
image file path and VM Id but also the parameter into the mapping 
table. When starting a svchost process, we first obtain the Id of the 
VM that the new process should belong to by searching the 
process’ image path and parameter in the mapping table, and then 
move the process into the corresponding VM. 

3.3 Resource Name Transfers 

When an application in a VM performs a cross-VM 
communication, it might need to transfer resource names (e.g., the 
application’s name) to the receiver application in another VM or in 
the host environment. In some situations, such names are hard-
coded and originated from the application’s binary without being 
renamed according to the rules that OS-level virtualizations often 
employ [20][28]. When multiple instances of the same application 
run in different VMs simultaneously send a hard-coded name to 
the same receiver application, unexpected conflicts or errors will 
cause the instances to fail. 

For example, the RPCSS service on Windows is such an 
application with the hard-coded application name (i.e., “RPCSS”). 
In its binary, two hard-coded RPCSS service name strings are used 
as input arguments by the service management function 
OpenServiceW(). When the RPCSS is required to start in VM Z, it 
calls OpenServiceW() to send a request to the SCM process 
running in the host environment, using the hard-coded RPCSS 
name as a parameter. OpenServiceW() in turn communicates 
across VM boundaries with the SCM through a named pipe 
NtControlPipe. The SCM then checks whether the requested 
service name is valid and without conflict. If another instance of 
RPCSS is running in the host environment or in another VM, SCM 
will refuse the open service request from VM Z since the hard-
coded RPCSS name is already registered in SCM. As a result, the 
RPCSS process in the VM Z will fail.  

The basic reason is that, the original developers did not 
anticipate that a program may be replicated with multiple 

application names. They simply hard-coded a fixed application 
name in the program codes and used it as an argument in 
subsequent calls to Win32 API functions, which send the name 
across VM boundary through an IPC channel.  

On further investigation, we find hard-coded resource names in 
binary files on other OS platforms, e.g., Linux and FreeBSD. As 
OS-level virtualization technologies often rely on resource 
renaming to separate VM spaces [20][28], this issue is not 
exclusive on Windows OS or FVM. However, existing OS-level 
virtualization technologies are not aware of this issue, let alone 
providing any solution. 

A possible solution to this issue is to intercept the related API 
functions and change the parameters that are originated from hard-
coded names following the virtualization rules. However, one can 
not intercept all the related API functions which use hard-coded 
names. If an application in a VM invokes a function that uses a 
hard-coded name but is not intercepted, the solution will not be 
able to rename the parameters.  

A better solution is to intercept only IPC related system calls 
that have a limited number in an OS. Once capturing a resource 
name in its original form in an inter-process communication, 
Shuttle changes it following the renaming rules, e.g., appending a 
VM Id to the name. However, filtering the contents of the inter-
process communications to find the names might significantly 
slow down the system as the communications are often frequent 
and contain a fair amount of content. Fortunately, Shuttle can 
differentiate cross-VM from intra-VM inter-process 
communications by checking the cross-VM endpoints as presented 
in Section 3.1. Thus, we can focus on the cross-VM inter-process 
communications. As they represent a very small fraction of the 
entire inter-process communications in a system, monitoring 
cross-VM inter-process communications only imposes little 
overhead on the system. Moreover, transferring hard-coded name 
across VM boundaries can be only pursued through IPC objects. 
Therefore, the monitoring of IPC in Shuttle is general and can be 
extended to apply in other type of OS.  

In the previous example, Shuttle monitors the pipe 
NtControlPipe and changes the application name string that the 
RPCSS writes into the pipe. Then SCM will permit the open 
service request with the service name containing the VM Id, as the 
changed name will no longer conflict with those used in other 
RPCSS instances running in the host environment or other VMs. 

4 Facilitating Intra-VM Interactions 
Although intra-VM communications between applications are 
permitted by OS-level virtualization technology, incorrect startup 
sequence of the applications would cause an intra-VM 
communication to fail. This is due to the dependencies among 
applications in the same VM as shown in the Table 1. In other 
words, as some applications (say dependent applications) depend 
on the running of other applications (say master applications) in 

RPCSSDcomLaunch

IISADMIN

W3SVC MSFTPSMTP NNTP

RPCSSDcomLaunch

SQL Server

(a) In-VM Dependency Graph of VM 1 and 3 (b) In-VM Dependency Graph of VM 2 and 4

Figure 3. The intra-VM dependency graphs resulted from the 
enterprise application scenario in Figure 1. 
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the same VM, the master applications should be started prior to the 
dependent ones. 

This seems to be a standard OS design issue i.e., arranging for 
the startup scripts to start applications in the right order to satisfy 
their dependencies. However, to achieve VM scalability and thus 
increase the number of VMs that can be active concurrently on a 
single OS, OS-level virtualization has an extra high requirement 
on resolving this issue than that of a standard OS. That is, the 
solution of this issue should help to speed up the booting 
procedure or reduce system resource occupation of a VM to the 
minimum degree.  

To avoid a possible application failure resulted from an intra-
VM dependency, existing OS-level virtualization technologies 
[20][23][28] start many system applications that often serve as 
master applications when booting a VM through manual 
configuration, e.g., Linux daemons and Windows services. These 
applications then wait for the intra-VM communications initiated 
by other applications. This will significantly slow down the 
booting procedure of the VM and occupy extra system resources, 
e.g., CPU time and memory space. On the other hand, the system 
applications not being manually configured to start at the time of 
booting VM might later be required by some dependent 
applications, which thus causes unexpected failures of the 
dependent applications. 

To address these issues, we propose a technique that starts 
master applications only on demand and stop master applications 
upon system idle, so that the master applications no longer slow 
down the VM booting procedure and unnecessarily occupy system 
resources at run time, as well as cause the failure of the dependent 
applications. This will improve the performance and scalability of 
OS-level virtualization technology. 

As a core part, the technique uses an intra-VM dependency 
graph which can be represented as a set of vertices and a set of 
directed edges connecting the vertices. A vertex represents an 
application. An edge between two vertices represents a 
dependency between two applications. Based on the intra-VM 
dependency graphs, the start-on-demand and stop-on-idle policies 
can be specified as follows: 

The start-on-demand policy starts a master application and 
increases it’s referred count at the time a corresponding dependent 
application starts. The stop-on-idle policy decreases the referred 
count of a master application when a corresponding dependent 
application stops. Once the last dependent application of a master 
application stops, the policy stops the master application when it 
does not need to remain active. 

The intra-VM dependency graph can be generated from 
application configuration files or database. For example, the 
registry entries DependOnService and DependOnGroup on 
Windows describe the dependencies between services and thus can 
be used to generate the graph. To automate the graph creation 
procedure, we develop a program to discover intra-VM 
dependencies among related applications by scanning the related 
entries in the Windows registry. As an example, Figure 3 (a) and 
(b) depict the intra-VM dependency graphs of the application 
scenario in Figure 1, which are generated by our program. 

With these two policies enforced, an OS-level virtual machine 
does not need to start system applications at the booting time but 
only upon requests. Meanwhile, a VM does not need to foster the 
idle system applications. Accordingly, the overhead of booting and 
running an OS-level virtual machine can be significantly reduced, 
and the potential application failures incurred by the intra-VM 
dependencies can be avoided.  

5 Shuttle Prototype 
We have implemented Shuttle on FVM [28][29] to facilitate 

inter-application interactions within a VM or across VMs. Figure 4 
shows the Shuttle architecture. All inter-application interactions, 
cross- and intra-VM, are captured by intercepting system calls in 
the kernel and Win32 APIs in Windows system libraries. Shuttle 
mainly intercepts system calls related to IPC, file, registry and 
process as they are often invoked for inter-application interactions. 
Some inter-application interactions that involve a few IPCs (e.g., 
message) and services can not be identified by intercepting system 
calls, we thus intercept the corresponding Win32 APIs. 

To intercept the system calls, we modify the system call entry 
point in the System Service Dispatch Table (SSDT) within the  

 

Figure 4. Shuttle architecture consists of four modules and six types of information in the kernel, as well as a 
management tool at the application level. The four modules handle the four types of interactive operations
respectively based on the six types of information.
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kernel. To intercept the Win32 APIs, we modify the library 
function entry point in the Import Address Table (IAT) of the 
application process. Shuttle adds and changes about 10k lines of 
code on FVM at both application level and kernel level. 

The intercepted interaction requests are posted to four kernel 
modules to make decisions based on six types of information, 
which are presented as follows. 

The Cross-VM Communication Module handles cross-VM 
inter-process communications based on the cross-VM endpoints. 
 

 
The Cross-VM Name Module handles name transfers across VMs. 
It checks cross-VM IPCs to rename the hard-coded resource names 
derived from applications’ binaries. The Cross-VM Invocation 
Module watches the processes that are cross-VM started and moves 
them into the corresponding VMs. Based on the intra-VM 
dependency graph, the Intra-VM Dependency Module suspends the 
processes to be started and starts their master applications first. It 
also monitors the processes to be stopped and requests to stop the 
master applications. For example, to stop a Windows service, 
Shuttle calls ControlServiceEx() with a control code 
SERVICE_CONTROL_STOP to request SCM to stop the service. 

The six types of information used by the modules include 
cross-VM endpoints, cross-VM dependencies, VM dependencies, 
cross-VM endpoints of each type of application, intra-VM 
dependency graph and configuration database (i.e., Windows 
registry). We have five key data structures to represent the former 

Interactive Operations 
Samples Cross-VM Inter-

Process 
Communications 

Cross-VM 
Name 

Transfers 

Cross-VM 
Application 
Invocations

Intra-VM 
Application 

Dependencies
RPCSS on Windows 2000    
IIS on Windows 2000    
RPCSS on Windows XP    
Dcomlaunch on Windows XP     
IIS on Windows XP    
Mysql on Windows XP    
Apache on Windows XP     
Tlntsvr on Windows XP    
CiSvc on Windows XP    
ImapiService on Windows XP    
SQL Server on Windows XP    
Ntsvcs on Windows XP    
MS Word on Windows XP    
MS PowerPoint on Windows XP    
MS Excel on Windows XP    
MS Office Assistant on XP    
AutoCAD on Windows XP    
Adobe installation on Windows XP    
MS Office 2003 installation on XP    
Regcmd installation on XP    
StraceNT on Windows XP    
ProcessMonitor on Windows XP    

Binary file paths VM Id
c:\fvms\VM1\C\WINNT\system32\inetsrv\inetinfo.exe (IIS) 1 

c:\fvms\VM3\C\WINNT\system32\inetsrv\inetinfo.exe (IIS) 3 

c:\fvms\VM2\C\PROGRA~1\MI6841~1\MSSQL\binn\sqlservr.exe (SQL Server) 2 

c:\fvms\VM4\C\PROGRA~1\MI6841~1\MSSQL\binn\sqlservr.exe (SQL Server) 4 

c:\fvms\VM1\C\WINNT\system32\svchost.exe -k rpcss (RPCSS) 1 

c:\fvms\VM2\C\WINNT\system32\svchost.exe -k rpcss (RPCSS) 2 

c:\fvms\VM3\C\WINNT\system32\svchost.exe -k rpcss (RPCSS) 3 

c:\fvms\VM4\C\WINNT\system32\svchost.exe -k rpcss (RPCSS) 4 

c:\fvms\VM1\C\WINNT \system32\svchost.exe -k DcomLaunch (DcomLaunch) 1 

c:\fvms\VM2\C\WINNT \system32\svchost.exe -k DcomLaunch (DcomLaunch) 2 

c:\fvms\VM3\C\WINNT \system32\svchost.exe -k DcomLaunch (DcomLaunch) 3 

c:\fvms\VM4\C\WINNT \system32\svchost.exe -k DcomLaunch (DcomLaunch) 4 

Applications Changed cross-VM names 
RPCSS RPCSS � RPCSS-vmZ 

DcomLaunch DcomLaunch � DcomLaunch-vmZ 

IIS W3SVC � W3SVC-vmZ 

SQL Server sqlservr � sqlservr-vmZ 

Endpoints  <IPC object name, Master VM Id> VM Id 

<\RPC Control\DNSResolver, 0> 1,2,3,4 
<\RPC Control\ntsvcs, 0> 1,2,3,4 
<\Device\NamedPipe\net\NtControlPipe*, 0> 1,2,3,4 
<\Device\NamedPipe\ntsvcs, 0> 1,2,3,4 
<\Device\NamedPipe\EVENTLOG, 0> 1,2,3,4 
<\Device\NamedPipe\samr, 0> 1,2,3,4 
<\Device\NamedPipe\sql\query, 2> 1 
<\Device\NamedPipe\sql\query, 4> 3 
<\BaseNamedObjects\DBWinMutex, 0> 1,2,3,4 
<\BaseNamedObjects\RasPbFile, 0> 1,2,3,4 
<\BaseNamedObjects\SHIMLIB_LOG_MUTEX, 0> 1,2,3,4 
<\BaseNamedObjects\ShimCacheMutex, 0> 1,2,3,4 
<\BaseNamedObjects\__R_ 0000000000da_SMem__, 0> 1,2,3,4 
<\BaseNamedObjects\DBWIN_BUFFER, 0> 1,2,3,4 
<\BaseNamedObjects\ShimSharedMemory, 0> 1,2,3,4 
<\BaseNamedObjects\ScmCreatedEvent, 0> 1,2,3,4 
<\BaseNamedObjects\SvcctrlStartEvent_A3752DX, 0> 1,2,3,4 
<\BaseNamedObjects\crypt32LogoffEvent, 0> 1,2,3,4 
<\BaseNamedObjects\userenv: User Profile setup event, 0> 1,2,3,4 
<\BaseNamedObjects\DINPUTWINMM, 0> 1,2,3,4 
<\BaseNamedObjects\TESTMSSQLSERVER. 2> 1 
<\BaseNamedObjects\TESTMSSQLSERVER. 4> 3 
<\BaseNamedObjects\TESTMSSQLSERVER_MUTEX. 2> 1 
<\BaseNamedObjects\TESTMSSQLSERVER_MUTEX. 4> 3 
<\SECURITY\LSA_AUTHENTICATION_INITIALIZED, 0> 1,2,3,4 

Table 2. Testing results of running interaction-dependent
applications in VMs with the support of Shuttle. After addressing 
the interactive operations marked, all the applications can perform 
inside VMs and cooperate across VMs correctly. 

Table 5. Mapping table for cross-VM application invocations. 
Shuttle searches a new process’ image file path within the table in 
order to get the corresponding VM Id, so that Shuttle can distribute 
the new process into the correct VM.  

Table 3. Endpoints for cross-VM inter-process communications. 
Every endpoint consists of the name of the cross-VM IPC object 
and the Id of the VM containing the object. The VM Ids listed on 
the right column indicate the VMs containing the corresponding 
endpoint. 

Table 4. Cross-VM names that are derived from hard-coded 
resource names and sent across VM boundaries by the 
corresponding applications, and in turn intercepted and renamed
by Shuttle. Z indicates the Id of the VM that the corresponding 
applications live in. 
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five types of information. The cross-VM endpoints are generated 
by the Cross-VM Communication Module and management tool 
based on the cross-VM endpoints of each type of application, 
cross-VM dependencies and VM dependencies, using the method 
presented in Section 3.1. The intra-VM dependency graph is 
generated by the Intra-VM Dependency Module and management 
tool by scanning certain registry entries, e.g., DependOnServ- 
ice and DependOnGroup. 

Shuttle was implemented in two different versions of Windows 
OS, i.e., Windows 2000 and Windows XP, as FVM was 
implemented in these two versions. We believe with minor 
changes Shuttle also can be implemented in a newer version of 
Windows, e.g., Vista, because the architecture of Shuttle does not 
contain technical details about specific version of Windows OS. 

6 Evaluation 
In this section, we present details on the experimental evaluations 
of our Shuttle prototype which consists of three parts. First, we 
investigate the effectiveness of Shuttle approach using a number 
of interaction-dependent applications and an enterprise application 
as the case to study. Second, we test whether Shuttle will cause a 
significant degradation of the isolation capability of an OS-level 
virtualization system. Third, we evaluate the performance 
overhead of our Shuttle prototype. The test-bed used in the 
evaluation consists of two machines. Machine A contains a 
Pentium-4 2.8GHz CPU with 1GB memory running both 
Windows 2K and XP and machine B contains an Intel Core 2 Duo 
2GHz CPU with 2GB memory running both Windows 2K and XP. 
We installed FVM and Shuttle on both machines. 

6.1 Effectiveness 

The objective of the Shuttle approach is to facilitate inter-
application interactions cross- and intra-VM so that the 
applications depending on these interactions can perform inside 
VMs without failures. To demonstrate the effectiveness of the 
Shuttle approach, we have run 22 interaction-dependent 
applications in the Shuttle prototype. Many of the sample 
applications have failed to perform inside a VM without the 
support of Shuttle so far, e.g., RPCSS, IIS, SQL Server, Ntsvcs, 
AutoCAD, Adobe installation and MS Office assistant. To 
sufficiently test all potential interferences among separate 
instances of the same application, each sample application at least 
runs three instances simultaneously on a single host. One instance 
runs in the host environment and the other two run in two different 
VMs respectively. Table 2 shows the evaluation results. Each row 
presents an application and the interactive operations appeared 
when running the application inside a VM. With these interactive 
operations resolved by Shuttle, all samples tested can successfully 
run three instances simultaneously on a single host. 

Moreover, the sample applications running in VMs behaved 
correctly, which was verified as follows. RPCSS, Dcomlaunch and 
Ntsvcs were verified by the successful running of many other 
tested samples that depend on these three applications. IIS, 
Apache, Mysql and SQL Server were verified by building and 
operating websites. Tlntsvr was verified by supporting a telnet site. 
The installation programs were verified by the successful 
messages appeared at the end of installation procedures. StraceNT, 
Regcmd, CiSvc and ProcessMonitor were verified by checking 
whether they can work properly. The remaining samples were 
verified by opening and editing corresponding type of files. 

As a case study, we further set up an enterprise application 
scenario that runs two pairs of web server and database server in 
four VMs respectively on a single Windows XP OS, as presented in 
Section 2. The applications worked properly and quickly. In the 

VMs, we performed various operations including browsing web 
pages, submitting web forms filled, downloading and uploading 
files. To handle some operations, the web servers cross-VM 
accessed the backend database server deployed in another VM. By 
calling the function DbgPrint() in the kernel and analyzing the 
results displayed with a debugging tool DbgView, we obtained the 
information used by Shuttle to handle the four types of operations 
that impact application interactions, which are presented as follows. 

For cross-VM inter-process communications, the endpoints of 
every VM are listed in Table 3. In the table, all VMs have almost 
the same endpoints, except that VM 1 and 3 have more endpoints to 
access corresponding SQL Server in VM 2 and 4. The * character 
following the IPC object NtControlPipe indicates an arbitrary 
number that changes over time, as introduced in Section 3.1. The 
IPC objects DBWinMutex and DBWIN_BUFFER are specially 
generated by the DbgView for printing messages. The cross-VM 
names intercepted and changed are listed in Table 4. For the cross-
VM application invocations, Table 5 presents the mapping table 
that records the binary file paths of the applications to be cross-VM 
started and their corresponding VM Ids. The intra-VM dependency 
graphs of all VMs are depicted in Figure 3 (a) and (b). 

Therefore, Shuttle can successfully support all four types of 
interactive operations summarized in Table 1, which in turn 
supports all necessary cross-VM interactions. 

6.2 Isolation 

In order to evaluate the impact on the isolation capability of FVM 
caused by Shuttle, we prepared 19 pairs of small programs to test 
all possible forms of cross- and intra-VM operations. Each pair of 
programs is responsible for testing one type of Windows OS 
object, which consists of a client and a server. The testing results 
are shown in Table 6. The Intra-VM column indicates the results 
of the accesses from a client to a server both of which are placed 
within the same VM. All Intra-VM accesses are permitted. The 
VM-VM and VM-Host columns indicate the access results from a 
VM to another VM and from a VM to the host, which mostly are 
refused. In other words, cross-VM operations are correctly 
blocked and thus the VM isolation is preserved. 

There are two exceptions in the table. One is at the rows for 
socket, which allows connect and send operations to cross VM 
boundary, because network communications should be permitted. 
The other is at the rows for file, registry and device, which allows 
read operations to be carried from a VM to the host. This is the 
result of the copy-on-write policy of FVM which aims to avoid 
duplicating a huge volume of OS objects from the host to each 
VM environment. However, this should not affect the isolation 
since any write result is saved separately within the corresponding 
VM. In addition, for many types of objects, e.g., event, we test 
open operation instead of read and write, because read and write 
operations need object handles that are obtained by open 
operations. 

We also tested 30 more individual applications. Every 
application can smoothly run three instances simultaneously in 
two VMs and the host environment separately. The applications 
are as follows: Google Chrome, Windows command prompt, 
Internet Explorer, Microsoft Clip Organizer, MS Outlook Express, 
MS Messenger, mIRC, Visual C++, Firefox, Adobe Reader, 
Bitcomet, Foxmail, Windows Media Player, Putty SSH client, 
WinRAR, Skype, Windows FTP client, Beyond Compare, Source 
Insight, Calculator, Utility Manager, Notepad, Minesweeper, 
Hearts, WebBench Client, Winamp, Internet Backgammon, 
Diffutils Installation, Registry Commander, fvmsetup. 

Moreover, our former test in Section 6.1 also shows that 
Shuttle can provide enough isolation even when facilitating cross-
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VM interactions, as multiple instances of the same application can 
simultaneously perform inside different VMs and the host. 

In short, the three serials of testing results above show that, 
Shuttle can successfully offer isolation functionality while 
providing necessary exceptions for essential cross-VM interactions. 
The major reason lies in our principle of least penetration. That is, 
we only allow the cross-VM communications with specific IPC 
object names between predefined applications run in predefined 
VMs. Therefore, the chance of compromising the isolation of a 
VM is reduced to the minimum level. 

 
6.3 Performance 

In this section, we show the impact of Shuttle on the performance 
of virtualized applications and virtual machines. As the 
performance overhead of Shuttle results mainly from executing 

additional instructions when intercepting system calls and API 
functions, we measure specifically the interception overhead of the 
corresponding system calls and API functions. First we disable the 
FVM layer, run a group of applications natively in the host 
environment, and count the average number of CPU cycles spent in 
each system call and API function with the rtdsc instruction. Then, 
we enable the FVM layer without Shuttle, run the same 
applications in a VM and take the same measurements. Finally, we 
enable the FVM layer with Shuttle, run the same applications and 
take the same measurements. Each of the reported numbers shown 
in Table 7 is an average of the results of 100 runs on machine A 
running Windows 2K. 
 

Table 7 shows the interception overheads in terms of CPU 
cycles of a set of intercepted system calls and Win32 API 

Objects Operations VM-VM VM-Host Intra-VM Objects Operations VM-VM VM-Host Intra-VM

Read   Create   
Write   Open   

File/ 
Directory 

Create   
Service 

Start   
FileMapping Open   Window Find   
Data Copy Send   Mutant Open   

Read   Create   
Write   

Semaphore 
Open   Registry 

Create   Read   
RPC Send   

Named Pipe 
Write   

Read   Get Data   
Write   

Clipboard 
Set Data   Device 

Create   Bind   
Process Open   Connect   
Mailslot Open   

Socket 

Send   
Event Open   Message Send   
COM Request   Connect   
Timer Open   

Port 
Request   

System calls and Win32 API functions Native 
(CPU Cycles) 

FVM 
(CPU Cycles) 

Shuttle 
(CPU Cycles) 

Overhead 
(%) 

NtCreateFile 334,492 401,931 (20%) 403,297 (21%) 0.3% 

NtOpenFile 167,620 216,895 (29%) 218,435 (30%) 0.7% 

NtCreateNamedPipeFile 183,574 223,960 (21%) 240,481 (31%) 7.4% 
File 

NtCreateMailslotFile 40,790 42,015    (3%) 47,807   (17%) 13.8% 

NtOpenSemaphore 30,234 64,286 (113%) 69,840  (131%) 8.6% 

NtCreatePort 37,241 72,309   (94%) 79,901  (115%) 10.5% IPC 

NtOpenSection 38,134 72,742 (91%) 80,234 (110%) 10.3% 

StartService 2,166,808,231 2,166,819,311 (<0.1%) 2,166,818,157 (<0.1%) <0.1% 

RegisterServiceCtrlHandlerEx 2,865,374 2,865,609 (<0.1%) 2,865,481 (<0.1%) <0.1% 

QueryServiceStatusEx 2,011,945 2,011,960 (<0.1%) 2,011,959 (<0.1%) <0.1% 

CreateService 8,264,623 8,406,775 (1.7%) 8,264,803 (<0.1%) -1.7% 

Service 

OpenService 5,490,443 5,490,570 (<0.1%) 5,589,401 (1.8%) 1.8% 

Table 6. Testing results of the isolation capability of FVM enforced with Shuttle, which can correctly block general cross-VM 
interactions including both VM-VM and VM-Host interactions. and represent blocked and allowed operations, respectively.

Table 7. Interception overhead of system calls and Win32 API functions. Compared with old FVM without Shuttle, the new FVM 
enforced with Shuttle adds less than 13.8% extra CPU cycles for file-related system calls, less than 10.5% for IPC-related system calls, 
and less than 1.8% for service related API functions. 
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functions, including four file-related system calls, three IPC-
related system calls and five service related API functions. The 
new FVM with Shuttle enforced takes up to 31% more CPU 
cycles than the native configuration for file-related system calls, 
up to 131% for IPC-related system calls and 1.8% for service 
related API functions. Although the per-system call overhead 
seems to be significant for IPC-related system calls, the end-to-end 
impact on the overall system performance is much smaller, 
because IPC-related system calls account for lower than 0.2% of 
all invoked system calls in our test applications. Moreover, 
compared with old FVM without Shuttle, the current 
implementation of the proposed Shuttle approach adds less than 
13.8% extra CPU cycles for file-related system calls and less than 
10.5% for IPC-related system calls. For most service related API 
functions, the new FVM is actually as fast as the old one or even 
slightly faster, because service names used in API functions do not 
need to be renamed when Shuttle is in place. From these results, 
we can conclude that the performance cost of Shuttle is quite 
acceptable. 

7 Discussion 
As Shuttle prototype is based on Windows OS, one might question 
whether it is applicable to the OS-level virtualization based on 
other OSes, e.g., Linux. First, the issues resolved by Shuttle should 
also appear in other OS-level virtualization systems, because they 
are irrelevant to specific OS or virtualization technique. As 
analyzed in Section 3.1.1, Section 3.2, Section 3.3 and Section 4, 
these issues are actually derived from the nature of OS-level 
virtualization or applications, and thus also occur in Linux-based 
virtualization systems. As some concrete examples, there is a list 
of programs that have problems with Linux-VServer [14]. Some of 
the problems correspond to the issues resolved in this paper, for 
example, the problem “OpenLDAP Startup” is caused by 
application dependency, “rndc” is caused by hard-coded name and 
“Links inside screen inside a V-Server” is caused by cross-VM 
invocation. The techniques in this paper should be useful when 
resolving these problems in Linux-VServer. Second, the shuttle 
solutions for these issues actually do not depend on specific OS, 
though we often use Windows OS as examples in order to present 
the techniques more clearly. Therefore, we believe Shuttle should 
be applicable to the OS-level virtualization systems on other OSes.  

8 Related Work 
As far as we know, there is no such a project that can successfully 
handle all types of inter-application interactions across and within 
OS-level VMs in the literature. There are three categories of 
projects close to our work.  

The first category is OS-level virtualization projects that 
include FreeBSD Jail [10], Linux-VServer [23], Solaris Zones [20], 
Open VZ [24], FVM[28], Zap [16], PDS [1] and Cells [2] etc. 
These projects successfully partition a single OS environment into 
multiple VMs more extensively and efficiently. However, very 
limited efforts have been made on application interactions cross-
VM and intra-VM, although they are required by many 
cooperative applications. FVM [28] hard-codes a few IPC object 
names as exceptions in its virtualization layer, so that it can 
partially support the cross-VM communications between 
applications in a VM and in the host environment. However, it can 
not flexibly support the types of cross-VM communications that 
are not hard-coded. Moreover, it can not support other types of 
interactive operations, e.g., cross-VM names and intra-VM 
dependencies. As a result, it is able to only virtualize a limited 
number of ordinary Windows services, whereas, it can not 
virtualize Windows system services such as RPCSS and ordinary 

Windows services that require complex inter-service interactions, 
e.g. IIS service group. To virtualize system services, we propose a 
service virtualization scheme in our former work [22]. In contrast, 
this paper focuses on inter-application interactions. As service 
virtualization also involves inter-application interactions, some 
issues might be similar. However, the resolutions to these issues 
are different. Moreover, the most important issue addressed in this 
paper is on VM-VM interactions, while it was not considered in 
our former work.  

Zap [16] introduces pods, which are groups of processes that 
are provided a consistent, virtualized view of the system. 
Processes outside a pod can only interact with processes inside the 
pod using network communication and shared files instead of IPC. 
Shuttle provides a possible solution to facilitate inter-application 
interactions across pod boundary when pursuing a better 
performance. Cells [2] is a virtualization architecture for enabling 
multiple virtual smartphones to run simultaneously on the same 
physical cellphone. It sets up IPC sockets to facilitate 
communication between VM and the host. Shuttle, however, also 
address issues related to VM-VM communication, cross-VM 
invocation and transferring hard-coded names. These extended 
functions may allow Cells to work in more application scenarios. 

The second category of projects similar to our work focuses on 
how to achieve inter-VM communications for a hardware-level 
virtualization system. For example, the Xen [4] platform enables 
applications to transparently communicate across VM boundaries 
using standard TCP/IP sockets and traversing the network 
communication path via Dom0. In order to improve the 
performance of cross-VM communications, XenSocket [30], IVC 
[9], XWay [11], XenLoop [27] and Fido [6] have exploited the 
inter-domain shared memory provided by the Xen hypervisor. 
However, these techniques in Xen intercepts outgoing network 
packets beneath the network layer, and thus can not handle the 
inter-process communication (IPC) in OS-level VM as most IPC 
data will not go beneath the network layer. Different from these 
projects, Shuttle focuses on facilitating IPCs between OS-level 
VMs. Moreover, it handles not only cross-VM communications 
but also cross-VM names and startups, as well as intra-VM 
dependencies, which are mainly resulted from the characteristic of 
OS-level virtualization when multiple VMs share the single OS 
kernel. 

The third category of projects is library operating systems 
[7][8][12]. The idea is that the entire personality of the OS on 
which an application depends runs in its address space as a library. 
A recent project, Drawbridge [19], shows the library OS can offer 
better system security and more rapid independent evolution of OS 
components. As a structuring principle, Drawbridge identifies 
three categories of services in OS implementations: hardware 
services, user services, and application services. Then, it uses 
these service categories to drive the refactoring of Windows into 
the Drawbridge library OS. Drawbridge packages application 
services into the library OS and leaves user and hard-ware services 
in the host OS. The scheme of Shuttle to handle inter-process 
interactions across VM boundary can be useful to resolve the 
multi-process applications problem in Drawbridge. 

9 Conclusion 
Advances in OS-level virtualization technology have strengthened 
the isolation between VMs. However, many interaction-intensive 
applications require penetrating the isolation boundaries to 
cooperate with the applications in other VMs. In this paper, we 
make the first step towards supporting the application interactions 
in an OS-level virtualization system by facilitating four types of 
interactive operations, including cross-VM inter-process 
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communications, cross-VM name transfers, cross-VM application 
invocations and intra-VM application dependencies. Specifically, 
we design a novel approach, Shuttle, that consists of four 
techniques, each of which intends to handle a corresponding 
interactive operations. As a result, a number of interaction-
depending applications that can not run within a VM previously, 
e.g., RPCSS, IIS, can now run under the support of Shuttle. 
Empirical performance measurements on the prototype 
implementation of the proposed Shuttle approach show that the 
compromise on isolation are negligible and the additional 
performance overhead is rather minor, when compared with that of 
the original version of FVM.  
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