
Block Storage Virtualization with
Commodity Secure Digital Cards

Harvey Tuch Cyprien Laplace Kenneth C. Barr Bi Wu ∗

VMware, Inc.
{htuch, claplace, kbarr}@vmware.com, bi.wu@duke.edu

Abstract
Smartphones, tablets and other mobile platforms typically accommo-
date bulk data storage with low-cost, FAT-formatted Secure Digital
cards. When one uses a mobile device to run a full-system virtual
machine (VM), there can be a mismatch between 1) the VM’s I/O
mixture, security and reliability requirements and 2) the properties
of the storage media available for VM block storage and checkpoint
images. To resolve this mismatch, this paper presents a new VM
disk image format called the Logging Block Store (LBS). After
motivating the need for a new format, LBS is described in detail
with experimental results demonstrating its efficacy. As a result
of this work, recommendations are made for future optimizations
throughout the stack that may simplify and improve the performance
of storage virtualization systems on mobile platforms.

Categories and Subject Descriptors D.4.2 [Operating Systems]:
Storage Management

General Terms Design, Performance, Reliability, Security

Keywords Virtualization, Log Structured File System, Secure
Digital card (SD card)

1. Introduction
We are presently at a crossover point, at which the volume of
smartphones sold each year has surpassed PC sales [31]. Mobile
devices will, within a brief period of time, become the dominant
end user computing platform. As a result, mobile devices are fast
becoming a first-class concern amongst enterprises who face the
task of managing a heterogeneous fleet of phones and tablets.

VMware’s Mobile Virtualization Platform (MVP) provides an
enterprise mobile device management solution, multiplexing two
phone personas, a work and a home phone, on a single device
via system virtualization. A Bring Your Own Device (BYOD)
model is facilitated, in which an employee is given the freedom
to select his own device and provision it with a virtual machine
(VM) containing the work environment. The hypervisor and on-
device management components enable the VM to be managed

∗ Bi Wu is a graduate student at Duke University. This research was
performed while he was an intern at VMware.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VEE’12, March 3–4, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-1175-5/12/03. . . $10.00

remotely by the enterprise, while the home environment remains
under the complete control of the employee.

The MVP hypervisor is based on a hosted architecture, similar
to that of VMware Workstation [28] and Fusion, in which the host
provides the home environment and the guest provides the enterprise
environment. The virtual machine monitor (VMM) is provisioned
from an app store prior to the installation and launch of the enterprise
VM. Further motivation for and details of this system structure are
provided by [3].

This hypervisor deployment scenario introduces several con-
straints on storage virtualization:

• Hardware diversity. Since devices are selected by employees,
MVP must support a wide array of phones, with different storage
devices and filesystems. We focus on the variety of Android
devices in this paper, but many of the details at the hardware and
hypervisor level are common across mobile platforms.

• Non-perturbation. Introducing the hypervisor and VM should
not cause the user to lose any existing data or require the tech-
nical sophistication involved in reformatting or repartitioning
storage media.

• Reliability. Not all storage is journaled or logged, yet power on
the phone may be lost at any time due to battery depletion. VM
corruption should not be possible in the event of power loss or a
host crash.

• Security. The backing store and checkpoint files for the work
VM, residing on host filesystems, must be protected from
malicious host applications.

Android devices typically offer two types of storage to applica-
tions:

• Internal. Internal NAND flash memory or embedded MultiMe-
diaCard/Secure Digital (eMMC/eSD) chips are constrained in
size due to cost and power consumption. Today, capacities typ-
ically range between 256 MB and 16 GB. The system kernel,
middleware and libraries reside on internal storage as well as
application code and some application data.

• External. Small form factor Secure Digital (microSD) cards are
standard and provide removable mass storage (up to 32 GB)
for application data. Secure Digital Extended Capacity (SDXC)
cards will support up to 2 TB capacities in the future. SD card
storage benefits from the economies of semiconductor scaling
and supply after a smartphone has been shipped and purchased.

The storage footprint for a typical guest, 3 GB or higher, can
easily exceed the available space on internal storage for some
devices. In order to achieve broad support, the VM backing storage
and checkpoint files need to be placed on external microSD cards.

191

SD cards are optimized for cost, compatibility and the I/O
mixture expected from the transfer of large sequential files such
as MP3s, photos and videos. As a result, they are formatted with
the FAT filesystem and have simple flash translation layer (FTL)
controllers (utilizing a minimum of costly SRAM) that perform
extremely poorly with small random writes [1, 6]. The I/O mixture
from the guest is far less sequential than that of the media workloads
that SD cards are intended for. In addition, FAT does not support
Unix permissions and does not provide robustness guarantees in
the event of a host upset. Users cannot be expected to reformat the
SD card due to the non-perturbation requirement. These challenges
motivate a new VM backing store and checkpoint storage system
capable of meeting the constraints outlined above while performing
the bulk of storage on FAT-formatted microSD cards.

Our contributions in this paper are as follows:

• An empirical characterization of the unique storage characteris-
tics of SD cards and Android VM workloads.

• A storage architecture and block storage format, which we refer
to as the logging block store (LBS), capable of providing the
desired impedance matching between our enterprise VMs and
low cost consumer-grade SD card storage.

• Experimental evaluation of LBS and a performance characteri-
zation.

• Potential optimizations at other levels of the I/O stack capable
of improving VM performance if adopted in mobile platforms.

While the individual techniques we employ in LBS are familiar,
to the best of our knowledge this is the first system to combine them
to bridge the gap between the high performance/reliability/security
requirements of a VM and the characteristics of the low-cost solid
state storage on mobile devices.

In the rest of the paper, we first show how device performance
characteristics (Section 2) and virtual machine workload charac-
teristics (Section 3) motivate the design of LBS. This is followed
by the design and implementation details for LBS in Section 4
and evaluation in Section 5. The paper concludes with suggested
optimizations in Section 6, related work in Section 7 and future
directions in Section 8.

2. SD card performance characteristics
An SD card is composed of NAND devices, providing the raw
storage media, organized by an FTL into a logical block structure
that is exported across an SD card bus connector. The FTL performs
wear leveling, error detection and the remapping of bad blocks.
The limiting storage performance characteristics are hence dictated
by the FTL, NAND read/write/erase times and page/erase block
organization. For cost reasons, the FTLs are optimized for simplicity
of implementation and minimization of SRAM, distinguishing SD
cards from their richer cousins, solid state disks, which have more
significant resources available for the FTL. The random access
property of NAND is as a result constrained by the FTL, with the
internal data structures utilized by simple FTLs being optimized for
sequential write patterns and coarse block operations [6].

SD cards are rated by speed classes, e.g. Class 2, Class 10,
indicating the expected minimum sequential I/O bandwidth (MB/s)
in the presence of zero fragmentation [26]. Unfortunately, this rating
provides no guarantee of random or fragmented I/O performance.
We present some illustrative examples of these characteristics below,
gathered on a HTC Nexus One smartphone by a synthetic tool,
sdperf, designed to characterize SD cards. sdperf opens a file or raw
block device and performs read or write I/O of specific sizes to the
target file. Sequential, strided, partitioned and random patterns are
supported.

Manufacturer Capacity Class Alloc. unit FAT cluster
SanDiskTM 4GB 4 4MB 32KB
SanDiskTM(WP7) 8GB 4 4MB 32KB
KingstonTM 4GB 4 4MB 32KB
ADATATM 8GB 6 4MB 32KB
PNYTM 16GB 10 4MB 32KB

Table 1. SD card details.

1 KB
2 KB

4 KB
8 KB

16
KB

32
KB

64
KB

12
8 KB

25
6 KB

51
2 KB

1 MB
2 MB

4 MB
8 MB

Block size

0

5000

10000

15000

B
an

dw
id

th
(K

B
/s

)

Seq, Read
Seq, Write

Rand, Read
Rand, Write

Figure 1. 8 GB ADATA Class 6 SD card I/O bandwidth as a
function of block size and I/O ordering.

4 KB
8 KB

16
KB

32
KB

64
KB

12
8 KB

25
6 KB

51
2 KB

1 MB
2 MB

4 MB
8 MB

Block size

1

2

4

8

16

32

64

128

256

512

S
eq

ue
nt

ia
l:r

an
do

m
w

rit
e

ba
nd

w
id

th
ra

tio

adata-8gb
sandisk-4gb
kingston-4gb

pny-16gb
sandisk-8gb

Figure 2. Sequential:random write bandwidth ratio as a function
of block size.

Below we describe the results of various I/O read/write patterns
within a preallocated 128 MB file, intended to be representative of
a VM disk image file. The page cache layer in the Linux kernel
was bypassed with O DIRECT to avoid interference. Five SD cards
from different manufacturers and with different speed class ratings
were analyzed; card specific details are provided in Table 1. The
8 GB SanDisk card packaging was labeled as being Windows Phone
7 compliant, indicating potential improved support for random
read/write operations [29].

192

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

Stride blocks

0

2000

4000

6000

8000

10000

12000

B
an

dw
id

th
(K

B
/s

)

4KB, Write 256KB, Write

Figure 3. 8 GB ADATA Class 6 SD card write bandwidth as a
function of inter-write stride distance and block size.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
of interleaved sequential workloads

0

2000

4000

6000

8000

10000

12000

14000

B
an

dw
id

th
(K

B
/s

)

adata-8gb
sandisk-4gb
kingston-4gb

pny-16gb
sandisk-8gb

Figure 4. Write bandwidth as a function of the number of inter-
leaved sequential workloads, separated by 2 AU, at 256 KB block
size.

0 10 20 30 40 50 60 70 80 90 100
Write

0

5000

10000

15000

B
an

dw
id

th
(K

B
/s

)

Seq, 4KB
Seq, 256KB

Rand, 4KB
Rand, 256KB

Figure 5. 8 GB ADATA Class 6 SD card I/O bandwidth as a
function of write percentage in I/O mixture and I/O ordering.

1 KB
2 KB

4 KB
8 KB

16
KB

32
KB

64
KB

12
8 KB

25
6 KB

51
2 KB

1 MB
2 MB

4 MB
8 MB

Block size

0

5000

10000

15000

B
an

dw
id

th
(K

B
/s

)

Frag, Read
Non-frag, Read

Frag, Write
Non-frag, Write

Figure 6. 8 GB ADATA Class 6 SD card sequential I/O bandwidth
as a function of block size and fragmentation.

Figure 1 provides the observed I/O bandwidth as a function of
the block size and access pattern on the 8 GB Class 6 ADATA SD
card. There is little difference in these examples between sequential
and random read performance, but a marked distinction on writes, in
particular at small block sizes. Figure 2 provides the sequential-to-
random write performance ratio for all five cards. A similar random
write penalty can be observed across the tested cards, with the
exception of the 8 GB SanDisk. The card exhibited comparable
sequential and random write performance at 4 KB block sizes but
behaved similarly otherwise to its peers past 16 KB. We use the 8 GB
ADATA card as a running example in the rest of the paper since its
key characteristics are similar to other cards we have examined.

The penalty for a non-sequential write is not uniform, it depends
to some extent on the location and distance between the two writes,
as well as the history of previous writes. Figure 3 provides the write
bandwidth at the 4 KB and 256 KB block sizes when a stride takes
place between writes. At stride of 1 block, we have the sequential
case and performance drops until writes are an allocation unit
(AU) apart. The AU is a logical unit provided by the SD card at
which erase operations are preferred and speed class calculations
performed. For a given card it has a fixed size, dictated by the NAND
erase block size and card internal organization (4 MB for the card
in the figure). Writes at a smaller granularity can involve a read-
modify-write operation. When the stride becomes sufficiently large,
we might expect to see a change in performance when once again
only a single AU is in use, as strides wrap around at the file size,
128 MB. A performance improvement occurs earlier however, at
32 MB, likely due to an FTL implementation that supports efficient
interleaving of writes to multiple AUs as long as sequentiality is
maintained within each stream [19]. This effect is visible in Figure 4,
where we simulate interleaved sequential writers, with the writes
occurring at a distance of 2 AU. Several of the cards show good
performance with up to four sequential writers. The PNY card is
best with a single writer, but supports 2-4 writers with mid-range
performance. The Kingston card supports only a single writer. While
it may be tempting to exploit these patterns, they are card and
distance specific: with only 5 cards we were able to identify 3
behaviors. We assume the non-sequential write penalty to be high
for the rest of this paper, since we are aiming to provide a portable
solution where the SD card is unknown.

Even a small number of write accesses in an I/O mixture can
drive overall performance towards the write performance curve, as
indicated in Figure 5, where write accesses were inserted at random

193

0x02710

0x04e20

0x07530

0x09c40

0x0c350

0x0ea60

0x11170

 49 49.2 49.4 49.6 49.8 50

B
lo

c
k
 i
n
d

e
x

Time (s)

Data
Inode

Metadata
Journal

Figure 7. 1 second sample of browsing session writes on ext3.

in the I/O mixture at differing percentages. Beyond 10% there is
little difference between a mixed and pure write workload.

Fragmentation within an AU will result in a decrease in sequen-
tial write performance. In the above experiments, the image file
had zero measured fragmentation, with logically contiguous blocks
placed on contiguous FAT clusters. Figure 6 presents a comparison
of sequential I/O performance in the non-fragmented and worst case
fragmentation cases. Worst case fragmentation here is simulated
by placing files of 1 MB in size until the card is filled, and then
releasing a single FAT cluster from each file prior to image file
allocation. This results in the image file being spread across the
maximum number of AUs. The curves representing performance of
sequential I/O on a non-fragmented filesystem are the same as those
in Figure 1. When the file system is severely fragmented, data is
only contiguous within a 32 KB FAT cluster, so read performance is
limited by the speed of 32 KB reads. Sequential write performance
devolves to that of 32 KB random writes.

Beyond the above observations, there are implementation details
that apply to specific cards. For example, the initial blocks backing
the file allocation table are optimized for the smaller, non-sequential
writes that occur in the region [16]. These card specific details are
also not relied upon in the LBS design presented in Section 4.

3. Virtual machine I/O mixture
The I/O mixture from the perspective of the host is non-sequential for
three reasons in our system: guest filesystem design, opportunistic
checkpointing and application behavior.

The guest uses ext3 and FAT filesystems over paravirtual-
ized block storage devices. With the simpler FAT filesystem, non-
sequentiality can arise from application access patterns and frag-
mentation. The journaling ext3 filesystem introduces additional non-
sequential writes, jumping between ordinary data and the journal.
Figure 7 shows a sample of a block write trace to an ext3 parti-
tion during an Android 2.2 web browsing session. Non-sequential
writes can be observed as the application accesses four different
regions of data (the four “stripes” below 0x09c40). Access to meta-
data, inodes and the journal interrupt data access with additional
non-sequentiality.

0k

10k

20k

30k

40k

50k

60k

70k

80k

90k

 520 540 560 580 600 620 640 660 680 700

P
a

g
e

 i
n
d

e
x

Time (s)

Writebacks

Figure 8. 180 second sample of background cold page writebacks
of a large space of guest physical memory.

MVP also supports virtual machine checkpointing. It is possible
to save all virtual machine state on the host storage and to restore it
later. A virtual machine’s state is composed of the following parts:

• The virtual platform, including CPU registers and virtual
device state (approximately 200 KB).

• The storage, maintained in persistent images by the paravirtu-
alized block storage devices.

• The memory, which may require ≥ 512 MB of data to be
written on checkpoint.

Of these components, saving the VM’s large memory dominates
the space and time required to save a checkpoint. To shorten
the duration of checkpoint creation, unused memory is written to
persistent storage proactively in the background. An adapted Clock-
Pro [14] working set estimation algorithm is used to select blocks
to write. Cold blocks are preferred with the assumption that they
are the least likely to change prior to explicit checkpoint creation
time. Unfortunately, this working set driven selection often leads to
non-sequential ordering of page writebacks, as shown in the sample
given in Figure 8.

Application behavior in the presence of the guest buffer cache
introduces another source of non-sequential I/O. We examined
several mobile workloads by generating traces of their I/O (details
of the tracing procedure are given in Section 5).

1. Android Boot. The initial boot of an Android OS. The trace
ends when Android issues its BOOT COMPLETED intent. A
considerable number of writes occur during Android’s optimiza-
tion of application bytecode.

2. Contacts Database. Import 2000 contacts into the Android
Contacts application. Search for and delete 40 contacts.

3. Mail Client. Use the Android Mail 2.2.1 client to access an
IMAP mailbox. The mailbox is 24 MB and contains 356 mes-
sages and 3 folders with lengths and attachments generated by
the SPECmail2009 benchmark [27] initialization script to reflect
size distributions of a large corporation.

4. Slideshow. Browse through 52 NASA images [18] using the
Astro file browser [17]. Astro creates thumbnails and scales

194

Name Writable Filesystem Description
/system squashfs Android binaries
/data x ext3 user-installed

programs and data
/cache x ext3 cache space used by

Android
/sdcard x FAT SD card for multi-

media files
/flex squashfs enterprise

customizations

Table 2. Disk partitions in the Android guest under test.

photos from their original size to fit on the device’s 800x480
pixel screen.

5. Web Browsing. A one second sample of web browsing activity
using the Android 2.2 browser.

The Android guest that produced the traces has 5 partitions as
shown in Table 2. Note that squashfs partitions are not writable and
are managed by flat files in our implementation rather than LBS.

The traces stress the partitions in different ways. Table 3 describe
the characteristics of each trace. Unaccessed partitions are elided
from the tables. While some partitions are lightly used or not
accessed at all during the workload, we see that workloads such
as the Contacts Database and Email Client are dominated by small
writes to the data partition.

Recall from Section 2 that random workloads with a write
percentage as little as 10% can perform as slowly as if 100% of
their I/Os were writes. In the case of the Contacts Database and
Email Client workloads, the high percentage of writes to /data
— with 12%-17% of these writes being non-sequential — is cause
for concern and motivates a virtualization layer that will transform
the workload into large sequential writes. In most of our traces, the
number of barrier commands per I/O is low, but the email trace
stands out with 33% of its I/O commands being barriers. To achieve
consistency, barriers force the contents of any buffers to be flushed
to the disk which inhibits the ability to batch commands into large,
fast I/O operations.

The table also shows that except in the case of Android Boot,
write activity consists mostly of small (no larger than 4 KB), less
efficient I/O. Read activity is more likely to contain larger I/O
commands which should perform well if not interspersed with
writes.

4. Logging block store (LBS)
We observed in Section 2 and Section 3 a mismatch with the
underlying SD card characteristics and the guest Android VM and
checkpoint I/O mixture. There are also two additional challenges
facing a storage virtualization and checkpointing solution employing
commodity SD cards on a hosted hypervisor:

• Security. The VM image and checkpoint files stored on the SD
card must be protected from malicious host applications. On
Android, any application which has been granted permission
to access the SD card may access any file. This permissiveness
stems from the lack of access control in the FAT filesystem.

• Reliability. A VM on a mobile device executes in a hostile
physical environment in which power may be lost due to battery
exhaustion, a phone being dropped or the host kernel crashing.
The FAT filesystem does not provide any resiliency against data
loss in such events.

VFS

libc

Guest
Application

ext3

Block
Layer

NAND
Layer

FTL

NAND Chip
Driver

NAND
CHIP

PV Block
Driver

VFS

Host libc

Ext3

vmx storage
thread

Block
Layer

NAND Flash
Filesystem

VFAT

MMC/SD
Layer

MMC/SD
Driver

microSD
Card

Guest-Host
RPC

Physical
Hardware

Virtual
Hardware

Guest Linux
Kernel

Host Linux
Kernel

Guest
user space

Host
user space

FTL

NAND

LBS

Figure 9. MVP storage architecture.

In this section we present a VM image format that addresses the
performance, security and reliability problems described above. We
call this image format the logging block store (LBS).

As an illustration of the role LBS plays in the MVP hypervisor,
consider the various layers in both the guest and host storage stacks
shown in Figure 9. The guest kernel contains a paravirtualized block
storage driver, providing the front-end of the virtual device. The
driver is responsible for communicating requests in the kernel’s
block request queue with a thread executing in host user space,
residing in a process known as the vmx. The storage virtualization
back-end is implemented with standard POSIX file operations on
host filesystems residing on both internal and external storage. LBS
is the component responsible for the back-end virtualization in the
vmx storage thread.

4.1 LBS format
As suggested by its name, LBS is a log structured file format
intended to represent VM disk images at the block granularity. The
log structure allows us to bridge the gap between the non-sequential
I/O mixture observed in Section 3 and the SD card performance
characteristics described in Section 2.

An LBS image is split between a data file, with suffix .lbsd,
and a meta-data file, suffixed .lbsm. We locate the data file on the
FAT filesystem backed by the SD card due to its significant size and
place the meta-data file on internal storage, since it is a fraction of
the size of its data counterpart and is able to enjoy the security and
robustness benefits of the location. Figure 10 illustrates the layout
of the respective LBS backing files.

The data file consists of a number of fixed sized blocks (1 KB)
organized into fixed size clusters (256 KB). We refer to the block
index in the data file as the physical block number (PBN). The
logical block number (LBN) refers to the index of a 1 KB block
inside the VM disk image being represented via LBS. A page
mapping table is maintained by LBS in the vmx process to translate
between LBN and PBN. Clusters exist for the purpose of garbage
collection (GC) and ensuring that contiguous sequential runs of

195

read write
size count I/O Sizes (KB) skip % size count I/O Sizes (KB) skip % write % barrier %

partition (KB) 1 ≤ 4 > 4 (KB) 1 ≤ 4 > 4

Android Boot
/system 18562 1275 21 39 1215 0 0 0 0 0 0 NA 0 0
/data 28 24 24 0 0 41 16468 1204 120 43 1041 1 98 2
/cache 11 7 7 0 0 27 18 9 7 1 1 19 56 6
/flex 29 6 3 1 2 7 0 0 0 0 0 NA 0 0
Contacts Database
/system 763 64 8 6 50 1 0 0 0 0 0 NA 0 0
/data 855 83 32 21 30 4 55281 21048 15414 3348 2286 17 100 4
Email Client
/system 6218 511 80 26 405 1 0 0 0 0 0 NA 0 0
/data 2473 191 53 51 87 3 52100 16668 10520 2595 3553 12 99 33
/sdcard 6 3 2 1 0 17 112 97 90 7 0 43 97 0
Slideshow
/system 5664 449 55 23 371 1 0 0 0 0 0 NA 0 0
/data 500 82 27 23 32 8 6452 659 173 73 413 2 89 10
/sdcard 38 18 14 2 2 22 13701 1883 1407 197 279 6 99 0
Browsing
/data 43895 1662 313 228 1121 1 12609 3512 2149 542 821 10 68 18

Table 3. Characteristics of I/O traces (read/write breakdown). The size of the trace is expressed in KB and as a count of total operations. A
rough classification of I/O sizes is provided in which each column is exclusive of adjacent columns. “Skip” is a measure of sequentiality: the
number of block accesses that are not adjacent to a previous access. A skip percentage of 100 represents a completely non-sequential workload;
a skip percentage of 0 is completely sequential. Write and barrier percentages are relative to the total number of I/O operations per-partition.

blocks exist to speedup writes. Writes always append to the end
of the current active cluster, with GC maintaining a pool of free
clusters to provide when the active cluster is full. Read operations
first map from LBN to the current PBN for the logical block, using
the page mapping table, prior to reading from the data file.

To minimize write latency and increase the size of sequential
writes, LBS employs a write buffer. The write buffer is flushed on
guest barrier operations and when it is full. Significant performance
improvements are possible by write buffering when operating at the
sequential write performance plateau, which occurs at 128 KB in
Figure 1 — the write buffer size we employ is 256 KB.

Both the guest and host kernels maintain a page cache. When a
file is read by a guest application, the data of that file are cached by
the guest kernel, and the same data would ordinarily be cached by
the host kernel. To avoid this double caching, the vmx storage thread
uses the O DIRECT flag when opening the .lbsd file, instructing
the host kernel to avoid using the page cache for this file.

The meta-data file is an append-only log of meta-data and barrier
entries. On each guest write, an entry is appended to the meta-data
file, reflecting changes to the LBN→PBN mapping. When the guest
kernel issues barriers, a barrier entry is appended, as described
in Section 4.2. Meta-data entries are run-length encoded and zero
blocks are optimized in both data and meta-data files. At the end of
each meta-data entry is a series of fields providing block checksums
and timestamps for non-zero blocks; Section 4.2 and Section 4.3
provide further details.

The meta-data file is not garbage collected online. Instead, when
the VM image is opened, or when its size reaches a fixed limit, we
perform an offline, atomic sweep to eliminate stale entries.

The in-memory LBN→PBN structures require 12 MB per 1 GB
of logical block space. While we do not face the severe memory
constraints that exist in other systems, for example FTLs on SD
cards, it is wasteful and unnecessary to maintain the entire set
of structures in memory at all time. Instead, they are placed in
a mmaped file located in internal storage, allowing the host kernel’s
existing page cache writeback and eviction mechanisms to manage
the portions of the meta-data mapping structures that are maintained
in memory and those on flash, based on the working set behavior

of LBS. This has similarities to DFTL [11] page map caching and
by placing the backing file on internal storage, we separate the
competing data and meta-data I/O streams, conferring a performance
advantage analogous to the HAT FTL scheme [12].

LBS data files are fully allocated on the FAT at creation, pre-
venting further fragmentation once initialized. This is intended to
alleviate the fragmentation penalty discussed in Section 2.

4.2 Reliability
There are several modes by which VM storage could possibly fail
and which we wish to mitigate against:

• When a host crashes, due to battery depletion, software bugs or
other causes:

[CRASH-META] Corruption of the filesystem meta-data on
which the .lbsd/.lbsm files reside during write operations.

[CRASH-DATA] Corruption of the filesystem data on which the
.lbsd/.lbsm files reside during write operations.

[BUFFER-LOSS] Loss of write buffers in either main memory
or on the flash controller. Buffers may be partially written
back (in any order) at crash time.

• When a NAND device fails:

[MEDIA-FAIL] Media failure and/or corruption in the internal
or external NAND devices at the page or erase block granu-
larity.

As a hosted hypervisor we rely on the guarantees provided by
the underlying filesystems for [CRASH-META]. Internal storage
is typically formatted with some log structured filesystem, such as
YAFFS or JFFS2, which provides robustness for the .lbsm meta-
data files. We accept as a fundamental limitation that possible FAT
allocation table corruption presents an unmitigated point-of-failure
for the data file.

[CRASH-DATA] is detectable through the use of checksums on
both the LBS data and meta-data. Each data block has a 32 bit
Fletcher checksum [9] or SHA-256 checksum computed when

196

.lbsd Block
0

Block
1

Block
...

Block
255

Block
256

Block
257

Block
...

Block
511

Block
512

Block
...

Block
...

Cluster 0

Cluster 1 (active)

Cluster ...

Empty block

Occupied block

(a) Data (.lbsd)

.lbsm

LBS header

Meta-data entry

Barrier entry

Write position

Logical block index
Physical block index

Zero block?
Run length (n)

Block checksum 0
Timestamp 0

Block checksum ...
Timestamp ...

Block checksum (n-1)
Timestamp (n-1)

Barrier magic
Meta-data checksum

(b) Meta-data (.lbsm)

Figure 10. LBS file formats.

written and the checksum is stored in the corresponding meta-
data entry. Barrier entries in the meta-data are written whenever
the journaled guest ext3 filesystem issues a barrier, and contain a
Fletcher-32 checksum of the meta-data entries since the last barrier
entry. In this way, if a missing terminating barrier or corruption
of the LBS meta-data is detected, it is possible to rollback to the
last barrier while maintaining the expected guest barrier semantics
during recovery.

The LBS implementation ensures that internal write buffers
are flushed and that fsync/fdatasync calls are made on first the
.lbsd and then the .lbsm on a guest issued barrier operation to
manage [BUFFER-LOSS].

When meta-data GC is performed, there is a possibility of failure
occurring due to a host crash. To reduce the likelihood of this
occurring, we write to a secondary meta-data file .lbsm2, and only
when the GC is complete is an atomic rename system call issued.

While there already exist error detection mechanisms within
the FTLs for both internal and external storage, the checksums
provide an additional mechanism to detect [MEDIA-FAIL]. This
is particularly useful when a malicious attacker may freely modify
blocks in the .lbsd, producing symptoms similar to media failure
from the point-of-view of LBS while being undetectable from the
point-of-view of the FTL, which regards the modification as a
legitimate write operation. This attack is further detailed in the
next section.

It is a significant challenge to test and validate the failure
paths of a storage virtualization stack, since the failure modes we
expect are rare and unlikely to appear under normal conditions. The
resilience of the LBS design and implementation to the failure modes

described above has been validated with in-situ model checking
techniques, similar to Yang et al [33] but applied at the block
storage device level instead of filesystems. The LBS implementation
was recompiled and linked against a ptrace-based test harness
instead of the vmx. The test harness provided a means to simulate
an adversarial environment, for example by injecting system call
failures or partially corrupting uncommitted data during a simulated
crash. A number of serious implementation bugs were corrected with
the results provided by this technique and confidence in correctness
gained at both design and implementation level.

4.3 Security
We have derived a threat model capturing the concerns of MVP’s
users based on discussions with enterprises, carriers and OEMs.
There are two classes of attacks that are widely seen as being the
most relevant to a virtual phone:

• Physical attacks. Here we are primarily concerned with the
confidentiality of data if a phone or SD card is lost or stolen.
This is also known as confidentiality of data-at-rest.

• Malicious host applications. Malware may attempt to compro-
mise the confidentiality or integrity of the VM image by exploit-
ing weaknesses in the host OS security model, either while the
VM is running or when it is suspended.

The LBS data file is encrypted at block granularity with an XTS-
AES cipher. If an SD card or phone is stolen, there is no plain text
on the storage media available to an attacker. The key is located
on the protected internal storage and has the same confidentiality
guarantees that exist for the Android application keystore.

Malicious host applications are a significant concern on Android
if relying on the SD card for storage. Since the SD card is FAT
formatted, the standard Unix permission model that Android uses to
sandbox applications is limited by the lack of ownership and group
information support in the filesystem. The XTS-AES cipher provides
some reprieve from this threat, since malicious host applications
may not learn the contents of the LBS data file, but does not
directly protect against replay and randomization attacks. Replay
attacks occur when a legitimate encrypted block from the past is
reintroduced in the LBS data file by a malicious application, causing
the guest behavior to be influenced by the contents of the injected
block. The attacker does not need to know the plain text contents of
the block, simply the associated guest behavior that was previously
observed. Randomization attacks occur when a block is intentionally
corrupted, e.g. fuzzed, leading to guest applications or the kernel
behaving outside the usual control envelope where they depend on
the contents of a block.

To combat replay and randomization attacks, we maintain a
timestamp and checksum respectively in the LBS meta-data. The
timestamp refers to a logical clock maintained by LBS, incremented
after each write. The checksum selection is configurable and may
be either a Fletcher-32 or truncated SHA-256 hash, allowing for
a tradeoff to be made between the cheap to compute but not
cryptographically strong Fletcher checksum and the more expensive
SHA-256, depending on policy. In both cases, the checksum is
applied to the plain text block contents prior to XTS-AES and the
resulting checksum is hidden from the malicious host application,
being located in the LBS meta-data, protected by Unix permissions
on the more full featured YAFFS or JFFS2 used for internal storage.
Hence, when attempting a randomization attack, the attacker is
limited by a lack of knowledge of the checksummed block contents.

4.4 Garbage collection
Cluster garbage collection (GC) takes place in a thread separate
from the main storage virtualization backend thread. GC starts when

197

the number of free clusters drops below a low watermark and stops
when the number of free clusters climbs back up above a high
watermark. The watermarks hence provide GC control hysteresis.

The GC thread selects clusters to free based on heuristics that
take into account the “emptiness” of a cluster, i.e. the number of
unoccupied blocks. Occupied blocks from selected clusters are
arranged in a queue and their contents are loaded in the background
into memory. When enough data exists to complete the current
active cluster, the preloaded blocks are extracted from the queue and
written to the active cluster. The LBS data file is overprovisioned
with space, e.g. the number of physical blocks allocated might be
112% of the logical blocks, to ensure that even a full guest image
maintains adequate space for performant GC.

It is desirable to minimize the number of non-sequential jumps
in the write position, even when write buffering and achieving
sequential access within a cluster. We have found that the simple
occupancy heuristic mentioned above results in the freeing of non-
contiguous physical clusters over time, resulting in free clusters
scattered around the data file. One solution to this problem is to
combine additional heuristics using a scoring for each cluster, and
garbage collect contiguous occupied clusters that have the highest
score. The current scoring function has four weighted components:

• [EMPTINESS] The number of unoccupied blocks divided by
blocks-per-cluster. A cluster with more free blocks is valued
higher.

• [LEFT EMPTY] An award to clusters whose left sibling is empty
because we want as many contiguous free clusters as possible.
We assume that most I/O is ascending, so the right sibling is
likely to be considered in the future; without this component, we
might not otherwise examine the left sibling.

• [OUTLIER CORRECTION] An award provided to those clusters
which have an abnormally high amount of occupied blocks
compared to the clusters around them. Outlier clusters can be
favored by treating them as if they are almost as empty as their
surrounding clusters. Reclaiming an unusually full cluster in
the midst of many empty clusters can extend the length of a
contiguous series of clusters.

• [WRITE POSITION] A boost in score is given to the cluster next
to the cluster currently being written. This promotes contiguous
writes.

The components are equally weighted for the experiments in
this paper, but an improved scoring function may exist in which
component weight is dependent on the amount of free space for GC
in the file. The more free space we have, the more important [WRITE
POSITION] and [LEFT EMPTY] become. When there is little free
space available for GC (typically below 25%), [EMPTINESS] starts
to dominate the other factors.

The storage virtualization stack supports the propagation of guest
TRIM commands. These are leveraged within LBS to assist GC by
providing a more precise view of block status. More details can be
found in Section 6.2.

5. Evaluation
This section describes the experiments used to quantify LBS per-
formance. The benefits of LBS are shown with both synthetic and
trace-based tests. The costs of write amplification, integrity checking
and encryption are measured and discussed.

5.1 Experimental setup
Both synthetic and realistic, user-centric tests were used to char-
acterize the performance of LBS. All experiments were conducted
on an HTC Nexus One phone. The Nexus One contains a 1 GHz

device ID the partition accessed by this I/O
R/W flag indicating whether this I/O is a read or

a write
fragment position in scatter-gather list
offset location on disk
length number of bytes accessed
barrier flag indicating that this record represents a

barrier request

Table 4. Trace record

Qualcomm Snapdragon chipset and 512 MB of DRAM [10]. The
phone ran an aftermarket version of Android 2.3 (Gingerbread)
called CyanogenMod 7.1.

The synthetic test is sdperf from Section 2. For realistic and
repeatable results of the storage behavior of mobile applications, we
wrote a trace-driven execution tool called blksim. We first gather an
I/O trace using the guest block device driver during the use of an
application. A trace record contains the fields shown in Table 4.

To replay the trace, blksim opens a raw block device in the guest
with the O DIRECT flag. Using a raw device removes filesystem
effects. O DIRECT removes the effect of the guest OS buffer cache
and ensures that the virtualized device is presented with the same
stream of I/O that was captured in the trace. Prior to enabling
performance measurement, the trace is read into memory to create
one command stream for each disk partition represented in the trace;
this prevents the I/O required to read the trace from impacting the
measured portion of the experiment.

Each partition’s command stream is then applied to the device,
one at a time. Reads and writes are emulated with pread and
pwrite. A custom ioctl is used to provide end-to-end barrier
semantics in the guest by blocking the guest blksim thread until the
host has completed the fsync to the physical device.

We use the workloads described in Section 3 with one change: the
Android Boot and Slideshow workloads were expanded by repeating
each five times to produce a longer-running trace to magnify any
performance differences and reduce variance.

5.2 Benefit of LBS
The results of the sdperf test with the 8 GB ADATA Class 6 SD card
are shown in Figure 11. We compare LBS to a simpler “flat” VM
image format which does not buffer I/O and uses a straight-through
mapping of virtual disk blocks to physical disk blocks in the VM
image. The graph presents the ratio between bandwidth achieved
with both file formats. Garbage collection was not triggered during
the experiments.

Like Figure 1, the upper graph shows the similarity of sequential
and random reads. The performance difference between flat and
LBS is due to encryption, integrity checking and indirection. It
suggests that flat VM image formats are a better choice for read-
only partitions, especially with larger block sizes.

When writes are present, performance will be closer to that
shown in the lower graph. Here we see regions in which LBS has
advantages for SD cards. For small writes (≤ 32 KB), the LBS write
buffer allows it to exceed the bandwidth achieved with a simple flat
file — even for sequential writes — by making fewer, faster large
I/Os to the SD card. For all tested block sizes, LBS outperforms the
flat file for random writes. This is due to both the write buffering
present in LBS and its ability, due to its log-based structure, to
transform a stream of random writes into a sequential stream more
suited for the SD card.

The benefit of LBS over a flat file can also be seen in the blksim
results shown in Figure 12. Each workload was repeated three times
for each set of filesystem options. The average of the three runs is
normalized to the runtime of a flat virtual disk. We show a cluster

198

1 KB
2 KB

4 KB
8 KB

16
KB

32
KB

64
KB

12
8 KB

25
6 KB

51
2 KB

1 MB
2 MB

4 MB
8 MB

Block size

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

B
an

dw
id

th
R

at
io

(L
B

S
/F

la
t)

Seq, Read Rand, Read

1 KB
2 KB

4 KB
8 KB

16
KB

32
KB

64
KB

12
8 KB

25
6 KB

51
2 KB

1 MB
2 MB

4 MB
8 MB

Block size

1

10

100

1000

B
an

dw
id

th
R

at
io

(L
B

S
/F

la
t)

Seq, Write Rand, Write

Figure 11. 8 GB ADATA Class 6 SD card I/O bandwidth: Ratio
between LBS and Flat file format.

of bars for each partition that had non-negligible traffic. 160 MB
was set aside to provide LBS with sufficient free blocks such that
garbage collection does not occur; the impact of garbage collection
is shown in Section 5.3.

Recall that the Contact Database workload is almost completely
small writes with little sequentiality and a relatively small number of
barriers. Thus, it exhibits a dramatic 17× improvement over the flat
virtual disk due to LBS transforming the I/O into large, sequential
writes. The other write-heavy workloads benefit as well. The email
workload is nearly 5× faster with LBS than it is with a flat file; the
reason it is not better may be due to it having the highest percentage
of barriers within its I/O trace. Each barrier forces a flush of the
LBS write buffer, and smaller writes are less efficient.

5.3 Write amplification
As described in Section 4.4, a garbage collection thread runs
when space is low to provide free clusters for future writes. While
this causes additional write operations to occur, their cost can be
mitigated for two reasons. First, if no other write activity is required,
the additional writes can occur in the background. Second, the writes
will be to contiguous blocks which are relatively inexpensive on SD
cards.

In Table 5, we show this write amplification due to LBS for
the two workloads that triggered garbage collection. The table
aggregates the writes from all of the virtual disk partitions. In this
context, we ignore the effect of hardware-level writes that may occur
depending on the implementation of the SD card’s flash translation
layer. Column 1 lists the number of 1 KB writes generated by the
guest block driver. Note that these writes have been filtered by the
guest OS buffer cache at the time of trace capture.

Column 2 shows the number of writes that actually occur,
measured in units of both 1 KB blocks and 256 KB LBS clusters.
These counts were gathered by setting aside 100% of the virtual
disk’s space as a buffer for the garbage collector so that the workload
never triggers the GC threshold, and no GC writes occur. A small

trace requested LBS writes LBS writes with GC
writes without GC

Contacts 219124 219124 blocks 223593 blocks,
blocks 855 clusters 873 clusters

(802 contiguous)
Email 216057 215972 blocks 220160 blocks

blocks 843 clusters 860 clusters
(813 contiguous)

Table 5. Software-level write amplification due to garbage collec-
tion. 12% additional storage used for garbage collection.

reduction in writes occurs in the Email Client workload due to
overwriting stale data in the LBS write buffer.

Column 3 reflects both the reduction in writes due to buffering
and the write amplification due to garbage collection (the LBS data
file had 12% extra space for GC). While the number of blocks that
must be written has increased, recall that blocks belong to larger
clusters, many of which are contiguous. The large size and high
contiguity make LBS efficient.

5.4 Cost of encryption and integrity checking
Figure 12 also shows how encryption and integrity checking affect
performance. The cost of encryption varies for each trace from as
little as 2% for the Email Client workload, with its high barrier
percentage, to as much as 35% for Android Boot. The relative cost
of encryption increases as block size increases. For larger blocks,
fixed I/O overhead represents a smaller fraction of overall time,
and encryption overhead (which is proportional to block size) has a
greater relative impact. Investigating the use of hardware encryption
offload engines is left as future work.

As mentioned in Section 4.2, data blocks can be protected by
the fast Fletcher checksum or a slower-to-compute, cryptographi-
cally strong SHA-256 checksum. The incremental cost of integrity
checking with Fletcher-32 ranges from 1%–6%. Unfortunately,
cryptographic hashes such as SHA-256 are relatively expensive to
compute on each block. Using a C implementation of Fletcher-32
and the standard Android 2.2 OpenSSL implementation on a Nexus
One device (in ARM assembly language), the following throughput
figures (with 1KB block sizes) represent the speed at which mem-
ory contents can be checksummed. SHA-256 requires nearly 7.7×
longer than Fletcher-32 to process data in these tests.

SHA-1 46.83 MB/s
SHA-256 31.26 MB/s
Fletcher (32 bits) 240.81 MB/s

Corporate policies may demand cryptographically strong hash
algorithms such as SHA-256. In our tests, sdperf results were
degraded by approximately 4–8% for block sizes less than 4 KB
when SHA-256 was used instead of Fletcher-32. Overhead of the
more expensive hash function increases with larger I/O as the cost of
computation becomes a larger portion of the total I/O cost. While this
is non-negligible, even the worst-case sdperf result (17% reduction
in bandwidth for 256 KB reads, 13% reduction for writes) is much
better than the 7.7× slowdown observed in memory-only tests.

6. Optimizing the mobile I/O stack
LBS effectively bridges the gap between the available storage media
characteristics and VM I/O requirements. Enhancements in the guest,
host and SD card have potential to further improve LBS performance
and/or simplify the VM image format. These optimizations may
prove beneficial even on non-virtualized systems.

199

an
dr

oid
bo

ot

(/d
ata

)

co
nta

cts

(/d
ata

)
em

ail

(/d
ata

)
br

ow
se

r

(/d
ata

)

sli
de

sh
ow

(/d
ata

)

sli
de

sh
ow

(/s
dc

ar
d)

1

5

10

15

20

S
pe

ed
up

vs
Fl

at
LBS
LBS + checksum

LBS + encryption
LBS + checksum and encryption

Figure 12. Performance of I/O traces without garbage collection.

6.1 Guest
The sequential vs. random and block size write asymmetry may also
be addressed at the filesystem level in the guest, rather than with the
block storage virtualization layer, with a suitable guest log structured
filesystem. The YAFFS and JFFS families of flash filesystems
employ a log structure and appear natural candidates on Android.
Beyond scalability concerns, the chief drawback in a virtualized
setting is the increased complexity at the guest-VMM surface, where
a device model capable of emulating NAND devices is required,
since these filesystems leverage the spare area associated with pages
in NAND. MVP currently presents a simple paravirtualized block
device to the kernel’s block layer, minimizing both guest driver and
VMM complexity and overhead. In addition, such filesystems are
optimized for direct NAND control and some translation will be
required to bridge between the FTL-abstracted NAND on the SD
card and the virtual NAND devices. Other Linux log structured
filesystems, e.g. LogFS and NILFS, are experimental as of 2.6.35
and are unsuitable for enterprise VMs as a result.

A stable implementation of a Linux log structured filesystem
operating on the block layer will open up the possibility of deploy-
ment within MVP guests, lessening the need for the log structure of
LBS, but not the security and reliability aspects. The guest memory
working set behavior and resulting checkpoint subsystem writebacks
cannot be modified as simply as the filesystem, since these are prop-
erties of the application and kernel and not under our control. As
a result, the host filesystem is still presented with a non-sequential
I/O stream, and a system such as LBS will continue to be advanta-
geous for VM checkpointing on SD cards — even if a log structured
filesystem is in use in the guest.

6.2 Host
The fundamental assumption guiding a hosted mobile hypervisor
architecture is that the host OS and hardware are the purview of
OEMs, silicon and mobile OS vendors. Below we provide several
suggestions for these entities that should prove beneficial for VMs
or applications that make extensive use of the SD card:

• As mentioned in Section 4, the LBS data files are allocated on
the FAT filesystem at initialization time, reducing fragmentation
and ensuring availability of space at runtime. This is a slow
operation for large images: since FAT does not support sparse
files or extents, space must be reserved by allocating each block
of the file (e.g., with zeroes). MVP provides a host kernel patch

that allocates filesystem structures for an LBS file and omits the
block zeroing. OEMs may optionally apply this patch to improve
the speed of VM provisioning.

• Similar to the guest in Section 6.1, formatting the host’s SD
card with alternate filesystems could lessen the requirements
on the virtualization layer in terms of I/O reordering, security
and reliability. This would come at the cost of limiting the
inter-operability of the SD card with other devices expecting a
FAT filesystem or via USB mass storage. In addition, SD card
FTLs are optimized for FAT and the use of other filesystems
will require careful tuning [5] (or cooperation from SD card
manufacturers to design hardware to suit a new filesystem
standard).
There is also a trend towards the use of eSD/eMMC chips
on recent phones for internal storage. These devices share the
problems of microSD cards discussed above, with the exception
that they can use a custom filesystem and often employ ext3/ext4.
The relationship between these filesystems, the more general
I/O mixture from Android applications and middleware and the
FTLs on the devices is an interesting area for exploration.

• SD card access control granularity can be improved without
modifying the filesystem, for example by the use of loopback
mounted encrypted images on the SD card with dm-crypt [24],
with mounts restricted to specific applications or capabilities.
This approach has been supported for read-only application code
since Android 2.2, but not for application data, which is where
the VM images are located. In addition, integrity checking is
currently lacking from solutions based around these mechanisms
on the Android and Linux platforms.

• The TRIM command for solid-state disks provides a means to
detect when a block is no longer in use. TRIM commands are
supported by LBS, which marks given blocks as free in the
meta-data. This can reduce the garbage collector overhead and
increases the write bandwidth.
An example of where we greatly benefit from TRIM in LBS
GC is the interaction between memory ballooning [30], used to
balance memory between the host and guest, and the checkpoint
subsystem’s continuous writeback. It is common for the balloon
to release large amounts of guest memory, which translates di-
rectly to the discarding of the released pages from the checkpoint
image.

200

SD cards support erase operations which are natural candidates
for the translation of TRIM or discard commands. This would
enable the SD card’s FTL to also reduce its garbage collection
overhead. Unfortunately, the FAT filesystem does not provide a
means for applications like the vmx to convey this information.
Appropriate user-level primitives would assist here.

• Section 5.2 and Section 5.4 demonstrate the non-negligible cost
of hashing and encryption in software. Mobile SoCs include
dedicated cryptographic engines [2], however these are not
exposed at user-level on Linux. A standard API providing access
to these features would make practical their adoption in LBS
when the setup and invocation costs are outweighed by the
offloading advantage.
Another area that hardware security features could assist is in
key storage. As mentioned earlier, the LBS AES key is only
as secure as the host application keystore, which is typically
protected by file permissions only. The hardware based secure
storage functionality offered on some SoCs [2] could provide
further protection for keys, but again there is no standardized
means to access this at the application level today which hinders
a portable implementation.

6.3 SD card
FTLs with support for a VM or general purpose workload I/O
mixture are another way to attack the mismatch LBS solves. An
example of such cards are Windows Phone 7 compliant cards [29],
such as the 8 GB SanDisk in Section 2, where small random writes
are not penalized. However, the batching achieved by the LBS write
buffer may still prove beneficial, since it amortizes the kernel context
switch, host controller and SD card communication costs.

SD cards can include a small protected area for DRM-style
device use [23], however this is not a general purpose secure
storage mechanism and is not exported in a standard way to user-
level applications. If SD cards were to provide hardware encrypted
partitions, similar to some secure USB keys [13], then data-at-rest
confidentiality can be guaranteed for the VM without the need
for interposition at the VM layer. Protection from malicious host
applications will still require effective access control at the operating
system level, i.e. a generally accessible FAT partition requires
encryption in the vmx before the data hits the filesystems.

7. Related work
The performance characteristics of many SD cards are studied by
Bergmann and the Linaro Project [5, 16]. In addition to the observa-
tions in Section 2 regarding the disadvantage of non-sequentiality
in write patterns at small block sizes, they delve into reverse en-
gineered internal FTL characteristics. While the Linaro effort is
focused on understanding these characteristics to motivate kernel
changes to better support SD cards, we demonstrate application
level optimizations, above the FAT layer, instead and apply them to
the VM backing store domain.

Bouganim et al [7] present a benchmarking methodology for
block addressed flash memory devices. Our performance characteri-
zation in Section 2 is similar in nature to a subset of the microbench-
marks they describe, targeted at the filesystem level instead of block
layer. We also chose to focus on bandwidth instead of latency, since
we found this both easier to measure and throughput to be a more
important consideration than individual I/O latency for operations
such as checkpoint suspend and resume.

While performance modeling and system optimization for SSDs
has been extensively studied, e.g. [1, 8, 21, 25], SD cards have
received comparably little attention in the literature, perhaps as
a result of their assumed role as ancillary media stores rather
than devices backing key workloads such as databases and virtual

machines. Some studies have included examples of related low cost
consumer storage in the form of Compact Flash (CF) cards [19]
and USB flash drives [6, 7], but without publicly available SD card
implementation details, it is unclear whether this related work can
be applied to a given SD card.

Log structured filesystems were proposed to address the I/O
bottleneck caused by fast CPU and slow disks [22]. While the
original work focused on mechanical disks, the same relative penalty
exists for mobile devices using commercial SD cards. The use
of a log structured filesystems to improve performance on flash
memory has been studied in the Cloudburst project [4]. LBS shares
several of the same goals as Cloudburst, but the works differ in
that LBS focuses on NAND flash rather than NOR flash. The
Cloudburst virtual disk was implemented between the filesystem
and the physical media, directly interfacing with NOR flash chips.
LBS is a different sort of virtual disk: one that exists between
a VM’s virtualized media and a host filesystem. Log structured
filesystems have also been employed on flash media for wear
leveling and reliability [32], LBS already benefits from the wear
leveling provided by an SD card’s FTL but is required to add missing
reliability features. DFS [15] utilizes features of a log structured
FTL with large virtual address space and crash recovery support,
implemented as a kernel device driver for FusionIO drives, to
simplify flash filesystem implementation. The tradeoff between
performance and memory use was explored by NANDFS [35], LBS
delegates this decision to the kernel’s page cache layer.

The concept of reading VM checkpoint images sequentially is
discussed in a paper on fast restore [34]. In this work, the abil-
ity to quickly restore a VM is aided by sequential placement on
disk of memory that is not necessarily contiguous. Work on fast
checkpointing of VMs trades checkpoint speed for potential slow-
down during restore due to random placement of memory blocks on
disk [20]. Our work focuses on quickly writing checkpoints to disk,
but it shares the desire to enable sequential placement of disk blocks
despite memory access patterns that are not necessarily sequential.

8. Conclusion
The storage virtualization layer in a mobile hypervisor needs to take
into account the performance, security and reliability characteristics
of the host devices and filesystems providing bulk storage. In this
paper we have presented the motivation, design, implementation
and performance evaluation for a block storage virtualization layer
capable of matching an Android VM’s I/O mixture with these
characteristics of commodity SD cards and the FAT filesystem. SD
cards, while not designed with the use case in mind, are capable of
effectively supporting a storage virtualization backend with such a
layer. Going forward, there are many avenues presented in Section 6
for VMware, OEMs, silicon vendors, mobile operating systems and
the systems research community to explore in further enhancing VM
and general purpose storage I/O on low cost commodity devices, an
area that has to date been under-explored.

Acknowledgments
The authors would like to thank Craig Newell for his direction;
Prashanth Bungale, Viktor Gyuris, Andrew Isaacson, Priti Mishra
and Ian Wienand for their careful reviews; and our managers for
permitting us to spend time on this paper.

References
[1] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D. Davis, Mark

Manasse, and Rina Panigrahy. Design tradeoffs for SSD performance.
In USENIX Annual Technical Conference, June 2008.

[2] Jerome Azema and Gilles Fayad. M-ShieldTMMobile Security Technol-
ogy: making wireless secure. Texas Instruments, February 2008.

201

[3] Ken Barr, Prashanth Bungale, Stephen Deasy, Viktor Gyuris, Perry
Hung, Craig Newell, Harvey Tuch, and Bruno Zoppis. The VMware
Mobile Virtualization Platform: is that a hypervisor in your pocket?
SIGOPS Operating Systems Review, 44:124–135, December 2010.

[4] Gretta Bartels and Timothy Mann. Cloudburst: A compressing, log-
structured virtual disk for flash memory. Technical Report 2001-001,
Compaq Systems Research Center, February 2001.

[5] Arnd Bergmann. Optimizing Linux with cheap flash drives. Linux
Weekly News, February 2011. URL: http://lwn.net/Articles/
428584/ [visited September 2011].

[6] Andrew Birrell, Michael Isard, Chuck Thacker, and Ted Wobber. A
design for high-performance flash disks. SIGOPS Operating Systems
Review, 41(2):88–93, April 2007.

[7] Luc Bouganim, B. Jónsson, and Philippe Bonnet. uFLIP: Understand-
ing flash IO patterns. In Conference on Innovative Data Systems
Research, January 2009.

[8] Kaoutar El Maghraoui, Gokul Kandiraju, Joefon Jann, and Pratap
Pattnaik. Modeling and simulating flash based solid-state disks for
operating systems. In WOSP/SIPEW International Conference on
Performance Engineering, January 2010.

[9] John G. Fletcher. An arithmetic checksum for serial transmissions.
IEEE Transactions on Communications, 30(1):247 – 252, January
1982.

[10] Google, Inc. Nexus One [online]. URL: http://www.google.com/
phone/detail/nexus-one [visited October 2011].

[11] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: A flash
translation layer employing demand-based selective caching of page-
level address mappings. In International Conference on Architectural
Support for Programming Languages and Operating Systems, March
2009.

[12] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Shuping Zhang, Jingning
Liu, Wei Tong, Yi Qin, and Liuzheng Wang. Achieving page-mapping
FTL performance at block-mapping FTL cost by hiding address
translation. In IEEE Symposium on Massive Storage Systems and
Technologies, May 2010.

[13] IronKey. IronKey Basic S200 datasheet, 2009.

[14] Song Jiang, Feng Chen, and Xiaodong Zhang. CLOCK-Pro: An
effective improvement of the CLOCK replacement. In USENIX Annual
Technical Conference, April 2005.

[15] William K. Josephson, Lars A. Bongo, Kai Li, and David Flynn. DFS:
A file system for virtualized flash storage. ACM Transactions on
Storage, 6:14:1–14:25, September 2010.

[16] Linaro. Flash card survey [online]. URL: https://wiki.linaro.
org/WorkingGroups/Kernel/Projects/FlashCardSurvey [vis-
ited September 2011].

[17] Metago. ASTRO File Manager version 2.5.2 [online]. URL: http://
market.android.com/details?id=com.metago.astro [visited
August 2011].

[18] NASA. Ornamentation photographs [online]. December 2010.
URL: http://www.flickr.com/photos/nasacommons/sets/
72157625514008231/ [visited October 2011].

[19] Suman Nath and Phillip B. Gibbons. Online maintenance of very
large random samples on flash storage. The VLDB Journal, 19:67–90,
February 2010.

[20] Eunbyung Park, Bernhard Egger, and Jaejin Lee. Fast and space
efficient virtual machine checkpointing. In ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, March
2011.

[21] Abhishek Rajimwale, Vijayan Prabhakaran, and John D. Davis. Block
management in solid-state devices. In USENIX Annual Technical
Conference, June 2009.

[22] Mendel Rosenblum and John K. Ousterhout. The design and imple-
mentation of a log-structured file system. In ACM Symposium on
Operating Systems Principles, October 1991.

[23] SanDisk. SanDisk SD Card Product Manual, 2.2 edition, November
2004. Document No. 80-13-00169.

[24] Christophe Saout. dm-crypt: a device-mapper crypto target [online].
URL: http://www.saout.de/misc/dm-crypt/ [visited October
2011].

[25] Mohit Saxena and Michael M. Swift. FlashVM: virtual memory
management on flash. In USENIX Annual Technical Conference, June
2010.

[26] SD Group (Panasonic, SanDisk, Toshiba) and SD Card Association. SD
Specifications Part 1. Physical Layer. Simplified Specification. Version
3.01, May 2010.

[27] Standard Performance Evaluation Corporation. SPECmail2009, March
2009. URL: http://www.spec.org/mail2009/.

[28] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtu-
alizing I/O devices on VMware Workstation’s hosted virtual machine
monitor. In USENIX Annual Technical Conference, June 2001.

[29] Microsoft Support. Windows Phone 7 Secure Digital Card limitations
[online]. URL: http://support.microsoft.com/kb/2450831
[visited October 2011].

[30] C. Waldspurger. Memory resource management in VMware ESX
Server. In Symposium on Operating Systems Design and Implementa-
tion. USENIX, December 2002.

[31] Seth Weintraub. Industry first: Smartphones pass PCs in sales [online].
Feb. 2011. URL: http://tech.fortune.cnn.com/2011/02/07/
idc-smartphone-shipment-numbers-passed-pc-in-q4-2010/
[visited October 2011].

[32] David Woodhouse. JFFS: The journaling flash file system. In Ottawa
Linux Symposium, July 2001.

[33] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi.
Using model checking to find serious file system errors. ACM
Transactions on Computer Systems, 24:393–423, November 2006.

[34] Irene Zhang, Alex Garthwaite, Yury Baskakov, and Kenneth C. Barr.
Fast restore of checkpointed memory using working set estimation. In
ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments, March 2011.

[35] Aviad Zuck, Ohad Barzilay, and Sivan Toledo. NANDFS: a flexible
flash file system for ram-constrained systems. In ACM International
Conference on Embedded Software, October 2009.

202

