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Abstract  

Applications written in dynamically typed scripting languages are 
increasingly popular for Web software development. Even on the 
server side, programmers are using dynamically typed scripting 
languages such as Ruby and Python to build complex applications 
quickly. As the number and complexity of dynamically typed 
scripting language applications grows, optimizing their perform-
ance is becoming important. Some of the best performing compil-
ers and optimizers for dynamically typed scripting languages are 
developed entirely from scratch and target a specific language. 
This approach is not scalable, given the variety of dynamically 
typed scripting languages, and the effort involved in developing 
and maintaining separate infrastructures for each. In this paper, we 
evaluate the feasibility of adapting and extending an existing pro-
duction-quality method-based Just-In-Time (JIT) compiler for a 
language with dynamic types. Our goal is to identify the challenges 
and shortcomings with the current infrastructure, and to propose 
and evaluate runtime techniques and optimizations that can be 
incorporated into a common optimization infrastructure for static 
and dynamic languages. 

We discuss three extensions to the compiler to support dynami-
cally typed languages: (1) simplification of control flow graphs, (2) 
mapping of memory locations to stack-allocated variables, and (3) 
reduction of runtime overhead using language semantics. We also 
propose four new optimizations for Python in (2) and (3). These 
extensions are effective in reduction of compiler working memory 
and improvement of runtime performance. We present a detailed 
performance evaluation of our approach for Python, finding an 
overall improvement of 1.69x on average (up to 2.74x) over our 
JIT compiler without any optimization for dynamically typed lan-
guages and Python. 

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Compilers, optimization, run-time environ-
ment 

General Terms Performance, Languages. 
 

Keywords Just-In-Time compiler; dynamically typed language; 
Python 

1. Introduction 

Dynamically typed scripting languages (called scripting languages) 
such as PHP, Python, Ruby, and JavaScript are becoming increas-
ingly popular due to high productivity and ease of programming 
that they enable. These languages have been especially successful 
for Web applications [29, 33]. Flexibility provided by dynamic 
types, meta-programming features, high-level data structures, in-
teroperability with other languages, and a rich set of frameworks 
and libraries such as Ruby on Rails [31] all contribute to high pro-
ductivity. 

Unfortunately, the same flexibility that makes these languages 
popular with programmers also makes optimization and efficient 
code generation challenging. As the use of these languages grows, 
optimizing their performance is increasingly important. Although 
the original and commonly used implementations of most dynami-
cally typed scripting languages are interpreters with relatively poor 
performance, several optimization approaches ranging from inter-
preter and runtime techniques to Just-In-Time (JIT) compilation 
have been proposed [7, 15, 24, 44]. Of course, neither the dynamic 
languages nor their optimization techniques are new. For example, 
those optimizations, which were originally proposed for Self as 
early as 1989 [10, 11], have been successfully applied to modern 
scripting languages [6, 7, 15, 48]. 

This paper describes how we adapt an existing method-based 
JIT compiler, originally designed for a statically typed language, to 
work with a dynamically typed language. This approach leverages 
existing optimizations in a production quality JIT compiler [26, 27] 
and allows compiler writers to quickly create a compiler for a new 
language, thereby reducing the costs associated with developing 
and maintaining a new JIT compiler. The Open Source Unladen 
Swallow (Python) [44], Rubinius (Ruby) [30], and Tamarin with 
LLVM [36] projects also used similar approaches, using the Open 
Source LLVM compiler infrastructure [21] as an optimizer and 
native code generator. However, this approach has not been sys-
tematically evaluated in existing literature. 

We show that, not surprisingly, the naïve approach to translate 
a dynamically typed language to an intermediate representation 
(IR) of an existing compiler only yields a small improvement. We 
identify three main performance-inhibiting issues in this naïve 
translation. The first issue is the generation of complex control 
flow graphs. The second is the generation of many memory ac-
cesses in the heap area. The last is the generation of calls to generic 
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runtime helpers. We introduce a new technique to address each of 
these three issues: (1) to simplify CFGs by introducing new IR 
opcodes for exceptions and garbage collection (GC) related opera-
tions, (2) to map frequently accessed stack operands and local vari-
ables of a dynamically-typed language to stack-allocated variables, 
and (3) to replace the generic helper calls with helper calls opti-
mized for a particular type that is inferred using dynamic profiling. 
In addition, we also propose three new optimizations to enable 
mapping of the operand stack of the original language to stack-
allocated variables and to cache and pre-compute the built-in func-
tions. Our experimental results show that these techniques and 
optimizations are effective. In particular, technique (1) is effective 
in reducing working memory at compilation time. Technique (2) 
shows 1.18x performance improvement, and technique (3) shows 
1.26x performance improvement. 

We choose Python as our initial target language due to our in-
terest in server-side workloads. In addition to leveraging the JIT 
compiler, maintaining compatibility with the original, commonly-
used Python (called CPython) interpreter [28] is central to our 
design. This is because CPython has many useful libraries that are 
closely linked to the internal objects of the CPython runtime. In 
summary, our approach couples the CPython interpreter with the 
production JIT compiler with preserving the compatibility with 
these useful libraries. 

There are some design choices to implement a JIT compiler for 
a new dynamically typed language. Here we discuss two choices. 
One is whether we generate native code from the dynamically 
typed language bytecode or from other bytecode such as Java byte-
code translated by Jython [39]. The latest Jython generates Java 
bytecode from Python source file or bytecode, but this leads to the 
loss of semantic information in the original Python. For example, 
the Java JIT compiler cannot recognize the Java bytecode sequence 
corresponding to an attribute access in Python. Because the JIT 
compiler misses optimization opportunities at the Python language 
level, the performance is not good for many of the benchmarks. 
Thus, we choose to generate native code directly from the dynami-
cally typed language bytecode. Although SPUR [5] takes a similar 
approach, its compiler to generate CIL is carefully designed with 
its trace JIT to achieve excellent performance. The other design 
choice is whether we write a new JIT compiler for every dynami-
cally typed language or we reuse the existing JIT compiler. There 
are several JIT compilers [6, 7, 22, 48] that are newly developed. 
They achieve excellent performance since they are designed for the 
target language. On the other hand, it is not easy to extend them to 
other languages. One exception is PyPy [7] that is trying to support 
other languages. From an engineering effort perspective, it would 
be desirable to design an extensible compiler framework that sup-
ports multiple languages without compromising on performance. 
This is the interesting and challenging research issue that we will 
address since the limited number of implementations [5, 7, 30, 36, 
44] adopted this approach. 

The contributions of this paper are as follows: 

 Three methods to effectively extend a compiler designed for a 
statically typed language to a dynamically typed language: (1) 
simplify control flow graphs, (2) map memory locations to 
stack-allocated variables, and (3) reduce runtime overhead us-
ing target language semantics (Sections 6.2, 6.3, and 6.4). 

 Three new optimizations for (2) and (3) in Python: (a) Mapping 
of the operand stack to stack-allocated variables to enable exist-
ing optimizations, (b) caching results of the isinstance() built-in 
function, and (c) pre-computation of the hasattr() built-in func-
tion to reduce the runtime overhead (Sections 7.1, 7.2, and 7.3). 

 Performance evaluation of our approach implemented on the 
production IBM JIT compiler [26] using programs from the 
publicly available Unladen Swallow benchmarks [40] showing 
average performance improvement of 1.76x (up to 2.67x) over 
the CPython interpreter, compared to a 1.34x performance im-
provement without any optimizations that will be described in 
Sections 6 and 7 (Section 8.1).  

 Detailed evaluation of optimizations, which yields an overall 
improvement of 1.69x on average (up to 2.74x) against without 
any optimization, for adapting a compiler for a statically typed 
language (Section 8.2). 

The paper is organized as follows: Related work is discussed in 
Section 2. We show the motivation and highlight the problem that 
we address in Section 3. Then, we give a brief overview of the 
dynamically typed language we focus on, viz. Python, especially 
of the aspects that are relevant to our work in Section 4. Section 5 
gives an overview of our JIT compiler, followed by a description 
of our adaptation techniques in Section 6 and optimizations for 
CPython in Section 7. Then, Section 8 evaluates effectiveness of 
techniques in Section 6 and 7. Section 9 concludes this paper. 

2. Related Work 

Dynamically typed, object-oriented programming languages have a 
long history from Smalltalk and Self [14, 10] to more recent lan-
guages like Python, Ruby, PHP, ActionScript, and JavaScript. Self 
pioneered the development of many important optimizations, spe-
cialization, and performance adaptation techniques in its research 
environment. Recently, we have seen a surge of interest in improv-
ing dynamically typed language performance via JIT compilation 
and VM improvements. We focus on related work in the JIT com-
pilation space. 

2.1 Python 

Although CPython is the most widely used Python implementation 
today, there are several projects in industry and academia that seek 
to improve Python performance via compilation.  

The most recent one and the closest to our work is the Unladen 
Swallow compiler [44] led by Google. Unladen Swallow attaches a 
JIT compiler based on LLVM [21] to CPython and selectively 
compiles Python methods at runtime. It has not been active re-
cently. Given the similarity of our approaches, we have included 
comparisons with Unladen Swallow in our evaluations and descrip-
tions, where applicable. 

PyPy [7] implements the Python language in an interpreter writ-
ten in a restricted, statically typed subset of Python called RPython 
[2]. The PyPy JIT compiler is a trace JIT compiler that traces 
through PyPy’s runtime layers. As the interpreter written in RPy-
thon runs, traces of the IR to which RPython is translated are col-
lected and compiled. This approach of tracing through the runtime 
lends itself well to specialization as the collected traces capture 
type information. The runtime is completely different from CPy-
thon’s runtime that we used, and is highly optimized for PyPy [8]. 
For example, its runtime is annotated for PyPy’s optimizers [8] and 
tuned for PyPy [34]. Maps [9] are used for dictionaries while CPy-
thon uses a closed hash table. We do not compare the performance 
with PyPy in this paper. 

Jython [39] and IronPython [18] convert Python to the Java and 
CLR/.NET world. A Python application running under Jython or 
IronPython becomes a pure Java or .Net application. It then relies 
on the Java or .Net JIT compiler to perform optimizations without 
knowledge of the original, dynamically typed language. However, 
with the loss of semantic information from the original dynami-
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cally typed language, the JIT compiler is not as effective. The per-
formance of both systems with JIT compilers lags behind CPython 
for many of the benchmarks that we analyzed. 

To eliminate complications of implementing dynamically typed 
languages on top of a Java virtual machine (JVM), Da Vinci Ma-
chine Project [38] proposes extensions to the JVM. For example, 
invokedynamic bytecode has been added, which make method in-
vocations simple in the absence of static type information. Our 
approach uses typical compiler IR instead of using Java bytecode. 

2.2 Method-based Compilers for other dynamically typed 
languages 

Both method-based and trace-based compilation have also been 
explored in compilers for dynamically typed languages other than 
Python. Besides Unladen Swallow (Python), other major method-
based dynamically typed language compilers are V8 [48] (JavaS-
cript), JägerMonkey [6] (JavaScript), Rubinius [30] (Ruby), Tama-
rin with LLVM [36] (ActionScript), and P9 [37] (PHP). 

V8 is one of the fastest JavaScript engines. The use of hidden 
classes, which is similar to maps in Self, speeds up name-based 
attribute lookup in JavaScript. Large performance improvements 
also come from a careful redesign of the runtime, such as the use of 
tagged pointer representation for numeric objects and the use of a 
better garbage collector. Our design goal of maintaining compati-
bility with CPython makes similar modifications difficult. In con-
trast to our approach, V8 uses its VM and a custom JIT to compile 
JavaScript methods. 

JägerMonkey is a hybrid JIT compiler that combines benefits of 
method-based and trace-based compilation for JavaScript. It fo-
cuses on optimizations specifically targeted at dynamic languages, 
such as polymorphic inline caching. Rubinius and Tamarin use an 
approach similar to Unladen Swallow and leverage LLVM to com-
pile Ruby or ActionScript code to machine code at runtime.  P9 is 
a method-based JIT for PHP that is also based on Testarossa. To 
the best of our knowledge, these approaches have not been de-
scribed or analyzed in detail, especially in terms of the compiler 
infrastructure and optimizations that they implement. 

2.3 Trace-based compilation for dynamically typed languages 

The major trace JITs for dynamically typed languages today are 
TraceMonkey [15] (JavaScript) and SPUR [5] (JavaScript), LuaJIT 
[22] (Lua), and PyPy (Python). Trace compilation is appealing for 
dynamically typed languages due to ease of type concretization, 
and faster and simpler compilation due to simple trace topologies. 

TraceMonkey and LuaJIT compile traces formed out of the tar-
get language bytecode. As such, the JIT can optimize the code 
using knowledge of the language semantics captured in the trace. 
TraceMonkey, for instance, supports very aggressive type speciali-
zation and unboxing optimizations. LuaJIT performs redundancy 
elimination and folding optimizations on Lua bytecode. In contrast, 
SPUR and PyPy form traces by tracing through the runtime of the 
target, dynamically typed language. For instance, SPUR compiles 
traces formed out of Common Intermediate Language (CIL) in-
stead of JavaScript bytecodes. As such, the optimizer can optimize 
any dynamically typed language that is implemented on top of CIL, 
thus offering a scalable approach to support many dynamically 
typed languages. 

Yermolovich et al. [49] devised an approach that an interpreter 
of a dynamic language (guest VM) and running it on top of an 
optimizing trace-based virtual machine (host VM). This is very 
similar to PyPy. In this approach, the host VM compiles traces to 
machine code without implementing a custom JIT compiler for the 
guest VM. 

3. Problem 

We reuse the existing components in the compiler as much as pos-
sible to easily apply traditional optimizations to dynamically typed 
languages. These components are designed to operate on the IR for 
statically-typed languages such as Java. We can naïvely translate 
higher-level bytecode of a dynamically typed language into an IR, 
in which the IR is almost a series of invocations of the bytecode 
handlers of the dynamically typed language interpreter. This trans-
lation is simple, however, it leads to the following two problems 
that inhibit optimizations: 
1. IR explosion: the large number of IR instructions with complex 

control flow to execute a single bytecode for the dynamically 
typed language. 

2. Loss of semantics: the loss of the semantics when the original 
dynamically typed language is translated to the IR of a stati-
cally typed language. 

With Problem 1, the large working memory required and complex-
ity due to IR explosion often limits optimizations. The handler of 
each bytecode in dynamically typed languages contains compli-
cated control flow in many cases. There are three reasons: One is 
untyped operands -- the bytecode can take objects of any type as 
the input operands. The interpreter tests the types for the operand 
objects and chooses the code that is specific to the types, which 
can execute the operation on the specific types. Second is error 
checking and exception handling -- most of the bytecodes in dy-
namically typed languages potentially throw exceptions. One of 
the reasons for this is that operations for some combinations of 
types in operands are not defined. Therefore, the interpreter checks 
whether an exception is thrown whenever each bytecode handler of 
a dynamically typed language is executed. Third is the reference 
counting garbage collection (GC). For example, PHP and CPython 
use this form of GC. In reference counting GC, the interpreter dec-
rements the reference count of the objects when they are no longer 
used, and reclaims them if the reference count reaches zero. 

With Problem 2, a compiler cannot use the semantics of the 
original bytecode of a dynamically typed language for optimiza-
tions since the IR that the compiler uses does not retain this infor-
mation. For example, the code for reference counting is 
represented in the IR as a sequence of instructions that decrement 
of a value at a given memory address, test the value, branch condi-
tionally to a function. It is not easy to infer the original semantics 
from the sequence. Retaining the original semantics would offer 
more opportunities for applying advanced optimizations. 

Figure 1 shows an example of a Python program and the corre-
sponding CPython bytecode. Figure 2 shows an example of naïve 
translation of BINARY_ADD CPython bytecode at idx 6 in Figure 1. 
The iaload instruction gets an address value from a memory loca-
tion specified by an address in the operand. The aiadd instruction 
calculates a new address by adding an integer to an address. The 
“if igt 0, t1, L2” jumps to L2 if the integer t1 equals 0. The iastore 
instruction puts an address value in a memory location specified by 
an address in the operand. The “acall @PyNumber_add” calls a 
polymorphic runtime helper for an add operation for any type com-
binations of two operands. The “vcall @DecRef” reclaims an object 
given by an argument. 
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1: g = 1.2 
2: class sample(object): 
3:   i = 0.1 
4:   def foo(self, a): 
5:     global g 
6:     t = a + g 
7:     return t + self.i 

 
# idx opcode operand comment 
   0 LOAD_FAST 1 (a) 
   3 LOAD_GLOBAL 0 (g) 
   6 BINARY_ADD 
   7 STORE_FAST 2 (t) 
  10 LOAD_FAST 2 (t) 
  13 LOAD_FAST 0 (self) 
  16 LOAD_ATTR 1 (i) 
  19 BINARY_ADD 
  20 RETURN_VALUE  

Figure 1. An example Python program and CPython bytecode for 
a method foo 

1:      // osp is operand stack ptr.
2: L0: w = iaload [osp – 4] // 1. 
3:  osp = aiadd osp, -4 // w = POP() 
4:  v = iaload [osp – 4] // v = POP() 
5:  osp = aiadd, osp, -4 
6:      // 2. and 3. 
7:  x = acall @PyNumber_Add, w, v // types should be checked 
8:      // in @PyNumber_Add 
9:      // 4. 
10:  t1 = iaload [w + #obj_refcnt] // Decrement referece count 
11:  t1 = t1 – 1 // for w 
12:    iaload [w + #obj_refcnt] = t1  
13:    ifigt 0, t1, L2 
14: L1:   vcall @DecRef, w 
15: L2: t2 = iaload [v + #obj_refcnt] // Decrement reference count
16:  t2 = t2 – 1 // for v 
17:    iaload [v + #obj_refcnt] = t2  
18:    ifigt 0, t2, L4 
19: L3:   vcall @DecRef, v 
20: L4:   iastore [osp + 0] = x // 5. 
21:      // PUSH(x) 
22:  osp = aiadd osp, 4 
23:      // 6. 
24:    ifaneq x, 0, L6 // if (x == NULL) { 
25:  
26: L5: vcall @throwException //   throwException() 
27: L6:     // }  

Figure 2. The naïve IR sequence for a BINARY_ADD bytecode at idx 
6 in Figure 1 

 
1: L0: 
2: t1 = s1  // load from stack-allocated variable 
     // for operand stack[1] 
3: t0 = s0  // load from stack-allocated variable 
     // for operand stack[0] 
4: t2 = acall @PyAdd_Float_Float, t1,t0 // Add specialized for two floats 
5:    // types should be checked in it 
6:   ReferenceCount t1, -1 // Decrement ref. count in t1 
7:   ReferenceCount t0, -1 // Decrement ref. count in t0 
8: s0 = t2  // store t2 to stack-allocated variable 
     // for operand stack[0] 
9:   ExceptionCheck t2 // Check whether an exception happened  
Figure 3. The optimized IR sequence for a BINARY_ADD bytecode 

at idx 6 in Figure 1 
 

1: a0 = iaload [PyFrameObject+0] // get an argument (self) from PythonFrame
    // and put into stack-allocated variable
2: a1 = iaload [PyFrameObject+4] // get an argument (a) from PythonFrame 
    // and put into stack-allocated variable
3: s0 = a1 
4:   ReferenceCount s0, 1 // Increment reference count in s0 
5: i =  iaload [PyCode+invalid] // load flag whether code is valid  
6:   SideExit i // if i is 1, bail out an interpreter 
7: s1 = 1.2 
8:   ReferenceCount s1, 1 // Increment reference count in s1 
9: t = acall @PyAdd_Float_Float, s0,s1 
10:   ReferenceCount s1, -1 
11:   ReferenceCount s0, -1 
12:   ExceptionCheck t 
13: a2 = t 
14: s0 = a2 
15:   ReferenceCount s0, 1 
16: s1 = a0 
17:   ReferenceCount s1, 1 
18: t = acall @PyGetAttr_Offset, s1, 0 // Get a value of attribute i 
    // (profiled offset=0) 
19:   ReferenceCount s1, -1 
20:   ExceptionCheck t 
21: t = acall @PyAdd_Float_Float, s0, t 
22:   ReferenceCount t, -1 
23:   ReferenceCount s0, -1 
24:   ExceptionCheck t 
25:  iastore [PyFrameObject+0] = a0 // write back to the PythonFrame 
26:  iastore [PyFrameObject+4] = a1 // write back to the PythonFrame 
27:  iastore [PyFrameObject+8] = a2 // write back to the PythonFrame 
28:   return t  
Figure 4. The optimized IR sequence for the program in Figure 1 

 
Figure 3 shows an IR sequence for the BINARY_ADD that we will 

generate to achieve better performance by applying optimizations. 
Compared to Figure 1, there are some improvements: the number 
of BBs is reduced, operations for operand stack are simple, and a 
runtime helper for is specialized. Figure 4 shows an IR sequence 

for the program in Figure 1 that we will generate by applying op-
timizations. 

4. The Python Language 

This section provides a short introduction to the Python language, 
and its popular implementation, the CPython environment, to sup-
port the explanation of our approaches and optimizations that will 
be presented in Sections 6 and 7. 

4.1 Overview 

Python is a general purpose high-level, object-oriented program-
ming language for rapid programming that supports several dy-
namic features for dynamic typing, dynamic objects, reflection, 
and dynamic code [17]. 

With dynamic typing, variables in Python are not associated 
with a fixed type, but take the type of the object assigned to them 
in a program. Without static type inference, internal representa-
tions in Python are type generic and defer concretizing abstract 
operations until runtime, This means a statement ‘a = b + c’ could 
describe integer addition, string concatenation, or whatever seman-
tics are chosen for a user-defined object. 

For dynamic objects, Python programs do not contain type dec-
larations of fields and methods (referred to collectively as attrib-
utes) in a class. Also, objects can change their classes, class 
hierarchies can be changed, the existing attributes can be modified 
or deleted, and new attributes can be added to an object or class 
after its creation or definition. Although Python is an object-
oriented language, Python cannot assume a fixed object structure at 
compile time. 

Reflection refers to the use of meta-object facilities, such as ob-
taining an attribute, setting an attribute, invoking a method, and 
inspecting an object or its class using a name determined at run-
time. Dynamic code creation in Python allows a program to con-
struct and execute code at runtime. 

4.2 Semantics 

The reference implementation of Python is CPython although there 
are several other implementations for the Python language. This 
implementation is an intentionally simple interpreter written in the 
C language. 

On a call to a Python function, the CPython interpreter creates a 
PyFrameObject that contains the complete environment needed to 
execute the function, including a reference to the bytecode se-
quence, the stack operands, and local variables. The VM steps 
through this bytecode sequence executing each bytecode. Figure 5 
shows examples of bytecode handlers for the LOAD_FAST, 
LOAD_CONST, and BINARY_ADD instructions. 

In comparison to a standard Java bytecode interpreter, the CPy-
thon interpreter executes many machine instructions per bytecode 
and has a fairly complex control flow. 

The rest of this section describes several types of CPython byte-
code instructions. 
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PyObject *x, *v, *w, **TOS; 
... 
switch (opcode) { 
case LOAD_FAST: 

     x = GETLOCAL(oparg); 
   Py_INCREF(x); // increment x’s reference count
   PUSH(x); // *TOS++ = x 

if (x == NULL) { throwException(); } 
   break; 
case LOAD_CONST: 
   x = PyTuple_GetItem(CONSTS, oparg); 
   Py_INCREF(x); 
   PUSH(x); // *TOS++ = x 
   break; 
case BINARY_ADD: 

     w = POP(); // w = *--TOS 
   v = POP(); // v = *--TOS 
   x = PyNumber_Add(v, w); 
   Py_DECREF(v); // decrement v’s reference count
   Py_DECREF(w); // decrement w’s reference count
   PUSH(x); // *TOS++ = x 
   if (x == NULL) { throwException(); } 
   break; 

... 
} 

 
Figure 5. Bytecode instruction handlers for LOAD_FAST, 

LOAD_CONST, and BINARY_ADD in CPython 

4.2.1 Built-ins and function calls 

There are two types of function calls in Python: invocations of 
functions written in Python and invocations of functions written in 
another language such as C. For Python, a function invocation 
allocates and initializes the PyFrameObject, which includes a refer-
ence to the bytecode sequence, the stack operands, and local vari-
ables, and passes the arguments of Python. For C, a function 
invocation uses an indirect function call at the C level. 

4.2.2 Local variables  

There are slots for local variables in the PyFrameObject. A local 
variable can be accessed with a fixed offset from the local vari-
able’s slot. Therefore, a local variable can be accessed by 
LOAD_FAST and STORE_FAST bytecode instructions faster than an 
attribute. 

4.2.3 Attributes and global variables 

Access to attributes and global variables are frequent in Python 
programs, which reference variables by name. Due to the dynamic 
nature of Python, at runtime they are resolved each time they are 
referenced by their names, in contrast to static languages such as 
Java that resolve each of them only once. For example, the 
LOAD_ATTR (for object attribute) and LOAD_GLOBAL (for global 
variables or built-in) handle these resolutions with lookups in dic-
tionaries (hash tables) using the name as a key. These resolutions 
also involve indirect function calls, since the exact procedure de-
pends on the object type, and this adds overhead [24]. 

4.2.4 Reference counting GC 

The Python language does not explicitly specify a particular algo-
rithm for GC. CPython uses a reference counting GC [13]. In addi-
tion, a mark-and-sweep GC is invoked periodically to reclaim 
objects that have cyclic references. 

For the reference counting GC, Figure 5 shows that instruction 
handlers control the increments and decrements of the reference 
count of an object with Py_INCREF() and Py_DECREF(). 

4.2.5 Exceptions 

Most of the CPython bytecode instructions are potentially except-
ing instructions (PEIs). This is because they create an object for a 
result or they involve a complex or user-defined operation, any of 
which may throw an exception. In contrast with bytecode for static 
typed languages such as Java, most instructions are not PEIs. This 

is because they do not create an object for a result and usually 
perform a few simple operations. 

4.2.6 Operand stack 

Java bytecode maintains a stability property for the operand stack 
of the Java VM, so called Gosling property: the stack level at a 
given bytecode index always is the same regardless of the execu-
tion path used to arrive there [16]. CPython bytecode almost main-
tains the same stability except for one case. This exceptional case 
causes a problem that will be described in detail in Section 7.1. 

4.2.7 Generic operations 

Generic operations are ordinary operations such as ‘NOT’, ‘+’, 
‘+=’, or ‘a[1]’. These operations are untyped. When the op-
erands are popped from the operand stack of the original VM of a 
dynamically typed language, the types are determined and based 
on the combination of types, the actual operation is performed. If 
both types are integer, arithmetic integer addition is invoked and 
the result is stored in an object. 

5. Overview of Our JIT Compiler 

Figure 6 shows an overview of our Python runtime system. The 
boxes in white are the same as the CPython runtime without our 
extensions. The boxes in grey are new components introduced by 
our runtime. As shown in the figure, we extended both the existing 
CPython virtual machine (VM) and the JIT compiler.  The JIT 
compiler has a profiler and exports the API functions that update 
the profile repository to the CPython VM. The interpreter also 
collects type information and branch histories and stores them in 
the profile repository that we implemented. When the interpreter 
identifies a frequently executed method, the JIT compiler is in-
voked and compiles this method to native code, which is then exe-
cuted. 
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Figure 6. Overview of our Python runtime system 

 

IR  
Generator IR 

Code 
 Generator 

 
JIT Compiler Framework 

Bytecode 

 
Language Virtual Machine 

Native code 

 
 
 
 

IR Optimizer 

Interface between 
 VM and JIT compiler 

IR 

 
Figure 7. Overview of the our JIT compiler 

 
We developed our JIT compiler by reusing the production-

grade IBM J9/TR Java VM and the JIT compiler [26]. It supports 
Java 6, which does not support invokedynamic bytecode. Our JIT 
compiler is a method-based JIT compiler that consists of three 
customizable components, for intermediate representation (IR) 
generation, IR optimization, and native code generation as shown 
in Figure 7. The boxes in grey are new components for our JIT 
compiler for a dynamically typed language. Features that are de-
scribed in Sections 6 and 7 are implemented in the IR generator 
and optimizer phases. From a high level view, we developed a new 
IR generator that translates a sequence of dynamically typed lan-
guage bytecodes into our IR and a new set of optimizations for a 
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dynamically typed language while maintaining our JIT compiler 
infrastructure for standard optimizations and code generation. 

When compiling a method, the new IR generator walks through 
the method’s CPython bytecodes to generate the IR while applying 
optimizations for dynamic languages, such as type specialization. 
Each IR instruction has explicit type information such as iadd (the 
add operation for integers). An object is represented as a structure, 
and is referred to using an address type. The new IR generator does 
not use any Java bytecode. 

Our JIT compiler supports a variety of optimization levels, 
which trade optimization complexity against speed. At the hot 
optimization level that we used in this paper, our JIT compiler 
performs about a hundred optimization phases including copy 
propagation, constant propagation, dead code elimination, common 
sub-expression elimination, redundant exception check elimination, 
and global register allocation [25].  

The code generator performs register allocation and instruction 
scheduling, and generates the specified machine instructions. 

6. Adapting a Compiler to a dynamically typed 
language 

This section describes the main techniques that we employed to 
adapt an existing compiler designed for a statically typed language 
to support a dynamically typed language. The goal of this section 
is to build the simple IR sequence, which the existing compiler can 
easily apply optimizations to, as shown in Figure 3. 

We classify these techniques into four categories: 

1. Representation of Python operations and objects in an IR for 
statically typed languages such as our IR. 

2. Control flow graphs (CFGs) simplification. 

3. Mapping memory locations to stack-allocated variables. 

4. Reducing runtime overhead from the dynamic nature of the 
code. 

The rest of this section describes each category implemented in 
detail. 

6.1 Representation in IR for statically typed languages 

We already presented the loss of semantics problem in IR for stati-
cally typed languages in Section 3. 

We want to preserve the semantics of the user program without 
it being obfuscated by a naive translation of the code in the inter-
preter. For this purpose, when we translate a CPython bytecode 
instruction to our IR sequence, we use two policies. 

 Represent memory operations such as accesses to the operand 
stack and the object of the dynamically typed language explic-
itly. The motivation for this policy is that standard compiler op-
timizations such as common subexpression elimination can be 
subsequently applied. 

 Represent a step that has a large number of instructions such as 
a generic addition using one IR opcode. This opcode exposes 
more higher-level semantic information to the compiler than is 
available from individual low-level operations. Later, this op-
code can be optimized using a specialized version. 

6.2 Simplifying CFGs 

This section looks at the complexity of the naively translated CFG 
and describes how we simplify the CFG. 

In Figure 2, we show that naively translating one BINARY_ADD 
instruction generates seven basic blocks (BBs) in our IR sequence. 
The sources of these new BBs are an exception check and the han-
dling of the reference counting GC. 

The rest of this section describes how to reduce the number of 
BBs. This is effective in reducing the size of the working memory, 
while at the same time it also is effective at increasing the opportu-
nities to apply optimizations because the number of instructions 
within each BB is increased. 

6.2.1 Exceptions 

We apply the factored CFG technique [12] to reduce the number of 
BBs in our IR sequence. The factored CFG creates a BB including 
several potentially excepting instructions (PEIs), which is repre-
sented by an ExceptionCheck opcode, and factored edges to con-
nect with destination BBs for the exceptions. This approach was 
effective in reducing of the number of BBs for Java bytecode. 

This is even more effective for dynamically typed languages 
that have many PEIs in their bytecode sequences. This is because 
several types of exceptions appear in the bytecode handler such as 
LOAD_FAST and BINARY_ADD as shown in Figure 5. Unlike our 
approach, Unladen Swallow relies on LLVM and explicitly repre-
sents the exception edges in its CFG as standard edges [44]. 

6.2.2 Reference counting GC 

To represent operations for the reference counting GC, we defined 
a new ReferenceCount opcode in our IR, as shown in Figure 3, 
which increments or decrements the object targeted by a reference. 
In addition, when the reference count reaches zero, the object is 
reclaimed [19]. This notation avoids the introduction of new BBs. 
[19] uses this notation to simply the optimization of reference 
count operations. We also use this notation to reduce the number of 
BBs for simplification of CFGs. Unladen Swallow compiles a ref-
erence counting operation as an inlineable LLVM bitcode function, 
later exposing those actions in the LLVM IR [44]. 

6.3 Mapping memory locations to stack-allocated variables 

It is important to map a memory location that is accesses by indi-
rect load and store instructions to a stack-allocated variable. This 
mechanism leads to more optimization opportunities because, 
when a complier applies a dataflow optimization, it easily can pass 
the dataflow information for the variable properties along with the 
stack-allocated variables. In general, it is not easy for a compiler to 
pass the information about memory locations that may be aliased 
with other memory references. 

We used two optimizations to map to stack-allocated variables. 
One is to map the operand stack and the other is to map local vari-
ables of a Python program. Because we apply these optimizations 
to the limited two types of indirect memory accesses, we can iden-
tify memory alias information and pre-calculate the size of stack 
allocation at compilation time. 

6.3.1 Operand stack 

It is important to map the operand stack of the original language to 
stack-allocated variables and to eliminate push and pop operations 
for the operands to reduce overhead of memory accesses. 

Many VMs (including the Java VM) use a stack architecture for 
portability and smaller code size. For example, in Java bytecode, it 
is straightforward to map from stack operand locations to stack-
allocated variable numbers [32]. This is because Java bytecode 
always maintains the stability property for the operand stack: the 
height of the stack operand is constant for a given bytecode index 
regardless of the previous execution path. This allows the compiler 

174



 

to conveniently assign one stack-allocated variable to each level of 
the operand stack. 

Although CPython bytecode almost maintains this property, 
there are some exceptional cases. We devised an optimization to 
handle the exceptional cases, which will be described in Section 
7.1. 

6.3.2 Local variables 

This optimization allows a compiler to map a local variable of a 
Python program to a stack-allocated variable instead of a slot in 
PyFrameObject during the execution of the compiled code. To 
implement this optimization, the compiled code copies arguments 
into stack-allocated variables in the method prolog, and copies the 
values in stack-allocated variables into local variable slots on the 
PyFrameObject in the method epilog. 

In Python, the locals() built-in and sys._getframe().f_locals at-
tribute can put the values of local variables into a dictionary. When 
these are executed, our runtime should put the values of the local 
variables from the stack-allocated variables into the dictionary to 
enable reflection on a frame object. 

6.4 Reducing runtime overhead 

This section describes optimizations to reduce runtime overhead by 
exploiting knowledge of the dynamically typed language and its 
implementation. All of the optimizations use the profile informa-
tion that is collected during interpreted execution. 

6.4.1 Attributes 

This optimization reduces the cost of searching dictionaries for the 
LOAD_ATTR and STORE_ATTR instructions described in Section 
4.2.3. The LOAD_ATTR and STORE_ATTR naively look in two dic-
tionaries, the method resolution order (MRO) dictionary in the 
class object and the instance dictionary in the receiver object. The 
MRO determines the actual attributes in a class hierarchy with 
multiple inheritances by using the C3 algorithm [4]. The 
LOAD_ATTR and STORE_ATTR operations are given a receive object 
and an attribute name. At run time, this instruction introduces four 
lookups of the MRO directory and one lookup for the instance 
directory in the worst case. Our optimization reduces these over-
heads by combining the following two approaches. Unlike us, 
Unladen Swallow used the first one. 

To address the MRO dictionary overhead, an optimization 
looks up the MRO dictionary using the profiled type at compilation 
time and generates the code using the result [42]. The MRO dic-
tionary is rarely modified after being constructed [17]. If the types 
of the receiver and the cached descriptor are changed or if the class 
hierarchy and the MRO are changed, the pre-lookup result is in-
validated.  

To address the instance dictionary overhead, an optimization 
caches the associated entry in the instance dictionary at each access 
site by a LOAD_ATTR or STORE_ATTR instruction. The compiled 
code at each access site has a tuple of a version number and an 
offset that are collected by our profiler in the interpreter. We added 
a version number to each dictionary. The version number of a dic-
tionary is incremented when the dictionary is rehashed or its entry 
is deleted. CPython implements an instance dictionary using a 
closed hash table. Thus, an offset can point out each entry in the 
dictionary. If the version number at an access site is equal to the 
number of the instance dictionary, the compiled code gets a value 
in the entry pointed by the offset without the comparison with the 
key of the entry. It can largely eliminate the lookup overhead. 

6.4.2 Global variables  

This optimization reduces the cost of looking up dictionaries for 
the LOAD_GLOBAL instruction described in Section 4.2.3. 
LOAD_GLOBAL looks in one or two dictionaries. To address the 
overhead of name-based dictionary lookup, an optimization search-
es the dictionaries for a variable at compilation time and specula-
tively uses the results as constants [46]. 

In many applications, it is observed that global variables are 
updated at the startup of an application and rarely updated after the 
startup [17]. Based on this assumption, after the interpreter exe-
cutes methods during the startup, the compiler speculatively uses 
the constant value. If STORE_GLOBAL instruction updates the global 
variable, and modifies the immediate value, the speculation is inva-
lid. When the speculation is invalid, the entire compiled version of 
the method is invalidated. This is accomplished by checking the 
condition at the method entry and prior to LOAD_GLOBAL instruc-
tions. If the condition is not satisfied, the execution bails out an 
interpreter. 

In addition, in Python, after a module is loaded, it is also rarely 
updated. Therefore, the compiler generates a constant load using 
the value at compilation time to load the module with the 
IMPORT_NAME instruction. After the compilation, the compiled 
code for this method will also be invalidated if the VM modified 
by Unladen Swallow detects an update of global variables [45]. 

In addition to Unladen Swallow, our JIT compiler recompiles 
without this speculation when the method is invoked again after 
invalidation. This yields relatively good performance, even if the 
speculation fails. 

6.4.3 Specialization 

This optimization reduces the path length by removing unneces-
sary and expensive checks and indirections. This optimization 
generates calls to a runtime helper that prepares both specialized 
implementation and generic implementation, similar to the imple-
mentation in Unladen Swallow [43], as shown in Figure 8. The 
specialized implementation for the specific type is generated if this 
operation is executed with mostly monomorphic types as indicated 
by the profiler. For example, arithmetic, logical, and comparison 
operators are guarded based on a particular type such as float, and 
fast implementations are used. If the guard is not satisfied, the 
generic implementation for polymorphic types is executed.  

 
PyObject *PyAdd_Float_Float(PyObject *o1, PyObject *o2){
if (o1->type == PyFloat && o2->type == PyFloat) { 

    // specialized implementation for float 
  float f = o1->float_value + o2->float_value; 

    r = PyObject_fromFloat(f); // allocate object 
} else { 

    // generic implementation 
  r = PyGeneric_Add(o1, o2); 
} 
return r; 

}  
Figure 8. A runtime helper of a BINARY_ADD specialized for float 

 
Our JIT compiler exploits more opportunities for specialization 

than Unladen Swallow. We apply specialization to unary opera-
tions for integer or float, binary operations for a pair of integers, 
floats, or float and integer, compare operations for a pair of inte-
gers or floats, getting an item for str, unicode, list, tuple, or dict, 
setting an item for list, slice operations for str, unicode, list, or 
tuple, and unpacking a sequence for list or tuple. 

Similarly, many built-in functions incur considerable overhead 
to perform a very small amount of work.  While a built-in function 
can be overridden by a global name as shown in Section 6.4.2, this 
rarely occurs in practice. By applying appropriate guards to ensure 
it has not been changed by the user, the built-in function can be 
specialized to reduce the overhead. For example, there is a len() 
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built-in function that returns the number of elements in an given 
object, for str, unicode, list, tuple, and dict types in Unladen Swal-
low [41]. 

6.5 Application to other dynamically typed languages 

Our approach directly generates compiler IR from the bytecode of 
the original dynamically typed language. Our JIT compiler will 
generate native code from the generated IR. The specialization is 
based on runtime helpers already prepared by the compiler. An-
other approach is the dynamic language runtime (DLR) [23] that 
dynamically generates an abstract syntax tree (AST) from the 
source file of the original dynamically typed language. Then, the 
AST generates a compiler’s IR, and a JIT compiler will generate 
native code from the IR. DLR prepared flexible framework for 
generating the AST. The specialization is based on polymorophic 
inline cache that automatically updates a target method for an op-
eration such as add. 

Our approach generates a subroutine-threaded code, and then 
replaces unoptimized subroutines with optimized routines. Since 
we can reuse subroutines in a bytecode handler in the original VM 
for a dynamically typed language as unoptimized subroutines, it is 
easy to attach the JIT compiler to the original VM. If we prepare 
an IR generator and a specialization optimizer for a new dynami-
cally typed language, we would implement a JIT compiler for the 
language. 

7. Optimizations for CPython 

This section focuses on teaching the JIT compiler deeper CPython-
specific semantics to better understand the potential gains while 
Section 6 presented optimizations that can be applied (with imple-
mentation modifications) to a broad range of dynamically typed 
language environments. 

For this exercise we chose two operations that have a high cost 
in CPython: operand stack and built-ins (more specifically isin-
stance() built-in and hasattr() built-in). 

7.1 Operand stack 

We devised a new optimization to always map the operand stack to 
stack-allocated variables and to eliminate push and pop operations 
for operands in the CPython bytecode. Our optimization retains 
compatibility with CPython bytecode observable behavior, while 
the previous approach, followed by Unladen Swallow [47], is not 
compatible. 

The stability property described in Section 6.3.1  allows a 
compiler to straightforwardly map from stack operand locations to 
stack-allocated variable numbers with the analysis [1]. This is be-
cause the height of the stack operand is constant for a given byte-
code index regardless of the previous execution path. However, 
CPython bytecodes, such as the END_FINALLY instruction, violate 
this property in the finally clause in two cases: when an exception 
is thrown and when a break or continue statement is executed. In 
the following, for the sake of brevity, we will explain the case of a 
continue statement. 

An example of a continue is shown in Figure 9. At bcindex 30, 
two stack levels of the operand stack can be selected along the two 
execution path as shown in Figure 10 (b). The stack level is one if 
no continue statement was executed from the index 21. The object 
Py_None shows no break or continue was executed from the index 
13. The stack level is two if the CONTINUE_LOOP instruction, which 
corresponds to a continue statement, was executed. In this case, 
one object shows the next index, 3, will be executed after execut-
ing the END_FINALLY instruction at bcindex 30. The other object is 
for CONTINUE and indicates that execution came from the 

CONTINUE_LOOP. The operand stack level differs in the two execu-
tion paths. 

To solve this problem, our JIT compiler performs an analysis 
that removes the object for the next index from the operand stack. 
The compiler can avoid pushing the object for the next index onto 
the operand stack by generating a conditional branch that goes to 
bcindex 3 if the stack top is CONTINUE at the END_FINALLY. Below 
are the steps to generate this code. 

1. Make a work stack structure whose entry has {type, depth, 
bytecode index} empty, and set 0 to the nest_depth variable. 

2. Walk the bytecode sequence of CPython in reverse post order. 

3. If a SETUP_LOOP instruction is found, increment nest_depth by 
1; else 

4. If a CONTINUE_LOOP instruction is found, push {nest_depth, 
CONTINUE, next index (operand of CONTINUE_LOOP)} onto the 
work stack and generate code that pushes CONTINUE onto the 
top of the operand stack; else 

5. If an END_FINALLY instruction is found, scan the work stack. If 
the current nest_depth is equal to the value in the depth field at 
the entry of the work stack and the value of the type field of 
this entry is CONTINUE, then generate the next code, and pop 
this entry and decrement nest_depth by 1.; else go to 2. 

if (operand_stack[top] == CONTINUE) 
goto next_index // go to index 3 in Figure 7 

 
Unladen Swallow solves this problem by changing the CPython 

bytecode sequence and runtime to ensure the stability property 
described in Section 6.3.1 [47]. This approach sacrifices com-
patibility with an existing CPython bytecode file. For example, the 
CPython bytecode file that Unladen Swallow generates will not 
work in the CPython runtime environment. Our new approach 
retains compatibility with the existing CPython bytecode files. 

 

1: class test(object):  
2:   def foo(self, a): 
3:     while 1: 
4:       try: 
5:         if a: 
6:           continue 
7:     finally: 
8:       i = 0 

 

# idx  opcode        operand    
3  0 SETUP_LOOP 31 (to 34) 
 
4  3 SETUP_FINALLY 18 (to 24) 
 
5  6 LOAD_FAST 1 (a) 
 9 JUMP_IF_FALSE 7 (to 19) 
 12 POP_TOP 
 
6 13 CONTINUE_LOOP 3 
 16 JUMP_FORWARD 1 (to 20) 
 19 POP_TOP 
 20 POP_BLOCK 
 21 LOAD_CONST 0 (None) 
 
8 24 LOAD_CONST 1 (0) 
 27 STORE_FAST 2 (i) 
 30 END_FINALLY 
 31 JUMP_ABSOLUTE 3 
 34 LOAD_CONST 0 (None) 
 37 RETURN_VALUE  

Figure 9. The example program and bytecode for END_FINALLY 
 

Py_None 3 

CONTINUE 

From  
bcindex = 13 

From  
bcindex = 21 

 
Figure 10. The operand stack levels at the finally clause 

(bcindex=30) 
 

7.2 isinstance() built-in 

We devised a new optimization to reduce the large overhead of the 
isinstance() built-in function. Python provides the isinstance() 
built-in function to check if an object is an instance of a given 
class. Many object-oriented programs switch tasks depending on 
the type of an object. For such programs, it is critical to reduce the 
overhead of instance checks for higher performance [27, 35].  
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We found that a function call to isinstance() requires about 7 
times more time than the relatively slow LOAD_GLOBAL instruction. 
The large cost of isinstance() is due to the cost of the function call. 
It is difficult to reduce this overhead by inlining the built-in func-
tion into a Python method because CPython and the built-in func-
tions are written in C and the built-in functions rely on the internal 
structures of CPython. 

To reduce the cost of instance checks, caching the results of in-
stance check has been proposed for Java [27, 35] to avoid calling 
functions written in C. Caching the results of instance checks in 
Python poses a challenge. In Python, class unloading is frequent, 
and the classes and the class hierarchy can change at runtime. 
Therefore, we must check whether or not the cache results are val-
id. 

Our optimization consists of a profiling phase and a JIT compi-
lation phase. The profiling phase collects the information and con-
structs the caches. The JIT compiler generates the code that returns 
result to be stored in the caches. When the classes that are profiled 
or that are used to construct the caches are modified during the 
execution of the program, we need to invalidate both the profile 
information and the code that uses the caches. 

When isinstance() is called, our profiler collects information 
about (a) the call site of the built-in function, (b) the tested object’s 
class, (c) the target class, (d) the result of the instance check, and 
(e) the frequency. 

The JIT compiler uses the profile information to optimize the 
instance checks. If a bytecode includes a call site for isinstance() 
with a record in the profile repository, the JIT compiler translates 
the call into an InstanceCheck IR instruction. This instruction is 
translated into guard code and the instructions that look up the 
cache entries at a later phase. The guard code validates the cached 
class information before using it by ensuring that each of the 
cached classes is not unloaded and is not modified. 

7.3 hasattr() built-in 

We devised a new optimization to reduce the runtime overhead for 
the hasattr() built-in function. This built-in has two arguments: a 
Python object and an attribute name. This built-in examines wheth-
er an object has an attribute matched by a name. Our profiles show 
that hasattr() is almost always called with a constant second argu-
ment. If the profiled type of the first argument is one of known 
built-in types, the compiler can check whether or not the name, 
which is given as a constant in the second argument, exists and 
create code to return true or false. This check at compile time uses 
the same mechanism as the LOAD_ATTR described in Section 
6.4.1 . At runtime, the constant can be used if the type guard 
succeeds. 

We also modified CPython so that hasattr() does not rely on 
exception handling. The exception handling significantly increases 
the cost of hasattr() if the attribute is not found. To eliminate the 
cost of exception handling, we created a specialized path that re-
turns False when the attribute is not found. 

8. Performance Evaluation 

We evaluated the optimizations described in Sections 6 and 7 on 
two 2.93-GHz Intel Xeon X5670 processor and we present these 
result in this section. The turbo boost feature in the CPU cores was 
disabled. The system has 24GB of memory and runs the RedHat 
Enterprise Linux 5.5 OS. We used the Unladen Swallow compiler 
[44] at revision 1167 for the Unladen Swallow data presented in 
this section, and used the ‘hot’ optimization level of our JIT com-
piler. CPython 2.6.4, the python interpreter that we used as a base-
line, was built to exploit the computed-goto extension of GCC 
because Unladen Swallow and our JIT compiler also exploit this 

extension. CPython 2.6.4, our JIT compiler, and Unladen Swallow 
were all built using GCC/G++ 4.4. Both JIT compilers generate 
binary code for the IA-32 architecture. 

We evaluated the performance of nine programs from the 
Unladen Swallow benchmark suite [40] as shown in Table 1. The 
Unladen Swallow benchmark suite was created by Google for the 
Unladen Swallow project. It consists of a variety of python pro-
grams, some of which are based on real applications, and is cur-
rently considered the de facto standard by the python community. 
All benchmarks are singled-threaded programs. The relatively 
small benchmarks float, nbody, nqueens, pystone, and richards 
each have less than 400 lines of source code. The larger, more 
realistic benchmarks like django, rietveld, spambayes rely on 
popular python frameworks or libraries, as line of source code is 
shown in the most right-hand column. We target long running web 
applications and ignore the effect of compilation on performance 
by modifying the number of warm-up iterations. Although we have 
not yet tuned our JIT compiler for compilation time, it can be im-
proved by tuning the adaptive compilation mechanism [3] and by 
using concurrent compilation [20]. Our runtime calls the JIT com-
piler when the hotness counter for a method reaches 10,000. The 
counter is incremented at method entries and loop back edges. For 
each result, we report the average of 50 runs (with the exception of 
250 runs for float because it runs for a much shorter time compared 
to the other benchmarks) along with a 95% confidence interval. 

 
 

Table 1. Description of the Unladen Swallow Benchmarks 
name Description Lines of 

source code
app./library

float floating point-heavy benchmark originally
used by Factor 

51 / 0 

nbody the N-body Shootout benchmark 107 / 0 
nqueen small solver for the N-Queens problem 54 / 0 
pystone the classic dhrystone benchmark 214 / 0 
richards the classic Richards benchmark 303 / 0 
django Django template to build a 150x150-cell 

HTML table 
36 / 72727 

rietveld Django template that the Rietveld code 
review application uses 

85 / 88820 

spam-
bayes 

a scanned mailbox through a SpamBayes 
ham/spam classifier 

37 / 48902 

slow-
spitfire 

Spitfire template system to build a 
1000x1000-cell HTML table without Psyco

56 / 4569 
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Figure 11. Performance comparisons between CPython, Unladen 

Swallow, our JIT compiler 
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8.1 Performance of the Unladen Swallow benchmarks 

Figure 11 compares the performance of our JIT compiler with 
CPython and Unladen Swalow. Our JIT compiler and Unladen 
Swallow are built on top of CPython. Our JIT compiler improves 
the performance by 1.76x on average over CPython. We observed 
that larger performance improvements for nbody and django are 
2.74x and 2.67x, respectively. On an average, our JIT compiler 
shows an additional 1.42x performance improvement over the 
1.34x improvement of Unladen Swallow relative to CPython. This 
additional benefit is the highest for django, where our JIT compiler 
is 1.78x faster than Unladen Swallow. The optimization for the 
isinstance() built-in achieves large performance improvement in 
django. For Unladen Swallow, the performance of pystone is de-
graded by the overhead of invalidating code due to frequent up-
dates of global variables. 

8.2 Effectiveness of optimizations 

This subsection investigates effectiveness of optimizations that 
we described in Sections 6 and 7. To confirm the overall effective-
ness of the optimizations for dynamically typed languages de-
scribed in Sections 6 and 7, Figure 12 compares the performance 
of our JIT compiler with and without all of the optimizations. They 
improve the performance by 1.69x on average. The performance 
improvements for nbody and django are 2.74x and 2.60x. The runs 
of pystone and rietveld failed due to working memory overflow 
during method compilation without our optimizations. 
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Figure 12. Performance comparisons between our JIT compiler w/ 

and w/o any optimizations for dynamically typed languages 
 

Table 2. Descriptions of the Unladen Swallow Benchmarks 
Category Optimization  Section Novelty compared 

to Unladen Swal-
low 

Exceptions 6.2.1 New Simplify 
CFGs Reference count-

ing GC 
6.2.2 Same 

Operand stack 6.3.1 and 7.1 New Map 
memory 
locations 

Local variables 6.3.2 Same 

Specialization 6.4.3 Incremental 
Hasattr 7.3 New 
Atttributes 6.4.1 New 
Global variables 6.4.2 Incremental 

Reduce 
runtime 
overhead 

Isinstance 7.2 New 
 

We categorized all of the optimizations into three categories: 
Simplify CFG, map memory locations, and reduce runtime over-
head. Table 2 shows the each category and includes the optimiza-
tions and section number of its description. We also include a 

column to compare the difference between our optimizations and 
those of Unladen Swallow. While two of the optimizations are the 
same, to the best of our knowledge, they have not been evaluated 
before. 

Figure 13 shows the benefit of optimizations in different cate-
gories by selectively enabling optimizations in three categories. 
The graph shows the relative performance improvements of our 
JIT compiler compared to the JIT compiler when disabling the 
specified optimizations. The simplify CFGs optimization shows a 
1.17x performance improvement. In particular, the performance 
improvement for nbody is 2.25x. Because this optimization in-
creases the number of IR opcodes in a BB by avoiding the intro-
duction of new BBs, optimizations for intra-BB are effectively 
applied. More importantly, without simplifying CFGs, the compi-
lations of pybench and rietveld failed due to insufficient working 
memory, confirming that it is important to reduce the size of the IR. 
Therefore, we make it a mandatory optimization. Mapping mem-
ory locations shows a 1.26x performance improvement on average. 
In particular, this is effective for django because the specialization 
for built-in functions cannot be used due to the difficulty identify-
ing such functions without this optimization. Reducing the runtime 
overhead yielded a 1.39x performance improvement on average. In 
particular, this is effective for nbody and django. Other optimiza-
tions, which are not possible when enabling only some optimiza-
tions, become possible when several optimizations are used at the 
same time. 
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Figure 13. Performance improvements of each category 
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Figure 14. Performance improvements of each optimization to 

simply CFGs 
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Figure 15. Performance improvements of each optimization to 

map stack-allocated variables 

0.9

1.0

1.1

1.2

1.3

1.4

flo
at

nb
od

y

nq
ue

en
s

py
sto

ne

ric
ha

rd
s

dja
ng

o

rie
tv

eld

sp
am

ba
ye

s

slo
wsp

itfi
re

ge
om

ea
n

R
el

at
iv

e 
pe

rf
or

m
an

ce
 o

ve
r 

JI
T

 d
is

ab
lin

g 
th

e 
op

tim
iz

at
io

n

Specialization
hasattr
Attributes
Global variables
isinstance

2.13

H
ig

h
e

r 
is

 b
e

tte
r

2.26

 
Figure 16. Performance improvements of each optimization to 

reduce runtime overhead 
For further insight, we measured the effectiveness of individual 

optimizations in each category. Figure 14 shows the effectiveness 
of the two optimizations for simplifying CFGs. For rietveld, both 
optimizations are needed to compile the program. Figure 15 shows 
the effectiveness of the two optimizations described for mapping 
stack-allocated variables. The operand stack improves the perform-
ance by 1.28x on average. In particular, it is effective for django. 
Again, this is because the precise analysis for stack operand is 
necessary to identify a built-in function and apply other optimiza-
tions. The local variables are less effective for these programs. 
Currently Unladen Swallow and our JIT compiler do not fully ex-
ploit stack-allocated variables. For example, a primitive value such 
as int or float in an object is not allocated into the stack-allocated 
variable while a primitive operation such as add can be specialized 
using the type information. If a compiler could allocate primitive 
values into the stack-allocated variable, this optimization would be 
more effective.  

 Figure 16 shows the effectiveness of the five optimizations in 
reducing the runtime overhead. Specialization improves the per-
formance by 1.20x on average. In particular, it is effective for 
nbody. This is because a hot method in nbody includes binary float-
ing point operations that can be specialized. For float, it is also 
effective. However, the hot method includes square root functions 
that were not specialized and take more time. Hasattr improves the 
performance of django by 1.09x. Attribute improves the perform-
ance of float by 1.28x and richard by 1.16x. They frequently ac-
cess a fixed number of attributes in the hot method. Thus, the 
fastest path is frequently executed. Global variables improve the 
performance of django by 2.13x and rietveld by 1.22x. In django, a 
method that executes the IMPORT_NAME instruction is frequently 
executed, and the imported module is not modified [45]. This op-
timization is also a prerequisite for the isinstance optimization. 

When this is disabled, the isinstance optimization is also disabled. 
Isinstance improves the performance of django by 1.38x. In this 
program, the isinstance() built-in function is very frequently called. 

9. Conclusion 

We presented an approach to improving the performance of dy-
namically typed scripting languages like Python along with a thor-
ough evaluation of the techniques and optimizations we proposed. 
Our approach was based on leveraging an existing production qual-
ity compiler designed for a statically typed language to minimize 
development and maintenance costs. We presented three methods 
to effectively extend the compiler with support for dynamically 
typed languages: simplifying control flow graphs, mapping mem-
ory locations to stack-allocated variables, and reducing runtime 
overhead using language semantics. We showed a 1.69x perform-
ance improvement on average by using these three methods. We 
also analyzed the effectiveness of each optimization in these three 
categories. 

In future work we plan to investigate how to effectively adopt 
optimizations implemented in trace-based JIT compilers, such as 
load-store forwarding, unboxing, and minimizing reference count-
ing operations. In addition, we plan to identify more complex exe-
cution paths, such as regions, as a compilation unit. This approach 
will also benefit from using an existing method-based compiler 
capable of applying optimizations to complex CFGs. 
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