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Abstract
In software for embedded systems, the frequent use of interrupts for
timing, sensing, and I/O processing can cause concurrency faults
to occur due to interactions between applications, device drivers,
and interrupt handlers. This type of fault is considered by many
practitioners to be among the most difficult to detect, isolate, and
correct, in part because it can be sensitive to execution interleavings
and often occurs without leaving any observable incorrect output.
As such, commonly used testing techniques that inspect program
outputs to detect failures are often ineffective at detecting them. To
test for these concurrency faults, test engineers need to be able to
control interleavings so that they are deterministic. Furthermore,
they also need to be able to observe faults as they occur instead of
relying on observable incorrect outputs. In this paper, we introduce
SimTester, a framework that allows engineers to effectively test for
subtle and non-deterministic concurrency faults by providing them
with greater controllability and observability. We implemented our
framework on a commercial virtual platform that is widely used to
support hardware/software co-designs to promote ease of adoption.
We then evaluated its effectiveness by using it to test for data
races and deadlocks. The result shows that our framework can be
effective and efficient at detecting these faults.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Testing tools, Tracing; D.3.4 [Pro-
gramming Languages]: Processor—Run-time environments

General Terms Reliability, Experimentation, Languages

Keywords Testing, Concurrency, Kernels, Device Drivers

1. Introduction
Concurrency faults such as data races, atomicity violations, and
deadlocks are difficult to detect, isolate, and correct. This is because
these faults are sensitive to execution interleavings; therefore, they
often occur intermittently and unpredictably. Furthermore, certain
classes of concurrency faults such as data races and atomicity vio-
lations do not always produce visible failures; therefore, techniques
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that inspect program outputs to detect failures are often ineffective
at detecting them. As such, we have seen many instances of con-
currency faults that remain dormant during testing and debugging
periods and then appear during deployment [3, 10, 34].

In software for embedded systems, the frequent use of inter-
rupts for timing, sensing, and I/O processing can cause concurrency
faults to occur due to interactions between applications and inter-
rupt handlers. As an example, occurrences of data races between
interrupt handlers and applications have been reported in a previous
release of uCLinux, a Linux OS designed for real-time embedded
systems. In this particular case the serial communication line can
be shared by an application through a device driver and an interrupt
handler. In common instances, the execution of both the driver and
the handler would be correct. However, in an exceptional operating
scenario, the driver would execute a rarely executed path. If an in-
terrupt occurs at that particular time, simultaneous transmissions of
data is possible. (Section 3 provides further details).

Traditional techniques for testing for such concurrency faults
require that engineers repeatedly execute a program. It is hoped that
during such testing, a particular execution interleaving can reveal
faults. There are two major problems with this approach. First, to
reveal faults, tests must produce observable incorrect outputs. The
absence of observable incorrect outputs, however, does not mean
that there are no concurrency faults in the program. In the example
described above, when data races occur, there is no guarantee that
incorrect outputs are generated (e.g., in one scenario the interrupt
handler wins the race and completely overwrites data written by
the application). Therefore, for engineers to effectively test for data
races in this case, they must be able to observe the simultaneous
transmissions and not just rely on the presence of incorrect outputs.

As a second requirement for revealing faults, engineers must
be able to exercise specific execution interleavings. However, engi-
neers often do not have control over execution sufficient to exercise
interleavings that are likely to expose faults. In the examples we de-
scribe in Section 3, engineers need to be able to force an interrupt
to occur at a particular location of a program. Unfortunately, exist-
ing approaches for randomly forcing interrupts [38] are not power-
ful enough to support such a precise requirement. In the ideal case
in which randomly invoking interrupts does expose faults, it may
miss faults that can occur due to other interleavings.

There are existing techniques that can precisely detect concur-
rency faults such as data races as they occur instead of waiting
to analyze the output [7, 20]. However, many of these techniques
require significant source code modifications to record access se-
quences, monitor lock usage and track data reads and writes. Major
code modifications make such approaches expensive; i.e., execu-
tion slowdown can be as high as a factor of 12. Moreover, extensive
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code modifications make adopting these approaches in real-world
software development environments challenging.

To achieve greater execution control, several existing approaches
have tried to abstract away scheduling non-determinism. For exam-
ple, there are techniques that perform dynamic analysis to permute
execution interleavings [13]. There are also approaches based on
model checking that can exhaustively explore execution interleav-
ings [35]. Last, there are approaches that tightly control scheduling
orders to make execution more deterministic [11]. One character-
istic that these approaches have in common is that they require
additional tools and runtime support that are not commonly used
by real-world practitioners. As such, they have not been widely
adopted by the software development community.

A further drawback with the foregoing techniques is that they
have rarely been adapted to work in scenarios in which concurrency
faults occur due to asynchronous interrupts. It is unclear whether
these approaches can work in such a scenario for two reasons. First,
controlling interrupts requires fine-grained execution control; that
is, it must be possible to control execution at the machine code level
and not at the program statement level, which is the granularity at
which many existing techniques operate [13, 41]. Second, occur-
rences of interrupts are highly dependent on hardware states; that
is, interrupts can occur only when hardware components are in cer-
tain states. Existing techniques are often not cognizant of hardware
states [24, 38].

In this paper, we introduce a testing framework, SimTester, that
provides observability and fine-grained controllability features suf-
ficient to allow test engineers to detect concurrency faults that oc-
cur due to interactions between software and hardware. SimTester
takes advantage of many features readily available in many virtual
platforms to tackle the challenges of testing for concurrency errors
in embedded software. Particularly, we can achieve the level of ob-
servability and controllability needed to test such systems by uti-
lizing the virtual platform’s abilities to interrupt execution without
affecting the states of the virtualized system, to monitor function
calls, variable values and system states, and to manipulate memory
and buses directly to force events such as interrupts and traps. As
such, SimTester is able to stop execution at a point of interest and
force a traditionally non-deterministic event to occur. Our system
then monitors the effects of the event on the system and determines
whether there are any anomalies.

As stated earlier, many existing approaches for detecting con-
currency faults are not widely used because they require signifi-
cant deployment efforts. We have designed SimTester to overcome
deployment obstacles by implementing it on a commercial virtual
platform called Simics [18, 23, 45]. We chose Simics for several
reasons. First, similar to other full-system simulators, Simics pro-
vides functional and behavioral characteristics similar to those of
the target hardware system, enabling software components to be
developed, verified, and tested as if they are executing on the ac-
tual systems. Second, through a rich set of Simics APIs, software
engineers have the ability to non-intrusively observe and control
various system behaviors without ever needing the source code.
Third, due to its powerful device modeling infrastructure, Simics
already plays a critical role in hardware/software (HW/SW) co-
designs; therefore, adding the proposed capabilities to it will en-
able adoption without requiring much effort [43]. Thus, we envi-
sion that SimTester will allow several aspects of product integration
testing to be moved up to the co-design phase of system develop-
ment. Fourth, licensing of Simics is free for academic institutions,
making it a good platform for research.

SimTester is implemented for applications running on x86/Linux
environments. There are four major components that interact with
Simics:

• A configuration repository stores initialization scripts con-
taining information that includes execution break-points and
variable locations that must be observed.

• An execution controller is an external module that can be
attached to Simics. It invokes callback functions when events of
interest occur (e.g., interrupts, memory read/write operations).

• An execution observer is another external module that can be
attached to Simics. It monitors information generated by the
execution controller and then records it in a file.

• An oracle repository stores test oracle files in the form of
property requirements.1 For example, the oracle can specify in
which condition data races or deadlocks occur. Each log file is
compared against an oracle file to detect a particular type of
anomalous execution behavior.

By using SimTester, engineers can directly observe races and
causes of deadlocks as they occur. They can also precisely control
the occurrences of interrupts so that they can test every variable
that can be accessed by both the application and interrupt handler
for vulnerabilities to concurrency faults. SimTester yields precise
detection of data races; that is, it produces no false positives. It
is also effective; that is, if races or deadlocks are possible on a
shared variable under test, they can be found more easily than
with testing approaches that do not incorporate our framework.
To evaluate the potential usefulness of SimTester we apply it to
test for two classes of errors. These include data races (using an
approach similar to that introduced by Higashi et al. [24] but with
additional optimization) and deadlocks between device drivers and
interrupt handlers. Our results show that SimTester can be effective
and efficient.

The remainder of this paper is organized as follows. Section 2
provides an overview of SimTester, and Section 3 provides further
details and a description of the approach by which engineers use
it. Section 4 describes our evaluation of SimTester, and Section 5
provides details on related work. Finally, Section 6 concludes.

2. Introducing SimTester
Figure 1 depicts the overall architecture of the SimTester frame-
work. There are four major components in the framework in addi-
tion to Simics itself. As stated earlier, Simics provides APIs that
can be accessed via Python scripts; thus, all components except the
test oracles are Python scripts.

The first component is the configuration script, the content of
which includes information such as locations at which to set execu-
tion breakpoints, addresses of variables that need to be monitored,
and machine instructions that need to be monitored.

The second component is the execution controller program.
This program specifies certain events to be invoked at particular
points in executions. It can generate data that can cause the system
to take different execution paths. As an example, the framework can
artificially create I/O interrupts simply by writing data to I/O bus
or memory locations that have been mapped to hardware devices. It
can also force the system to execute a particular exception handling
routine by artificially creating that exception. Finally, it can force
the system to execute a particular path by specifically setting a
conditional value.

The third component is the execution observer program, which
monitors and generates information that can either be recorded into
a file for offline analyses (used to detect data races) or fed directly
into the test oracles for online analyses (used to detect deadlocks).
Any anomalies are reported in the result file.

1 In the testing literature, a test oracle is the device by which engineers
determine whether a test has elicited a failure in a system.
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Figure 1. Overview of the SimTester architecture.

To use the framework, a test engineer first configures Simics to
model the system to be tested. The engineer then writes a config-
uration script to set up breakpoints and a variable watch list, and
specific instructions to be monitored (e.g., procedure calls and re-
turn instructions). In addition, the engineer also writes a script to
specify actions to be taken when monitored events occur (Simics
refers to these actions as handlers.) As an example, a handler for
reaching an execution breakpoint could be firing a timer interrupt.
Another possible handler for writing to a monitored address could
make the written data available for logging or on-line analysis. Any
generated information is processed by the execution observer.

In addition to the components illustrated in Figure 1, a test
driver is also needed to automate the testing process. Typically,
engineers conduct testing by running test programs on a system.
A test driver is a program that automates the process of running
test programs in a suite and managing the generated log files.

After a test driver executes a test case an event log file is
generated. Log files can then be analyzed to detect anomalies, or
saved for further off-line analysis. Typically, in a testing process
that detect faults by analyzing a program’s output, the test oracle
is the correct output of the program. On the other hand, if a testing
process detects faults by analyzing execution behaviors, then the
test oracle can consist of properties that specify correct execution
behaviors [47]. In this paper, we compare both types of oracles.

3. Utilizing SimTester
In this section, we describe and illustrate how SimTester can be
used to test for two significant classes of concurrency faults: data
races and deadlocks. These two classes of faults have been identi-
fied as the most “nasty” faults to test for in embedded software [17].
When we conduct testing for data races, the components under test
include the main application, the UART device driver, and the ISRs
that are associated with specified serial ports. The focus of our illus-
tration is testing for races that occur when the application coupled
with the device driver interact with an ISR.

Note that in the illustration that we present, interrupts are not
nested, but our algorithms do also support nested interrupts. Also
note that our illustration considers only a single ISR but our algo-
rithm can be generically applied to handle multiple ISRs; however,

in that case it is more difficult to isolate events related to any one
particular ISR. In addition, because our framework forces interrupts
to occur, we would like to distinguish between interrupts that oc-
cur naturally as part of program execution and forced interrupts
issued by the execution control module of SimTester. We refer to
the former type of interrupts as self-generated, and to the latter as
controlled.

3.1 Data Race Detection
In prior releases of uCLinux version 2.4, there is a particular data
race that occurs between the UART driver program uart start
and the UART ISR serial8250 interrupt. As it turns out,
a similar error also existed in the early version of the 2.6 Linux
kernel [26]. We provide the code snippets that illustrate the error in
Figure 2.

The error can be summarized as follows. Under a normal op-
erating condition, the ISR is always responsible for transmitting
data. Routine serial8250 startup is responsible for initializ-
ing the UART port and assigning the ISR. To ensure that an ISR is
assigned correctly, it issues an interrupt and monitors the response
from the ISR. Several sources have shown that problems such as
races with other processors on the system or intermittent port prob-
lems can cause the response from the ISR to get lost or cause a
failure to correctly install the ISR, respectively [26, 27]. When that
happens, the port is registered as “buggy” (line 5 in Figure 2) and
workaround code based on polling instead of using interrupts is
used (lines 8-11). Unfortunately, interrupts are not disabled in the
workaround code region so by the time the workaround code is ex-
ecuted, it is possible for both the ISR and the workaround code to
be transmitting or receiving data through the same serial port at the
same time. As such, a race in this illustration occurs when:

1. the program is preempted by the ISR immediately after a shared
memory access before it can proceed to next instruction;

2. the ISR manipulates the content of this shared memory.

Higashi et al. [24] introduce an approach to test for this fault
by controlling invocations of interrupts. In that work, they used an
ARM-based processor simulator and modified version of uCLinux
with the same fault so that it could run on that simulator. Their
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static int serial8250_startup(...)
1. { ...
2. if (lsr & UART_LSR_TEMT &&
3. iir & UART_IIR_NO_INT) {
4. if (!(up->bugs & UART_BUG_TXEN)) {
5. up->bugs |= UART_BUG_TXEN;
6. }

static void serial8250_start_tx(...)
7. { ...
8. if (up->bugs & UART_BUG_TXEN) {
9. ...
10. transmit_chars(up);
11. } ...
}

Figure 2. Faulty code that can cause data races in the UART driver
in Linux.

modifications included porting the code over from PPC to ARM
and removal of irrelevant code to reduce the simulation time. Their
methodology was to invoke an interrupt at every memory read and
write operation.

For this illustration, we replicated the fault found in Fedora
Core 2.6.15. We also recreated a similar testing system based on
SimTester with two additional optimization techniques. In the first
optimization technique, we apply static program analysis to de-
tect the resources that can be affected by the UART driver and
the ISR. With this optimization, we invoke interrupts only when
these shared resources are accessed. Second, we also check the sys-
tem states to ensure that it is possible to invoke interrupts when
those resources are accessed. These two optimizations should sig-
nificantly reduce the time required to conduct testing. Next, we dis-
cuss the configuration of SimTester that allows engineers to test for
this fault.

Configuration of the Test System
To test for data races we need to provide two components to the
system under test: the test input and conditions governing when to
invoke interrupts from within the system. In this case, a test case
is used as the test input for the program under test (PuT) (which
in this case includes the application and any device driver running
under non-interrupt service routine context that is called by the
application.) In the case we are considering, the PuT includes an
application that interacts with a serial port and the UART driver.
We refer to the interrupt service routine for the tested UART port as
the ISR. Note that test cases for the PuT can be generated based on
various criteria. We discuss the criteria we use in the next section.

Next, we need to describe each interrupt condition (IC). We
express IC as a tuple: < loc, pin >. The first element loc specifies
a code location at which to invoke an interrupt. The second element
pin specifies an Interrupt Request (IRQ) line number at which to
invoke the interrupt. This is needed because typically, an interrupt
service routine can be associated with multiple IRQ lines. ICs are
used only when the controllability module is enabled.
Observer Module. We configure the observer module so that it
records runtime information that can be used by test engineers to
perform off-line analysis for races. In this example, the generated
information includes:

• when functions of the PuT and ISR execute and when they
return, and

• when SVs are accessed by the PuT and written by the ISR.

As such, one of our configuration tasks is to set execution break-
points in Simics to detect when functions in the PuT and ISR exe-
cute and when SVs are accessed. The algorithms to accomplish this
task are provided next.

procedure BasicConfig()
1: begin
2: for each function f in the PuT and ISR
3: set execution breakpoint at entry point function addr of f
4: endfor
5: set execution breakpoint on function return instruction ret
6: set execution breakpoint on interrupt return instruction iretd
7: end

procedure RaceObserver()
require: procedure BasicConfig()
1: begin
2: for each SV in list lSV

3: set memory read/write breakpoint at SV
4: endfor

5: switch (breakpoint)
6: case function addr:
7: func list.push({func addr, ebp, esp})
8: if func addr == ISR entry
9: log “ISR entry”
10: is ISR = true
11: endif
12: case ret:
13: if esp == func list.top[index esp]
14: if func list.top[index func] == ISR entry
15: is ISR = false
16: log “ISR exit”
17: endif
18: func list.pop()
19: endif
20: case iretd:
21: if ebp == ebp switch
22: log “iretd”
23: /*log program counter in next instruction*/
24: next pc()
25: endif
26: case SV:
27: /*check if SV is accessed by the PuT*/
28: if ebp == func list.top[index ebp]
29: if is ISR == false
30: log “PuT”, SV ,SVaccess, pc
31: /*save Reg[ebp] content*/
32: ebp switch = ebp
33: else /*interrupt handler context*/
34: if SVaccess == write
35: log “ISR”, SV , SVaccess

36: endif
37: endif
38: endif
39: end

Execution memory breakpoints are set in BasicConfig, includ-
ing function entry addresses function addr (line 3), function re-
turn instructions ret in the PuT and ISR (line 5), and interrupt re-
turn instructions iretd (line 6). Races occur when both the PuT and
ISR access the same memory location, so a memory breakpoint for
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...
PuT, $xmit->tail$, read, pc1
ISR entry
ISR, $xmit->tail$, write
ISR exit
IRETD
pc1+1
...

Figure 3. Sample trace information for race detection.

each SV address is set in callback function RaceObserver, which is
invoked whenever the execution reaches a breakpoint.

One challenge in setting up a breakpoint for each SV is that
we need to be able to obtain the dynamic address of that SV. One
option for doing this is to parse the symbol table. However, the
symbol table provides only global variable addresses so our system
may miss other shared variables such as local pointers. To obtain
the address of each SV that has been identified by our static analysis
(Section 4), we first create an instrumented version of the ISR so
that it dynamically prints each SV address. We then iteratively
inject data into the device port or adjust the device’s register so
that we can obtain the addresses of all SVs in the ISR stored in
lSV . Our function RaceObserver sets breakpoints at these shared
variable addresses in line 3 of RaceObserver.

To isolate the PuT and ISR from other applications in the system
or other ISR invocations, we statically identify all function names
in the PuT and their entry addresses. We also identify the entry
address to the ISR. These addresses can be obtained by parsing
the symbol tables. Furthermore, we monitor the function return
instruction (ret in X86) to determine whether a function or the ISR
has returned, and the interrupt return instruction (iretd in X86) to
determine whether the PuT has been recovered from the interrupt
context.

At runtime, we keep a calling stack named func list. When
a function or an ISR is invoked its <address, frame pointer, stack
pointer> is added to calling stack (line 7). When a shared variable
is accessed, we compare the current frame pointer ebp with the
frame pointer on top of calling stack (line 28). This mechanism
allows us to ignore those shared variables that might be accessed
by a different ISR or a different program on the same ISR. If a ret
instruction is encountered, by comparing the current stack pointer
esp with the stack pointer on top of calling stack (line 13), we can
determine whether the current function or the ISR has returned.

A function is popped from calling stack if its ret instruction
is reached. Program counter pc is recorded twice to determine
whether the PuT is actually preempted between a shared variable
access and its following instruction. The first time is when a shared
variable is accessed (line 30) under a non-interrupt service routine
context, and the second time is after an interrupt returns (line 24).
An interrupt return instruction iretd is recorded to indicate termi-
nation of an interrupt context. Note that the mere presence of an
iretd does not imply that an interrupt will jump back to the PuT,
because more than one device can issue interrupts and call iretd
instructions. To overcome this problem, an iretd is logged only
when its frame pointer is equal to the frame pointer when a shared
variable is accessed in the PuT (line 22).

In summary, events logged for testing race conditions include:
(1) read/write accesses to shared variables (SVaccess by the PuT);
(2) entry to the ISR; (3) a write to an SV by the ISR; (4) return from
the ISR; (5) context switches from the ISR to the PuT. Figure 3
illustrates a sample of trace information recording these events for
this example.

Note that there is a race in the trace given in Figure 3. By
observing the program counter when SV is accessed by the PuT
and the interrupt recovery point, we can determine that an interrupt
occurs right after xmit− > tail is read by the PuT.

Controller Module. When engineers enable the controller mod-
ule RaceController, a controlled interrupt is invoked right after a
shared variable access by the PuT. Simics provides a simple inter−
face API to issue an interrupt on a specific IRQ line. This interface
guarantees that the interrupt happens before the subsequent instruc-
tion. As such, when our test system reaches a memory breakpoint,
the observer module is called. If the controller module is enabled,
the observer module tries to invoke an interrupt right after the ac-
cess to SV.

It is not always realistic, however, to invoke an interrupt when-
ever we want. For example, the interrupt enable register and possi-
bly other control registers have to be set to enable interrupts. Even
if interrupts are enabled, they can be temporarily disabled. The fol-
lowing routine is the routine in RaceController used to determine
whether it is possible to issue an interrupt.

procedure ISR enabled(int p)
/*p is the pin number for a certain interrupt*/
1: begin
2: if eflags[9] != 0 and ioapic.redirection[p] == 0

and ioapic.pin raised[p] == LOW:
3: return true
4: else
5: return false
6: endif
7: end

There are two general steps that our system takes prior to in-
voking a controlled interrupt. First, the controller module checks
the status of the local interrupt and global interrupt bits to see if
interrupts are enabled. In an X86 architecture the global interrupt
bit is the ninth bit of the eflags register (line 2 of ISR enabled).
When this bit is set to 1, the global interrupt is disabled, otherwise
it is enabled. For local interrupts, Simics uses the Advanced Pro-
grammable Interrupt Controller (APIC) as its interrupt controller.
As such, our system checks whether the bit controlling the UART
device is masked or not. Our system also checks whether a self-
generated interrupt is about to be issued by examining the current
pin status. If this is true, the controlled interrupt will not be invoked.

Second, our system invokes only one controlled interrupt per
test run. This is done to avoid fault masking effects, which may
occur in cases where multiple interrupts fire and cause a failure
that would be evident in the presence of a single interrupt to be
“masked” by the presence of the second. Thus, our system needs
to first check a flag to determine whether a controlled interrupt has
already been invoked in the current run. If it has, the test system
does not monitor any further events in this run. Once it has been
determined that there has not been any invocation of a controlled
interrupt in this run, the system then checks to see whether the last
accessed SV has already been tested in prior runs. If it has not, the
system enables the control register for UART and then calls the
simple interrupt API.

Note that, given the foregoing approach, there can be multiple
runs of each test case, and the number of runs depends on the
number of SVs that must be tested. With the controller module
disabled, the PuT runs |tc| times during a testing process, where
|tc| is the number of test cases. With the controller module enabled,
the number of runs is |tc| ∗ (|int| + 1), where |tc| is the number
of test cases and |int| is the number of controlled interrupts issued.
We also need to run the PuT one additional time for each test case
to determine whether all SVs have been accessed.
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void xhci_watchdog(...)
1: {
2: xhci = ep->xhci;
3: ...
4: spin_lock(&xhci->lock);
5: ...
6: spin_unlock(&xhci->lock);
7: }
irqreturn_t interrupt(int irq, void *dev_id)
8: {
9: xhci = get_dev(dev_id);
10: ...
11: spin_lock(&xhci->lock);
12: ...
13: }

Figure 4. Faulty code that can cause deadlocks.

3.2 Deadlock Detection
It is common for interrupt handlers to use non-preemptive mech-
anisms such as spin-locks instead of preemptive mechanisms such
as semaphores to protect critical code regions. This is because typ-
ically, ISR code is not allowed to sleep. As such, interrupt code is
short and deterministic so the amount of time that a task must wait
to enter the critical region should be predictably short [15]. That
said, there are many real world examples including the one used
in this illustration that show how incorrect usage of spinlocking
mechanisms can cause priority inversions and ultimately deadlocks
between the PuT and ISR. In the example of Figure 4, deadlocks
occur because:

• the PuT is preempted by the ISR while the PuT is holding a spin
lock,

• the ISR tries to acquire the same spinlock and becomes stuck in
the spinlock loop.

Because the ISR has higher priority, it can become stuck in
this loop. To test for such deadlocks, we configure our test system
in a manner similar to that used to test for races. However, test
cases for the system are generated to adequately cover spin lock
and spin unlock pairs in the PuT instead of shared variables.
In this illustration, we assume that spin lock and spin unlock
are properly paired. Next, we describe the configurations of the
execution observer and execution controller.

Configuration of the Test System
In a uniprocessor environment, an observer does not increase fault
detection effectiveness because deadlocks can be easily observed
(e.g., systems hang or show no responses). However, the proposed
test system can still be useful in informing testers of the sources
of deadlocks. Furthermore, it can support deadlock detection in
multiprocessor systems where deadlock might cause one or more
processors to stop making execution progress but other processors
continue to do useful work.
Observer Module. We configure the observer module so that it
records runtime information that can be used to both issue a runtime
warning and log for offline analysis. In this deadlock example, the
generated information includes:

• when functions of the PuT and ISR execute and return;
• when a spinlock is acquired by the PuT and by ISR, and
• when a spinlock is released by the PuT.

As in the above example, when the spinlock is acquired by the the
PuT, the observer sets the lock condition to true. If the ISR tries
to obtain the same lock, the observer first checks whether the lock
condition is true, and then compares the requested lock with that
held by the PuT. If they are the same, we have a deadlock. In this
case, the observer issues a warning once the deadlock is detected.
In both environments, it also records the event so that engineers can
perform analysis offline. Function DeadlockObserver describes our
algorithm to detect deadlocks.

procedure DeadlockObserver()
require: procedure BasicConfig()
1: begin
2: set execution breakpoint on entry point of spin lock and
spin unlock

3: switch (breakpoint)
4: case func addr:
5: func list.push({func addr, ebp, esp, lock obj})
6: if func addr == ISR entry
7: is ISR = true
8: endif
9: case spin lock:
10: if ebp == func list.top[index ebp]
11: if is ISR and is lock and eax == lock obj
12: print“deadlock occurs”
13: else
14: func list.push({func address, ebp, esp, eax})
15: endif
16: endif
17: case spin unlock:
18: if ebp == func list.top[index ebp]
19: func list.push({func address, ebp, esp, eax})
20: endif
21: case ret:
22: if esp == func list.top[index esp]
23: if func list.top[index func] == ISR entry
24: is ISR = false
25: endif
26: if fun list.top[index func] == spin lock
27: /*spinlock returns*/
28: if !is ISR
29: is lock = true
30: lock obj = func list.top[index eax]
31: endif
32: endif
33: if fun list.top[index func] == spin unlock
34: if !is ISR
35: is lock = false
36: lock obj = null
37: endif
38: endif
39: func list.pop()
40: endif
41: end

Functions spin lock and spin unlock are commonly used by
various applications. As such, we need to isolate calls to these two
functions that come from the PuT and ISR. Again, we use the
calling stack to dynamically store information on called functions
during virtualization (lines 5, 14, 19).

Initially, lock obj is set to null. The lock is acquired after
spin lock returns (line 29), and released after spin unlock returns
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(line 35). Besides the frame pointer and stack pointer, each function
in calling stack carries a lock object, indicating whether the current
running function is holding a lock or which lock it is holding. As
such, a locked object can always be obtained by examining the top
of stack (line 30).

A deadlock occurs under three conditions (line 10): (1) the ISR
is executing; (2) a lock is held by the PuT; (3) the ISR is stuck in
the same spinlock loop as the object of the held lock.

Deadlock detection is different from race detection in that a
deadlock warning is issued instead of simply recording deadlock
information. Once a deadlock is detected, the test script terminates
execution and reinitializes the test system for the next test run.
Because a lock object is passed as a parameter to spin lock or
spin unlock, the object can be obtained by reading the CPU eax
register in the X86 architecture. Note that this is architecture and
compiler dependent. However, the approach should be generaliz-
able to other architectures and compilers as long as we know how
the lock object is passed.
Controller Module. The controller module DeadlockController is
implemented following the same steps as the controllability module
for race conditions, except that an interrupt is issued after a spinlock
is acquired by the PuT instead of invoking interrupts on each shared
variable access.

4. Evaluation
To evaluate SimTester, we applied our approach to the UART
device driver on a preemptive kernel version of Fedora Core 2.6.15.
The driver includes two files, serial core.c and 8250.c, containing
1896 and 1445 lines of non-comment code, respectively. The main
application transmits character strings to and receives character
strings from console via the UART port. Note that in this paper
we apply our testing process only to the UART driver. However,
the same process is also applicable to other types of device drivers.

Our approach requires the use of existing test cases, so we
generated test cases for the system based on a code-coverage-
based test adequacy criterion. To generate test cases relevant to
race conditions, we first statically identified shared variables (SVs)
between the PuT and ISR. We use the precise shared variable
detection algorithm proposed in [29], but we are interested only
in shared variables that are read by the PuT and written by the
ISR, or written by both the PuT and the ISR. We label each shared
variable as a “definition” or “use” through our analysis. After SVs
are identified, we generate a set of test cases that cover the feasible
SVs (SVs for which there exists a possible execution of the program
which executes them) in the PuT. This process produced 12 test
cases.

To generate test cases relevant to deadlocks, we sought to find
test cases that adequately cover spin lock and spin unlock pairs
in the PuT instead of shared variables. (In the case of our target pro-
gram, we know that all occurrences of spin lock and spin unlock
are properly paired; in practice a static analysis could initially de-
termine this and flag unpaired occurrences for attention by the test
engineer.) In the case of our target program, which contains only
three spin-lock pairs, this process resulted in two test cases (one of
which covered two of the pairs).

To better assess the cost and effectiveness of our approach,
we considered both the approach and two alternative baseline ap-
proaches. In the discussion that follows, we refer to our approach
as the conditional controllability approach, because it involves is-
suing controlled interrupts under certain conditions. The second
approach that we considered, no controllability, involves testing
the program without any controlled interrupts; this is the approach
that test engineers would normally use. The third approach that we
consider, random controllability, involves issuing controlled inter-

rupts at random program locations after shared variable accesses
and without checking interrupt conditions.

We measured execution times for the foregoing approaches by
embedding a timer in the Simics module. As such, the reported
times are the actual times spent by Simics to execute the program.

4.1 Testing for Race Conditions
We begin by considering the target program as given, and evalu-
ate the effectiveness and efficiency of our race condition testing
approach on that program.

We first applied conditional controllability together with ob-
servability. Under this approach, across the 12 test cases utilized,
84 controlled interrupts were applied, and for each test case, one
extra run was needed to determine whether all shared variables had
been accessed. Thus, 96 test runs were required to finish testing the
target program with an average execution time of 77.91s per test
run. Including self-generated interrupts, the number of interrupts
generated for the target program was 352. In the course of apply-
ing the approach, we detected a race in function uart write room
of serial core.c, which we later determined had been corrected in
subsequent versions of the system. By running the system with ob-
servability turned off, we determined that this fault can be detected
only with observability enabled; in other words, it is a fault that did
not propagate to output on our particular test inputs.

We next tested our target program with no controllability. In this
case, the only interrupts that occur are self-generated interrupts.
Because runs of each given test can conceivably differ, we ran each
test on the program 500 times. The total number of interrupts ob-
served was 16,500. Over the 6000 total test runs, average execution
time was 74.08s per test, only 3.83 seconds less than with control-
lability added. None of these test runs detected the race condition
detected by our first approach, however, either with observability
enabled or disabled.

Finally, we tested our target program using the random con-
trollability approach. For each test case, we ran the target program
three times more than the number of runs performed under the con-
ditional controllability approach, on each run generating an inter-
rupt at a randomly selected program location. The total number of
test runs was 288 and the number of interrupts generated was 1044.
In this case the average execution time per test case was 75.17s,
only 2.74 seconds less than with controllability added. Again, the
race was not detected, either with observability enabled or disabled.

One important characteristic of our technique is that checking
is performed before issuing a controlled interrupt. When a shared
variable is accessed in the main program, the controllability module
first checks to see whether it is possible to issue an interrupt, and
if not, it proceeds to the next possible location. This approach can
save test runs, but at the cost of checking. To quantify the tradeoffs
involved, we also applied our conditional controllability approach
without the checking step enabled. Recall that with checking en-
abled, 96 test runs were needed to issue controlled interrupts, with
an average execution time of 77.91s per test. With checking dis-
abled, on the other hand, 1428 test runs were needed to issue con-
trolled interrupts, with an average execution time of 75.66s per test.
Clearly, the checking approach saves time overall.

A second characteristic of our technique is that interrupts are
issued only after shared memory accesses, and this can be much
less expensive than issuing interrupts after each memory access,
which is the approach used by Higashi et al. [24]. For our target
program, there are 94,941 data accesses made in the course of
running the 12 test cases. If an interrupt were issued after each
data access, we would need 82.6 days to finish testing the target
program.
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4.2 Testing for Deadlock
We next consider the target program as given, and evaluate the
effectiveness and efficiency of our deadlock testing approach on
that program. (In this case, because our experiment is running on
a uniprocessor and observability does not increase fault detection
power, we consider only the effects of controllability, not the effects
of observability.)

We began by running our two deadlock test cases on the tar-
get program under conditional controllability. Under this approach,
only two controlled interrupts were generated, and they detected
one deadlock in function serial8250 handle port of 8250.c,
which had been reported [30] and corrected in later versions. The
average execution time was 69.88s per test run.

We next ran the target program with no controllability. For each
test case, we ran the program 500 times; the 1000 tests had an av-
erage execution time of 75.24s, and 4000 self-generated interrupts
were observed. However, no deadlocks were detected.

Finally, we ran the program using the random controllability
approach. Here we ran the program three times as many as the
number of runs performed for conditional controllability, issuing
an interrupt at a random program location. The total number of
controlled interrupts was six and the total number of interrupts
generated was 15. The average run time was 75.24s per test. Here
also, no deadlocks were detected.

Notice that the average execution times of the latter two ap-
proaches are higher than that of the conditional controllability ap-
proach. This result, at first, appears counter-intuitive. However, in
our experiment with conditional controllability, we terminated the
execution once a deadlock has been detected. On the other hand,
the latter two approaches did not detect deadlocks, so the program
ran to completion.

4.3 Fault Detection Effectiveness
While the results of the foregoing studies are encouraging, the num-
bers of naturally occurring faults found in the target program was
low, rendering comparisons of the fault detection effectiveness of
the approaches less meaningful. To further investigate fault detec-
tion effectiveness we followed a process often utilized in the soft-
ware testing research community [2]; namely, the use of seeded
faults.

In this case, we injected 12 potential race condition faults
and 11 potential deadlock faults into 8250.c by making syntac-
tic changes to the code. For race conditions, we removed state-
ments corresponding to critical section protection (e.g., spin lock,
spin lock irq). For deadlock, we changed statements correspond-
ing to interrupt disable and enable pairs (e.g., spin lock irq
and spin unlock irq) into pure spin lock pairs (e.g., spin lock,
spin unlock). Of the 23 potential faults thus created, further ex-
amination revealed that seven of the potential race condition faults,
and seven of the potential deadlock faults, could not possibly be
triggered on the system on its given hardware platform, so we
removed those. This left us with five potentially revealable race
condition faults and four potentially revealable deadlock faults.

Given the faults thus seeded, we ran our test cases on the faulty
systems using conditional and random controllability, and in the
case of race detection, with observability enabled and disabled. For
the race condition detection approach, conditional controllability
detected two of the five faults. One of these faults was detected
both with and without observability. The same fault was also de-
tected with random controllability, but only with observability en-
abled because in this case the fault does not propagate to output.
This occurred because interrupts issued by conditional controlla-
bility visited more unprotected shared variables that can cause in-
correct output, and these shared variables are not visited by random
controllability.

The second fault revealed in our race detection trial was re-
vealed not through observability, but rather, through output, for
both conditional controllability and random controllability. The
reason this occurred is because the fault was not actually caused by
our defined race condition, but rather, by another type of atomicity
violation. In particular, a read-write SV pair in the main program
is supposed to be atomic, but the ISR read this SV before it was
updated in the main program. This outcome shows that, while our
approach does not specifically target other types of faults, it may
catch them as byproducts.

We also inspected the three potential race condition faults that
were not detected by any techniques. We determined that the reason
for their omission was that the interrupt handler in each of the
versions does not share variables or read variables with the main
program. This does not mean that the code regions involved do
not need to be protected, because other ISRs may share memory
locations, or programmers may intentionally cause the regions to
execute without interruption.

Where deadlock faults were concerned, we discovered that con-
ditional controllability detected all four, while random controllabil-
ity detected two.

5. Further Discussion
Our observer module considers one type of definition of a race con-
dition. In practice, testers can adopt different definitions because
there is not a single general definition for the class of race condi-
tions that occur between an ISR and a PuT. As noted above, for
the four faulty versions on which the ISR and the PuT do not share
read-write and write-write variables, we still found one fault with
controllability enabled. This fault is related to an atomicity viola-
tion, as a code region in the main program is supposed to execute
atomically, e.g., before a shared variable is updated in the main
program, and an interrupt occurs and the wrong data is read.

Our approach injects data into device ports and forces an inter-
rupt handler to execute one path. The data we inject is the same
as the test input given to the program. For example, if an applica-
tion sends the string “hello” to the UART console passed by UART
transmitter buffer, a controllability module would inject “world”
into the UART transmitter buffer to force an interrupt to occur after
a certain access. It is also possible to have multiple paths by which
shared variables can exist in interrupt handlers. Testers can extend
our method by forcing interrupt handlers to execute different paths,
which may increase the probability of revealing faults.

However, no faults are left undetected due to missing shared
variables or spin locks in the other paths of the ISR in our target
program. It is also possible to force an interrupt handler to exe-
cute only the paths that have definition-use relationships with the
main program. This may further reduce the number of controlled
interrupts and test runs. To do this, the value schedule approach
proposed by Chen et al. [13] could be adapted.

To force an interrupt to occur, our controllability module issues
a new interrupt. However, races and deadlocks can occur relative to
the interrupt generated by the target program itself. For example,
suppose an interrupt is requested by device driver code, but is not
immediately processed for some reason (e.g., device port delay).
The interrupt handler associated with this interrupt may be exe-
cuted later within a spin lock pair or after a shared variable access,
and thus a race condition or a deadlock may occur. Our controlla-
bility module can be further extended to deal with such cases. For
example, when an interrupt is triggered, the module can delay this
interrupt by masking its interrupt enable register, and issue the in-
terrupt after a certain event happens (e.g., shared variable access,
spin lock is acquired). If there is no such event, the interrupt is is-
sued on exiting the PuT.
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In practice, when testing software components (e.g., device
drivers and interrupt handlers), the first task that a test engineer
must accomplish is to gain confidence that the software component
is developed correctly. In our study, the analysis involves a test
program, the interrupt handler that interacts with the device driver,
and the device driver code. The key point here is that the tester
focuses on a specific component and how it interacts with the rest of
the components. If the focus changes to a different component, the
same analysis can be applied to test the new component. As such,
the proposed approach is not designed to test the entire system at
once. Instead, it is more suitable for component testing.

In our current work, the test generation process was done man-
ually (which is currently the norm in practice). Our study considers
a test input to include input values and interrupt scheduling. How-
ever, there is no reason the approach could not also utilize input
values created using existing test case generation approaches (such
as dynamic symbolic execution [9, 42].) A problem with such ap-
proaches by themselves is that they generate large numbers of test
cases with no methodology for judging system correctness beyond
looking for crashes. Our approach provides more powerful, auto-
mated oracles, and thus should ultimately facilitate the use of larger
numbers of automatically generated test cases.

6. Related Work
There are several techniques for testing embedded systems with a
particular focus on interrupt related faults. As already noted, Hi-
gashi et al. [24] detect race conditions caused by interrupt han-
dlers via a mechanism that causes interrupts to occur at all possi-
ble times. Their method and ours artificially amplify the frequency
of interrupts to evaluate whether these interrupts can cause faults.
However, our work has several advantages. First, by adding observ-
ability, we increase the power of fault detection while Higashi’s
method focuses on controllability. Second, instead of firing inter-
rupts at all memory access instructions of a PuT, we issue interrupts
only at shared variable accesses, which significantly reduces testing
cost. Third, we adopt coverage criteria to cover all feasible shared
variables in the PuT instead of using arbitrary inputs; this can help
the program execute code regions that are more race-prone. Fourth,
Higashi’s method issues all interrupts during one program run. This
may cause problems with fault masking and cascading errors. In
contrast, we issue just one interrupt during a given program run.
Fifth, Higashi’s method does not consider situations in which inter-
rupts cannot occur; however, our technique can determine whether
it is possible to issue interrupts at runtime by observing hardware
states, which further improves testing efficiency. Another imple-
mentation difference is that we built our framework on a virtual
platform while their approach is built on an processor emulator.

In other work, Regehr et al. [38] use random testing to test Tiny
OS applications. They propose a technique called restricted inter-
rupt discipline (RID) to improve naive random testing (i.e., firing
interrupts at random times) by eliminating aberrant interrupts. In
our approach, however, interrupts are conditionally fired instead of
randomly. Our evaluation has shown that conditionally fired inter-
rupts increase the chances of revealing faults while reducing cost.
Lai et al. [33] present a notation for modeling interrupt-driven nesC
applications for testing purposes. They formulate two test adequacy
criteria based on the notation. Their approach does not provide ob-
servability or controllability. In their approach, test cases are ran-
domly selected from a test pool until coverage has been achieved.
We believe that this process can be made more effective by adding
controllability.

Static analysis techniques discover paths and regions in code
that might be susceptible to concurrency faults (e.g., [19, 25, 46]).
Techniques based on program state modeling and transitions (e.g.,
[16]) have been used to verify device drivers and kernels [5, 19].

There are also static analysis techniques used to verify embedded
software with interrupts. Tan et al. [44] designs a type of annota-
tion that can be used to detect OS concurrency faults related to in-
terrupts. Their approach is based on statically analyzing comments
and code. Brylow et al. [8] apply a model checker to check inter-
rupt related real time properties such as interrupt latency. Schlich et
al. [40] propose a technique called interrupt handler reduction to
reduce the number of program locations at which an interrupt needs
to be considered. The goal of this technique is to reduce program
states in model checking. There are several drawbacks associated
with static analysis techniques such as these. First, state explosion
in static analysis may cause scalability problems. Second, static
analysis can report false positives due to imprecise local informa-
tion and infeasible paths. Third, as embedded systems are highly
dependent on hardware, it is difficult for static analysis to annotate
all operations on manipulated hardware bits; moreover, hardware
events such as interrupts usually rely on several operations among
different hardware bits.

Dynamic analysis tends to be more accurate than static analysis
for detecting concurrency faults (see e.g., [28, 36]). Techniques that
do not control thread interleavings (e.g., [39]) can miss faults that
are caused by different interleavings. Moreover, existing dynamic
techniques cannot leverage the scheduling policies for interrupts
and main programs because such techniques do not consider pri-
ority based preemption. Controlling thread interleavings at runtime
is a way to increase the chances of exposing faults. Sen et al. [41]
first identify potential concurrency faults, and then control the un-
derlying scheduler by inserting delays at context switch points.
This technique, however, may not apply in our context due to dif-
ferent scheduling policies. (Hardware interrupts are asynchronous
events generated from hardware, so they are not scheduled by ker-
nel thread schedulers. For example, it is impossible to force shared
variable accesses at the same time because an interrupt handler can-
not be preempted by a normal program.) Other dynamic techniques
such as interrupt tracing [22] are not designed to detect faults. Our
goal is to utilize test cases to detect concurrency faults involving
runtime execution of application and hardware interrupt service
routine. Thus, we employ dynamic analysis.

Virtual platforms have been used to support tracing, replay, and
debugging [1, 6, 12, 31, 37]; however, they have rarely been used
to support testing. One notable example is work by Goh et al. [21].
They introduced a VM-based online testing approach to supple-
ment off-line testing. With off-line testing, all possible test inputs
may not be known ahead of time since embedded software systems
are often influenced by external environments. Their work, how-
ever, did not consider the use of observability and controllability to
enhance testing effectiveness. On the other hand, there have been
some efforts to extend virtual platforms to provide greater observ-
ability in security domain [4, 14, 32]. However, these efforts did
not utilize the additional observing power for testing.

7. Conclusion
The frequent use of interrupts for timing, sensing, and I/O process-
ing in embedded software can cause concurrency faults to occur
due to interactions between applications, device drivers, and inter-
rupt handlers. This type of fault is considered by many practitioners
to be among the most difficult to detect, isolate, and correct, in part
because it can be sensitive to interleavings and often occurs without
causing any observable incorrect output. In this work, we introduce
SimTester, a framework that provides test engineers with the ability
to precisely control execution events and observe runtime context
at critical code locations. The framework is built on a commercial
virtual platform that is commonly used as part of the hardware/soft-
ware co-design process.

59



The main benefit of using virtual platforms is the ability to in-
terrupt execution without affecting the states of the virtualized sys-
tem. Furthermore, we can monitor function calls, variable values
and system states, and manipulate memory and buses directly to
make typically non-deterministic execution events more determin-
istic. To illustrate the effectiveness of SimTester, we use it to test
software systems with two real-world concurrency faults, races and
deadlocks, that were uncovered in the previous releases of Linux
kernels. They are the result of untimely occurrences of interrupt at
improperly synchronized code locations. We also apply SimTester
to a number of seeded faults. Our evaluation clearly shows that our
technique is effective in detecting faults that are unlikely to be de-
tected in approaches that rely on observing incorrect outputs.
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