
Execution Mining

Geoffrey Lefebvre Brendan Cully Christopher Head Mark Spear

Norm Hutchinson Mike Feeley Andrew Warfield

Department of Computer Science, University of British Columbia

{geoffrey, brendan, chead, mspear, norm, feeley, andy}@cs.ubc.ca

Abstract

Operating systems represent large pieces of complex software that
are carefully tested and broadly deployed. Despite this, develop-
ers frequently have little more than their source code to understand
how they behave. This static representation of a system results in
limited insight into execution dynamics, such as what code is im-
portant, how data flows through a system, or how threads inter-
act with one another. We describe Tralfamadore, a system that pre-
serves complete traces of machine execution as an artifact that can
be queried and analyzed with a library of simple, reusable opera-
tors, making it easy to develop and run new dynamic analyses. We
demonstrate the benefits of this approach with several example ap-
plications, including a novel unified source and execution browser.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Tracing, Diagnostics

General Terms Design, Experimentation, Measurement, Perfor-
mance

Keywords Binary Analysis, Offline Analysis, Virtual Machine,
Semantic Gap

1. Introduction

“The creatures were friendly, and they could see in four
dimensions. They pitied Earthlings for being able to see only
three. They had many wonderful things to teach Earthlings
about time.”

–A description of the Tralfamadorians from Kurt Von-
negut’s “Slaughterhouse Five” [35]

Execution is fleeting. As each moment of execution is lost
to the past, an important opportunity to understand a system’s
behavior may be lost as well. In addition to the complexity that is
inherent in operating system code, developers are often hamstrung
by a lack of useful tools to assist in understanding how source
behaves in practice. Where tools such as debuggers, profilers and
leak detectors are available at all, they operate on only a glimpse of
execution, either as a point in time or as a predetermined summary.
These tools are “stuck in time”, and must anticipate or recreate any
execution scenario they seek to examine. Execution behavior that
is not anticipated before it occurs can not be examined.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’12, March 3–4, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-1175-5/12/03. . . $10.00

The lack of insight into how an operating system actually be-
haves when it runs presents a major challenge to both novice and
experienced developers: code bases for these systems are large, and
control flow through a system – whether it has to do with servic-
ing a system call or delivering a received packet to the appropriate
application – frequently spans large numbers of source files and is
indirected through function pointers and across multiple execution
contexts. A view of program source alone does not provide an intu-
ition for where common execution paths are, which regions of code
are particularly performance sensitive, or how data structures such
as packets or block requests move across subsystems.

In this paper, we explore the idea that detailed, CPU-level traces
of system execution can usefully enable analysis on execution as
a whole, as opposed to execution in the moment. Rather than
considering dynamic analysis as a “one-off” task that is performed
against a running system, we propose performing repeated analysis
against a persistent trace instance that may be kept and analyzed
over a long period of time and by multiple users.

We describe the design and implementation of Tralfamadore,
an offline dynamic analysis tool that borrows ideas from stream-
ing databases [30] to treat a single execution trace as a shared re-
source that may be used by a community of developers to under-
stand program behaviour. Tralfamadore explores the opportunities
that exist where large reference executions, such as regression test
suites or samples of production execution environments, are treated
as archival recordings. Our system provides tools to map the low-
level details of these recordings up to the source-level semantics
used by developers. This approach allows the cost of analysis to be
amortized over many users and related queries, making consider-
ably more complex forms of analysis practical.

In this manner, Tralfamadore allows developers to better under-
stand the execution dynamics of the software they are working on:
they may explore sweeping queries, like “show me a histogram of
all parameters ever passed to this function,” “summarize all execu-

tion stacks that have ever invoked this line of code,” or “summarize
the path through the kernel taken by all received UDP packets,”
in order to quickly get a sense of how complex system code be-
haves. Furthermore, as the analyses performed by the system are
based on the composition of an extensible set of analysis operators,
we demonstrate how new analyses can be written, often without
requiring a low-level understanding of the nuances of a specific ar-
chitecture or instruction set.

Our work can be viewed as an extension of recent results that
decouple dynamic analysis from live execution [10, 27]. However,
rather than simply running traditional analysis against a system
recording, we explore the broader set of analyses that are possible
across the entirety of an execution trace, and tackle some of the
consequent challenges, such as indexing execution for efficient
query evaluation. Tralfamadore allows the developer to engage in
a dialogue with a system’s execution, bridging the gap between the

145

intention expressed in the source code and the experience of actual
execution.

2. Goals

Tralfamadore aims to allow developers to understand large, com-
plicated code bases that are difficult to analyze with existing tools.
This problem produced four specific design goals for our tool:

2.1 Treat Execution as an Artifact

Traditional dynamic analysis frameworks such as Pin [20] or Val-
grind [24] are online tools, meaning that they analyze a program as
it executes. In Tralfamadore, the execution of the system being an-
alyzed is first recorded and stored persistently, and all analyses are
performed afterwards on this static data set. Tralfamadore analyzes
executions as opposed to analyzing programs as they execute.

Running dynamic analyses against a static data set has multi-
ple advantages, such as enabling new analyses not foreseen at the
time of recording. This approach allows for repeated analysis over
the same execution, providing consistency between each run, an
important asset for developers using dynamic analysis in the cycli-
cal process of understanding or debugging complex pieces of code
such as an operating system kernel. Another advantage is that anal-
yses are no longer “stuck in time” and can freely navigate execu-
tion by arbitrarily going back in time or jumping ahead. Analyses
themselves are also easier to debug; their deterministic behaviour
simplifies the task of validating whether an error in the analysis
has been fixed or not. An offline approach also helps alleviate the
“observer” effect. Although recording may affect the behaviour of
the system, once an interesting behaviour has been captured, this
behaviour is guaranteed to manifest for all analyses however intru-
sive they may be.

2.2 Support Whole-System Analysis

A motivation of our system is to help developers understand be-
havior that occurs at any layer of the software stack. In this paper
we focus on kernel execution, but Tralfamadore is able to record
the execution of entire systems. As the OS kernel is typically the
most privileged, lowest-level software installed on a system, this
goal leads to a number of requirements:

First, the traces should be comprehensive, meaning that it
should be possible to record the execution of an entire system,
including the execution of its operating system kernel and of all
its applications. Traces should be captured at the hardware level,
underneath the operating system, to ensure a complete visibility of
the system’s execution. In this paper we focus on kernel execution,
but Tralfamadore is able to record the execution of entire systems.

Second, to capture the execution of unmodified systems requires
recording execution transparently without explicitly changing the
target system. Further, being transparent requires Tralfamadore to
handle dynamically generated and self-modifying code without the
need to be explicitly notified by the system being recorded.

Third, the information recorded should be complete, meaning
that the recording should contain sufficient information for analyses
to inspect the register and memory state of the system at an instruc-
tion granularity. Section 4.2 describes how Tralfamadore records
execution and provides more details on how it meets these three
requirements.

2.3 Bridge the Semantic Gap

Doing dynamic program analysis on an executing binary inherently
introduces a semantic gap. On one side, the CPU executes a stream
of instructions which update the state of the processor and mem-
ory, and on the other side, developers expect to be able to reason
about a running program at the level of source code. This seman-
tic gap makes developing new analyses challenging. An analysis

int deliver skb(struct sk buff *skb,

struct packet type *pt,

struct net device *dev)

{
atomic inc(&skb->users);

return pt->func(skb, skb->dev, pt, dev);

}

Figure 1. Packet delivery via type-specific function pointer from
the protocol table

writer needs to understand many low-level aspects of execution,
such as how arguments are passed on function calls, or how mem-
ory is allocated from the heap. This effort can be considerable, and
requires domain expertise over the instruction set, application bi-
nary interface (ABI), etc. This gap widens with operating system
code, which does not provide standardized and stable programming
interfaces such as POSIX or the C standard library.

Unfortunately, existing dynamic analysis frameworks force
analysis writers to constantly reinvent the wheel; low-level aspects
of execution must be re-learned for every new analysis. A good
example of this problem is Valgrind [24], which includes two dif-
ferent race detectors, and to which engineers at Google recently
added a third one.1 Although all three detectors differ in the algo-
rithm used to identify races, they each reimplement instrumentation
to extract the same information (lock acquisition/release, accesses
to heap memory). The required instrumentation is orthogonal to
the analysis used and could be shared across implementations if
Valgrind made it easy to do so.

2.4 Provide Interactive Results

Finally, as the previous goals lead to a system that performs deep
and complex analysis over large volumes of execution data there is
a risk that analysis may take a long time to complete. Tralfama-
dore aims to enable highly interactive exploration of trace data,
and so we desire that the system provide interactive results so that
developers can get answers as quickly as possible. To achieve this,
Tralfamadore provides mechanisms to generate trace indices that
subsequent analyses can use to only read the relevant portions of
a trace. Many analyses end up reading a small fraction (< 1%)
of the trace. The Tralfamadore framework is based on a dataflow
model that is well suited to produce results in an online manner.
Analyses can return partial results as soon as they are available.
This is advantageous for analyses that take a long time to complete
because they need to read a substantial fraction of the trace. All
the analyses described in this paper can return partial results within
seconds, although some of them take much longer to complete.

3. An Example: Linux Networking

The Linux network stack is an illustrative example of the challenges
faced by developers in understanding unfamiliar code. This code
base has a number of features that contribute to the difficulty of
understanding it.

First, it is very large. According to SLOCCount2, there are
342,536 lines of code in the net subdirectory of the Linux kernel
(version 2.6.24). Restricting our attention to the most relevant sub-
components (ipv4, netfilter, core, sched, and ethernet) reduces the
count to 113,110 lines. Second, it spans all the layers of kernel ab-
stractions from system calls through device drivers. Third, it uses
dynamic control flow techniques that are challenging for static tools
to understand, such as function pointers (Figure 1 shows one ex-

1 http://code.google.com/p/data-race-test/wiki/ThreadSanitizer
2 http://www.dwheeler.com/sloccount/

146

__alloc_skb -> ei_receive -> ne2k_pci_block_input -> eth_type_trans -> ei_receive -> netif_rx

process_backlog -> netif_receive_skb

ip_rcv -> ip_rcv_finish -> ip_route_input

tcp_v4_rcv -> __skb_checksum_complete -> __skb_checksum_complete_head -> skb_checksum -> __skb_checksum_complete_head -> tcp_v4_rcv

tcp_v4_do_rcv

skb_release_all -> skb_release_data -> __kfree_skb

tcp_rcv_established -> tcp_data_queue

skb_release_all -> skb_release_data -> __kfree_skb

tcp_recvmsg -> skb_release_all -> sk_stream_rfree -> skb_release_all -> skb_release_data -> skb_release_data -> __kfree_skb

tcp_v4_conn_request -> tcp_parse_options -> tcp_v4_conn_request -> kfree_skb -> skb_release_all -> skb_release_data -> __kfree_skb

tcp_check_req -> tcp_parse_options -> tcp_check_req -> kfree_skb -> skb_release_all -> skb_release_data -> __kfree_skb

tcp_rcv_state_process -> tcp_ack

skb_release_all -> skb_release_data -> __kfree_skb

tcp_rcv_state_process -> tcp_data_queue -> skb_release_all -> skb_release_data -> __kfree_skb

tcp_rcv_established -> tcp_ack

2

374279

374279

374279

374279

374279

374279

350604

105099

245505

97154

7945

7960

7952

7763

7761

ip_rcv_finish -> ip_local_deliver -> ipt_do_table -> ip_local_deliver_finish

Figure 4. TCP packet receive

int netif rx(struct sk buff *skb)

{
struct softnet data *q;

q = & get cpu var(softnet data);

get cpu var(netdev rx stat).total++;

skb queue tail(&q->input pkt queue, skb);

return NET RX SUCCESS;

}

int process backlog(. . ., int quota)

{
struct softnet data *q;

q = & get cpu var(softnet data);

do {
struct sk buff *skb;

skb = skb dequeue(&q->input pkt queue);

netif receive skb(skb);

} while (++work < quota);

return work;

}

Figure 2. Top/bottom half network processing

ample of this, the packet delivery function, which dispatches the
packet through a type-specific function pointer). Fourth, the func-
tionality of the network stack is split in accordance with the stan-
dard Linux top/bottom driver architecture: the “top half” executes
in interrupt context, which must complete as quickly as possible.
It simply receives a packet from a device driver and queues it. Ac-
tual packet processing (the “bottom half”) is deferred until inter-
rupts have been serviced. Figure 2 shows the code used by network
card interrupt handlers to queue received packets and the process-
ing function that runs asynchronously to dequeue packets to push
them up the protocol stack. This causes standard call-flow analysis
to be unable to capture the end-to-end processing of packets from
arrival to final delivery.

__alloc_skb -> ei_receive -> ne2k_pci_block_input -> eth_type_trans -> ei_receive -> netif_rx

process_backlog -> netif_receive_skb -> arp_rcv -> arp_process

ip_route_input

kfree_skb -> skb_release_all -> skb_release_data -> __kfree_skb

arp_process -> kfree_skb -> skb_release_all -> skb_release_data -> __kfree_skb

kfree_skb -> skb_release_all -> skb_release_data -> __kfree_skb

162

162

160

14

146

2

Figure 3. ARP packet lifetime through the network stack

Static analysis tools that perform call flow analysis cannot deal
with this level of indirection, but even if they could, constructing
a static call graph only tells part of the story. A large portion of
system code is there to handle errors and rare corner cases. Static
analysis cannot guide a developer to concentrate on the important
or most commonly used functionality of the network stack, nor can
it identify unused or outlying code paths.

The network stack is inherently data-driven and has a single data
structure (the packet) at its core. Developers who want to under-
stand the stack typically want to begin with understanding how a
specific subset of packets flow through it. What if a developer could
point to a function in the source code and ask, “Where are packets
processed by this function coming from and where are they go-
ing to?” The answer to this question for the function arp rcv is
illustrated in Figure 3 which shows a tree produced by our tool
of the functions that access every packet which passes through
arp rcv, from its allocation to is eventual release. Function names
in the first, shaded text box are executed in device interrupt con-
text, while subsequent processing occurs in a soft irq. Numbers
to the left of the figure indicate the number of packets that take the
indicated path through the code. Looking at the figure, the devel-
oper can quickly learn that packets are allocated by the function
alloc skb, are operated on at the ARP level primarily by the

function arp process, and are eventually freed by kfree skb.

147

Having understood this simple flow for ARP packets, the de-
veloper might then ask about packets processed by another func-
tion, perhaps for a more complex protocol such as TCP. The flow
of packets going through the function tcp v4 do rcv is shown in
Figure 4. The graph is much larger, representing the increased com-
plexity of TCP processing relative to ARP.

The figures in this section were generated from a trace of a
virtual machine running the Apache web server on Linux. The data
used to generate these figures is obtained with a new analysis we
have dubbed Heap Slicing which we describe in Section 5.4, after
we have explained the overall architecture of our platform.

4. The Trace Analysis Engine

Figure 5 illustrates the Tralfamadore architecture. Analysis starts
with an execution trace, which is captured at the virtual machine
level and stored as a database which the analysis engine uses to an-
swer queries. User queries are constructed out of simple modules
under a dataflow model similar to network packet processing en-
gines such as Click [16] and Bro [28]. In this paradigm, data is pro-
cessed by single-function components, which are called operators
in Tralfamadore. These operators are connected as a DAG, where
each operator consumes a stream of records from one or more up-
stream operators and produces a stream of records for downstream
operators. Data traverses the graph of operators, flowing from the
leaves to the root of the tree.

Tralfamadore analyses execute by parsing the trace into a stream
of records called annotations corresponding to the execution of
machine-level instructions and the occurrence of events such as
interrupts or page faults. The stream is passed through an analysis-
specific configuration of operators that progressively augment
the stream with semantically richer annotations corresponding to
higher-level events such as function calls, lock uses, or heap alloca-
tions. Analyses can be expressed succinctly in terms of higher level
annotations instead of dealing directly with a CPU-level trace.

The current implementation of the Tralfamadore analysis en-
gine consists of approximately 5000 lines of C code and 12000
lines of OCaml code. The C language is used to implement per-
formance critical code such as the trace parser and the instruc-
tion disassembler. All of the operators and analyses are written
in OCaml. OCaml is a garbage-collected, statically typed func-
tional language with imperative and object-oriented features. We
choose OCaml because many of its features such as variant types
and pattern matching map naturally to the tasks accomplished by
Tralfamadore operators.

4.1 Primitives

Operators are the main functional abstraction in Tralfamadore.
Each operator is designed to recognize specific patterns in the
stream corresponding to the occurrence of events and produce
annotations that describe these events. The type of an operator is
solely defined by the annotations it produces. This encapsulation
makes it easy to replace the implementation of an operator with a
different one.

Annotations are the basic unit of information in the system.
They are typed and parameterized, and operators are able to define
new annotations that they will produce for downstream operators.
Annotations are logically timestamped to provide an ordering be-
tween annotations which is needed when merging multiple annota-
tion streams. The trace parser operator reads the raw trace on disk
and produces basic block and event annotations, which are the most
basic form of annotations used in the system. Section 5 describes
some of the current stream operators and the annotations that they
use. We are actively developing new operators in order to provide
support for other operating systems and the analysis of user-level
applications.

A stream, then, is an interface across which operators may send
and receive sequences of annotations. As mentioned above, the flow
of annotations in the system is driven by a “pull” from the sink
operator in the DAG rather than a “push” from the trace itself. This
allows operators to elect to work with specific, small regions of the
trace. The programmatic idiom for streams in our system is that of
an infinite lazy list, whose contents are materialized on demand.

4.2 Tracing

Almost all operators consume annotations from other operators in
order to produce semantically richer annotations. The most impor-
tant exception is the trace operator, which consumes the trace it-
self to produce annotations representing changes to the state of the
system at the (virtual) hardware level. The trace is captured by run-
ning the target system on a modified version of QEMU [5]. QEMU
is a fast whole-machine emulator that uses dynamic binary trans-
lation to emulate a guest instruction set architecture on a (possibly
different) host architecture. QEMU breaks guest instructions into
a series of RISC-like micro-operations which are fed into a code
generator to produce native code that executes directly on the host.
We made straightforward additions to these micro-operations to log
their changes to emulated guest state as they execute. The resulting
log is a faithful recording of every change to guest state, detailed
enough that the exact state of the machine at any point in its ex-
ecution can be recreated later. The modifications we have made
to support trace generation are based on QEMU version 0.9.1 and
consist of approximately 2200 lines of C code.

In order to support arbitrary analyses, the execution trace must
record every change to the state of the machine as it runs. This in-
cludes every instruction executed, every exception, every interrupt,
and all changes to register and memory, whether due to instructions
or I/O.

c01373e8 sti EFL=00000206

c01373e9 nop 0x0(%eax,%eax,1)

E[20,0000,c01373f1] STL[cd903f74]=206 STL[cd903f70]=60

STL[cd903f6c]=c01373f1 R[ESP]=cd903f6c

S[CS]=0060,00000000,ffffffff,00cf9a00

BR=c010859c EFL=00000006

c010859c push $0xffffffff STL[cd903f68]=ffffffff R[ESP]=cd903f68

c010859e jmp 0xc0108ddc BR=c0108ddc

c0108ddc cld EFL=00000006

c0108ddd push %fs STL[cd903f64]=000000d8 R[ESP]=cd903f64

c0108ddf push %es STL[cd903f60]=0000007b R[ESP]=cd903f60

c0108de0 push %ds STL[cd903f5c]=0000007b R[ESP]=cd903f5c

c0108de1 push %eax STL[cd903f58]=00b77000 R[ESP]=cd903f58

...

c0108de7 push %ebx STL[cd903f40]=00000002 R[ESP]=cd903f40

c0108de8 mov $0x7b,%edx R[EDX]=0000007b

c0108ded mov %edx,%ds S[DS]=007b,00000000,ffffffff,00cff300

Figure 6. Trace sample.

Figure 6 is a concrete example of the level of detail captured
by our trace collector. At the start of the section, the CPU program
counter is at 0xc01373e8, which contains the sti instruction that
causes interrupt delivery to be enabled (setting bit 9 of the EFLAGS

register). Upon execution of this instruction, an interrupt (0x20, the
timer interrupt) is immediately delivered. As part of interrupt de-
livery, the CPU saves essential state on the stack, disables interrupt
delivery, and branches to an interrupt dispatch function. The dis-
patcher saves register values on the stack to free the registers for
use by the interrupt handler it is about to call.

As is probably apparent from Figure 6, this approach produces
an enormous amount of trace data, and slows execution signifi-
cantly (see Section 7 for details). For a system like ours, which
is designed as a developer tool and in which a single trace can be
reused for large numbers of analyses, the benefits can be worth the
costs. For applications that demand less overhead during execu-
tion (e.g., debugging, security, or forensics), it is possible to re-

148

Analysis Target
e.g. Linux System

running a SPECWeb

workload

Execution Recorder
Writes execution trace

to disk.

Analysis Engine - Plans and executes

analyses on trace and indices.

Execution

Trace

Operator

Index

Analysis - A data!ow composition of

analysis operators.

Operator

Index

Operator

Index

User
“What are the common

paths of packets through

the network stack?”

User
“What is the maximum

stack size while in

interrupt context?”

User
“Assert: all writes to

instances of struct foo

hold mutex bar.”

Operator

Index

TralfamadoreSystem Architecture
Tralfamadore analyzes and

rebuilds source-level

semantics from instruction-

level execution traces that

have been stored to disk.

By providing a shared

service for trace storage and

analysis, developers amor-

tize the costs associated

with writing analysis tools

and performing analysis.

The analysis engine allows

developers to compose and

re!ne their analysis, while

providing immediate,

interactive results.

Figure 5. Tralfamadore Architecture

duce recording cost by separating it from trace generation, using
deterministic virtual machine record and replay [11]. These logs
are small, and recording them imposes only modest performance
costs. As an event log, the recording contains very little information
about execution, making it unsuitable for direct analysis. However,
it provides enough information to regenerate the entire execution
history in a subsequent, offline replay phase during which the full
execution trace can be produced [38]. We are currently working
on adding support for deterministic record/replay in QEMU and in
Xen. Our goal is to be able to record execution in Xen and replay it
in QEMU, similarily to Aftersight [10], to generate traces.

4.3 Trace Analysis

Figure 7 illustrates how operators gradually reconstruct execution
semantics when streaming a CPU-level trace through the configu-
ration of operators shown in Figure 8. The left hand side of Figure 7
shows an excerpt of raw trace containing basic block (BBlk) anno-
tations. These annotations are generated by the Trace Parser opera-
tor. The stream passes through the Invoke operator which augments
the stream with Invoke and Return annotations corresponding to
function calls and return statements. A third operator (Alloc), uses
the Invoke annotations to identify calls to kmalloc(), and further
augments the stream with heap allocation annotations. The Alloc
annotation shown on the right hand side indicates the allocation
of a block of 1024 bytes at address 0xdfcc5800. Subsequent op-
erators interested in heap allocations do not need to be concerned
with identifying calls to kmalloc(), but can simply use the Alloc
annotation directly without knowing how it was generated.

In addition to gradually bridging the semantic gap, the dataflow
architecture encourages the design of analysis that are composable
and reusable. Composable means that analyses can be easily struc-
tured as a combination of simple single-function operators. This
design also makes it easy to reuse these operators across multiple
analyses, saving developers from the burden of constantly having
to re-understand low-level aspects of execution.

4.4 Caching and Indexing

Many analyses only need to look at small portions of the trace to
extract the information they need. A good example is extracting
the value of an argument for all calls to a specific function. It is
sufficient to revisit the trace at all call sites and inspect the register
or memory state to extract the argument values. Analyses could
execute much faster if they had the ability to only read the relevant
portions of a trace.

BBlk(2):
c01b0623: mov $0x000000d0 -> %edx : R[edx]=000000d0
c01b0628: call 0xfffe7228 %esp -> %esp (%esp) : ST32[f755bea4]=c01b062d
 R[esp]=f755bea4 BR=c0197850

BBlk(8):
c0197850: sub $0x1c %esp -> %esp : R[esp]=f755be88
c0197853: cmp %eax $0x00000800:
c0197858: mov %ebx -> 0xc(%esp): ST32[f755be94]=ff
c019785c: mov %esi -> 0x10(%esp): ST32[f755be98]=100
c0197860: mov %edi -> 0x14(%esp): ST32[f755be9c]=f755bf0cc0197864:
 mov %ebp->0x18(%esp): ST32[f755bea0]=dfda0600
c0197868: mov %edx -> 0x8(%esp) : ST32[f755be90]=d0
c019786c: jcc 0x00000099 : FL=00000287
...

BBlk(7):
c01978ce: mov %ebx -> %eax : R[eax]=dfcc5800
c01978d0: mov 0xc(%esp) -> %ebx : LD32[f755be94]=ff R[ebx]=000000ff
c01978d4: mov 0x10(%esp) -> %esi : LD32[f755be98]=100 R[esi]=00000100
c01978d8: mov 0x14(%esp) -> %edi : LD32[f755be9c]=f755bf0c R[edi]=f755bf0c
c01978dc: mov 0x18(%esp) -> %ebp : LD32[f755bea0]=dfda0600 R[ebp]=dfda0600
c01978e0: add $0x1c %esp -> %esp : R[esp]=f755bea4
c01978e3: ret %esp (%esp) -> %esp : LD32[f755bea4]=c01b062d R[esp]=f755bea8
 BR=c01b062d FL=00000292

Invoke (__kmalloc, 0xf755bea4)

Return (0xf755bea4)
Alloc (0xdfcc5800, 1024)

Figure 7. Reconstruction of execution semantics using progres-
sively higher-level annotations.

Invoke trace

Trace

Parser
AllocSink

trace time

Annotations inserted by

the Invoke operator

Annotation inserted by

the Alloc operator

Figure 8. Operator configuration.

To efficiently support this sort of analysis, Tralfamadore opera-
tors can be configured to create persistent caches of the annotations
they generate. Subsequent analyses can use cached annotations as
indices to map annotations or annotation attributes to interesting
positions in the trace. These positions can be used as starting points
to examine a trace, or used to identify interesting slices of a trace,
such as the range of a trace where a specific thread was running.
Operators that support this mechanism export a query interface that
lets analyses instantiate an operator that will produce the subset
of annotations matching the query. This is conceptually similar to

149

Operator Description
Trace Parser Parses the raw trace file.

Produces: BBlk(pc, instructions, side effects), Event(vector, error code, pc, side effects)

Context Identifies independent contexts of execution (threads, interrupts).
Depends: BBlk(side effect = store[TSS.esp0]|mnemonic = sysenter|iret|...), Event*
Produces: Context(act id, stack addr, Entry|Exit|Switch)

Invoke Identifies function call and return points.
Depends: BBlk(pc = function addr | instr.mnemonic = ret)

Produces: Invoke(pc, stack pointer), Return(stack pointer)

Alloc Tracks the allocation and release of objects on the heap.
Depends: Context*, Invoke*, Produces: Alloc(ptr, size, pc), Release(ptr)

MemTrace Tracks memory access.
Depends: BBlk(side effect = load[*]|store[*])

Produces: MemTrace(pc, address, access size, R|W)

HeapTrace Tracks accesses to objects allocated on the heap.
Depends: MemTrace*, Alloc*
Produces: HeapTrace(pc, ptr, offsetm access size, R|W)

Table 1. Some of the current library of streaming operators available in Tralfamadore.

a select operation in a relational database where a subset of the
rows—those that match the selection criteria—are returned.

5. Operator Library

Whole-system analysis faces unique challenges in mapping CPU-
level execution to source-level semantics. Our approach provides a
framework in which new analyses can be composed from existing
operators that refine low level trace annotations into progressively
higher-level semantics. While our focus with the system to date
has been in studying the Linux operating system on x86 hardware,
we have also begun work on Windows support, as well as user-
level analysis. Extending the system in these directions is largely a
matter of developing new operators. Tralfamadore currently hosts
a library of about twenty operators, a subset of which are described
in Table 1.

Operators are intended to be standalone sections of code that
embed a specific aspect of analysis. Lower-level operators include
detailed knowledge about the hardware and how it is used by the
OS, while higher-level operators encode details about how the OS
behaves, for instance with regard to its heap management. The
remainder of this section describes three of the more complex of
the fundamental operators in additional detail.

5.1 Execution Contexts

One of the primary responsibilities of an operating system is to
schedule independent threads of execution onto shared physical
CPUs. Since the trace is a record of instructions at the CPU level,
these threads of control will appear to be arbitrarily interleaved. Yet
many modes of analysis (the simplest is call flow extraction) oper-
ate on single execution flows. Therefore, we provide a Context op-
erator for demultiplexing the trace. Tracking contexts in operating
systems kernels is challenging, due to the asynchronous, interrupt-
driven environment in which they operate: a flow of execution may
be suspended and resumed for a number of reasons, including ex-
plicit context switches, interrupts (which may be nested), and ex-
ceptions. Identifying these transitions requires an understanding of
both the physical architecture and how a given OS uses that ar-
chitecture in its implementation. Specifically, the Context operator
needs to track three things: the start and end of interrupt and fault
handlers, system calls, and the occurrence of context switches from
one thread to another.

The execution of interrupt and exception handlers (including
system calls that use software interrupts to enter the kernel) can
be identified by Event annotations in the trace. At these points,
the current flow of execution is suspended and control jumps to
an event handler. An iret instruction marks the end of handler

execution and the resumption of the original execution context.
System calls may also be invoked through fast entry instructions
that do not generate events; their boundaries are identified as pairs
of sysenter/sysexit Instruction annotations in the stream.

There are multiple ways to identify software execution contexts,
with different trade-offs. In order to pair a thread resumed by the
operating system scheduler with its previously suspended execution
the Context operator needs a mechanism to identify each thread
in the system. One simple way to do this would be to track the
invocation of the operating system stack switching routine such as
switch to on Linux, using its argument to identify threads. We

currently use a more generic approach (that works for both Linux
and Windows) which is to track updates to the esp0 field of the
Task State Segment (TSS). This field indicates the base address of
the kernel stack for the task about to run. This address uniquely
identifies a thread over its lifetime and thus serves as a suitable
context identifier.

The Context operator tags each flow by emitting an annotation
whenever a flow of execution is suspended or resumed (whether
due to a software context switch or a hardware interrupt). The
first attribute of the annotation is an activation ID that uniquely
identifies a flow (such as the invocation of a system call or interrupt
handler) over its lifetime. The second attribute is the base address
of the kernel stack, which can be used to group all system calls
executed by the same thread.

To deal with nested interrupts, the operator maintains a stack
of live activations for each thread it has seen. When an interrupt
occurs, the operator emits an annotation with a new activation ID
and pushes that ID on the stack. When the handler terminates,
the operator pops its stack and emits an annotation with the ID
of the resumed activation. Similarly, on a software context switch,
the operator emits an annotation indicating the activation and stack
address of the resumed thread.

Analyses using annotations from the Context operator require
no specific knowledge of Linux or the x86 architecture. They may
simply use the annotations to identify the regions of trace that
comprise a single activation or thread of execution.

5.2 Invocations

The Invoke operator produces annotations that simplify the track-
ing of call flow for downstream operators; compiler optimizations
such as tail call elimination can make this challenging. The operator
produces two annotations: Invoke and Return. The Invoke annota-
tion includes the function being called and the value of the stack
pointer at the time of the call. The Return annotation includes the
value of the stack pointer just before the return address is consumed

150

by a ret instruction. The stack pointer can be used as a key to pair
matching function calls and returns. In the case of tail call opti-
mization where a single ret instruction will unwind multiple calls,
a Return annotation will match more than one Invoke annotation.

Inline functions cannot be tracked in this way, since they are
not explicitly called. We do, however, provide limited support (re-
stricted to control flow) for inline functions based on debugging
information.

5.3 Allocations

The Alloc operator tracks the allocation of objects on the heap and
issues annotations whenever an object is allocated or freed. It con-
tains domain-specific knowledge of the allocation functions being
used. The allocation annotation contains the address of the object,
its size and the address of the caller to the allocation function.

The biggest difficulty with tracking allocations is that with most
allocators the parameters used to determine the size — either the
size itself or a pointer to a memory pool — are passed on invoca-
tion, but the pointer to the object is only available on return. The
Alloc operator takes advantage of the stack pointer matching pro-
vided by the Invoke operator’s annotations to match the object with
its size.

5.4 Putting It Together: Heap Slicing

The figures in Section 3 were generated by extracting heap slices
from a trace of a virtual machine running the Apache web server
on Linux. Heap slicing is a new analysis that extracts the set of
statements that have touched a set of heap objects between their
allocation and release. It produces a representation of where and
how these objects are used throughout their lifetime.

The goals of heap slicing are different than with program slic-
ing [4, 36], a program analysis technique which extracts program
statements that have affected the value of a variable at a specific
point in a program. This set of statements, called a program slice,
helps developers focus on the relevant portion of a program when
trying to understand how and why a variable holds a certain value.
The goal of heap slicing is more holistic as it is to provide a view
of how an entire data-driven subsystem operates at runtime.

The inputs to heap slicing are a function and one of its argu-
ments which should be a pointer to a heap object. The analysis
executes in two passes over a trace. In the first pass, the value of
the pointer is extracted at all points in time where the function is
called. This pass uses the function index to only visit relevant call
sites, skipping most of the trace. The (timestamp, pointer) tuples
extracted in this first pass are cross-referenced with a heap allo-
cation index to determine the allocation and release time for each
pointer/heap object.

In the second pass, for every object, the analysis scans the
trace from allocation to release to extract all accesses to the object
throughout its lifetime. The result is an access trace for each object.
The results are forwarded to the frontend where they are summa-
rized in a tree, similar to the ones shown in Figure 3 and 4, where
each access trace is inserted from the root down using longest prefix
matching. The root of the tree corresponds to the allocation func-
tion and the leaf nodes are deallocation functions. A given analysis
can produce more than one graph if the objects were allocated by
more than one function.

This two pass approach is only possible with an offline frame-
work such as Tralfamadore where multiple analyses or analysis
passes can execute over the same persisted execution. From an exe-
cution point of view, the analysis effectively goes back in time from
the point in time where the selected function is called to the point
where the object is allocated. Heap slicing could be implemented
in an online manner but such an implementation would be highly
inefficient for two reasons. First, the analysis, unaware of where ob-

jects are allocated and released, would need to examine the entire
execution. Analysis built with Tralfamadore can leverage indices
to only look at sections of trace containing live objects. Second,
it would have to track memory accesses to all heap objects, and
then discard objects that were never manipulated by the function
of interest. Tralfamadore only needs to track accesses to the set of
objects that will actually be part of the slice, reducing the overhead
of the analysis.

1 module HeapTraceOp = struct

2

3 (* This operator acts as a filter,

4 removing all annotations not part of an object heap trace. *)

5

6 let rec next st () =

7 (* Pull the next annotation from the upstream operator *)

8 let a = st.m.M2Op.next () in

9 match a.Annot.attr with

10 | ‘Alloc alloc -> (

11 st.live_obj <- add_to_live_obj st.live_obj alloc;

12 a

13)

14 | ‘Release rel -> (

15 st.live_obj <- del_from_live_obj st.live_obj rel;

16 if live_obj_is_empty st.live_obj then (

17 (* If there is no live obj, seek to the next allocation. *)

18 try st.m.M2Op.seek_1 () with EOF -> ()

19);

20 a

21)

22 | ‘MemTrace mt -> (

23 (* If this memtrace annotation corresponds to an access to a live

24 heap object, produce a heap trace annotation. *)

25 try

26 (* Find the allocation matching the access *)

27 let alloc = find_in_live_obj st.live_obj mt.MemTrace.addr in

28 let off = Guest32.sub addr alloc.Alloc.base in

29 ‘HeapTrace { base = alloc.Alloc.base; off = off;

30 sz = mt.MemTrace.sz; access = mt.MemTrace.access }

31 with Not_found -> next st ()

32 | _ -> next st ()

33

34 ...

35

36 end

Figure 9. HeapTrace operator.

Figure 9 shows the core of the HeapTrace operator which ex-
tracts the object access traces, skipping sections of trace without
live objects. This example shows how an operator reuses existing
operators to compose a new analysis. The operator writer needs not
to be concerned with specific knowledge of the Linux kernel heap
allocation functions or which x86 instruction touches memory. This
knowledge is abstracted away by using the Alloc and Release an-
notations (Line 10 and 14 respectively) produced by the Alloc op-
erator, and the Memtrace annotations (Line 22) produced by the
MemTrace operator.

6. Example Applications

Tralfamadore preserves a complete execution as a data set in or-
der to make it possible to explore it interactively in the same way
that developers interrogate source repositories. To support this us-
age, and to demonstrate the types of analyses that Tralfamadore
facilitates, we have built several applications on the platform. In
this section, we present our prototype execution browser, which in-
tegrates interactive execution queries directly into a conventional
source code browser using a simple and intuitive interface. We fol-
low this with a series of more complex applications that highlight
the development advantages of our data-driven processing archi-
tecture, in which simple pipelines of reusable operators combine to
produce powerful analyses.

6.1 Understanding Execution

Reasonably simple applications of static analysis are often used to
assist developers in navigating large bases of source code. Editors
have “tag” facilities, and often also allow developers to use a search
facility that is tied to a language-specific parser in order to find
things like the declaration of a specific variable or the definition

151

2509 if (unlikely((flags & SLUB_DMA)))

2510 return dma_kmalloc_cache(index, flags);
2511

2512 #endif

2513 return &kmalloc_caches[index];

2514 }
2515

2516 void *__kmalloc(size_t size, gfp_t flags)

2517 {

2518 struct kmem_cache *s;
2519

2520 if (unlikely(size > PAGE_SIZE / 2))

2521 return (void *)__get_free_pages(flags | __GFP_COMP,

2522 get_order(siz
2523

2524 s = get_slab(size, flags);
2525

2526 if (unlikely(ZERO_OR_NULL_PTR(s)))

2527 return s;
2528

2529 return slab_alloc(s, flags, -1, __builtin_return_address(0));

2530 }

2531 EXPORT_SYMBOL(__kmalloc);
2532

2533 #ifdef CONFIG_NUMA

2534 void *__kmalloc_node(size_t size, gfp_t flags, int node)

2535 {

2536 struct kmem_cache *s;
2537

2538 if (unlikely(size > PAGE_SIZE / 2))

2539 return (void *)__get_free_pages(flags | __GFP_COMP,

Get values or data flow for variable size

max rows: 10sort by frequency|value

256:565

19:353

192:353

41:144

224:143

42:126

43:125

40:123

44:111

39:98

2509 if (unlikely((flags & SLUB_DMA)))

2510 return dma_kmalloc_cache(index, flags);

2511

2512 #endif

2513 return &kmalloc_caches[index];

2514 }

2515

2516 void *__kmalloc(size_t size, gfp_t flags)

2517 {

2518 struct kmem_cache *s;

2519

2520 if (unlikely(size > PAGE_SIZE / 2))

2521 return (void *)__get_free_pages(flags | __GFP_COMP,

2522 get_order(siz

2523

2524 s = get_slab(size, flags);

2525

2526 if (unlikely(ZERO_OR_NULL_PTR(s)))

2527 return s;

2528

2529 return slab_alloc(s, flags, -1, __builtin_return_address(0));

2530 }

2531 EXPORT_SYMBOL(__kmalloc);

2532

2533 #ifdef CONFIG_NUMA

2534 void *__kmalloc_node(size_t size, gfp_t flags, int node)

2535 {

2536 struct kmem_cache *s;

2537

2538 if (unlikely(size > PAGE_SIZE / 2))

s;

> PAGE_SIZE / 2))

__get_ _pag (f gs | __G _C P, return (void *)__get_free_pages(flags | __GFP_COMP,

 get_order(siz get_order(siz

 flags);

OR_NULL_PTR(s)))

return slab_alloc(s, flags, -1, __builtin_return_address(0));

EXPORT_SYMBOL(__kmalloc);

ize_t size, gfp_t flags, int node)

 *s;

*struct kmem_cache *

>

*)__ return (void *)__get_free_pages(flags | __GFP_COMP,

iz get_order(siz get_order(siz

 f

OR

return slab_alloc(s, flags, -1, __builtin_return_address(0));

EXPORT_SYMBOL(__kmalloc);

iz

 *

Get values or heap slice for variable size

max rows: 10sort by frequency|value

256:565

19:353

192:353

41:144

224:143

42:126

43:125

40:123

44:111

39:98

1753 *

1754 * return values:

1755 * NET_RX_SUCCESS (no congestion)

1756 * NET_RX_DROP (packet was dropped)

1757 *

1758 */

1759

1760 int netif_rx(struct sk_buff *skb)

1761 {

1762 struct softnet_data *queue;

1763 unsigned long flags;

1764

1765 /* if netpoll wants it, pretend we never saw it */

1766 if (netpoll_rx(skb))

1767 return NET_RX_DROP;

1768

1769 if (!skb->tstamp.tv64)

1770 net_timestamp(skb);

1771

1772 /*

1773 * The code is rearranged so that the path is the most

1774 * short when CPU is congested, but is still operating.

1775 */

1776 local_irq_save(flags);

1777 queue = &__get_cpu_var(softnet_data);

1778

1779 __get_cpu_var(netdev_rx_stat).total++;

1780 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {

1781 if (queue->input_pkt_queue.qlen) {

1782 enqueue:

a *struct softnet_data *queuequeue;

agsflags;

 /* if netpoll wants it, pretend we never saw it */

b)) if (netpoll_rx(skb))

RX ; return NET_RX_DROP;

if (!skb->tstamp.tv64)

amp(skb);

 * The code is rearranged so that the path is the most

 is congested, but is still operating.

ags);

queue = &__get_cpu_var(softnet_data);

__get_cpu_var(netdev_rx_stat).total++;

kt_queue.qlen <= netdev_max_backlog) {

if (queue->input_pkt_queue.qlen) {

Get values or heap slice for variable skb

111

113

124

124

11

113

126

26 1

124

124

124

11

11

1186

86

eth_type_trans

ei_recieve

netif_rx

process_backlog process_backlog

netif_receive_skb

arp_rcv ip_rcvipv6_rcv

__alloc_skb

ei_recieve

ne2k_pci_block_input

ip_rcv

netif_receive_skb

ip_rcvp_finiship6_route_inputip_rcv_finish

12858 125

arp_process

Figure 10. Live data value and heap slice analyses from the source understanding tool. (Section 6.1)

of some function. Dynamic techniques have also been applied to
help developers understand how source behaves under execution by
exposing details such as profiling and coverage information. With
Tralfamadore, we felt that a significantly more powerful tool could
be provided for understanding program execution. We have devel-
oped a web-based source navigator that maps interactive analysis
tools directly onto the source code.

In a previous paper [18], we described an early prototype of this
source navigator that maps binary trace information into source-
level call and control flow graphs. With this initial support, a func-
tion in source can be annotated with a graph that shows the specific
unique control flow paths that travel through it, and allows devel-
opers to choose between focusing on the common case, outliers, or
unexecuted code, depending on their interest.

Figure 10 shows the interface provided by our source under-
standing tool for two new data-oriented analyses. From the source
browser, a developer may select a function parameter and request
a histogram of the values of that parameter across all calls to the
function, or, in the case of pointers to heap objects, they may gen-
erate a data flow graph that summarizes all accesses to the set of
objects passed to that function. Partial results are streamed into the
browser over AJAX as soon as they become available, and the result
set is continuously updated as the query is processed.

6.1.1 Argument value distribution

The left-hand side of Figure 10 shows an online query in which a
user browsing the source to the Linux kmalloc memory allocator
has become curious about the size of allocation requests observed
during a trace. She clicks on the size argument to the function and
is presented with a pop-up window in which she can select from one
of two variable queries. In this case, she chooses the values option.
Immediately, a histogram appears showing the sizes observed in the
trace. At the point seen in the figure, the query has been running for
1 second and shows that the most commonly requested object size
so far is 256 bytes.

6.1.2 Heap Slicing

On the right of Figure 10 is a screen capture of a heap slicing
query in progress (figures in Section 3 were generated by this tool
and adjusted for presentation). In this case, the user has clicked
on the skb parameter of the netif rx function and chosen the
heap slicing option. The heap slice of all packets passing through
netif rx begins to form, stabilizing within a few seconds.

This example extends recent work in visualizing data flow in
systems code [23], by allowing the dynamic and interactive map-
ping of arbitrary objects in source to a graph illustrating the use
of all instances of that object in actual execution. In the future, we
hope to extend this tool to allow users to navigate execution by it-
eratively following this sort of graph across both control flow and
data flow representations of execution.

6.2 Retroactive Assertions

The use of assertions is common practice when attempting to de-
bug, understand, or otherwise validate assumptions about the way
that a system is behaving. Unfortunately, they typically must be
made a priori, either by compiling assert statements into source
or inserting dynamic probes prior to running a system. VAssert [2]
partly solves this problem by allowing assertions on applications
running in a virtual machine to be validated during replay, but while
they allow the evaluations of assertions to be deferred, the asser-
tions themselves are no more powerful. We now consider the use of
Tralfamadore to validate retroactive assertions that would be very
difficult to write in the traditional style.

6.2.1 Ownership Violation

For simplicity and scalability, applications desire to use as little
locking as possible. In Linux, for example, many functions assume
that their objects are never accessed in interrupt context. They may
use runtime assertions3 to catch some violations, but it is difficult
to be assured that all possible accesses have been guarded.

Tralfamadore makes it straightforward to validate whether such
an assumption holds throughout the duration of a trace, and can
additionally produce a detailed report about the violation. Here
we present a simple ownership assertion that detects whenever
an object is accessed by contexts other than the one in which it
was allocated, which may be checked against all instances of a
given object type within the trace. The algorithm is a refinement
of the heap slicing algorithm presented in Section 6.1.2: Each
object’s lifetime is looked up from the allocation index, and the
moment of allocation is then cross-referenced with the context
index to identify the allocation context. The trace can then be
scanned linearly from the time of allocation to the point where
the object is freed. Whenever the object is touched, the accessor
context is recorded. If the set of accessor contexts contains multiple

3 BUG ON(in interrupt());

152

elements, then an ownership violation has occurred. If a violation is
detected, a subsequent query can retrieve the necessary information
to produce a graph showing the exact sequence of accesses that
produced the violation overlayed with the control flow of both
the owner and violator. Figure 11 shows a portion of the report
produced by a test case we created, in which an owner thread
creates an object, and a violator running as a timer interrupt handler
accesses it. The sequence on the left is an abridged call trace of
the owner context, and the one on the right is the call trace of the
violator context. The chain of arrows between the two represents
the sequence of accesses, including the violating access.

Figure 11. Ownership violation example

6.2.2 Stack Usage

Stack space in the kernel is at a premium: each thread of each pro-
cess needs its own stack, and the address space is small. For this
reason, Linux includes a compilation option to use 4K stacks in-
stead of the default 8K. Unfortunately, stack usage is a highly dy-
namic property, depending on a combination of control and data
(for example, a recursive function’s stack usage can vary wildly
depending on input). And so while the developers believe that 4K
should suffice, and that it would allow many more threads, the de-
fault remains at 8K. The kernel developers are washing their hands
of the problem, leaving it to the end user to decide whether to take
the chance of stack corruption in exchange for better scalability,
with no good idea of even how likely that corruption may be.

If the target workload is run under Tralfamadore, the actual
amount of stack used can be easily measured. We constructed a
simple query that measures the amount of stack in use whenever it
changes. Running it on the kernel workload described in Section
7 produces the usage distribution shown in Figure 12. This reveals
the exact moment at which the stack reaches its largest point (in
this case, the maximum size of 2960 bytes was reached 14 times).
A query for the call stack at that point returns the stack shown in
Figure 13, showing that the cause of the high stack usage was a
network interrupt being handled while the kernel was deep in the
processing of a sys write system call. Further inspection revealed
that all 14 occurrences were at this location, due to the interrupt
handler repeatedly processing a backlog of packets. This easily
reveals the motivation for the decision of the Linux developers to
enable a separate interrupt stack frame when the 4K stack option is
enabled.

stack usage (bytes)

0 500 1000 1500 2000 2500 3000

fr
eq

u
en

cy

1

10

100

1K

10K

100K

1M

10M

Figure 12. Distribution of stack sizes

sysenter_past_esp/sys_write/vfs_write/do_sync_write/

ext3_file_write/generic_file_aio_write/

__generic_file_aio_write_nolock/generic_file_buffered_write/

ext3_write_begin/block_write_begin/__block_prepare_write/

ext3_get_block/ext3_get_blocks_handle/ext3_new_blocks/

__ext3_journal_get_write_access/journal_get_write_access/

do_get_write_access/__get_free_pages/__alloc_pages/

get_page_from_freelist/common_interrupt/do_IRQ/irq_exit/

do_softirq/__do_softirq/net_rx_action/process_backlog/

netif_receive_skb/ip_rcv/ip_rcv_finish/ip_local_deliver/

ip_local_deliver_finish/tcp_v4_rcv/tcp_v4_do_rcv/

tcp_rcv_established/__tcp_push_pending_frames/tcp_transmit_skb/

ip_queue_xmit/ip_output/ip_finish_output/dev_queue_xmit/

__qdisc_run/pfifo_fast_dequeue

Figure 13. Maximum stack depth seen (kernel compile).

7. Evaluation

Tralfamadore approaches dynamic analysis in a manner that is dra-
matically different from previous systems and in which tools may
access any point in execution history at any time. This comes with
a cost: large amounts of fine-grained trace data must be collected,
stored, and processed. In this section, we evaluate the practicality of
this approach. First, we measure the overhead of taking and storing
raw trace data. We then evaluate the cost of generating and storing
trace indices used to speed up queries, and the degree to which they
improve the speed and efficiency of various queries. We conclude
with a consideration of the class of analyses for which Tralfama-
dore is currently suited and discuss how it might be evolved to serve
a broader set of use cases.

7.1 Overheads of Trace Capture and Storage

Table 2 shows the overheads of trace collection for four different
example workloads. Kernel is a minimal build of the Linux kernel
which balances CPU and I/O, and exercises a variety of kernel
services. OS Boot traces a virtual machine as it boots. Postmark
is a standard file system benchmark. Finally, apache is a trace of
30 minutes of activity totalling 7981 requests on our departmental
web server.

Each workload was run natively, then under virtualization using
QEMU 0.9.1 and VMware Workstation 7.0, with and without trac-
ing activated. The host was a 2.5GHz quad-core Xeon server with
16GB of RAM and a 1 TB 7200rpm SATA2 hard drive. Table 2
shows the effects of virtualization and tracing on total workload
execution time, as well as the sizes of the traces produced (Apache
measures request latency rather than total time, since the workload
is bursty). QEMU traces are generated using the modifications de-
scribed in Section 4.2, whereas VMware traces are event logs cre-
ated using its deterministic logging feature. We include both the

153

Native Qemu Qemu Log Size Log Size VMware VMware Log Size
Linux Base Tracing (Kernel) (All) Base Tracing (All)

Kernel 89 sec 1569 sec 7459 sec 101.64 GB 1991.01 GB 87 sec 88 sec 0.002 GB
OS Boot 38 sec 153 sec 549 sec 66.43 GB 128.31 GB 25 sec 31 sec 0.022 GB
Postmark 152 sec 332 sec 523 sec 274.54 GB 297.40 GB 237 sec 310 sec 0.014 GB
Apache 6.17ms 49.98ms 144.34ms 74.63 GB 80.06 GB 10.55ms 26.41ms 0.18 GB

Table 2. Tracing overheads for various workloads.

full size of the trace and the portion of it which represents kernel
activity; the analyses we evaluate operate on the kernel component
of the trace alone.

The storage requirements and workload performance overhead
of direct tracing are high. However, both could be mitigated by us-
ing deterministic record-replay to capture execution, and expanding
the log into a trace on demand [38]. The VMware columns in Ta-
ble 2 show the considerable degree by which recording costs could
be realistically reduced.

File Size Ratio
raw trace 101.6 GB 100%

Invoke index 2.2 GB 2.20%
Context index 324 MB 0.32%
Alloc index 12 MB 0.01%

Table 3. Index size relative to trace size (kernel).

Workload Query % trace % trace
(large) (small)

Postmark Heap Slicing 0.01% 0.00%
Arguments 0.23% 0.00%

Kernel Heap Slicing 1.25% 0.02%
Arguments 0.17% 0.06%

Apache Heap Slicing 37.5% 0.01%
Arguments 0.25% 0.00%

Table 4. Amount of trace read when using indices.

7.1.1 Indexing Performance

As shown in Table 2, the full trace grows very rapidly, to the point
that scanning it directly can take considerable time. Fortunately,
many trace operators only need to see a small amount of the trace,
and can make use of indices to read only the relevant sections.
Table 3 shows the relative size of the index to the trace for the most
used operators in our operator library. As this table demonstrates,
the size of the index is generally inversely proportional to the
degree of semantic information it provides. This results from the
fact that higher-level operators consume filtered information from
the operators below them.

The cost of analysis is determined largely by the amount of
physical trace that must be read. Table 4 measures the benefit of
using indices in terms of the percentage of trace that an analysis
must examine when the relevant indices are available (without in-
dices, it would be necessary to read the entire trace). For each of
the workloads described at the start of this section, we ran two
heap slicing analyses and two argument value extraction queries.
The large heap slicing analysis examines every TCP packet pass-
ing through the tcp v4 rcv function, while the small only exam-
ines (relatively infrequent) ARP packets passing through arp rcv.
Similarly, the two functions chosen for argument value extraction
were the common kmem cache alloc, which is involved in most
object allocations, and the relatively rare mmap region. Because
the heap slicing analysis must scan the physical trace from the time
an object of interest is allocated until it is freed, and because in

the Apache workload there is almost always a live TCP packet, the
heap slicing query consumed a large amount of physical trace even
when indexed. Every other query consumed a tiny fraction of the
total trace, completing quickly.

7.1.2 Evaluation Summary

In our current prototype, there is no denying that traces are large
and slow to generate. But the premise of Tralfamadore is to decou-
ple trace generation from analysis, and we find that having done
so, analysis itself performs well. Because Tralfamadore can ag-
gressively reuse trace data, we are relatively unconcerned with the
space required to store it. We also believe that trace-based analy-
sis makes it much easier to develop new analyses, since they can
be written in the author’s choice of language and with a full com-
plement of libraries, and that being able to freely seek within a
trace allows a more natural style of query expression. Furthermore,
persistent traces allow users to break the expensive and delicate cy-
cle of hypothesis, instrumentation, execution, and analysis which is
generally used for query refinement.

However, it is clear that the ability to collect and analyze traces
more easily and with lower overhead would make the techniques
described in this paper apply to a broader range of problems. As
discussed in Section 4.2, a natural optimization would be to use
deterministic logging during the recording phase. The full log could
then be treated as a cache that could be regenerated when necessary
using replay. We believe that this approach would allow operators
to rapidly create the data needed to populate their indices. From this
point, some analyses could proceed largely based on the contents of
their indices, and use replay to materialize only the relevant regions
of the complete trace, on demand. Such an approach could facilitate
the processing of much larger amounts of trace.

8. Related Work

As described in Section 2.2, the traces recorded with Tralfamadore
are complete, meaning that analyses based on these traces have ac-
cess to the register and memory state on every instruction bound-
ary. This section compares Tralfamadore with other frameworks
that provide access to the same level of information. This includes
traditional dynamic binary instrumentation (DBI) frameworks such
as Pin [20], and replay based frameworks such as Aftersight [10].

Aftersight [10] proposes to decouple dynamic analysis from
execution by using deterministic record-replay to efficiently record
the execution of virtual machine and replay this execution in an
whole-system emulator (QEMU). Like Tralfamadore, Aftersight
supports whole-system or kernel-level offline analyses, but does
not provide an instrumentation API, forcing users to directly embed
their instrumentation and analysis into QEMU’s micro-operations.

SimOS [32] explores the idea of using a machine simulator
to study the execution of entire systems. Similar to Tralfamadore,
SimOS proposes the use of annotations to capture events at a higher
semantic level. As with Tralfamadore, annotations can be recursive
(annotations can be built from other annotations).

SimOS can operate in two modes: emulation mode which uses
dynamic binary translation and accurate mode which executes the
system under a cycle-accurate simulator. Analyses performed in

154

emulation mode execute in an online manner, and do not pro-
vide the benefits of offline analysis. Analyses performed in accu-
rate mode may be repeatable if the simulation is deterministic but
the overheads in this mode are much higher than with Tralfama-
dore, ranging between 180 and 6400× for a uniprocessor simula-
tion [31].

Although analyses built with SimOS are composable, SimOS
does not address the issue of reusability. Also, SimOS does not
support indices to efficiently navigate execution, and therefore does
not provide mechanisms such as annotation caching to deal with
stateful analyses, as described in Section 4.4.

Traditional binary instrumentation frameworks are fundamen-
tally different than Tralfamadore. These are online tools and are
“stuck in time.” They are limited to analyzing a program as it
executes instead of analyzing an execution. Dynamic binary in-
strumentation frameworks such as Pin [20] and Valgrind [24] use
process-level dynamic binary translation to add instrumentation to
a program as it executes. Because both the analysis and the target
program execute in the same address space, analysis writers are
forced to use clever techniques to avoid clashing with the target
program. This technique does not require explicit modifications to
the program being analyzed but it is not completely transparent be-
cause it may cause memory conflicts between the program being
analyzed and the analysis.

These tools are unable to instrument and analyze the execution
of operating system code. PinOS [7] addresses this issue by ex-
tending Pin with the ability to do whole-system analysis. Because
it uses virtualization, most of the instrumentation framework sits
outside of the system being analyzed but the instrumentation code
and data still need to be embedded within the system, potentially
causing memory clashes as with Pin and Valgrind.

JIFL [25] proposes to embed a DBI within the Linux kernel.
This approach allows adding arbitrary dynamic instrumentation to
the Linux kernel but requires the operating system to be explicitly
modified to add support for a just-in-time compiler.

Nirvana [6] is a user-level offline dynamic analysis framework
based on a variant of record-replay. Instead of explicitly logging all
the external inputs and non-deterministic events, Nirvana captures
this information implicitly by logging the complete register state
after kernel-to-user transitions and non-deterministic instructions
such as rdtsc, and logging all values read from memory by the
processor while executing.

Nirvana provides an instrumentation API but, unlike Tralfama-
dore, it does not support capturing and analyzing the execution of
operating system code. Nirvana can record and analyze unmodi-
fied programs, but it is not completely transparent. Like Pin and
Valgrind, the Nirvana execution recorder is embedded in the ad-
dress space of the program being recorded, which can cause mem-
ory conflicts. PinPlay [27] extends Pin to support replay-based of-
fline analysis in a manner similar to Nirvana, and uses a software-
simulated cache coherency protocol to deterministically replay the
execution of a process on a multi-processor machine. PinPlay pro-
vides the same level of transparency as Pin.

Bitblaze [33] is an online whole-system binary analysis frame-
work based on QEMU. Like Tralfamadore and Aftersight, Bitblaze
analyzes execution at the processor level which provides a transpar-
ent approach to dynamic analysis, and support for the analysis of
operating system code. Because Bitblaze is an online framework,
it is also “stuck in time” and can only analyze programs as they
execute.

Time-travelling virtual machines [15] use deterministic replay
to allow a debugger attached to a Linux kernel to step execution
backwards as well as forwards. VMware Workstation now includes
a record-replay facility [38] that can be used for replay debug-
ging [3] of recorded software. Time-travelling virtual machines

support the offline analysis of operating systems but the interface
provided to analyze execution is limited to debugging contexts
(e.g., breakpoints, watchpoints, etc.)

Omniscient debugging [1, 8, 19, 29] is an approach to debug-
ging where the execution of a program is stored and indexed using
techniques borrowed from program slicing [36], allowing debug-
ging to work “backwards in time.” All existing implementations of
omniscient debugging are limited to user-space programs and pro-
vide an interface limited to debugging.

Whole Execution Traces (WET) [39] is a generic trace for-
mat with the same completeness properties as traces collected with
Tralfamadore. WET traces embed control and data flow informa-
tion in the trace to provide efficient backward navigation. This in-
formation could be added to the Tralfamadore trace format to sim-
plify going backward to get register and memory definitions.

8.1 Deterministic Record-Replay

As discussed in Section 4.2, it is possible to use deterministic vir-
tual machine record-replay to capture a lightweight event log of a
running system, which can be reconstituted into a full trace dur-
ing a later replay phase [38]. Tralfamadore could use this compli-
mentary technique to reduce the overhead on execution incurred
by the trace collection facility. The overhead of this approach are
very low for single core systems. Recording multicore execution is
substantially more challenging due to the need to capture memory
races. The overhead can be substantial for workloads that exhibit
a large amount of shared memory communication. Fortunately, de-
terministic record-replay for multicore is an active area of research
and recent work both at the software [26, 34], and at the hard-
ware [13, 22, 37] level aim to address this issue. Just as in the single
processor case, these emerging techniques will be usable to gener-
ate detailed traces of multicore workloads.

8.2 Offline and Whole-System Analyses

TaintBochs [9] uses a mix of online taint tracking and offline trace-
based analysis to study the lifetime of sensitive information such
as passwords. TaintBochs uses a modified version of the Bochs
emulator [17] to record traces that contain all writes to memory
and all updates to a specific subset of registers. One could use
Tralfamadore to also implement the taint propagation offline, using
a recorded execution to experiment with different taint propagation
policies.

Dataflow tomography [23] proposes the use of whole-system
taint tracking as a tool to understand complex computer sys-
tems. This project is complementary to Tralfamadore, meaning
that Tralfamadore could be used to implement the various taint
policies described in the paper. Using Tralfamadore would have
provided the authors with the benefits of deterministic analysis, in
addition to using a high-level language instead of dealing directly
with QEMU’s dynamic binary translation engine.

Introvirt [14] proposes to use virtual machine deterministic re-
play to retroactively detect the presence of an intrusion. Introvirt is
the original source of inspiration for the idea of retroactive asser-
tions described in Section 6.2. While Introvirt checks are expressed
at the source level, Tralfamadore retroactive assertions are written
as binary analyses and can validate assertions difficult to express at
the source level such as detecting a stack overflow.

8.3 Querying Execution

Several projects have explored the notion of querying program ex-
ecution, either by providing an explicit query interface to the end
user or using machine learning to discover execution patterns. Two
recent projects from the programming languages community, re-
lational queries over program traces [12], and the program query
language PQL [21], have proposed query interfaces to allow de-
velopers to search for interesting aspects of program behavior. The

155

scalable omniscient debugging project [29] also explored query in-
terfaces to assist in navigation. A suitable query interface would be
an excellent tool for interacting with traced execution. These query
languages are designed around specific language runtimes and are
not designed to query operating system execution. They operate at
a higher level and rely on runtime information provided by the op-
erating system or the language runtime. Tralfamadore analyses ex-
ecution at the hardware level below the operating system and needs
to explicitly reconstruct this information.

9. Conclusions and Future Work

We believe that developers (especially kernel developers) would
benefit greatly from being able to explore actual program execu-
tion as easily as they can navigate source. To that end, we have
built a platform for recording execution of an entire machine as a
persistent object, and facilities for easily constructing complex and
powerful dynamic analyses from a library of simple, reusable com-
ponents. We have demonstrated several applications of this system,
including an interactive source-level execution browser with inter-
faces for both control and data flow, and a variety of retroactive
assertions against the behavior of an executing system.

The overheads associated with our approach seem high com-
pared to traditional dynamic analysis, but they can be amortized
over large numbers of queries. Additionally, trace-based analysis
avoids the difficulties of reproducing machine state when perform-
ing cyclical analysis, and provides a much richer and more conve-
nient environment for writing interactive dynamic analysis tools.
Our evaluation has demonstrated that it is practical to capture and
analyze complete traces of kernel activity for reasonable periods
of time, including workloads such as kernel compilation, OS boots,
and samples of server workloads. Further, once recorded, it is possi-
ble to perform highly interactive analyses of these workloads, often
receiving complex answers about a control and data flow within a
matter of seconds.

Tralfamadore is still in its infancy. While the system already
represents a considerable effort, spanning four years and contribu-
tions from a group of six graduate students, many challenges re-
main. We are in the process of releasing a hosted version of the
system that allows developers to analyze current and historical ver-
sions of the Linux kernel. To address performance challenges and
scale, the system is being extended to parallelize and dispatch anal-
ysis to a cluster of physical hosts. Once this framework is in place,
we hope to explore how Tralfamadore can be used to compare exe-
cution across multiple versions of software, which we hope will aid
in identifying and diagnosing performance challenges and helping
developers to reproduce and identify root-causes for software fail-
ures.

Acknowledgments

We thank the VEE reviewers for their insightful feedback and for
accepting the paper for publication. We also thank many of our
peers, including Paul Barham, Herbert Bos, Steve Gribble, Steven
Hand, Rebecca Isaacs, and Timothy Roscoe, for being supportive
and encouraging over the course of this work. We acknowledge
the graduate students in CS538W 2010 (“Execution Mining”) for
suffering through project assignments on an early version of the
system and helping to find and fix bugs.

As some previous reviewers have pointed out, the Tralfamadore
project has involved quite a bit of engineering: while many of the
techniques used by “Tralf” are well understood, tying together the
necessary pieces to perform trace collection, parsing, instruction
analysis, as well as source-level interactions through DWARF and
symbol files involved a lot more effort than we imagined at the
beginning of the project, despite considerable experience in under-
estimating such things!

References

[1] C/C++ trace-based debugger based on chronicle and eclipse.
http://code.google.com/p/chronomancer/.

[2] Vassert programming guide.
http://www.vmware.com/pdf/ws65 vassert programming.pdf.

[3] Replay debugging on linux.
http://www.vmware.com/pdf/ws7 replay linux technote.pdf.

[4] H. Agrawal and J. R. Horgan. Dynamic program slicing. In PLDI ’90.

[5] F. Bellard. QEMU, a fast and portable dynamic translator. In USENIX

Annual Technical Conference, 2005.

[6] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray,
M. Drinić, D. Mihočka, and J. Chau. Framework for instruction-level
tracing and analysis of program executions. In VEE ’06.

[7] P. P. Bungale and C.-K. Luk. Pinos: a programmable framework for
whole-system dynamic instrumentation. In Virtual execution environ-

ments, 2007. ISBN 978-1-59593-630-1.

[8] J.-D. Choi, B. P. Miller, and R. H. B. Netzer. Techniques for debugging
parallel programs with flowback analysis. ACM Transactions on

Programming Languages and Systems, 13, 1991. URL http://doi.

acm.org/10.1145/115372.115324.

[9] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosen-
blum. Understanding data lifetime via whole system simulation. In
USENIX Security Symposium, 2004. URL http://portal.acm.

org/citation.cfm?id=1251375.1251397.

[10] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program
analysis from execution in virtual environments. In USENIX Annual

Technical Conference, 2008.

[11] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
Revirt: enabling intrusion analysis through virtual-machine logging
and replay. In Operating Systems Design and Implementation, 2002.

[12] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational queries over
program traces. In Object-Oriented Programming, Systems, Lan-

guages, and Applications, 2005.

[13] D. R. Hower and M. D. Hill. Rerun: Exploiting episodes for
lightweight memory race recording. In International Symposium on

Computer Architecture, 2008. URL http://dx.doi.org/10.1109/

ISCA.2008.26.

[14] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting
past and present intrusions through vulnerability-specific predicates.
In Symposium on Operating Systems Principles, 2005. URL http:

//doi.acm.org/10.1145/1095810.1095820.

[15] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating
systems with time-traveling virtual machines. In USENIX Annual

Technical Conference, 2005.

[16] E. Kohler, R. Morris, B. Chen, J. Jannotti, and F. M. Kaashoek. The
Click modular router. ACM Transactions on Computer Systems, 2000.

[17] K. P. Lawton. Bochs: A portable PC emulator for unix/x. Linux

Journal. ISSN 1075-3583.

[18] G. Lefebvre, B. Cully, M. J. Feeley, N. C. Hutchinson, and A. Warfield.
Tralfamadore: Unifying source code and execution experience (short
paper). In EuroSys, 2009.

[19] B. Lewis. Debugging backwards in time. In Workshop on Automated

Debugging, 2003.

[20] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood. Pin: building customized pro-
gram analysis tools with dynamic instrumentation. In Programming

Language Design and Implementation, 2005.

[21] M. Martin, B. Livshits, and M. S. Lam. Finding application errors
and security flaws using pql: a program query language. In Object-

Oriented Programming, Systems, Languages, and Applications, 2005.

[22] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Recording and
deterministically replaying shared-memory multiprocessor execution
efficiently. In International Symposium on Computer Architecture,
2008. URL http://dx.doi.org/10.1109/ISCA.2008.36.

156

[23] S. Mysore, B. Mazloom, B. Agrawal, and T. Sherwood. Understand-
ing and visualizing full systems with data flow tomography. In Archi-

tectural Support for Programming Languages and Operating Systems,
2008.

[24] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Programming Language Design

and Implementation, 2007.

[25] M. Olszewski, K. Mierle, A. Czajkowski, and A. D. Brown. JIT in-
strumentation: a novel approach to dynamically instrument operating
systems. In EuroSys, 2007. URL http://doi.acm.org/10.1145/

1272996.1273000.

[26] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and S. Lu.
PRES: probabilistic replay with execution sketching on multiproces-
sors. In Proceedings of the ACM SIGOPS 22nd symposium on Oper-

ating systems principles, SOSP ’09, pages 177–192, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-752-3. doi: http://doi.acm.org/
10.1145/1629575.1629593. URL http://doi.acm.org/10.1145/

1629575.1629593.

[27] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J. Cownie. PinPlay:
a framework for deterministic replay and reproducible analysis of
parallel programs. In Code Generation and Optimization, 2010. URL
http://doi.acm.org/10.1145/1772954.1772958.

[28] V. Paxson. Bro: a system for detecting network intruders in real-time.
Computer Networks, 31(23–24), 1999.

[29] G. Pothier, E. Tanter, and J. Piquer. Scalable omniscient debugging.
In Object-Oriented Programming, Systems, Languages, and Applica-

tions, 2007.

[30] F. Reiss, K. Stockinger, K. Wu, A. Shoshani, and J. M. Hellerstein.
Enabling real-time querying of live and historical stream data. In
Scientific and Statistical Database Management, 2007.

[31] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta. Complete
computer system simulation: The SimOS approach. IEEE Parallel

and Distributed Technology, 3, 1995. URL http://dx.doi.org/10.

1109/88.473612.

[32] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod. Using the
SimOS machine simulator to study complex computer systems. ACM

Transactions on Modeling and Computer Simulation, 7, 1997. URL
http://doi.acm.org/10.1145/244804.244807.

[33] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, N. James, P. Poosankam, and P. Saxena. BitBlaze: A new
approach to computer security via binary analysis. In International

Conference on Information Systems Security, 2008. doi: http://dx.doi.
org/10.1007/978-3-540-89862-7 1. URL http://dx.doi.org/10.

1007/978-3-540-89862-7_1.

[34] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen, J. Flinn,
and S. Narayanasamy. DoublePlay: parallelizing sequential logging
and replay. In Proceedings of the sixteenth international conference

on Architectural support for programming languages and operating

systems, ASPLOS ’11, pages 15–26, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0266-1. doi: http://doi.acm.org/10.1145/
1950365.1950370. URL http://doi.acm.org/10.1145/1950365.

1950370.

[35] K. Vonnegut. Slaughterhouse Five. Delacorte, 1969. ISBN 0-385-
31208-3.

[36] M. Weiser. Program slicing. In International Conference on Software

Engineering, 1981.

[37] M. Xu, R. Bodik, and M. D. Hill. A “flight data recorder” for enabling
full-system multiprocessor deterministic replay. In International Sym-

posium on Computer Architecture, 2003.

[38] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B. Weissman.
Retrace: Collecting execution trace with virtual machine deterministic
replay. In Modeling, Benchmarking and Simulation, 2007.

[39] X. Zhang and R. Gupta. Whole execution traces and their applications.
ACM Transactions on Architecture and Code Optimization, 2, 2005.
URL http://doi.acm.org/10.1145/1089008.1089012.

157

