Resource pooling in congested networks:
proportional fairness and product form

Neil Walton

Joint work with:
Frank Kelly and Laurent Massoulie

Statistical Laboratory, University of Cambridge.







We are interested In studying proportional fairness
as a way of sharing flow across different routes
of a network

We review some recent results.




We are interested In studying proportional fairness
as a way of sharing flow across different routes
of a network

We review some recent results.

First we consider an equivalence between
single-path and multi-path routing...
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So multi-path routing is the same
as single path routing
when we pool resources
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The pooling of resources is not particular
to proportional fairness

But
Proportional fairness does have some special properties...
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"Proportional fairness is the network
version of processor sharing”

The advantage of processor sharing queues:

Expected processing time Expected processing time
of a JOb of size X of a jOb of size x
S |z ]

C—p




A Multi-class Network of Processor Sharing Queues

© © ©

REF: Kelly '79, Massoulie '99, Proutiere '03, Bonald and Proutiere '04. W '09.



A Multi-class Network of Processor Sharing Queues

—_ |® © ©

REF: Kelly '79, Massoulie '99, Proutiere '03, Bonald and Proutiere '04. W '09.



A Multi-class Network of Processor Sharing Queues

g © © ©

REF: Kelly '79, Massoulie '99, Proutiere '03, Bonald and Proutiere '04. W '09.



A Multi-class Network of Processor Sharing Queues

g © © ©

REF: Kelly '79, Massoulie '99, Proutiere '03, Bonald and Proutiere '04. W '09.



A Multi-class Network of Processor Sharing Queues

. o= o ©

REF: Kelly '79, Massoulie '99, Proutiere '03, Bonald and Proutiere '04. W '09.



A Multi-class Network of Processor Sharing Queues

- O—-_o—_lo-

REF: Kelly '79, Massoulie '99, Proutiere '03, Bonald and Proutiere '04. W '09.



A Multi-class Network of Processor Sharing Queues

L Tlo- o Jo-—

REF: Kelly '79, Massoulie '99, Proutiere '03, Bonald and Proutiere '04. W '09.



A Multi-class Network of Processor Sharing Queues

—-_ O-_10—~_ 0~

REF: Kelly '79, Massoulie '99, Proutiere '03, Bonald and Proutiere '04. W '09.



A Multi-class Network of Processor Sharing Queues

- O—-_o—_lo-

REF: Kelly '79, Massoulie '99, Proutiere '03, Bonald and Proutiere '04. W '09.



A Multi-class Network of Processor Sharing Queues

LT oo P o

REF: Kelly '79, Massoulie '99, Proutiere '03, Bonald and Proutiere '04. W '09.



A Multi-class Network of Processor Sharing Queues

V /
N o= 1B oo

REF: Kelly '79, Massoulie '99, Proutiere '03, Bonald and Proutiere '04. W '09.



A Multi-class Network of Processor Sharing Queues

| .
~ = 0. O

REF: Kelly '79, Massoulie '99, Proutiere '03, Bonald and Proutiere '04. W '09.



A Multi-class Network of Processor Sharing Queues

REF: Kelly '79, Massoulie '99, Proutiere '03, Bonald and Proutiere '04. W '09.



A Multi-class Network of Processor Sharing Queues

IMPORTANT POINT:
Queue sizes are independent Geometric Distributions

REF: Kelly '79, Massoulie '99, Proutiere '03, Bonald and Proutiere '04. W '09.



Closed Multi-class Network of Processor Sharing Queues




Closed Multi-class Network of Processor Sharing Queues

This argument Is due to: Schweitzer 79, Kelly '89, Roberts and Massoulie '99




Closed Multi-class Network of Processor Sharing Queues

This argument Is due to: Schweitzer 79, Kelly '89, Roberts and Massoulie '99

By Little’s Law: A?.. QJ — mﬂ)




Closed Multi-class Network of Processor Sharing Queues

This argument Is due to: Schweitzer 79, Kelly '89, Roberts and Massoulie '99

By Little’s Law: A?.. QJ — mﬂ)

arrival rate
route J




Closed Multi-class Network of Processor Sharing Queues

This argument Is due to: Schweitzer 79, Kelly '89, Roberts and Massoulie '99

By Little’s Law: A?.. q,( — mﬂ)

arrival rate _

time




Closed Multi-class Network of Processor Sharing Queues

This argument Is due to: Schweitzer 79, Kelly '89, Roberts and Massoulie '99

By Little's Law:

AiQ< — mj&

arrival rate #route / packets

route | sojourn at queue j
time




Closed Multi-class Network of Processor Sharing Queues

This argument Is due to: Schweitzer 79, Kelly '89, Roberts and Massoulie '99

By Little’s Law: A?.. QJ — mﬂ)

Summing over queues, J:




Closed Multi-class Network of Processor Sharing Queues

This argument Is due to: Schweitzer 79, Kelly '89, Roberts and Massoulie '99

By Little’s Law: A?.. QJ — mﬂ)

Summing over queues, J. N




Closed Multi-class Network of Processor Sharing Queues

This argument Is due to: Schweitzer 79, Kelly '89, Roberts and Massoulie '99

By Little's Law: A?.. QJ _ mﬂ)
Summing over queues, J. N
A"
t o jer

Since queues are stable therefore:




Closed Multi-class Network of Processor Sharing Queues

This argument Is due to: Schweitzer 79, Kelly '89, Roberts and Massoulie '99

By Little's Law: N — Ay L
Niq; = mj;
Summing over queues, J: n;
A, 2T
tojer
Since queues are stable therefore:
1:71€17

If very stable then sojourn is small:




Closed Multi-class Network of Processor Sharing Queues

This argument Is due to: Schweitzer 79, Kelly '89, Roberts and Massoulie '99

By Little's Law: N — Ay L
Niq; = mj;
Summing over queues, J: n;
A, 2T
tojer
Since queues are stable therefore:
1:71€17

If very stable then sojourn is small:




Closed Multi-class Network of Processor Sharing Queues

This argument Is due to: Schweitzer 79, Kelly '89, Roberts and Massoulie '99

By Little's Law: (- — ) - -
Niq; = mj;

Summing over queues, J: n;
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Since queues are stable therefore:
1:71€17

If very stable then sojourn is small: Z

1:7€1

These are the Kuhn-Tucker conditions for proportionally fair optimization!
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A7 ([hn]) A (n)

h— 0O

Suggests product form results
associated with proportional fairness

This point had previously been considered for proportional fairness
(Kang et al. '09)

ldea shadow prices 4 are like queue sizes
and so are independent.
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The NETWORK PROBLEM is solved
by a Closed Queueing Network

max Z?m log A;
%4. To = g

(' // subject to Z g 5 G,

What about the USER PROBLEM?

m;

) my Looks like a

max U, (
% Legendre-Fenchel
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THANK YOU FOR LISTENING!
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