A New Software Architecture for
Core Internet Routers

Disclaimers and Credits

This is research and no product plans are
implied by any of this work.

r3.cis.upenn.edu
Early and continued support from www.vu.nl

A large team has generated this work and | am
just one of many spokespersons for them.

— any mistakes in this talk are mine.

Agenda

Overview of the evolution of Core router design

A sampling of SW problems encountered during
evolution

An approach to resolving SW problems and
continued evolution

Core Router Evolution

WAN interconnects of Mainframes over
telecommunication infrastructure

LAN/WAN interconnects

— CORE routers(1+1 architectures)

— Leased telco lines for customers

— Dialup aggregation

As CORE routers evolved the old migrated to
support edge connects

Telco becomes a client of the IP network

1200

1000

800

600

400

200

0

Growth driven by increased user
demand

Internet traffic

The demand for increased network

system performance/scale is
relentless...

“2%7year”

2004

2006 2008 2010

2012 2014

10000 |
Router Capacity
x2.9/18m
1000
Moore's law
x2/18m
100 ~a Silicon speed
7/ 18m
d
10
’D}AM access rate x1.1/18m
1 [I I I I I I I I I I I I |

qo, @q &

0 ol
9

o A 0 '\,’I,’bb&@
REUCIC IR

System Scaling Problems

10000

—o— System BW
1000 —
/ / =¥~ MHz-gate/mW
100
W o
10 —

-_

W -+~ System e
1 T T T T T T T T

Hardware Details

Product example

+ Largest Routing System available today
Each Linecard Chassis: 1.28Tbps, 13.6kW
Switch Fabric Chassis: 8kW

:
.
§
, : ~ .
3
=] R St ;
. ' ' o
]

-.-
)
3

v AT
= xEy
- ALRILD
| G

:

>

\Ri 3
ol:
b

————
——1 -

I — e —
] — . em——

|

0 2008 Cisco Systems. Inc. Al rights reserved,

Some of the reasons SW problems
were encountered

Routers started as tightly coupled embedded systems

— speeds and feeds were the game with features
* CPUs + NPUs + very aware programmers led the game

Evolution was very fast

— Business customers
* |eased lines and frame relay

— Mid 1990s 64kbit dialup starts
— Core bandwidth doubling every year

As IP customer populations grew feature demands increased

Model of SW delivery not conducive to resilience of rapid feature
deployment

Intent/Goals

— build an application unaware fault tolerant distributed
system for routers

— always on(200msec failover of apps)

— allow for insertion of new features with no impact to
existing operations

— support +/- 1 versioning of key applications with zero
packet loss

— versioning to allow for live feature testing

Fault Tolerant Routing

Motivations

e We must be able to do better than 1+1

— Low confidence in 1+1 as only tested when actually
upgrading/downgrading/crashing

 Want 100% confidence in new code
— Despite lab time, rollout often uncovers showstoppers
— Rollback can be very disruptive

* Aiming for sub-200ms ‘outages’
— Want to be able to recover before VOIP calls notice

Core Routers are built as Clusters but
act as a single virtual machine

Multiple line cards with potentially various types of interfaces use NPUs to
route/switch amongst themselves via a data-plane (switch fabric)

A separate control plane controls all NPUs programming switching tables
and managing interface state along, routing protocols along with

environmental conditions
— Control plane CPUs are typically generic and ride the commodity curve

The Systems are heterogeneous and large

— Current Cisco CRS3 deployments switch 128th, have ~150 x86 CPUs for the
control plane along with ~1terabyte of memory and scale higher

Virtualization/Voting/BGP

BGP state is tied to TCP connection state
— loopback interfaces

Process Placement
Versioning
Leader election

HW virtualization
— e.g. NPU virtualization???

Approach taken

Abstraction layers chosen to isolate applications

— applications (e.g. protocols) isolated with wrappers
e application transparent check pointing!!!!

FTSS used to store state
SHIM used as wrapper
— model to allow for voting
Optimize, optimize, optimize
— experiment and prototype
ORCM used for process placement
Protocols isolated by a shim layer
— multiple versions called siblings
2 levels of operation chosen

— no use seen for hypervisor
— user mode for apps; kernel; abstraction layer via SHIM + FTSS

Protocol Virtualization

Existing protocol code largely untouched

Can run N siblings
— Can be different versions — the protocol being virtualized

— Allows full testing of new code — with seamless switchover
and switch back

Currently we run one virtualization wrapper
— Protected by storing state into FTSS
— Can be restarted thus upgradeable

— Designed to know as little about protocol as possible
* Treats most of it as a ‘bag of bits’

‘Run anywhere’ — no RP/LC assumptions
— We don’t care what you call the compute resources

CRS utilisation

*The CRS contains many CPUs which we treat as compute nodes in a
cluster

*If a node fails the others take up its workload

*No data is lost on a failure, and the software adapts to re-establish
redundancy

CRS utilisation

Blade server

*External resources can be added to the system to add redundancy or
compute power

Placement of Components

 Each compute node runs FTSS
and ORCM - both are started by
‘gn’ (system process monitor)

e FTSS stores routing data
redundantly across all the
systems in the router

* ORCM manages routing
processes and distributes them

H around the router — constraints
can be applied via configuration

e FTSS can run on other nodes to
make use of memory if desired.

BGP Virtualisation

Reliable TCP endpoint

BGP Virtualisation service
(shim)

Distributed dataplane

Virtualisation Layer recovery

Reliable TCP endpoint

New shim

Distributed dataplane

IS-IS Virtualisation

IS-IS L2 receiver

IS-IS Virtualisation service
(shim)

Distributed dataplane

Fault Tolerant State Storage

* Distributed Hash Table with intelligent
placement of data

* You can decide how much replication
— 2,3,4,N copies.
* More copies - more memory & slower write times.
* Fewer copies — less simultaneous failures

* Virtual Nodes — able to balance memory usage
to space on compute node

FTSS distributed storage

/ FTSS RPO \

FTSS LC1 FTSS LCO

‘ Some data — stored redundantly in 2 places

FTSS: losing a node

DHT tuples

Value

e Binary data e Binary data e Unique set of
e Unique in DHT binary data

items

e Optimizations
for use as a list
of keys

DHT provides optimised routines for:

fast parallel store and deletion of multiple tuples

fast update of multiple links within a tuple

*Operations directly using the link list for storing related data

fast parallel recovery of multiple, possibly inter-linked, KVL tuples
Copies of the tuples are stored on multiple nodes for redundancy

DHT use in BGP processing

BGP Shim operations

Receive
incoming BGP
messages

Acknowledge
TCP

Hand to BGP
siblings;
routes
produced

Pass routes
from lead
sibling to RIB

Create
minimal
message set

Unprocessed
messages

Early redundant store
to permit fast

acknowledgement of
\ incoming BGP messages

Attributes +
NLRI

RIB prefixes

Minimal set of Data store for
incoming BGP re-syncing with

data RIBs on restart /

DHT

BGP data in DHT (I)

Unprocessed Announcements from Source peers
incoming peers, minimal set
messages

ASPATH 1
+ attrs peerl

sy 10.0.0.4

126

ASPATH 2 192.168.2
+ attrs 4’ 2.5

ASPATH 3
+ attrs

Tuples / Data Wlthln / Tuples J

links

BGP data in DHT (lI)

Siblings RIB prefixes

Links

Tuples j

DHT use in IS-1IS processing

IS-1S Shim operations

Create Hand to IS-IS Pass routes
minimal siblings; routes from lead
message set produced sibling to RIB

Receive
incoming IS-IS
HEES

RIB prefixes

Minimal set of Data store for
incoming IS-IS resyncing with

\ frames RIBs on restart /

DHT

Multipath IGP/EGP demo

| udd Prc
Demonstr

NIir
CISCO

