KIT

Karlsruhe Institute of Technology

Deduplication in VM Environments
Frank Bellosa <bellosa@kit.edu>

Konrad Miller <miller@kit.edu>

Marc Rittinghaus <rittinghaus@kit.edu>

KARLSRUHE INSTITUTE OF TECHN IT) - SYSTEM ARCHITECTURE OUP

scan.address = hint-=end ; wvma = vma-=vm next) i
vm_flags & VM MERGEABLE))

(ksm_scan.address < vma->vm_start)
ksm_scan.address = vma->vm start;
if (lvma-=anon_vma)
ksm_scan.address = vma-=vm_end;
while (KSm_scan.address < vma->vm_end && KSM_SCAn.address < hint->end) 4
1t (ksm_test exit(mm))
break:
*page = follow page(vma, ksm_scan.address, FOLL GET);
if (IS_ERR_OR_NULL(*page)) {
ksm_scan.address += PAGE_SIZE;
ksm_cond_resched();
continue;
}
it (PageAnon(*page) ||
page trans_ compound anon(*page)) {
flush_anon page(vma, *page, ksm scan.address);
flush_dcache_page(*page);

rmap_item = get_next_rmap_item_hint{(slot,
ksm_scan.rmap_list, ksm_scan.address);

KIT — Universitat des Landes Baden-Wilrttemberg und
nationales F in der Helmhol q

http://www.kit.edu

Memory Sharing in VM Environments

a Operating Systems do a fairly good job in sharing,
but there is still duplicate content in memory
a How much ?
a How long ?
a Wherefrom ?

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 2/11

Memory Sharing in VM Environments

m Operating Systems do a fairly good job in sharing,
but there is still duplicate content in memory

m How much ?
a How long ?
a Wherefrom ?

m State of the art in deduplication

a KSM++: introducing hints for memory scanners
a Evaluation

a Challenge: NUMA and SCM

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 2/11

Virtualization for Server Consolidation

a Past:

One physical machine for each service @g
\
§ 0 iy

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 3/11

Virtualization for Server Consolidation

a Past:
One physical machine for each service %‘
ST
YASNE SgSN
a Present:

Multiple isolated virtual machines on a
single physical host

a Improved hardware utilization

Increased flexibility (placement/migration)
Smaller hardware footprint

Energy efficiency

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 3/11

Memory Duplication in VM Environments

® Main memory is the primary bottleneck when consolidating machines

a Different VMs often contain pages with equal content

System Configuration Equal pages
VMware ESX (VMware@0OSDI'02) 10 VMs, SPEC95 65 %
Difference Engine (ucsD@0sDIog) 3 VMs, XP/Linux, RUBiIS/LAMP 40 % — 85 %
Satori (Cambridge@USENIX ATC’09) 2 VMs, Apache 66 %
Satori (Cambridge@USENIX ATC’09) 2 VMs, Kernel build 1%
Chang et al (Taiwan Univ@ISPA'11) Hadoop, HOMP (MPI), LAMP 11% —86%
Barker et al (UMASS@USENIX ATC'12) offline comparison of 15%

desktop/server snapshots

m Goal: Merge pages, free memory for additional VMs

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 4/11

Memory Deduplication for VMs

Physical
Memory

Free

kernel
libA.so

w Without deduplication:
Every guest page maps to a different host page

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 5/11

Memory Deduplication for VMs

,,,,,,,,,,,

Physical Physical
Memory Memory

libA.so
Free Free

kernel

Free

Free

Free

,,,,,,,,,,,

kernel

kernel

libA.so libA.so

w Without deduplication:
Every guest page maps to a different host page

wu With deduplication:
Pages with identical content are merged and shared between VMs
through copy-on-write (COW)

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 5/11

Memory Deduplication for VMs

,,,,,,,,,,,

Physical Physical
Memory Memory

libA.so
Free Free

kernel

Free

Free

Free

,,,,,,,,,,,

kernel

kernel

libA.so libA.so

w Without deduplication:
Every guest page maps to a different host page

wu With deduplication:
Pages with identical content are merged and shared between VMs
through copy-on-write (COW)

How can pages with equal content be identified?

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 5a/11

Semantic Gap

w Traditional Sharing Mechanisms:
Based on source object, not on content
a fork(): parent process
a mmap () : equal inode

m Virtualization introduces semantic gap
between guest and host
a Source objects unknown to the host
a No semantic information about guest
pages

Physical
Memory

Free

Free

kernel

kernel
libA.so

Traditional sharing mechanisms cannot be used for deduplicating VMs

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments

6/11

Getting Around the Semantic Gap

Memory scanners directly address page content

Continuously catalog page content

a Random order (VMware ESX, OSDI'02)
a Linear order (Linux’ KSM, Linux Symposium’09)

Classify pages based on their modification
frequency
m “Has the page’s content changed since last visit?”

® Build index of infrequently modified pages

Merge/mark COW equal pages that have been
found through the index

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments

Physical
Memory

Hypervisor

Scan
pages

Memory
Scanner

7a/11

Memory Scanners

m Pay memory density with CPU/memory bandwidth overhead

Scan Rate Scan Time CPU Overhead

pages minutes ~ 0
Default 1000 229 s 28%

. pages minute ~ 0
Aggressive 5000 £5%= Joabyts 70 %

a Initial benchmarks: more than 70 % of mergable pages modified
a ...within a single scan round — not caught by scanner
m ...late enough to amortize the merge cost

Scan Interval

Sharing Al
Opportunity

10 15 [m]

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 8b/11

Closing the Semantic Gap

a Paravirtualization/Introspection closes
the semantic gap

a Assumption: Physical | Ny

. . . Memory -
Many deduplication candidates. . . Free g libAso
m ...stem from Virtual Disk Image (VDI) Free g kernel
(programs, libraries, data) kernel -

a ...are copies from other data in the system libA.so '

- DamA
[X |
m Transport information about duplication &Il\l

from guests to host libB.s0
a Modify guests’ VDI driver

kernel
libA.so

Interface

(Satori, USENIX'09)
a Hook guests’ syscalls
(Disco, SOSP’97)

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 9/11

State of the Art

a Memory scanners:

a Deduplicate sharing opportunities of any source
a Can catch sharing opportunities if they live long enough (> 5 — 30 min)

a Paravirtualization based approaches:

a Deduplicate short and long-lived opportunities that stem from disk
m Process all /0 — Bottleneck for I/O-intensive workloads

a Take-away message:

a Memory scanners exploit sharing opportunities from all sources
a Deduplication schemes can be improved through semantic information
m Guests’ I/O pages are prime deduplication candidates

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 10/11

Temporal Memory Duplication Characteristics
m 3 VMs: Ubuntu + Firefox + {LibreOffice, Gimp, Eclipse} in Simics

60,0% 54,5%

o, 200% E[tvisic]

£

g 40,0% Deduplication E[tvisit]

7] Improvement |

2 30,0% Potential Eltvise] | |

s

2 20,0% E[tyisit]

g o 15,0% 13,0% 0 8% ‘ :t
8% !

© 100% KSM | 1]

R e
0,0%
21 sec 230 sec 25 min 230 min

m Sharing opportunities live. ..
a ...extremely short — not worth sharing
m ...between 1sec — 30sec — not caught by memory scanners
a ...long — already caught by memory scanners

Visiting sharing opportunities earlier leads to more deduplicated pages

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 11/11

Semantic Memory Duplication Characteristics
® 3 VMs: Ubuntu + Firefox + {LibreOffice, Gimp, Eclipse} in Simics

Reserved_ Other

Memory Prop. of
Category Sharing

File 73.7% Anonymous

Heap 9.2%
Anonymous 6.3%
Slab Cache 5.8%
Reserved' 3.8%
Other 1.3%

' Non-free pages not explicitly tracked by OS
introspection (e.g., driver private pages)

m Barker et al.: 50 % Heap, 43 % File
m Kloster et al.: 64 % — 94 % File

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 12/11

KSM++: Hints for Memory Scanners

m Best of both worlds: Integrate 1/0-based dedup into memory scanner

a Host/Hypervisor does I/O on behalf of guest VMs

m |/O-operations target guests’ buffer caches and mmap areas
a Record Host-VFS target memory areas in a “Hints Buffer”

a Visit I/O-pages earlier in memory scanner

@ No paravirtualization required
a guest-agnostic

m also works for native apps Guest App \ \ App \

(e.g., Zero Install) VFS Read GuestOS ‘ ‘ Guest OS ‘
VF?MQ Native
e Hypervisor App

Host ~ " ypervisor |

VFS Read Hint » KSM+ Host OS

RealDMA (|
Read ‘ VDI File | | vDIFile | ig?sf'ca'

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 13/11

Storing and Processing Hints

a Hints are buffered in a bounded circular stack
m Keeps history of last unprocessed $stack_size disk accesses
® Bounded memory requirements, e.g., during I/O-burts
a Implicit pruning and aging

Top =P 3x pop

Top—» D
C

Base—» B

2x push

0O|golm
0ojgom(mn

oe)

Base =
Top -

>|m

Base —p|

®

a KSM daemon loops through all virtual mappings
a Wakes up periodically and scans a fixed number of pages

m KSM++ decides on wakeup if scanning or processing hints
m Processes hints interleaved to regular KSM scan
a Does not starve non-I/O scan — catches duplicates from all sources
a Obeys scan rate limits (can limit CPU/IO resource consumption)

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 14/11

Merge Performance: Kernel Build
@ 2 VMs: Linux kernel build

100 MiB

u Default scan rate: 5000 £22% — 100 pages every 20 ms

! T T T T T T T T T
2 500 MiB | Opportunities =+ =+ KSM++ (100 ms) ===+ 4
= KSM (20 ms) — KSMi+ (200 ms) -
g KSM++ (20 ms
£ a0MmiB | +*(ms?_ . i
g - i : famrnt e PETIFTICTION
=) - PR 3
S 300MiB |
o0 R M .
£
£ 200MiB
wn
=
3
8
L
[a)

0 60 120 180 240 300 360 420 480 540 600
Time [s]

m Opportunities peak at about 37 % of total memory assigned to both
a Opportunities determined with 1s snapshots

a Measured same benchmark runtimes for KSM and KSM++

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 15/11

Merge Performance: Apache + HTTPerf

m 2 VMs: Apache, serving the same set of files
a Sum of served files does not fit into main memory
a Different, random access order for both VMs

@ 500 MiB - ' Oppolrtunitiles - KSIM++ EIOO Inls) we b

= KSM (20ms) — KSM++ (200 ms)

5 400 MiB F KSM++ (20 ms) .

8

j=¥

& . s e e e e

& so0oMmis F T [N e e e o]

on -

g e

S 200MiB | e e e]

]

2

8 100 MiB X :

5 1 1 1 1 1 S
0 120 240 360 480 600 720 840 960 1080

Time [s]

a Higher line = more pages shared = more memory saved
® Measured same throughput with HTTPerf

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 16/11

Overhead of Hint Generation

a 1 VM: Bonnie++ stress test

a Average of 30 measurements with .05 and .95 quantiles

540
520
500
480

Throughput [M/sec]

KSM++ F—4+— KSM F—+—i

S

20 100

scan rate [ms]

200

m Disk throughput does not vary significantly when choosing KSM++

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments

17/11

KSM++ Overhead

a CPU consumption:

Approach 20ms 100ms 200ms
KSM 688% 275% 16.3%
KSM++ 671% 336% 17.0%

@ Negligible additional memory consumption
m Hint buffer — 2 MiB
m Lock for serialization of buffer accesses

a Runtime variation between KSM and KSM++ below 1%

a Breaking shared pages may happen at a bad time
a malloc — initialize with pattern — deduplicate — write
a This is why we don’t merge the free-pool (zero-pages)
a Not due to hinting but due to more effective deduplication

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 18/11

Worse deduplication through hints?

a Nothing to share? — can’t get worse/no difference
® No I/0? — no hints — scan rate is fully used for linear scan

m Worst case: Many sharing opportunities not based on files
a Hints slow down detection of sharing opportunities
a Interleaving ratio limits how much worse it gets
a e.g, 1:1 — memory scan at most twice as slow

a Mixed workload (1. VM: Apache, 2. VM: Kernel build):

KSM++ (20ms) — KSM (20 ms) =+
175 MiB 5 KSM++ (100ms) KSM (100 ms) = -

150 MiB ¢
125 MiB

100 MiB | e

Detected Sharing Opportunities

0 120 240 360 480 600 720 840 960

Time [s]

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 19/11

Future Work |

m Enable/Disable I/O-hints based on static analysis of used VDI’s
a Turn off hinting if VDI's are very different

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 20/11

Future Work |

m Enable/Disable I/O-hints based on static analysis of used VDI’s
a Turn off hinting if VDI's are very different

a Dynamically adapt settings

a Scan rate: based on merge success
a Interleaving ratio: based on merge success of hints/scan
m Buffer size: based on scan rate and page fluctuation

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 20/11

Future Work Il

a Incorporate hints from other sources
a TLB-miss handler

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 21/11

Future Work Il

a Incorporate hints from other sources
a TLB-miss handler

m Statistical analysis of sharing history via full system simulation

a Which page histories predict sharing opportunities?
a Which pages are overwritten with same content?

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 21/11

Future Work Il

a Incorporate hints from other sources
a TLB-miss handler

m Statistical analysis of sharing history via full system simulation

a Which page histories predict sharing opportunities?
a Which pages are overwritten with same content?

a NUMA-aware memory deduplication

a Remote memory accesses are expensive: + 75 % latency, - 33% bandwidth
a Worst case: all pages on remote node (e.g., SPEC libquantum: 2 x run time)
a High page access frequency — avoid sharing across nodes
a Which nodes reference a certain page?
a Revoke deduplication, replicate shared pages

a Storage class memory (PCM, STT-RAM) shows poor write characteristics
a Deduplicated pages are good candidates for SCM due to long-lasting

RO/COW mapping

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 21/11

Conclusion

® Main memory is scarce in virtualized environments — deduplication

® Memory scanners can find long-lived sharing opportunities
a |/O-based systems can find short lived opportunities

® KSM++: Combination of memory scanning and I/O-based approaches

m Deduplicate pages from all sources (named and anonymous)
Quick detection of VDI-based sharing opportunities

Lossy buffer copes with bursty 1/0

Configurable, limited overhead

No paravirtualization

a KSM++ hints may help detecting up to 4x more sharing opportunities
than pure random or linear scanning in our benchmarks

K. Miller, M. Rittinghaus, F. Bellosa — Deduplication in VM Environments 22/11

