
DDGacc: Boosting Dynamic DDG-based Binary
Optimizations through Specialized Hardware Support

Demos Pavlou†,1 Enric Gibert Fernando Latorre Antonio Gonzalez†

Intel Barcelona Research Center (IBRC) - Intel Labs
†Department of Computer Architecture, Universitat Politècnica de Catalunya

{demos.pavlou, enric.gibert.codina, fernando.latorre, antonio.gonzalez}@intel.com

Abstract
Dynamic Binary Translators (DBT) and Dynamic Binary Opti-
mization (DBO) by software are used widely for several reasons
including performance, design simplification and virtualization.
However, the software layer in such systems introduces non-
negligible overheads which affect performance and user experi-
ence. Hence, reducing DBT/DBO overheads is of paramount im-
portance. In addition, reduced overheads have interesting collateral
effects in the rest of the software layer, such as allowing optimiza-
tions to be applied earlier. A cost-effective solution to this problem
is to provide hardware support to speed up the primitives of the
software layer, paying special attention to automate DBT/DBO
mechanisms and leave the heuristics to the software, which is more
flexible.

In this work, we have characterized the overheads of a DBO sys-
tem using DynamoRIO implementing several basic optimizations.
We have seen that the computation of the Data Dependence Graph
(DDG) accounts for 5%-10% of the execution time. For this rea-
son, we propose to add hardware support for this task in the form
of a new functional unit, called DDGacc, which is integrated in a
conventional pipeline processor and is operated through new ISA
instructions. Our evaluation shows that DDGacc reduces the cost of
computing the DDG by 32x, which reduces overall execution time
by 5%-10% on average and up to 18% for applications where the
DBO optimizes large code footprints.

Categories and Subject Descriptors B.8.2 [Hardware]: Perfor-
mance and Reliability—Performance Analysis and Design Aids

General Terms Algorithms, Design, Performance

Keywords Co-designed processors; hardware acceleration; dy-
namic binary optimization; start-up overhead.

1. Introduction
Dynamic Binary Translation (DBT) and Dynamic Binary Opti-
mization (DBO) by software are related techniques that have been

1 The presented work was completed while Demos Pavlou was a Research
assistant at Universitat Politécnica de Catalunya.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’12, March 3–4, 2012, London, England, UK.
Copyright © 2012 ACM 978-1-4503-1175-5/12/03. . . $10.00

applied (and will still be applied) for a long time for portability,
backward compatibility, performance, design simplification, and
virtualization, among others. DBT and DBO can be applied at dif-
ferent levels [22], ranging from user-level virtual machines (Dy-
namoRIO [5], Dynamo [3], Intel’s IA-32 Execution Layer [4],
Java Virtual Machines [12]) to whole system virtual machines (co-
designed virtual machines like Transmeta Crusoe [11], Daisy [7],
BOA [18], etc.). In all these types of virtual machines a soft-
ware layer (henceforth, the optimizer) is responsible to dynamically
analyse code generated for a specific source ISA and translate it to
a target ISA by applying several transformations and/or optimiza-
tions (the source and target ISAs may be the same). The resulting
translated/optimized version of the code is often cached for reuse
in a code cache.

The software layer incurs overheads since the processor spends
a non-negligible amount of cycles in the dynamic process of trans-
forming a piece of code into another, which does not allow the
emulated program or system to make progress. Such overheads
impact directly the overall performance of the system. However,
overall performance is not the only important metric. For exam-
ple, although overall overheads may be small once an application
has been executed, start-up or reactive overheads may not. Start-
up overheads refer to the overheads that are paid until the sys-
tem reaches the steady state, where the vast majority of the exe-
cuted code comes from the translated/optimized code cache. On
the other hand, reactive overheads are caused by re-translation and
re-optimization of regions of code that have been evicted from the
translation cache, especially in the case of a multiprogrammed en-
vironment with shared translation cache. Start-up and reactive over-
heads are related and have an impact on another important metric:
responsiveness, which in turn, affects user experience [10]. Thus,
reducing the DBT/DBO overheads is of paramount importance.
Furthermore, reducing the overheads has interesting collateral ef-
fects in the design of the optimizer, such as: (i) optimizations may
be applied earlier or eagerly, (ii) more expensive optimizations that
were discarded previously may now be applied, (iii) simpler code
cache management algorithms may be employed, among others.

A key observation of DBT/DBO systems is that the software
layer goes through a set of common primitives despite the level at
which it operates. In that respect, the optimizer will among other
things: (i) profile the code in order to detect hot regions, (ii) build
regions, (iii) decode instructions, (iv) optimize regions, (v) code
scheduling, (vi) code caching etc. Note that the aforementioned
tasks do not need to be executed necessarily in this strict order.

In this work we characterized the overheads of a DBT/DBO sys-
tem that performs several basic optimizations. From our study, we
have observed that building the Data Dependence Graph (DDG) is
among the most costly operations. The primary sources of overhead
in a DBT/DBO system are instruction decoding, software profiling

159

and code cache. Hu et al. [10] attack the problem of instruction
decoding, Merten et al. [15] propose hardware to do profiling and
Hazelwood et al. [8] propose effective code cache management al-
gorithms. In this paper, we propose to use specific hardware support
to reduce the costs of building the DDG. We believe that providing
specialized hardware to speedup the optimizer is the most effec-
tive solution. This is especially true in system virtual machines, in
which the software layer is always executed regardless of the host
applications being emulated/optimized.

In this paper, we define and evaluate DDGacc, a new functional
unit, which enhances the process of computing the DDG. Comput-
ing the DDG is mainly necessary for performing a good instruc-
tion scheduling algorithm. Although we envision DDGacc to be
more useful in system virtual machines, it is generic enough to
be applied to a user virtual machine as well (it is mainly a mat-
ter of making the interface visible to the user). In addition, we have
paid special attention to devote specialized hardware to automatize
the DBT/DBO mechanisms, and leave the DBT/DBO policies to
the optimizer. In this respect, the proposed hardware computes the
DDG, while the heuristics to perform good instruction scheduling
are left to the software layer. This is the key in order to be able
to evolve/improve the optimizer over time and/or provide different
optimizer configurations to different customers.

In particular, we have extended DynamoRIO with a client that
applies a set of optimizations whenever a hot region is detected
and a trace is created. This set consists of an algorithm for the
creation of the DDG, dead code removal (DCR) and redundant
load elimination (RLE). We measured the overheads introduced by
such optimizations and we observed that approximately 5%-10%
of the total time was spent on optimizing hot regions. The most
costly optimization was the creation of the DDG which accounted
for 32% of the optimization overhead. To tackle this, we propose
and evaluate a hardware accelerator that provides support for the
software DBO for building the DDG. Our studies show that the cost
of the algorithm is reduced by 32x, using an in order processor. This
is translated into an average improvement between 5% and 10% on
average depending on the optimization threshold.

The rest of the paper is organized as follows. Section 2 presents
the experimental framework used throughout the paper. In section 3
the overheads of the baseline DBO are exposed and characterized.
The hardware accelerator we propose is presented in section 4.
DDGacc is evaluated in section 5. In section 6, we discuss related
work and concluding remarks are given in section 7.

2. Experimental framework
In this section we describe the DBO infrastructure we used for our
studies as well as our evaluation methodology.

2.1 DBO Infrastructure

As mentioned before, we envision DDGacc to be used mainly by
co-designed VMs. However, to the best of our knowledge, there
is not a single public and extensible tool to perform research on
co-designed VMs. Since the proposed solution can also be used
by user-level VMs, we have used DynamoRIO [5], a state-of-the-
art x86 user-level binary analyzer to conduct our experiments. Dy-
namoRIO is a dynamic instrumentation tool that allows runtime
code manipulation on any part of the program. It provides an in-
terface for building dynamic tools that can be used for optimiza-
tion among others. It is in fact a process VM which takes control
of the application and translates basic block by basic block at the
beginning. When a basic block is determined to be hot, meaning
it reached a predefined threshold, a trace is generated by packing
together several BBs based on the profiling information gathered
during the so far execution. Traces are single-entry multiple-exit

Table 1. Benchmarks
Benchmark Input Size

SPEC CPU2006 Ref
Gnome Calculator Application Start
OpenOffice Writer Application Start
OpenOffice Calc Application Start

code sequences. Translated basic blocks and traces are cached in a
code cache for reuse.

For our study, we implemented a tool that applies optimiza-
tions whenever a new trace is created. Specifically, we first cre-
ate the data dependence graph (DDG) and do some preparation for
memory aliasing by analyzing load and store instructions. Then,
we apply dead code removal (DCR) and redundant load elimina-
tion (RLE). DCR and RLE are quite traditional algorithms in the
context of DBO since their overhead is small and can give signif-
icant performance benefits when applied to large regions such as
the traces. On the other hand, the creation of the DDG introduces
high overhead because of its complexity and large data structures
that are traversed during the creation. Critical optimizations though,
like instruction scheduling and hoisting, depend on the DDG cre-
ation for their effectiveness. The implemented algorithm is based
on [16].

2.2 Evaluation methodology

For the evaluation of the overheads of the DBO we used the func-
tional model of Simics to collect execution traces. The emulated
machine uses an x86 processor based on Pentium4 and runs Fedora
Core 5. The linux process tracker provided by Simics was used to
isolate the dynamic instruction stream of the selected application
(the application running under the control of DynamoRIO) and we
used hooks in order to mark the code sections of interest and be
able to distinguish them in the dynamic stream.

For this evaluation we picked two different types of application
suites that cover the two scenarios a dynamic binary optimizer typi-
cally faces. On the one hand, we selected SPEC CPU2006 [1] suite
as an example of applications with small number of static instruc-
tions with respect to the number of executed dynamic instructions
(30.3M dynamic/static). Dynamic binary optimizers are very ef-
fective on these applications because any overhead produced on
the optimization of a static instruction is easily amortized since this
instruction is executed very often. On the other hand, we picked
GnomeCalculator, OpenOffice Writer and Calc as an example of
applications with large number of static instructions with respect to
the dynamic number of executed instructions. This latter scenario
is complex for dynamic binary optimizers because overheads spent
on optimizing static instructions are sometimes not amortized in-
curring in poor performance. The set of applications is summarized
by Table 1.

For all the benchmarks, the first 300 million instructions are
being ignored in order to avoid completely the initialization phase
of DynamoRIO, as well as some of the applications initialization
routines. Then, we split the execution of each application into
chunks of 1 billion instructions and we generate a trace for the odd
chunks so that we can analyze the behavior of DynamoRIO for
different phases of the applications. In total we collect the traces
for 5 1-billion instruction chunks for each benchmark covering in
total the first 9 billion instruction of the application.

For the timing evaluation, we implemented an x86 trace simu-
lator which assumes a simple in-order processor. The configuration
used is summarized in Table 2. We assume a perfect instruction
cache due to constraints in the simulation infrastructure. The cache
structures and the branch predictor used are based on the ones pro-
vided with SimpleScalar [2].

160

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge
of

dy
na

m
ic

in
st

ru
ct

io
ns

DynamoRIO Overhead Optimization Overhead Translated Code execution

Figure 1. Dynamic instruction breakdown including DynamoRIO overhead. Each application has 5 assosiated bars, one for each 1 billion
instruction chunk.

Table 2. Timing simulator configuration
Issue Width 2
Issue Queue Entries 16
Address Calculation Units 1
Simple Arithmetic Units 2
Complex Arithmetic Units 2
Branch Predictor 2K entries correlating
BTB 256 entries, 4-way
L1 Data Cache 64KB, 64B block size

4-way
L1 Data Cache latency 1 cycle
L2 Cache 512KB, 128B block size

8-way
L2 Cache latency 10 cycles
DTLB 256 entries 8-way
DTLB miss penalty 100 cycles
Memory latency 100 cycles

3. Overhead characterization
In this section we discuss the dynamic instruction breakdown of the
benchmarks under DynamoRIO with the optimizing tool.

A complete breakdown is shown in Figure 1. Each bar repre-
sents one of the selected 1 billion dynamic instruction chunks. The
instructions are grouped into three main categories. The first one is
"DynamoRIO overhead" and it includes the process of creating ba-
sic blocks and traces, as well as the management of the code caches
and the client tool. This overhead is quite big due to the fact that
DynamoRIO is implemented as a generic tool that provides a rich
interface to enable the user to build his/her own client. Such over-
heads are dominated by the insertion of callouts/trampolines, and a
rather complex instruction decoding and representation in a generic
and flexible intermediate language. The second one is "Optimiza-
tion overhead" which includes all the instructions that correspond
to the optimization process. Notice that a more detailed breakdown
is presented later for this category since it is our main focus. Fi-
nally, the category "Translated code execution" represents the in-
structions executed from the code cache.

It is interesting to notice that most of the SPEC CPU2006
benchmarks share the same characteristics as expected. The biggest
overhead is encountered at the beginning of the application, specif-
ically in the first chunk and sometimes the second. This is justified

by the high repetition of a kernel loop. Over time, the overhead
introduced by the DBO is amortized.

In contradiction, for large applications like GnomeCalculator,
OOcalc and OOwriter, the DBO incurs high overhead throughout
the whole execution. This kind of applications have abundant static
code which exceeds the optimizations threshold, while the reuse of
the code is not enough to completely hide the overhead. Further-
more, as commented before, overall performance is not the only
important metric, as responsiveness is often as important, which
signifies the need for more efficient translation/optimization.

In the context of this paper, we are more interested in the over-
head introduced by the optimizer alone. As mentioned before, the
bar labeled "DynamoRIO overhead" is quite big due to the flexible
nature of its design. This is so because the version of DynamoRIO
we are using (the one that is publicly available with its full source
code) is more an instrumentation tool than a DBO itself. Such over-
heads would be totally removed if we strip out such instrumen-
tation features, as we have observed in other DBO tools such as
Strata [21]. For example, since the source and guest ISAs are the
same (x86), during the basic block translation phase, only partial
decoding is necessary in order to distinguish branches and collect
their targets. In contrast, in the presence of an instrumentation client
DynamoRIO is doing a full decoding in order to facilitate code ma-
nipulation by the client. Thus, from this point forward we do not
account for the DynamoRIO component in our study, as this over-
head does not exist on pure DBO infrastructures. Ignoring this part
of the overhead does not restrict our study since we are mainly con-
centrating on the overhead of the optimizing part of the VM with
respect to the application’s code execution.

3.1 The real view of the optimizer overheads

Consider Figure 2 which presents the breakdown of the optimizer
and the translated code. The top bar shows the instructions that cor-
respond to translated code. The second bar shows the instructions
of the two basic optimizations; RLE and DCR. The third bar shows
the instructions for the memory aliasing preparation and the fourth
bar represents the instructions corresponding to the DDG. Finally,
some other sources of overhead like the initialization phase of the
optimizations are shown with the bottom bar.

A general observation is that the optimization overheads for
most of the SPEC CPU2006 applications are negligible, especially
after the first billion of instructions. This can be justified by the fact
that 10% of static instructions are responsible for 90% of the exe-
cution and static instruction reuse is huge. There are though some

161

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

Pe
rc

en
ta

ge
of

dy
na

m
ic

in
st

ru
ct

io
ns

Optimization Other Optimization DDG Optimization Memory Def/Use Optimization DCR+RLE Translated Code execution

Figure 2. Dynamic instruction breakdown of optimizer and executed application. The Y axis maximum is at 20%. The rest 80% accounts
for Translated Code execution. Each application has 5 assosiated bars, one for each 1 billion instruction chunk.

exceptions like 403.gcc where the execution is not concentrated in
a few loops alone. This leads to the generation and optimization
of more traces. Moreover, the overall overheads are low since the
default threshold for creating a trace in DynamoRIO is at 50 exe-
cutions, which gives a good balance between the amount of traces
and coverage.

As it can be seen, applications with low static footprint are more
tolerant to DBO overheads because they are amortized by the high
repetition of the optimized code. However, DBO overheads for ap-
plications with large ratio between static and dynamic instructions
are significant leading to poor performance and low response time.

Studying the breakdown in detail, we noticed that the DDG is
the most costly part accounting on average for 6% of the dynamic
instruction stream where DBO has high activity. An interesting
difference is that for applications with low static to dynamic ratio,
the proportional part of the DDG varies from 1% to 6% whereas
on applications with high ratio the overhead varies from 5% to 7%
across all the traces.

While such overhead could be avoided by a DBO that targets
an out-of-order processor, computing the DDG is a key component
for a DBO that targets in-order or VLIW processors, like Crusoe or
Efficeon. The use of the DDG enables the implementation of more
efficient and fruitful algorithms for optimizations like instruction
scheduling and register allocation which are quite important for
final performance. For instance, it has been shown that instruction
scheduling is a key DBO component to enhance the quality of the
generated code [6].

4. Reducing the overheads
Providing hardware support to speed up the execution of DBT/DBO
primitives is the most efficient solution to reduce its overhead,
since the runtime of the VM is always executed regardless of the
emulated/translated application. However it is important to devote
hardware to enhance the mechanisms of the primitives, leaving the
execution of the heuristics to the software, which has more flexi-
bility.

Moreover, one of the purposes of DBO is to provide maximum
performance on simple processors like in-order processors so that
we sustain good performance at a very low power [11]. For this
reason, although hardware hooks are natural solutions to overcome
DBO overheads, these HW enhancements should be simple enough
so that we do not lose the power advantage of using a simple
processor.

1 readOps[]
2 writeOps[]
3 for each insn i {
4 readOps[i] = extract insn read operands
5 writeOps[i] = extract insn write operands
6 }
7
8 for each insn i {
8 for each readOp in readOp[i]
9 if(readOp defined in trace)
10 add flow dependence from last definition
11 for each writeOp in writeOp[i]
12 if(writeOp defined in trace)
13 add output dependence from last definition
14 if(writeOp used in trace)
15 add anti dependence from last uses
16 Update register uses with readOp[i]
17 Update register definitions with writeOp[i]
18 }

Figure 3. Pseudo code of the DBO’s module that creates the DDG

DDG creation
Functional Unit

Instruction
index

Instruction
operands Output

Figure 4. DDG functional unit block diagram

In this section we describe the proposed hardware support for
the creation of the DDG. We take a top down approach in describ-
ing our proposal. First we discuss the software-only implementa-
tion in order to derive the basic components that are necessary for
the execution of the algorithm. Such software-only implementation
is our baseline. Then, we describe the proposed hardware support,
its interface, and we demonstrate its functionality through an exam-
ple. Finally, we explain how the functional unit can be integrated in
a conventional pipelined processor.

4.1 Software-only implementation

As mentioned in section 2 the DDG creation algorithm is based on
the one described in [16]. The DDG stores all the flow dependences
(RAW), anti-dependences (WAR) and output dependences (WAW)

162

based on the register definitions and uses of the instructions be-
longing to a trace. All the memory operations are considered to be
dependent between them, meaning that they must execute in order.
We may also add hardware in our future work to perform memory
disambiguation and be more aggressive with memory dependences.
The pseudo code of the part of the DynamoRIO tool that imple-
ments the software-only algorithm is shown in Figure 3. The first
loop traverses the instructions to extract the read and write register
operands to some custom structures in order to avoid the extensive
use of DynamoRIO API and increase data locality. The second loop
traverses the operands that are read or written and according to the
definition and use state of each register from the previous instruc-
tions, dependences are added to the graph. The actual implementa-
tion, in our case, is more complicated since there are several corner
cases due to the x86 particularities that need to be taken in to ac-
count. One such case is register aliasing. For example eax, ax, al,
ah are all the same register but when al or ah are defined the rest
of the register remains unchanged. The def/use state consists of an
array with an entry for each architectural register that holds the last
definition of that register and the uses corresponding to it.

4.2 Proposed solution

As shown in section 3, the creation of the DDG is the most costly
primitive compared to the rest of the optimizer. In order to im-
prove the efficiency of the DBO we propose a functional unit, called
DDGacc, that could be easily integrated in the processor pipeline.
Such a functional unit will work in a similar manner as the software
implementation, meaning that the DDG is going to be built incre-
mentally. The block diagram of the DDGacc is depicted in Figure 4.
The input to the FU is the operands of one instruction and the in-
dex of the instruction inside the corresponding trace. The input will
be given by means of a new ISA instruction. The output will be
the indexes of the instructions from which the input instruction has
dependences from.

In more detail, the input of the accelerator is a 32-bit value that
describes a single instruction. Its fields are shown in Figure 5(a).
The first part is composed by all the register operands of the in-
struction, either explicit or implicit. Seven bits are used to represent
a register id (Reg1, Reg2 and Reg3) and two extra to determine if
the register is read, write, read/write by the instruction or not used
(invalid). Note that due to particularities of the x86 ISA, an instruc-
tion can have more than one destination register (e.g. xchg and
pop) which deems necessary to mark all the registers with the two
extra bits. Moreover, a single bit is used to designate if the instruc-
tion is a memory read (load) and another if it is a memory write
(store). Finally, two extra bits are used to designate whether the
EFLAGS register is modified or read following the same definition
as Reg Type field. Adding up, the inputs consist of 31 bits which
is convenient since a general purpose 32bit register can be used to
carry the input. Note that if the target architecture provides 64bit
registers, more detail can be provided to the functional unit, e.g.
separation of the EFLAGS in three groups and/or the input traces
can be larger than 256 instructions.

The output of the functional unit is depicted in Figure 5(b).
Each element contains the index of the instruction from which the
input has flow or output dependence. Since we limit our traces to
256 instructions, 8 bits are sufficient to encode the index of any
instruction in the trace. For each register operand specified in the
input, one flow dependence field is pre-assigned in the output. For
example if there is flow dependence due to Reg1 then the index of
the instruction defining Reg1 will be written into the Reg1 output
field. The fourth and fifth fields (MemW, MemR) are used for
flow dependences due to memory operations. Finally, the last two
elements are used to track output dependences. Note that the last
element can also be used for output dependences due to the EFLAGS

register, since instructions that define two registers at the same time
like xchg do not modify the EFLAGS.

4.3 DDGacc operations

The DDGacc will be operated by means of new ISA instructions.
Specifically two new instructions are required. The first one is
an instruction that will initialize all the internal structures of the
accelerator in order to be prepared for the creation of a new DDG.
The instruction is named ddgReset.

The actual dependence calculation will be instructed using the
second ISA instruction called ddgAppend which has the format:
ddgAppend m64, Rin.

The instruction is similar to a store instruction where m64 is
the memory position where the output of the functional unit will
be stored. The address is described by [DDGBase@+insnIndex]
where DDGBase@ is the beginning address of the output array,
which can be held in a general purpose register, and insnIndex is
an offset computed by the functional unit which is internally in-
cremented each time ddgAppend instruction is executed. The input
is given by Rin which is a general purpose register with values as
described previously. The instruction operates like a conventional
store with the only difference that the data will be taken directly
from the functional unit by means of forwarding the output value
directly to the store buffer just like a normal add mem, reg.

As an example, consider the implementation of the DDG algo-
rithm depicted in Figure 6(a) and compare it to that in Figure 3.
The basic difference from the software-only algorithm is that the
dependences and the tracking of the definitions of the registers are
done by a single instruction that will instruct the functional unit to
handle them. In the example given in Figure 6(b) we apply the algo-
rithm on a sample trace of 3 instructions. Concerning the input, the
first instruction defines and uses register ebx, hence the first regis-
ter is marked read/write. Moreover the add instruction modifies the
EFLAGS register. The second instruction defines eax and reads reg-
ister ebx. The last instruction stores the value of eax to the address
contained by ebx, therefore the write memory field is marked with
1. As for the output, the first instruction has no dependences since
it is the first in the trace. The second instruction depends on the
first one because it uses ebx. The last instruction depends on both
previous since it uses the two defined registers.

4.4 DDGacc implementation

The functional unit design is depicted in Figure 7. Due to space
constraints, we do not describe here the detailed implementation.
We refer the reader to a technical report [19] for further details.

The proposed accelerator contains a small memory structure,
called LDRF that keeps track of the last definition of each register.
Each line of the structure has size of 8 bits, since the maximum
index number encountered is 255, and 92 lines are needed to store
the index of the defining instruction for each register. In total, the
memory needed to handle the registers is 92 Bytes plus 92 valid
bits. The lastMemoryW, lastMemoryR and the lastEFLAGSW keep
track of the last instruction that was a memory write, a memory read
and that modified the EFLAGS register respectively, increasing the
total memory requirements to 116 Bytes.

The LDRF is indexed by the 3 register IDs given from the input.
Three read ports are needed to get the last definition of all registers
in parallel and two write ports to update the last definition of up to
two registers in parallel. One valid bit for each entry designates
whether this operand was defined by an instruction in the trace
under consideration. The output of LDRF for each register is the
8 bit identifier of the defining instruction along with the valid bit
(total 9 bits). The memory cells for the last memory write, read and
EFLAGS definition also follow this concept. The outputs of the
LDRF and the other memory cells are directly connected to their

163

Reg Type:
00 – Invalid
01 – Read
10 – Write
11 – Read/Write

X Reg1
type Reg1 Reg2

type Reg2 Reg3
type Reg3 IsMem

W
IsMem

R

1 2 7 2 7 2 7 1 1

Mod
Flags

2

Not
Used

Reg1 Reg2 Reg3 MemW MemR EFLAGS Reg1 Reg2 or
EFLAGS

8 8 8 8 8 8 8 8

Flow dependences Output dependences

(a) (b)

Figure 5. (a) Input of the accelerator consisting of the register operands and (b) Output of the accelerator consisting of the indexes of the
instructions that there is dependence from

// input creation
for each insn {

inputsArray[i] = extract insn operands
}

// ddg creation loop
for each insn {

mov eax, inputsArray[i]
ddgAppend [DDGBase@ + i], eax

}

(a) (b)

1: add ebx, 4
2: mox eax, ebx
3: mov [ebx], eax

Instructions

0 11 ebx 00 Reg2 00 Reg3 0 0 10

0 10 eax 01 ebx 00 Reg3 0 0 00

0 01 ebx 01 eax 00 Reg3 1 0 00

Input

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 2 0 0 0 0 0 0

Output

Instr. 1

Instr. 2

Instr. 3

Reg Type/Mod Flags:
00 – Invalid
01 – Read
10 – Write
11 – Read/Write

N
ot

 u
se

d

Re
g

ty
pe

Re
g

ty
pe

Re
g

ty
pe

Is
M

em
W

Is
M

em
R

M
od

 F
la

gs

Re
g1

Re
g2

Re
g3

Re
g1

Re
g2

Re
g3

M
em

W

M
em

R

EF
LA

G
S

Re
g1

Re
g2

 o
r

EF
LA

G
S

Figure 6. (a) HW/SW co-designed implementation of DDG algorithm. (b) Example of operation on instructions

respective output slots that will be written to memory. The final
outcome depends on the different control bits from the input.

Internally to the functional unit, a two-step process is necessary
for it to operate correctly: read and update. In the first step, the
values from the LRDF and the other memory cells are read and the
output is prepared. On the second step, the defined operands have
to be updated with the index of the current instruction.

We have identified that the LDRF structure is the critical path
of the proposed functional unit, which can be implemented as a
3-read and 2-write direct-mapped cache. We have calculated the
access time and the area of LDRF using CACTI [24] assuming
32nm technology.

The access time for such small cache is 0.19ns. Since the tag
and the data are accessed in parallel, we can safely assume that this
access time is an upper bound for the access time of the LDRF. In
reality, the LDRF access time will be less. Assuming a cycle time
of 0.33ns (3 GHz) then both steps (read and update) can be done in
two cycles. Finally, the area required for this structure is 0.003495
mm2.

Regarding the LDRF initialization with the ddgReset instruc-
tion, in order to minimize the penalty of initializing the LDRF, the
valid bits can be gang-cleared as explained in [14]. The latency of
this instruction will be one cycle.

Another issue is whether the memory kept in the functional
unit should be part of the architectural state. The state of LDRF
and the rest of memory cells are vital for the correctness of the
output. The answer depends on how these instructions are going to
be used. If an algorithm using these instructions is implemented as
a part of the DBO in a co-designed virtual machine, the state is not
necessary to be part of the architectural state as long as the VM
guarantees that the algorithm cannot be interrupted. On the other

hand, if the instructions are used in the context of a software-only
DBO, complete execution is not guaranteed. Hence, in this case the
state of the LRDF and the other memory cells has to be part of the
architectural state.

The parameters used for the description of DDGacc are targeted
towards x86 ISA, due to our evaluation infrastructure. We would
like to point out that use of the functional unit is not limited by any
manner just to x86 ISA. In fact, the changes that are necessary for
retargeting are very few and it could be also enhanced for providing
more information with the output if the ISA supports for example
128bit stores.

5. Evaluation
This section is organized in two parts. In the first part we present
and discuss the evaluation results of our proposal against the base-
line software-only DBO. For the timing evaluation, we selected the
chunks in which more traces were generated and optimized. We
present results for a total of 24 chunks of 1 billion instructions. For
the second part, we show the effectiveness of the accelerator when
the threshold for generating and optimizing traces is lower. For all
the experiments, the latency of the accelerator is assumed to be 2
cycles as explained in the implementation section. However, it is
worthy to note that results obtained with larger latencies show that
the proposed solution is extremely tolerant to latency.

In this paper we concentrate on reducing the introduced over-
heads of the optimization sequence rather than evaluating the per-
formance gains from applying different optimizations. As such, we
do not present results comparing the performance of the application
executed under the DBO against native execution.

164

LDRF

Reg1

Reg1
type

IsMem
W

IsMem
R

InsnIndex

Reg2 Reg3

7

Reg1
Reg2

Reg3
M

em
W

M
em

R

Reg2
type

Reg3
type

7

7

W - 1 R - 1
W - 1

8+1

R - 1

R - 1

8

1

8+1

8+1

1 1

W - 1 W - 1

8+1

8+1

EFLAGS
Reg1

Reg2/
EFLAGS

EnW1 EnW2W1

W2

R1

R2

R3

8

1

Mod
Flags

W - 1

8

8+1

R - 1

LastM
em

W
8 bits

LastM
em

R
8 bits

EnW

EnW

8 bit LD V

V
V

LastEFLAGSW
8bits

EnW

V

Input
Values
Memory

Logic
Single bit
control signals

MUX0
V

MUX0
V

S
E

S
E

MUX0
V

S
E

MUX0
V

S
E

MUX0
V

S
E

MUX0
V

S
E

MUX0
V

S
E

MUX0
V

S
E

MUX0
V

S
E 8

8

8

8

8

8

8

8

8

92

Figure 7. DDGacc implementation

X
100X
200X
300X
400X
500X
600X
700X
800X

X
5X

10X
15X
20X
25X
30X
35X
40X

40
0_

0
40

0_
1

40
3_

0
40

3_
1

44
5_

0
44

7_
0

44
7_

1
45

3_
0

46
4_

0
48

1_
0

48
3_

0
G

no
m

eC
al

cu
la

to
r_

0
G

no
m

eC
al

cu
la

to
r_

1
G

no
m

eC
al

cu
la

to
r_

2
O

pe
nO

ff
ic

eC
al

c_
0

O
pe

nO
ff

ic
eC

al
c_

1
O

pe
nO

ff
ic

eC
al

c_
2

O
pe

nO
ff

ic
eC

al
c_

3
O

pe
nO

ff
ic

eC
al

c_
4

O
pe

nO
ff

ic
eW

rit
er

_0
O

pe
nO

ff
ic

eW
rit

er
_1

O
pe

nO
ff

ic
eW

rit
er

_2
O

pe
nO

ff
ic

eW
rit

er
_3

O
pe

nO
ff

ic
eW

rit
er

_4
Av

er
ag

e

D
yn

am
ic

in
st

ru
ct

io
ns

re
du

ct
io

n

Sp
ee

du
p

Benchmark_Chunk

Speed up Dynamic Instruction Reduction

Figure 8. Speedup of the HW/SW co-designed DDG against the
software-only implementation and the reduction of the dynamic
instructions

5.1 Evaluation against the baseline

Figure 8 shows the speedup of the hw/sw co-designed algorithm
to compute the DDG against the software-only implementation.
Moreover, on the secondary axis we show the reduction of the dy-
namic instructions corresponding to the DDG creation. On aver-
age, the speedup is 32x while the dynamic instruction reduction is
615x. These big benefits can be understood by comparing the soft-
ware only algorithm presented in Figure 3 to the proposed hard-
ware/software algorithm shown in Figure 6(a)

However, there are several reasons why a 600x reduction in
the number of dynamic instructions is not translated into a 600x
reduction in number of cycles. First of all is that we assume a per-
fect instruction cache, which means that the reduction of instruction

cache accesses due to less dynamic instructions is not reflected in
our results. Cycle reduction results would be better if an instruction
cache were modeled, as the software-only baseline would perform
worse. As mentioned before, not being able to model an instruction
cache is a caveat of our infrastructure.

Moreover, we use fixed addresses for the memory locations
of the input array and the DDG array for the hw/sw algorithm.
This results in an increased miss rate on the L1 D$ compared to
the software-only algorithm, in which locality is exploited. This
reduces the performance benefits. This is also a caveat of our
research infrastructure.

Concerning the variation of the speedup and the dynamic in-
struction reduction among the different chunks (speedups ranging
from 28x to 36x and reductions from 550x to 696x), the cost of cal-
culating the dependences of a static instruction, with the software
algorithm, is not constant. The cost varies with respect to the type
of the instruction, the number of register operands (explicit and im-
plicit) as well as the type of the register. For example the cost of
an instruction that is using an aliased register (e.g. eax) is higher
since all the "sub-registers" must be taken into consideration. On
the other hand, the hardware accelerator is handling the aliasing
through its normal functionality.

Figure 9 shows the execution time of both implementations
normalized to that of the baseline. The bar labeled as SW refers
to the software only implementation and the bar labeled HW/SW
refers to our proposal. The total execution time is divided into
three regions. The first one stands for the optimization overhead
excluding the DDG generation (blue bar) which is represented
by the second region (red bar). The third one is the time spent
executing instructions from the translation cache (green bar). The
software only implementation of the DDG algorithm accounts for
4.6% of the total execution time on average and for 32% of the
optimization time. The overhead varies from 1%, for traces with

165

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W

0 1 0 1 0 0 1 0 0 0 0 0 1 2 0 1 2 3 4 0 1 2 3 4

400 403 445 447 453 464 481 483 GnomeCalculator OpenOfficeCalc OpenOfficeWriter

N
or

m
al

iz
ed

ex
ec

ut
io

n
tim

e

Chunk
Benchmark

Optimization Other Optimization DDG Translated Code

Figure 9. Normalized execution time breakdown of the baseline
DBO and the DBO using the hw/sw co-designed DDG creation

0%

2%

4%

6%

8%

10%

12%

10
M

20
M

30
M

40
M

50
M

60
M

70
M

80
M

90
M

10
0M

11
0M

12
0M

13
0M

14
0M

15
0M

16
0M

17
0M

18
0M

19
0M

20
0M

21
0M

22
0M

23
0M

24
0M

Pe
rc

en
ta

ge
of

dy
na

m
ic

in
st

ru
ct

io
ns

Time (# of instructions)

software only hw/sw approach

Figure 10. DDG activity over time

low DBO activity like 447.0, to 7% for traces with high DBO
activity like OOWriter.4. While the dynamic instructions of the
DDG are higher than the rest of the optimizations, the fact that in
the software version data locality is well exploited, the execution
time is lower.

Using the hardware functional unit for the creation of the DDG,
improves the execution time significantly. The section that corre-
sponds to DDG is reduced to 0.1% of the execution time across all
traces which is almost negligible. The total execution time is re-
duced by an average of 4.6% due to this reduction, while on the
traces with high activity of the DBO the benefits are up to 7%.

The direct benefit from this improvement is that the overhead
introduced from the optimizer is reduced by approximately 27%.
The execution time gained could be used to apply some other
complex optimization which will be using the DDG or as a raw
decrease of execution time. We believe that this improvement is
of high importance in the context of co-designed VMs, since the
impact of the overhead is significant not only at the beginning of
the execution of a process, but throughout its life since evictions
from the code cache can result in re-translation and re-optimization
of regions of code.

In addition, there are side effects due to this reduction. The
615x reduction of dynamic instructions results to fewer accesses
to the instruction and data caches. We observed 417x reduction
of data cache accesses. Moreover, this reduction of instructions
results in less energy consumption since fewer instructions need
to be executed.

Finally, Figure 10 shows the optimizer activity over time with
respect to the DDG creation. In particular the y-axis shows the
accumulated ratio of dynamic instructions executed to compute
the DDG with respect to the rest of the instructions over time

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

40
0_

0

40
0_

1

40
3_

0

40
3_

1

40
3_

2

44
5_

0

44
7_

0

44
7_

1

45
3_

0

45
3_

1

46
4_

0

46
4_

1

48
1_

0

48
1_

1

48
3_

0

48
3_

1

G
no

m
eC

al
cu

la
to

r_
0

G
no

m
eC

al
cu

la
to

r_
1

G
no

m
eC

al
cu

la
to

r_
2

O
pe

nO
ff

ic
eC

al
c_

0

O
pe

nO
ff

ic
eC

al
c_

1

O
pe

nO
ff

ic
eC

al
c_

2

O
pe

nO
ff

ic
eC

al
c_

3

O
pe

nO
ff

ic
eC

al
c_

4

O
pe

nO
ff

ic
eW

rit
er

_0

O
pe

nO
ff

ic
eW

rit
er

_1

O
pe

nO
ff

ic
eW

rit
er

_2

O
pe

nO
ff

ic
eW

rit
er

_3

O
pe

nO
ff

ic
eW

rit
er

_4

Pe
rc

en
ta

ge
of

dy
na

m
ic

in
st

ru
ct

io
ns

Benchmark_chunk

Optimization Other Optimization DDG Optimization Memory Def/Use

Optimization DCR+RLE Translated Code execution

Figure 11. Dynamic instruction breakdown of the selected chunks
when optimizing at the threshold of 10

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W SW
H

W
/S

W

0 1 0 1 0 0 1 0 0 0 0 0 1 2 0 1 2 3 4 0 1 2 3 4

400 403 445 447 453 464 481 483 GnomeCalculator OpenOfficeCalc OpenOfficeWriter

N
or

m
al

iz
ed

ex
ec

ut
io

n
tim

e

Chunk
Benchmark

Optimization Other Optimization DDG Translated Code

Figure 12. Normalized execution time of the baseline DBO with
threshold of 10 and the DBO using the hw/sw co-designed DDG
creation

(the x-axis is the 1 billion instruction chunk divided into sub-
chunks of 10M instructions each). We present the results for the
first chunk of the application GnomeCalculator as an example. As
the applications progresses with its execution, less code is being
optimized, which means that the overheads devoted to compute the
DDG are lower. The line of the software-only approach shows this
clearly with an initial overhead of 10% which is reduced to 6%
towards the end of the chunk. Although the hw/sw approach has the
same trend, the introduced overheads are negligible which makes
our approach very intriguing.

5.2 Applying the optimizations earlier

Following our initial claim that using the functional unit will reduce
the overhead of the DDG creation algorithm to a point that it can
be applied earlier, we reduced the threshold at which traces are
being generated from 50 repetitions to 10. Of course this means that
more traces will be generated and optimized, resulting to higher
overhead, but optimizing the instructions earlier would also imply
higher performance and better response time.

The breakdown of the dynamic instruction stream for the 24
selected chunks is depicted in Figure 11. In general the overhead is
increased because of the increase of the optimizer’s activity, which
for some applications is significant, e.g. for the real applications
where it doubles. Regarding to SPEC applications, for some of
them like 400 and 403 it is increased significantly as well. On
the other hand, applications like 464 and 481 where the overheads
where quite low with a threshold of 50, there is no substantial
increase of the overhead since the amount of static code optimized
is almost the same. In these cases, code is optimized earlier with a
lower threshold which is the desired effect.

Considering execution time, the breakdown is depicted in Fig-
ure 12. The software implementation of the DDG accounts for 8%

166

of the execution time on average for the SPEC applications and
12% for the real applications with a maximum reaching 18%. For
the global picture, overhead can be as high as 50% of the execution
time. Such extreme overhead is what is preventing early optimiza-
tion.

With the use of DGGacc, the DDG creation overhead is reduced
to 0.2% of the total execution time, providing a global speedup of
8% for the SPEC applications and 12% for the real applications.
The overhead is again reduced by approximately 27%. Such im-
provement is more significant in raw numbers than when optimiz-
ing at the threshold of 50 since it allows for the DDG creation to
be applied as early as possible without introducing additional over-
heads.

The ramification of such low execution time requirements is that
not only the optimization can be applied earlier at the beginning,
but it can also be applied earlier when a hot region is evicted from
the code cache in the case where it is shared by several threads.
Earlier optimization will allow the application to reach a steady
state earlier which will result in more repeated executions of the
optimized code. This in turn will allow for the overhead to be
amortized earlier and the performance benefits to be observed as
soon as possible.

6. Related work
Some of the most characteristic examples of process level VMs are
Dynamo [3], DynamoRIO [5] and IA-32 execution layer [4]. All of
them employ different techniques to reduce the overall overheads
and guarantee that the application will reach the steady state as fast
as possible. For example DynamoRIO and IA-32 EL start with ba-
sic block translation, while Dynamo starts with interpretation. Dif-
ferent heuristics are used to construct larger regions as early as they
can afford. The common ground among the three though, is that
they apply only simple, low-cost optimizations in order to mini-
mize the overhead impacts. Our proposal offers a viable example
that hardware acceleration could in fact enable more complex opti-
mizations in these systems.

In the field of co-designed VMs, where the DBO is part of the
hardware platform, the most representative example is Transmeta’s
Crusoe [11] where the Code Morphing Software [6] is translating
x86 instructions to a VLIW instruction set. Other examples are
the DAISY/BOA [7, 18] projects from IBM. Both of them apply
a set of low cost optimizations in order to increase the ILP and
take advantage of their underlying VLIW architectures. There is no
report of any hardware accelerators for their optimizations.

Characteristic examples of hardware only optimizers are re-
PLay [17] and PARROT [20]. Both of them implement an opti-
mization pipeline which operates on the ìops generated during the
execution of x86 code. rePLay focuses on performance gains while
PARROT is giving special attention to power awareness. The major
drawback of hardware-only implementation of optimizations is that
the mechanism and the heuristics assumed are hardcoded. In con-
trast, our proposal is providing hardware support for the primitive
of the optimization but leaves the heuristics to the software which
has more flexibility.

Adore [13] and Trident [25] also use hardware support for
dynamic optimization. Specifically, Adore uses hardware perfor-
mance counters to collect samples for profiling and when it detects
a hot region a second thread is invoked to generate and optimize
the hot region. Trident works in a similar manner while utilizing
multiple helper threads, hardware events and simultaneous multi-
threading to amortize the introduced overhead.

There are several other proposals (either software or hardware)
that focus on speeding up basic actions of the DBT/DBO. Instruc-
tion decoding was attacked by [10]. Hardware based profiling was
proposed by [15]. Effective code cache management algorithms

were proposed by [8] and by [23]. The implementation of Strata, a
retargetable and reconfigurable software dynamic same-ISA trans-
lator is described in [21] and techniques for reducing the overhead
of indirect branches is proposed in [9]. Other tasks such as inter-
pretation, trace chaining etc. are discussed in [22].

7. Conclusions
DBO overheads may turn into poor performance and slow response
time for applications with large static code. Reducing the overheads
of the software layer (the optimizer) in a DBT/DBO system im-
pacts overall performance and user experience. Furthermore, re-
duced overheads have interesting collateral effects that may affect
the design of other optimizer components, such as applying opti-
mizations earlier or eagerly, among others. For all these reasons,
we propose to provide hardware support to speed up the mecha-
nisms of DBT/DBO primitives as a solution, leaving the heuristics
to the software, which has greater flexibility.

In this paper, we have characterized the overheads of a DBO
system based on DynamoRIO, implementing several basic opti-
mizations, and we have identified the biggest sources of overheads.
We have observed that the construction of the Data Dependence
Graph (DDG), a crucial primitive to enable other optimizations
such as instruction scheduling, accounts for 5%-10% of the exe-
cution time.

Hence, we have proposed hardware support to accelerate this
part. DDGacc is integrated in a conventional pipelined processor
as a regular functional unit that is operated by two new ISA in-
structions. We have provided a detailed description of DDGacc, its
interface and how software can use it. After that, we have com-
pared the performance of the proposed hardware/software solution
against a software-only implementation, and we have observed that
the cost to compute the DDG is reduced by 600x in number of dy-
namic instructions and 32x in number of cycles. This is translated
on an overall improvement of the system of 5%-10% on average,
depending on the optimization threshold. Moreover, this technique
provides up to 18% for applications with large static code footprint.

Acknowledgments
The presented work was partially supported by the Generalitat de
Catalunya under grant 2009SGR1250, the Spanish Ministry of Ed-
ucation and Science under contracts TIN2007-61763 and TIN2010-
18368, and Intel Corporation. Demos Pavlou was partially funded
by the Generalitat de Catalunya under an FI-AGAUR grant.

References
[1] Standard Performance Evaluation Corporation. SPEC CPU2006

Benchmarks. URL http://www.spec.org/cpu2006/.

[2] T. Austin, E. Larson, and D. Ernst. Simplescalar: an infrastructure for
computer system modeling. Computer, 35(2):59 –67, feb 2002. ISSN
0018-9162. doi: 10.1109/2.982917.

[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent
dynamic optimization system. In PLDI ’00: Proceedings of the ACM
SIGPLAN 2000 conference on Programming language design and
implementation, pages 1–12, New York, NY, USA, 2000. ACM. ISBN
1-58113-199-2. doi: http://doi.acm.org/10.1145/349299.349303.

[4] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang,
and Y. Zemach. Ia-32 execution layer: a two-phase dynamic translator
designed to support ia-32 applications on itanium®-based systems. In
MICRO 36: Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture, page 191, Washington, DC, USA,
2003. IEEE Computer Society. ISBN 0-7695-2043-X.

[5] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for
adaptive dynamic optimization. In CGO ’03: Proceedings of the inter-
national symposium on Code generation and optimization, pages 265–

167

275, Washington, DC, USA, 2003. IEEE Computer Society. ISBN
0-7695-1913-X.

[6] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson, T. Kistler,
A. Klaiber, and J. Mattson. The Transmeta Code Morphing™ Soft-
ware: using speculation, recovery, and adaptive retranslation to ad-
dress real-life challenges. In CGO ’03: Proceedings of the interna-
tional symposium on Code generation and optimization, pages 15–24,
Washington, DC, USA, 2003. IEEE Computer Society. ISBN 0-7695-
1913-X.

[7] K. Ebcioğlu and E. R. Altman. Daisy: dynamic compila-
tion for 100% architectural compatibility. SIGARCH Comput.
Archit. News, 25(2):26–37, 1997. ISSN 0163-5964. doi:
http://doi.acm.org/10.1145/384286.264126.

[8] K. Hazelwood and M. D. Smith. Managing bounded code
caches in dynamic binary optimization systems. ACM Trans.
Archit. Code Optim., 3:263–294, September 2006. ISSN 1544-
3566. doi: http://doi.acm.org/10.1145/1162690.1162692. URL
http://doi.acm.org/10.1145/1162690.1162692.

[9] J. D. Hiser, D. Williams, W. Hu, J. W. Davidson, J. Mars, and B. R.
Childers. Evaluating Indirect Branch Handling Mechanisms in Soft-
ware Dynamic Translation Systems. In CGO ’07: Proceedings of
the International Symposium on Code Generation and Optimization,
pages 61–73, Washington, DC, USA, 2007. IEEE Computer Society.
ISBN 0-7695-2764-7. doi: http://dx.doi.org/10.1109/CGO.2007.10.

[10] S. Hu and J. E. Smith. Reducing startup time in co-designed virtual
machines. In ISCA ’06: Proceedings of the 33rd annual international
symposium on Computer Architecture, pages 277–288, Washington,
DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2608-X. doi:
http://dx.doi.org/10.1109/ISCA.2006.33.

[11] A. Klaiber. The Technology Behind the Crusoe Processors. White
paper, January 2000.

[12] T. Lindholm and F. Yellin. Java Virtual Machine Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999. ISBN 0201432943.

[13] J. Lu, H. Chen, R. Fu, W.-C. Hsu, B. Othmer, P.-C. Yew,
and D.-Y. Chen. The performance of runtime data cache
prefetching in a dynamic optimization system. In Proceedings
of the 36th annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO 36, pages 180–, Washington, DC, USA,
2003. IEEE Computer Society. ISBN 0-7695-2043-X. URL
http://dl.acm.org/citation.cfm?id=956417.956549.

[14] J. F. Martínez, J. Renau, M. C. Huang, M. Prvulovic, and J. Torrel-
las. Cherry: checkpointed early resource recycling in out-of-order
microprocessors. In MICRO 35: Proceedings of the 35th annual
ACM/IEEE international symposium on Microarchitecture, pages 3–
14, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.
ISBN 0-7695-1859-1.

[15] M. C. Merten, A. R. Trick, E. M. Nystrom, R. D. Barnes, and
W.-m. W. Hmu. A hardware mechanism for dynamic extraction
and relayout of program hot spots. In Proceedings of the 27th
annual international symposium on Computer architecture, ISCA
’00, pages 59–70, New York, NY, USA, 2000. ACM. ISBN 1-
58113-232-8. doi: http://doi.acm.org/10.1145/339647.339655. URL
http://doi.acm.org/10.1145/339647.339655.

[16] S. S. Muchnick. Advanced compiler design and implementation.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.
ISBN 1-55860-320-4.

[17] S. Patel and S. Lumetta. rePLay: A hardware framework for dynamic
optimization. Computers, IEEE Transactions on, 50(6):590–608, Jun
2001. ISSN 0018-9340. doi: 10.1109/12.931895.

[18] S. S. Paul, P. Ledak, J. Leblanc, S. Kosonocky, M. Gschwind, J. Fritts,
A. Bright, E. Altman, and C. Agricola. Boa: Targeting multi-gigahertz
with binary translation. In In Proc. of the 1999 Workshop on Binary
Translation, IEEE Computer Society Technical Committee on Com-
puter Architecture Newsletter, pages 2–11, 1999.

[19] D. Pavlou, E. Gibert, F. Latorre, and A. Gonzalez. Improving Dynamic
Binary Optimizers Efficiency through Specific Hardware Support.
Technical Report UPC-DAC-RR-ARCO-2009-11, Universitat Politec-
nica de Catalunya, Department of Computer Architecture, September
2009.

[20] R. Rosner, Y. Almog, M. Moffie, N. Schwartz, and A. Mendel-
son. Power awareness through selective dynamically optimized
traces. In Computer Architecture, 2004. Proceedings. 31st An-
nual International Symposium on, pages 162–173, June 2004. doi:
10.1109/ISCA.2004.1310772.

[21] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson, and
M. L. Soffa. Retargetable and reconfigurable software dynamic trans-
lation. In CGO ’03: Proceedings of the International Symposium on
Code Generation and Optimization, pages 36–47, Washington, DC,
USA, 2003. IEEE Computer Society. ISBN 0-7695-1913-X.

[22] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for
Systems and Processes (The Morgan Kaufmann Series in Computer
Architecture and Design). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2005. ISBN 1558609105.

[23] W. Srisa-an, M. B. Cohen, Y. Shang, and M. Soundararaj. A self-
adjusting code cache manager to balance start-up time and mem-
ory usage. In Proceedings of the 8th annual IEEE/ACM interna-
tional symposium on Code generation and optimization, CGO ’10,
pages 82–91, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-
635-9. doi: http://doi.acm.org/10.1145/1772954.1772968. URL
http://doi.acm.org/10.1145/1772954.1772968.

[24] S. Wilton and N. Jouppi. Cacti: an enhanced cache access and cycle
time model. Solid-State Circuits, IEEE Journal of, 31(5):677–688,
May 1996. ISSN 0018-9200. doi: 10.1109/4.509850.

[25] W. Zhang, B. Calder, and D. M. Tullsen. An event-driven
multithreaded dynamic optimization framework. In Proceed-
ings of the 14th International Conference on Parallel Architec-
tures and Compilation Techniques, PACT ’05, pages 87–98, Wash-
ington, DC, USA, 2005. IEEE Computer Society. ISBN 0-
7695-2429-X. doi: http://dx.doi.org/10.1109/PACT.2005.7. URL
http://dx.doi.org/10.1109/PACT.2005.7.

168

