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Abstract
Process virtualization provides a virtual execution environment
within which an unmodified application can be monitored and con-
trolled while it executes. The provided layer of control can be used
for purposes ranging from sandboxing to compatibility to profil-
ing. The additional operations required for this layer are performed
clandestinely alongside regular program execution. Software dy-
namic instrumentation is one method for implementing process
virtualization which dynamically instruments an application such
that the application’s code and the inserted code are interleaved to-
gether.

DynamoRIO is a process virtualization system implemented us-
ing software code cache techniques that allows users to build cus-
tomized dynamic instrumentation tools. There are many challenges
to building such a runtime system. One major obstacle is trans-
parency. In order to support executing arbitrary applications, Dy-
namoRIO must be fully transparent so that an application cannot
distinguish between running inside the virtual environment and na-
tive execution. In addition, any desired extra operations for a partic-
ular tool must avoid interfering with the behavior of the application.

Transparency has historically been provided on an ad-hoc ba-
sis, as a reaction to observed problems in target applications. This
paper identifies a necessary set of transparency requirements for
running mainstream Windows and Linux applications. We discuss
possible solutions to each transparency issue, evaluate tradeoffs
between different choices, and identify cases where maintaining
transparency is not practically solvable. We believe this will pro-
vide a guideline for better design and implementation of transparent
dynamic instrumentation, as well as other similar process virtual-
ization systems using software code caches.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Optimization, Run-time environments

Keywords Process Virtualization, Dynamic Instrumentation,
Transparency, Runtime System

1. Introduction
DynamoRIO [1] is a runtime code manipulation system that dy-
namically instruments an application such that the application’s
code and the inserted code are interleaved together. It provides a
virtual execution environment within which arbitrary unmodified
applications, even legacy software with no available source code,
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can be executed, monitored, and controlled. A software code cache
is used to implement the virtual environment. The provided layer
of control can be used for various purposes including security en-
forcement [14, 22], software debugging [8, 43], dynamic analy-
sis [42, 45], and many others [40, 41, 44]. The additional operations
are performed clandestinely alongside regular program execution.

First presented in 2001 [9], DynamoRIO evolved from a re-
search project [6, 10] for dynamic optimization to the flagship
product of a security company [22] and finally an open source
project [1]. Presently it is being used to build tools like Dr. Mem-
ory [8] that run large applications including proprietary software on
both Linux and Windows. There are many challenges to building
such a system that supports executing arbitrary unmodified appli-
cations. The most critical challenge, however, is transparency: pre-
venting a target application’s native behavior from changing when
running inside DynamoRIO.

1.1 Transparency Challenges
Many applications perform introspective operations such as reading
function return addresses, iterating loaded modules, counting the
number of threads, inspecting resource usage, etc. If DynamoRIO
makes any modifications that violate the expected execution envi-
ronment, in the best case the application’s behavior will deviate
slightly, but often it will crash. DynamoRIO must have its hands
everywhere to maintain control, yet it must have such a delicate
touch that the application cannot tell it is there. Table 1 shows a
list of transparency requirements and specific applications that fail
to run correctly when DynamoRIO does not preserve each given
aspect of transparency.

In addition, DynamoRIO abstracts away the details of the un-
derlying system and provides a simple interface for creating a cus-
tom tool, or client of the system, that is able to observe and mod-
ify a monitored application in a customized manner. In order to
be widely usable, it must avoid imposing too many restrictions on
clients: the client writer should not need to be a dynamic instru-
mentation expert and should be able to use traditional programming
languages and libraries. Since standard libraries are not written to
operate clandestinely, DynamoRIO must not only perform its own
operations transparently but must also transform the client and its
libraries such that they operate transparently within the monitored
application.

Clearly, being transparent is critical in order to run a wide range
of applications. While building efficient code manipulation (or in-
strumentation, translation, etc.) systems is a well-studied research
topic [2, 6, 13, 15, 25, 32], we strongly believe that making the run-
time environment transparent is the most important criterion for a
successful system. To the best of our knowledge, this is the first
paper that focuses on this critical issue.

Traditionally, transparency has been addressed on an ad-hoc
basis. As there are no classifications or descriptions of transparency
requirements, developers of a system only consider the need for any
particular aspect of transparency when a target application starts
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Category Transparency requirement Application(s) that fail if requirement is not met

Code
execute self-modifying code Adobe Premiere
execute code on the stack MS Management Console
execute dynamically generated code Virtualdub, Java, .NET

Data

preserve beyond top of stack MS Office
support stack pointer not pointing at stack Adobe Premiere
preserve return address Any application using COM
hide from self-introspection Mozilla
preserve eflags across indirect branches libc, code generated by Visual Studio compiler

Concurrency support debugger threads Visual Studio debugger
separate system thread local storage slots from app MS Exchange

Other

separate system libraries from app Windows graphical applications
separate system loader from app Windows graphical applications
deliver faults MS Office
separate system files from app shells and daemons

Table 1. A list of transparency requirements in process virtualization systems and specific applications that fail to run correctly when each
given requirement is not preserved. Section 6.1 elaborates on each of these examples.

misbehaving. In this work we attempt to change that by describing a
necessary set of transparency requirements for running mainstream
Windows and Linux applications. We believe this will provide a
guideline for better design and implementation of future systems.

In this paper, we study the full spectrum of transparency chal-
lenges while building DynamoRIO. Our experiences have led us
to formulate three transparency guidelines that should be followed
when designing and implementing systems like DynamoRIO:

1. Leave the application unchanged whenever possible. Even
when changes can lead to performance gains, in nearly every
case such changes cause at least one application to fail. If cor-
rectness is a goal, design the system to perturb as little as pos-
sible.

2. When changing the application is unavoidable, ensure the
change is imperceivable to the application. Some changes are
unavoidable, in which case every effort should be made to hide
the change from the application.

3. Avoid resource usage conflicts. Where possible, acquire re-
sources directly from the operating system; if libraries must be
used, fully isolate them from the application.

How these three guidelines are applied during the design and im-
plementation of DynamoRIO are discussed throughout the rest of
the paper.

1.2 Contributions
The contributions of this paper include:

• We identify three transparency guidelines for the design and
implementation of transparent instrumentation systems.

• We enumerate and classify the full range of transparency issues.
• We discuss possible solutions to each issue, and evaluate trade-

offs between different choices.
• We identify cases where maintaining transparency is not prac-

tically solvable.
• We describe a necessary set of transparency requirements for

running mainstream Windows and Linux applications.

We hope this paper can be used as a guide for building dynamic
instrumentation tools and other similar process virtualization sys-
tems.

1.3 Paper Organization
The rest of the paper focuses on the transparency challenges of
building a dynamic instrumentation system and is organized as fol-
lows: Section 2 describes the transparency issues when designing
a dynamic instrumentation framework, while Section 3 discusses
the implementation challenges of a transparent system. Section 4
describes the necessary transparency support for customized user
components, and Section 5 discusses the limits of transparent sys-
tems. Section 6 evaluates the impact and tradeoffs of different solu-
tions. Section 7 presents related work, and Section 8 concludes the
paper.

2. Transparency in System Design
A key principle of designing transparent instrumentation is keep-
ing as many aspects of the application as possible unchanged. This
is Guideline 1, the first of our transparency guidelines. This ap-
plies to the original application binary, the application code, the
application data, the number of threads, etc. If it is unavoidable to
change something, the system should disguise the change to appear
to the application as if it were unmodified (Guideline 2). In addi-
tion, to support arbitrary applications, DynamoRIO, or any similar
system, cannot make any assumptions about a program’s compi-
lation, source code or annotation availability, stack or heap usage,
or any of its dependences on the instruction set architecture or op-
erating system. DynamoRIO can only assume the bare minimum
architecture and operating system interfaces, and request resources
directly from the operating system to avoid any resources usage
conflicts (Guideline 3).

In this section, we categorize transparency issues into three
groups: code transparency, data transparency, and concurrency
transparency. We discuss each type of issue and possible solutions.

2.1 Code Transparency
Code transparency refers to the faithful reproduction of application
behavior with respect to changes in or references to its code when
executing in a process virtualization system. A process virtualiza-
tion system implemented as a simulator or interpreter can control
the program’s execution via software interpretation without affect-
ing its code, but the resulting runtime overhead is too high to run
any large applications. Another approach is to use in-place modifi-
cation of the application code to insert control and tool operations.
In addition to presenting transparency challenges, this technique is
unable to support the fine granularity of each individual instruc-
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Figure 1. DynamoRIO system overview. A context switch separates the code cache (application state) from DynamoRIO code (system
state); both execute in the same process and address space. Application code is copied into the two caches, with control transfers (shown by
arrows in the figure) modified in order to retain control.

tion that DynamoRIO supports for its tools to control and manipu-
late a target program. In contrast to the two mentioned approaches,
a software code cache can efficiently manipulate code and insert
additional instructions without changing the original program. In
addition to being used by DynamoRIO, code caches are also used
by many similar systems including Pin [25], QEMU [5], and Val-
grind [30].

2.1.1 Software Code Cache
Figure 1 shows the flow of control between the components of Dy-
namoRIO and its code caches. When running an application, Dy-
namoRIO copies the application code one dynamic basic block at
a time into its basic block code cache and executes it there in lieu
of the original code. A block that directly targets another block
already resident in the cache is linked to that block to avoid the
cost of returning to the DynamoRIO dispatcher. Frequently exe-
cuted sequences of basic blocks are combined into traces, which
are placed in a separate code cache. In the rest of the paper we will
refer to both basic blocks and traces in code caches as code frag-
ments. This software code cache and redirection complicates trans-
parency, but no alternative approach provides sufficient flexibility
and efficiency.

2.1.2 Application Address Transparency
When using a software code cache, although the application’s code
is copied into a cache, every address manipulated by the applica-
tion must remain an original application address. DynamoRIO must
translate indirect branch targets from application addresses to code
cache addresses, and conversely if a code cache address is ever ex-
posed to the application, DynamoRIO must translate it back to its
original application address. The latter occurs when the operating
system passes a machine context to a signal or exception handler.
In that case both the faulting or interrupted address and the com-
plete register state must be made to look like the signal or exception
occurred natively, rather than inside the code cache where it actu-
ally occurred. Details of how to accomplish this will be discussed
in Section 3.3.

2.1.3 Code Cache Consistency
DynamoRIO must ensure that each cached copy of application
code is consistent with the original version in application memory.

One common case where consistency is broken is unmapping of
a file containing code (typically a shared library) from memory.
As the application must make an explicit request to the kernel
to accomplish the unmap, DynamoRIO need only monitor each
system call that frees an area of the address space, and flush all
cache fragments that contain pieces of code from that region.

The original code might also be modified via either self-
modifying code or re-use of the memory region for dynamic code
generation. DynamoRIO uses hardware page protection to detect
such code modification by marking all regions that contain code
in the code cache read-only, and keeping a list of all such regions.
If such a region is written to, DynamoRIO traps the fault, flushes
the code for that region from the code cache, removes the region
from the list, marks the region as writable, and then re-executes
the faulting write. Additionally, DynamoRIO intercepts Windows’
NtQueryVirtualMemory system call and modifies the informa-
tion it returns to pretend that areas it made read-only are in fact
writable (Guideline 2). If the application changes the protection
on a region DynamoRIO has marked read-only, it must update the
information so that a later write fault will properly go to the appli-
cation.

One complication with page protection occurs when the appli-
cation requests output from a system call at an address that the vir-
tualization system has made read-only. One solution, if all system
call parameters are known, is to look for any output parameters that
point at read-only pages and swap those pages to use sandboxing
prior to invoking the system call.

Handling additional complications, including when the writing
instruction and the target of a code modification are on the same
page, are described elsewhere [7].

2.2 Data Transparency
Although the application code has been redirected to a code cache,
application data can and should remain unchanged (Guideline 1).

2.2.1 Application State Preservation
Using a software code cache, the execution of application code
is interleaved with the execution of DynamoRIO and the client’s
code. The application state must be preserved when execution exits
the code cache to DynamoRIO and restored when it enters the
cache. The application state to be saved includes the complete
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register state, conditional flags (eflags in IA-32), and floating-
point state. If the system shares libraries with the application, per-
library persistent state like errno in libc should also be saved. It
is possible to reduce the overhead of each context switch by not
preserving all of the state, e.g., not saving and restoring floating-
point state when the intervening system code does not perform
any floating-point operations. However, such optimizations must be
careful to not cause any transparency violations. For example, early
versions of DynamoRIO assumed that XMM registers were not used
by its own code on the IA-32 architecture and did not preserve them
on context switches. However, later implementations of memset
and strlen from gcc and in the C library used by DynamoRIO
and clients began to use register xmm0, violating the assumption
and causing application crashes.

DynamoRIO simply copies the application code into the code
cache with minimal modifications and performs a full context
switch when execution transfers between the code cache and Dy-
namoRIO. In contrast, Valgrind maintains virtual application state
including the program counter and updates it after every operation
translated from original application code. In other words, Valgrind
emulates the application’s execution while natively executing Val-
grind’s own code, while DynamoRIO natively executes either one
or the other, context switching between the runtime system and the
application process. By minimizing the number of context switches
via linking code fragments in code caches, the approach adopted by
DynamoRIO incurs much lower runtime overhead than Valgrind’s
approach.

2.2.2 Stack Transparency
DynamoRIO uses a private stack and never touches the applica-
tion’s stack (Guideline 1).

It is tempting to assume that the space beyond the top of the
application stack is not accessed and can be used for scratch space
by a dynamic instrumentation system. For instance, HDTrans [36]
spills registers to the application stack. However, some applications
do access data beyond the top the stack. For example, Microsoft
Office has code that stores data on the top of the stack, moves the
stack pointer to the previous location, and then accesses the data.
Additionally, some hand-crafted code uses the stack pointer as a
general-purpose register, in which case one cannot even assume
that the memory pointed at by the stack pointer is safe to access.

Another tempting way to use the application stack is using code
cache addresses as return addresses instead of the original applica-
tion return addresses [20], which allows an instrumentation system
to use ret instructions directly and avoid any translation cost on
function returns. However, this violates application address trans-
parency (Section 2.1.2). Many applications examine their stack. For
example, position-independent code obtains the current program
counter by making a call to the next instruction and then popping
the return address. The system can do pattern matching on this and
other common ways the return address is read in order to get many
applications to work, but even some of the SPEC 2000 CPU bench-
marks [38], like perlbmk, read the return address in too many dif-
ferent ways to detect easily. Moreover, the return address replace-
ment makes it difficult to construct a call stack from the application
stack, and causes problems when debugging the application.

2.2.3 Heap Transparency
Memory allocated by DynamoRIO must be separate from that used
by the application, for two reasons. First, the memory allocated for
DynamoRIO should not interfere with the data layout of the ap-
plication or with application memory bugs, e.g., heap buffer over-
flows. Additionally, sharing heap allocation routines with the ap-
plication violates Guideline 3. Most heap allocation routines are
thread-safe but not re-entrant (Section 3.1) and are thus not safe to

call by DynamoRIO. Instead, DynamoRIO obtains its memory di-
rectly from system calls and parcels it out internally with a custom
memory manager.

2.2.4 Self-Introspection Transparency
Many applications perform various introspective operations: iterat-
ing over loaded libraries, counting the number of threads, inspect-
ing resource usage, etc. For instance, Linux’s process information
pseudo-file system (/proc) allows users or applications to inspect
the status of a process, including memory maps, file usage, and
other information. DynamoRIO intercepts system calls that query
information and modifies the results returned to the application in
order to hide DynamoRIO’s presence. Section 3.2 discusses partic-
ular system calls that must be intercepted.

2.3 Concurrency Transparency
Multi-threaded applications have their own transparency issues be-
yond the code and data transparency discussed so far.

2.3.1 Thread Transparency
There are several options to map multi-threaded application execu-
tion onto the runtime environment. DynamoRIO uses application
threads as system threads and creates no new threads, which avoids
interfering with applications that monitor all threads in the process.
DynamoRIO code is executed by application threads, with a con-
text switch to separate its state from application state. Each appli-
cation thread has its own separate DynamoRIO state and stack.

Using a separate system thread per application thread can be
more transparent by truly separating contexts, in particular Thread-
Local Storage (TLS), and avoiding having to handle application
threads suspending threads that are executing in system code.
However, it can also reduce application scalability in applications
with hundreds or thousands of threads by doubling the number of
threads. In addition, the communication and synchronization be-
tween an application thread and its system thread might cause per-
formance problems. It is also possible to multiplex all application
threads onto one single system thread, but this arrangement is un-
likely to be performant enough. For example, Valgrind serializes all
threads’ execution, which incurs significant slowdown.

2.3.2 Synchronization Transparency
Sharing locks with the application can cause many problems
and should be avoided (Guideline 3). Concurrency is challeng-
ing enough to get right in a single body of code where protocols
can be agreed upon and code changed to match them. When deal-
ing with an arbitrary application, the only viable solution, adopted
by DynamoRIO, is to avoid acquiring locks that the application
also acquires. Similarly, DynamoRIO must worry about applica-
tion threads sharing system routines and locks, and cannot allow an
application thread to suspend another thread that is inside a non-re-
entrant system routine or holding a system lock.

Even without sharing locks, the application and system may still
interfere with each other and cause deadlock. For example, if one
application thread is waiting for an application lock to be released
by another thread, which is blocked on acquiring a system lock
held by the first thread, neither thread can make forward progress.
To prevent such deadlocks, DynamoRIO’s solution is to enforce
that no DynamoRIO lock can be held when a thread is executing
application code inside the code cache.

2.3.3 Memory Ordering Transparency
If a dynamic instrumentation system modifies application mem-
ory accesses, or re-orders application instructions, it could cause a
change in behavior with respect to the order of memory references
seen across threads. Without any particular tool running on top of
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it, a dynamic instrumentation system should avoid such changes.
DynamoRIO does not make these types of modifications. If a tool
decides to do so, it can choose accept the consequences as a trade-
off.

Additionally, reading another thread’s memory could result in
behavior that differs from native execution, due to timing differ-
ences. The only application memory locations that need to be read
by DynamoRIO are indirect branch targets and certain system call
arguments on Windows where arguments are stored in memory.
This minimal memory interaction results in minimal interference
and does not add any races. Thus, in a race-free application, the
dynamic instrumentation system will also be race-free. In an ap-
plication with races, the behavior when running under the dynamic
instrumentation system will contain a valid ordering that can oc-
cur natively, though it may not be the behavior that is seen most
often natively due to timing changes. This may be unavoidable.
Section 5.1 discusses related challenges.

3. Transparency in System Implementation
Beyond the design issues, there are many additional challenges
when actually implementing a dynamic instrumentation system
like DynamoRIO. Ideally, DynamoRIO’s resources should be com-
pletely disjoint from the application’s. However, that is not possible
when DynamoRIO is executing inside the same process as the ap-
plication. DynamoRIO must do its best to avoid conflicts (Guide-
line 3).

3.1 Library Transparency
Sharing libraries with the application can cause problems with re-
entrancy and corruption of persistent state like error codes. Dy-
namoRIO code can execute at arbitrary points in the middle of
application code. If both the application and DynamoRIO use the
same non-re-entrant library routine, DynamoRIO might call the
routine while the application is inside it, causing incorrect behav-
ior. For example, if the system calls malloc while the application is
inside that same routine, malloc’s global state may be in an incon-
sistent state. If a library routine acquires locks, deadlock can easily
occur even though the routine is thread-safe.

To avoid the problems described above, early versions of Dy-
namoRIO took the following approach: (i) preserve persistent li-
brary state (e.g., errno) on each context switch; (ii) only use re-
entrant library routines, implementing separate versions of non-
trivial routines like vsnprintf when necessary; and (iii) request
resources such as memory and files only from system calls and
never from user libraries.

The current implementation of DynamoRIO loads a separate
copy of application libraries for its own use and use by clients, to
avoid conflicts with the application. However, duplicating libraries
does not solve all of the problems. Some routines may still conflict
with the application on resource usage, such as malloc requesting
memory via the brk system call, which must be redirected to
DynamoRIO’s own routines.

Another example is Thread Local Storage (TLS) access. In 64-
bit Linux on the AMD64 architecture, TLS is accessed via the fs
register. If executed unchanged, the two sets of libraries must use
the same fs register and its value must be swapped to maintain
transparency. An alternative approach taken by DynamoRIO is to
mangle each application TLS access to not use a segment register,
avoiding the expensive swapping.

3.2 System Calls
DynamoRIO must understand and handle system calls properly for
two reasons: (i) it must execute raw system calls itself to request
resources, and (ii) it must monitor certain system calls made by

the application in order to maintain system state and to enforce
transparency.

The system call interface on Linux and most operating systems
is a standard mechanism for requesting services (Figure 2a). How-
ever, on Windows, the documented method of interacting with the
operating system is not via system calls but instead through an ap-
plication programming interface (the Win32 API) built with user
libraries on top of the system call interface (Figure 2b). Experience
from early versions of DynamoRIO tells us that using the Win32
API interface causes numerous transparency issues including prob-
lems described in Section 3.1. The system call interface (Figure 2c)
must be used, rather than the API layer, which, unfortunately, binds
DynamoRIO to an undocumented interface that may change with-
out notice in future versions of Windows.

DynamoRIO can fully control every process action in user
mode, but usually has little control over kernel mode actions. It
must intercept and monitor application system calls and modify
them if necessary. For example, DynamoRIO must intercept and
redirect any sigaction system call invoked by the application
to avoid losing control on signal delivery. As discussed in Sec-
tion 2.1.3, DynamoRIO must monitor all system calls that free
memory regions and flush all cache fragments accordingly to keep
the code cache consistent. These calls include munmap and mremap
on Linux and NtUnmapViewOfSection, NtFreeVirtualMemory,
and NtFreeUserPhysicalPages on Windows. Additionally, the
Windows system call NtGetContextThread enables one thread
to obtain the context of another thread. DynamoRIO must intercept
this call and translate the returned context (see Section 3.3) so that
the target thread appears to be executing natively instead of in the
code cache. System calls like thread and process creation should
also be monitored so the system can maintain control over all exe-
cution.

Furthermore, DynamoRIO must hide itself from intro-
spection. For example, on Windows, applications can iter-
ate over all loaded shared libraries using the system call
NtQueryVirtualMemory [28] to traverse each region of mem-
ory and the routine GetModuleFileName to find out if a library
is present. DynamoRIO detects such queries to its own addresses
and modifies the returned data to make the application think that
there is no library there. This trick is required to correctly run cer-
tain applications, such as Mozilla, which install hooks in loaded
libraries.

For application queries to Linux’s process information pseudo-
file system (/proc), it is possible to replace the contents of each file
(e.g., /proc/self/maps) with custom content by monitoring file
access system calls. By doing so, we can create the illusion that the
application is executing natively. DynamoRIO currently does not
implement this feature as we have not seen any problems caused
by real applications accessing /proc.

3.3 Context Translation
When handling exceptions and signals, DynamoRIO must translate
every machine context that the operating system passes to the
application, to pretend that the context originated in application
code rather than the code cache.

Systems like Valgrind that emulate the application state can
simply hand the emulated machine context to the application be-
cause that state is always up-to-date. This comes at a performance
cost, however, that we consider too high. In DynamoRIO, if the
interrupting event requiring translation can be delayed, e.g., on re-
ceiving a timer alarm signal on Linux, DynamoRIO will delay the
translation until a controlled point outside of the code cache where
the application state is easily obtained. For such cases, the delayed
event will still occur at a point it might have occurred natively. Oth-
erwise, context translation takes several steps for events that are not
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Figure 2. On Linux, the system call interface is the documented method of interacting with the operating system, as shown on the left. On
Windows, however, a layer of user libraries makes up the Win32 API, which is the documented interface, while the system call layer is
undocumented.

delayable, each bringing the code cache context closer to the state
it would contain natively.

The first step is translating the program counter from the code
cache to its corresponding application address. One translation
method is to store a mapping table for each cache fragment. Dy-
namoRIO’s preferred approach, to save memory, is to re-create the
cache fragment from application code, and then correlate the code
cache address to the recreated cache fragment to obtain the appro-
priate application address. DynamoRIO rebuilds the cache frag-
ment as though it were encountering new code, making sure to
store the original address of each instruction. It then re-applies any
instrumentation (this method only works for deterministic instru-
mentation: a table must be used otherwise). Finally, DynamoRIO
walks through the reproduction and the cache fragment in lockstep,
until it reaches the target point in the cache fragment. The appli-
cation address pointed at by the corresponding instruction in the
reconstructed cache fragment is the program counter translation.

The second step is ensuring that the registers contain the proper
values. In the absence of code transformations, only inserted code
for indirect branches by DynamoRIO causes problems here (the
load of the indirect branch target could fail, requiring context trans-
lation). In this case several registers must have their application val-
ues restored to complete the translation. How to recreate registers
in the presence of other code transformations is discussed in Sec-
tion 4.2.

3.4 Error Transparency
Application errors under DynamoRIO must occur as they would
natively. There are real-world cases of applications that access in-
valid memory natively, handle the exception, and carry on. With-
out error transparency such applications would not work properly.
When an error is passed to the application, it must be made to look
like it occurred natively, which requires context translation (Sec-
tion 3.3) and necessary kernel emulation.

An illegal instruction or a jump to invalid memory should not
cause DynamoRIO’s decoder to crash — rather, the error must be
propagated back to the application. The best solution is to have the
decoder suppress the exception and stop the basic block construc-
tion prior to the faulting instruction. Only if a new basic block is
requested whose first instruction faults should it be delivered to the
application. This also makes it easier to pass the proper machine
context to the application, since the start of a basic block is a clean
checkpoint of the application state. To implement error handling
for decoding, checking every memory reference prior to accessing

it is too expensive. A fault-handling solution is used instead, with
a flag set to indicate whether the fault happened while decoding a
basic block.

Supporting precise synchronous interrupts in the presence of
code modification is challenging. DynamoRIO currently does not
do this in every case. As an example, it transforms a far call into
a push of the cs segment selector, a separate push of the return
address, and then a jump. If there is an exception on the selector
push or the jump, DynamoRIO need do nothing special. However,
if the return address push faults (due to stack overflow, e.g.), the
segment selector push should be undone. When executed natively
the processor makes the whole sequence atomic. DynamoRIO must
emulate this behavior in its fault handler. Today, DynamoRIO does
undo the stack pointer adjustment of the selector push, but does not
restore the stack value to its prior state. Unlike many transparency
corner cases, this one is extreme enough to be ignored for main-
stream applications. Systems that perform more aggressive opti-
mizations than DynamoRIO often require hardware support to pro-
vide precise interrupts efficiently [18, 23].

Because DynamoRIO uses page protection for code cache con-
sistency, it must distinguish write faults due to its page protection
changes from those that would occur natively. When DynamoRIO
receives a write fault targeting an area of memory that the appli-
cation thinks is writable, that fault is guaranteed to belong to Dy-
namoRIO, with all other faults routed to the application.

Error transparency overlaps with heap transparency (Sec-
tion 2.2.3), stack transparency (stack overflows and underflows,
Section 2.2.2), address space transparency (application writes tar-
geting DynamoRIO data, Section 5.2), and context translation
(translating contexts presented to application error handlers, Sec-
tion 3.3).

Error transparency also relates to security vulnerabilities. Many
security attacks take advantage of abstraction differences between
software conventions and underlying platform enforcement. For ex-
ample, the classic stack buffer overflow overwrites the return ad-
dress on the stack. A security attack should work under a dynamic
instrumentation system as well as it does natively. Often, address
space shifts (see Section 5.2) thwart attacks. These observations
lead to the idea of deliberately violating transparency in a tool in
order to block security attacks [22].

3.5 Debugging Transparency
A debugger should be able to attach to a process under Dy-
namoRIO’s control just like it would natively. This is a reason for
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DynamoRIO to not rely on debugging interfaces to control the tar-
get application, as only one debugger can be attached to a pro-
cess at a time. Many debuggers also inject a thread into the de-
buggee process in order to efficiently access its address space. Dy-
namoRIO would need to identify this thread as a debugger thread,
and let it run natively, for full debugging transparency. DynamoRIO
currently runs the thread under its control, but most debuggers
work fine with DynamoRIO, including gdb [19] and the Debug-
ging Tools for Windows [27].

The first transparency guideline serves us well when interacting
with a debugger. Stack transparency and data transparency make
debugging the application nearly identical to debugging it when
running natively, including call stacks. The main difference is, of
course, that the program counter and sometimes register values are
different. One solution taken by Chaperon, a runtime memory error
detector that ships with Insure++ [31], is to modify a debugger like
gdb to automatically translate the machine context (or at least the
program counter) from the code cache to the original application
code location.

4. Client Transparency
DynamoRIO is designed to be a general dynamic instrumenta-
tion system that supports building custom tools via plug-ins called
clients. Clients can insert custom instrumentation and execute ar-
bitrary code, including calling standard libraries that can conflict
with the application, adding new challenges to transparency en-
forcement. This section discusses those issues.

4.1 Instrumentation Control
The client writer may not be an expert in transparency, and the
client’s added instrumentation might have unintended effects on the
application’s semantics. Similar to Pin and Valgrind, DynamoRIO
provides an interface to insert clean calls to C or C++ code, in
which operations can be performed. Unlike those other systems,
however, DynamoRIO additionally exposes the application’s in-
struction list prior to emitting it into the code cache so that the
client can manipulate the application code directly at the granu-
larity of individual instructions and operands. This gives the client
more flexibility and power to control the code, allowing for highly
efficient instrumentation. However, it leaves the responsibility for
transparency in the user’s hands.

4.2 State Preservation and Reconstruction
Translating the machine context for an exception or signal handler
in the presence of arbitrary client code transformations can become
complex. Because DynamoRIO allows the client to manipulate
the code directly, it is very difficult for DynamoRIO to recreate
the application state by itself. To solve this problem, in the first
step of context translation (Section 3.3) DynamoRIO calls on the
client to repeat its instrumentation while reconstructing the code
fragment. Similarly, DynamoRIO also asks the client for help in the
second step to recreate the application register state. This solution
only works if the client instrumentation is deterministic. For non-
deterministic instrumentation, DynamoRIO stores a mapping table
for each code fragment to support state reconstruction.

4.3 Library Usage
If the client calls utility functions from application libraries, the
system will encounter the issues discussed in Section 3.1. Dy-
namoRIO uses a custom loader to load separate copies of libraries
to avoid sharing libraries with the application. In addition, Dy-
namoRIO exports for client use the methods and resources that
it uses itself for better transparency, including memory allocation,
reading and writing files, and many others.

4.4 Sideline Threads
The client may want to create new threads to take advantage of
multi-core systems for sideline computation. DynamoRIO should
prevent the application from seeing client threads (Section 3.2) and
avoid interfering with applications that monitor all threads in the
process. DynamoRIO’s client threads on Linux are created in a
separate thread group with a separate process identifier from the
application, providing isolation from signal delivery, itimers, and
introspection.

An instrumentation system should also provide appropriate syn-
chronization to support sideline threads interacting with application
threads. DynamoRIO currently only supports simple mutual exclu-
sion locks.

5. Limitations
The further we push transparency, the more difficult it is to im-
plement, while at the same time fewer applications require it. It is
challenging and costly to handle all of the corner cases, and many
can be ignored if we only want to execute simple programs like
the SPEC CPU2006 [39] benchmarks. Yet, for nearly every corner
case, there exists an application that depends on it.

We would like to provide absolute transparency so that the
application cannot distinguish between running inside DynamoRIO
and native execution. However, this may not be attainable for some
aspects of execution. In this section, we will discuss the limits of
transparency in dynamic instrumentation.

5.1 Timing Transparency
Timing transparency is difficult to achieve as it brings efficiency
into the transparency equation. The overhead of DynamoRIO is not
easy to hide.

Changing the timing of multi-threaded applications can uncover
behavior that does not normally happen natively. An example is Mi-
crosoft’s Removable Storage service, in which under certain timing
circumstances when run under DynamoRIO one thread unloads a
shared library while another thread returns control to the library
after it is unloaded. This is not strictly speaking a transparency vio-
lation, as the error could have occurred without DynamoRIO. Some
of these timing violations might also occur natively if some other
modification altered the timing, e.g., executing on a different pro-
cessor.

Another timing related issue is time interrupt transparency. The
application may use time interrupts for timeouts or polling. Run-
ning in DynamoRIO, the application may experience problems in
code that is sensitive to time changes. In addition, the client might
use time interrupts for profiling. DynamoRIO must multiplex the
client and application uses of the single underlying interrupt sys-
tem.

5.2 Address Space Transparency
An application bug that accesses invalid memory and generates an
exception should do the same thing under DynamoRIO, even if Dy-
namoRIO has allocated its own memory at that location. If the ac-
cess is a memory write, we can use page protection to detect any in-
advertent (or malicious) writes to DynamoRIO memory by the ap-
plication. DynamoRIO uses this scheme in the context of building
a secure execution environment [22]. However, this approach does
not work if the access is a memory read, as at least one memory
region used by DynamoRIO must be readable throughout the exe-
cution, viz., the software code cache. The general solution would
be to monitor every application memory access, which would cause
prohibitive runtime overhead.

It is also possible for an application to request memory from
a specific address that happens to be used by the instrumentation

139



system. To support this, the system should be able to relocate its
own memory and make room for the application’s request.

5.3 Resource Limitations
Because the instrumentation system and the application are running
in the same process, they share the resources of that process. Thus,
any resource limit is a potential source of transparency violations
if the resource usage reaches its limit earlier than it would if the
application were running natively. For example, Memcheck [33],
a memory checking tool built on top of Valgrind, is unable to run
certain benchmarks when compiled 32-bit. The 434.zeusmp bench-
mark from SPEC CPU2006 [39] contains a 1GB data segment,
which is too large for Memcheck to handle [29], for all versions
of Memcheck including the most recent version (3.7.0) as of the
time of this writing.

In 32-bit architectures where only 4GB or less virtual address
space is available, a memory-intensive application may work well
natively but crash due to failure to allocate memory when running
in a virtual environment. In 64-bit architectures, using up the en-
tire address space is less likely to happen. However, DynamoRIO
only requests memory from the first 2GB of the address space,
which may cause contention with application memory usage in that
range. A memory request might fail if both the application and Dy-
namoRIO keep requesting memory from the same region.

5.4 Client Limitations
We would like to allow a client to modify the application instruc-
tion stream in any way it chooses, but unfortunately it may violate
transparency. If a client violates transparency, there is often little
that DynamoRIO can do about it (though it may be the desired
effect for some clients). Application correctness may fail with no
chance for recovery. For example, a client that seriously changes
basic block control flow can disrupt DynamoRIO’s trace creation.
DynamoRIO does not disallow this, but it cautions clients to per-
form dramatic changes to basic block control flow at their own risk.

5.5 Other Limitations
Some types of transparency violations are exceedingly difficult to
avoid or disguise. For example, in order to maintain control across
callbacks on Windows and system calls that use sysenter on
Linux, DynamoRIO must modify certain application code to which
control is transferred directly by the kernel. The application can
read that code and discover whether it is running in DynamoRIO,
which can only be prevented by monitoring every memory access.

Another transparency issue is memory modification from an-
other process. One process can change memory in another pro-
cess via system calls (NtWriteVirtualMemory on Windows or
ptrace on Linux). A kernel module could help here to detect cross-
process modifications.

6. Experimental Results
In this section we evaluate the performance impact of several trans-
parency choices made in DynamoRIO. By measuring the tradeoff
between correctness and performance, we can understand the cost
of a system being fully transparent. We first discuss real application
code that violates tempting transparency assumptions.

6.1 Commercial Evaluation
In many cases, performance can be improved for several bench-
marks by violating transparency, but the resulting system fails to
run all applications. Real-world examples abound, as shown in Ta-
ble 1. In this section we elaborate on the examples from that table,
beginning with code transparency. If true self-modifying code is
not handled, Adobe Premiere will not operate correctly as it con-

<generate "ret $0x4" on the stack>
...
104a4: lea 0xc(%ebp), %esp
104a7: popa
104a8: jmp *-0x28(%esp)
<the jmp target is on the stack:>
fd04: ret $0x4

Figure 3. Generated code executed beyond the top of the stack in
some versions of Microsoft Office.

tains self-modifying code, making this not some never-seen corner
case, but actual behavior in a real-world, mainstream application.

Further examples of code transparency corner cases are seen in
several Windows applications, including versions of the Microsoft
Management Console, that execute code on the stack. This code
typically takes the form of small trampolines used to create closures
for nested functions. As the stack unwinds and is re-extended, these
trampolines can be replaced with other trampolines, resulting in
different code at the same address. A system that is unable to
correctly execute such generated code in memory areas that can
be re-used for different code will be unable to run these real-world
programs. Similar trampolines are also generated by gcc on Linux,
and on the heap in other programs.

Large applications such as Microsoft Office contain dynamic
languages that generate code during initialization and other normal
execution sequences. Another instance of dynamically-generated
code comes from applications that store code on disk in a packed
format and unpack it at runtime. Virtualdub is an example of a
packed application.

Moving on to data transparency, some versions of Microsoft
Office contain instances of data being read beyond the top of the
stack. In some cases this data is actually code. In one scenario,
a return instruction is generated on the stack, the stack pointer
is incremented, and then control is transferred to the instruction
which is now beyond the top of the stack. Figure 3 shows the code
sequence for this. Any system that uses the stack for scratch space
runs the risk of breaking transparency for Office.

In addition to containing self-modifying code, Adobe Premiere
also contains optimized loops that use the stack pointer as a
general-purpose register. Again, any system that assumes it can
safely access memory pointed at by the stack pointer may not op-
erate correctly on this mainstream commercial software.

Further examples of data transparency corner cases include glue
code used for COM software which manipulates return addresses
placed on the stack. Any system that does not preserve the original
return addresses will have trouble with COM. Any system that does
not hide itself from applications that examine their own address
space and loaded libraries may fail to run Mozilla software. A final
data transparency example considers condition flags: as will be
discussed in Section 6.3, if condition flags are not preserved across
indirect branches, even the SPEC CPU benchmarks compiled with
the Microsoft compiler will fail.

Regarding concurrency transparency, some Windows applica-
tions, including Microsoft Exchange, use a large number of thread-
local storage slots and can conflict with a process virtualization
system. If Windows thread-local fields are not isolated from client
libraries, graphical Windows applications will execute incorrectly,
in many cases displaying incorrect pixels and crashing. Other ex-
amples of transparency corner cases include applications, like Mi-
crosoft Office, that recover from faults as part of normal execution.

Throughout our transparency discussions we have shown which
aspects of transparency are necessary by presenting examples of
applications whose correctness depends on each aspect. To evaluate
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Figure 4. Performance of DynamoRIO and Pin relative to native execution on the SPEC CPU2006 benchmarks compiled as 64-bit.

whether our list of issues is sufficient, we relate our experiences
with DynamoRIO in a commercial venture. DynamoRIO was used
by Determina in a security product that was installed on tens of
thousands of customer machines. When there were application
failures, in most cases they were due to resource saturation or clear
violations of normal programming practices such as overwriting or
patching another application’s library entry points (hooking) that
created problems for many other use cases. We found no additional
transparency violations.

6.2 Performance Evaluation
We evaluate the performance of SPEC CPU2006 [39] 1 running
in DynamoRIO and Pin. We collected our results on a machine
with 8-core Intel Xeon X7550 2 GHz processors, 18M L3 Cache,
and 128 GB RAM running 64-bit Linux 2.6.32. We compiled the
benchmarks as 64-bit applications. Figure 4 shows the relative
performance impact over native execution. The average slowdown
of the DynamoRIO base system is merely 11% where Pin has a
21% slowdown. Both systems keep their overhead reasonably low
while providing enough transparency to run large applications.

6.3 Application State Transparency
Indirect branch handling is a major source of runtime overhead
when executing an application under DynamoRIO. The original
single application instruction turns into a lookup routine to locate
the correct target code cache fragment. DynamoRIO has tried many
ways to minimize overhead without violating transparency, includ-
ing inlining the lookup routine to avoid a full context switch, using
the fastest available method (lahf and seto on IA-32) to preserve
the eflags condition flags, and analyzing the code to avoid restor-
ing eflags if they are dead in the target.

One experiment we tried that violates transparency in order to
gain performance is to simply assume that we do not need to pre-
serve eflags across indirect branches. However, we found code
in libc-2.7.so, shown in Figure 5, that breaks the assumption and
causes nearly every application to crash. We instead tried preserv-
ing eflags over all but ret instructions and did manage to run
all of our benchmarks. Figure 6 shows the resulting performance

1 We omit the three benchmarks 400.perlbench, 464.h264ref, and
481.wrf as they fail to run natively.

63a3a: lea 0x41(%rip),%rdx # 63a82
...
63a59: lea -0x21(%rbp),%rax
63a5d: test %rdi,%rdi
63a60: jmpq *%rdx
...
63a82: je 63b58

Figure 5. An example of code that uses eflags across indirect
branches.

impact: an average 3%, and as high as 16% on individual bench-
marks, performance improvement. However, we found code in sev-
eral benchmarks in SPEC CPU2000 [38] compiled with Visual
C++ 6.0 on Windows, including vpr and eon, and some versions
of large applications like Word and Photoshop, that clearly uses
eflags across ret as follows:

call 0x50881d8e
je 0x508eeac7

The experiment above shows an example of the tradeoff be-
tween performance and transparency: typically one comes at the
cost of the other.

7. Related Work
Software virtual machines like Connectix VirtualPC [17],
VMWare [12], and Xen [4] perform dynamic binary manipulation,
and are able to execute entire operating systems and their work-
loads. In contrast, process virtualization’s goal is to build tools
that operate on a single application in a lightweight manner for
use on commodity, production platforms. A process virtualization
system executes on top of the operating system. Perhaps counter-
intuitively, the technology of building a full system virtualization
tool is not sufficient to build a process virtualization tool, which
has a completely different set of challenges. When operating on
top of the operating system, one must transparently operate within
the confines of the operating system, intercepting its transfers of
control and handling its threads, all the while pretending that one is
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Figure 6. Performance impact of not preserving eflags across ret instructions.

not occupying the application’s address space to avoid interfering
with its behavior.

Dynamic instrumentation systems like Pin [25] and Val-
grind [30] are implemented with software code caches in a simi-
lar manner to DynamoRIO. Other systems like Dyninst [11], De-
tours [21], and Vulcan [37] modify the original application code in
memory by inserting trampolines, which suffer from transparency
problems. Additionally, extensive modification of the code quickly
becomes unwieldy through these mechanisms, especially in the
face of variable-length IA-32 instructions.

Dynamic translators translate from one instruction set to another
at runtime, making them similar to instruction set emulators. They
include Aries [46] for PA-RISC to IA-64, Walkabout [15] for IA-
32 to SPARC, IA32 EL [3] for IA-32 to IA-64, Dynamite [35] for
IA-32 to MIPS, and many others including QEMU [5] and HD-
Trans [36]. Having different host and guest architectures, dynamic
translation faces some cross target execution challenges that dy-
namic instrumentation does not have. For example, an instruction
in the source ISA might not have an equivalent corresponding in-
struction in the target ISA. The host and guest architecture could
have different endian-ness. Moreover, misaligned address accesses
might cause memory faults on one architecture but not on the other,
which adds new challenges to dynamic translation. On the other
hand, dynamic translation across architectures often has less pres-
sure for performance and transparency as there is no local native
comparison.

Previous work has discussed some aspects of transparency: Pin
for Windows [34] discusses transparency issues of Windows sys-
tem call interception; Shade [16] and Daisy [18] discuss timing
and error transparency; Tdb [24] discusses debugging transparency;
and Strata [32] uses non-transparent code cache return addresses
for performance improvement, accepting the loss of transparency.
Machine contexts for signal handlers are translated to their native
values in Dynamo [2]. Mojo [13] translates the program counter
back to its native value for exception handlers. The transparency of
CPU emulators with respect to corner cases of the instruction set
has also been explored [26].

To best of our knowledge, there is no prior work that discusses
the full range of transparency issues in the design and implementa-
tion of a dynamic instrumentation system.

8. Conclusion
DynamoRIO is a powerful runtime code manipulation system that
provides a virtual execution environment within which an unmodi-
fied application can be monitored and controlled while it executes.
Transparency is one major challenge when building such a system.
Unlike SPEC CPU and other relatively simple benchmarks, many
commercial applications rely on a pristine execution environment
and a precise ABI. In order to run all of these applications, Dy-
namoRIO must be fully transparent and cannot ignore seemingly
obscure corner cases. In this paper, we identified a necessary set of
transparency requirements for running mainstream Windows and
Linux applications. We discussed possible solutions to each issue,
evaluated tradeoffs between different choices, and identified cases
where maintaining transparency is not practically achievable. We
hope this paper can be used as a guide for building transparent dy-
namic instrumentation tools and other similar process virtualization
systems.
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