
KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT) - SYSTEM ARCHITECTURE GROUP

Deduplication in VM Environments
Frank Bellosa <bellosa@kit.edu>
Konrad Miller <miller@kit.edu>
Marc Rittinghaus <rittinghaus@kit.edu>

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

http://www.kit.edu

Memory Sharing in VM Environments

Operating Systems do a fairly good job in sharing,
but there is still duplicate content in memory

How much ?
How long ?
Wherefrom ?

State of the art in deduplication
KSM++: introducing hints for memory scanners
Evaluation
Challenge: NUMA and SCM

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 2/11

Memory Sharing in VM Environments

Operating Systems do a fairly good job in sharing,
but there is still duplicate content in memory

How much ?
How long ?
Wherefrom ?

State of the art in deduplication
KSM++: introducing hints for memory scanners
Evaluation
Challenge: NUMA and SCM

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 2/11

Virtualization for Server Consolidation

Past :
One physical machine for each service

Present :
Multiple isolated virtual machines on a
single physical host

Improved hardware utilization
Increased flexibility (placement/migration)
Smaller hardware footprint
Energy efficiency

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 3/11

Virtualization for Server Consolidation

Past :
One physical machine for each service

Present :
Multiple isolated virtual machines on a
single physical host

Improved hardware utilization
Increased flexibility (placement/migration)
Smaller hardware footprint
Energy efficiency

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 3/11

Memory Duplication in VM Environments

Main memory is the primary bottleneck when consolidating machines

Different VMs often contain pages with equal content

System Configuration Equal pages

VMware ESX (VMware@OSDI’02) 10 VMs, SPEC95 65 %
Difference Engine (UCSD@OSDI’08) 3 VMs, XP/Linux, RUBiS/LAMP 40 % – 85 %
Satori (Cambridge@USENIX ATC’09) 2 VMs, Apache 66 %
Satori (Cambridge@USENIX ATC’09) 2 VMs, Kernel build 11 %
Chang et al (Taiwan Univ@ISPA’11) Hadoop, HOMP (MPI), LAMP 11 % – 86 %
Barker et al (UMASS@USENIX ATC’12) offline comparison of 15 %

desktop/server snapshots

Goal: Merge pages, free memory for additional VMs

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 4/11

Memory Deduplication for VMs
Physical

Memory

Hypervisor VM 1

libA.so

kernel

Data A

VM 2

kernel

libA.so

Data B

Free

?

?

?

?

?

?

Free

Physical

Memory

Hypervisor VM 1

libA.so

kernel

Data A

VM 2

kernel

libA.so

Data B

Free

Free

Free

?

?

?

?

Free

Without deduplication:
Every guest page maps to a different host page
With deduplication:
Pages with identical content are merged and shared between VMs
through copy-on-write (COW)

How can pages with equal content be identified?

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 5/11

Memory Deduplication for VMs
Physical

Memory

Hypervisor VM 1

libA.so

kernel

Data A

VM 2

kernel

libA.so

Data B

Free

?

?

?

?

?

?

Free

Physical

Memory

Hypervisor VM 1

libA.so

kernel

Data A

VM 2

kernel

libA.so

Data B

Free

Free

Free

?

?

?

?

Free

Without deduplication:
Every guest page maps to a different host page
With deduplication:
Pages with identical content are merged and shared between VMs
through copy-on-write (COW)

How can pages with equal content be identified?

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 5/11

Memory Deduplication for VMs
Physical

Memory

Hypervisor VM 1

libA.so

kernel

Data A

VM 2

kernel

libA.so

Data B

Free

?

?

?

?

?

?

Free

Physical

Memory

Hypervisor VM 1

libA.so

kernel

Data A

VM 2

kernel

libA.so

Data B

Free

Free

Free

?

?

?

?

Free

Without deduplication:
Every guest page maps to a different host page
With deduplication:
Pages with identical content are merged and shared between VMs
through copy-on-write (COW)

How can pages with equal content be identified?

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 5a/11

Semantic Gap

Traditional Sharing Mechanisms:
Based on source object, not on content

fork(): parent process
mmap(): equal inode

Virtualization introduces semantic gap
between guest and host

Source objects unknown to the host
No semantic information about guest
pages

Physical

Memory

Hypervisor VM 1

libA.so

kernel

Data A

VM 2

kernel

libA.so

Data B

Free

?

?

?

?

?

?

Free
S

e
m

a
n

tic
 G

a
p

Traditional sharing mechanisms cannot be used for deduplicating VMs

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 6/11

Getting Around the Semantic Gap

Memory scanners directly address page content

Continuously catalog page content
Random order (VMware ESX, OSDI’02)
Linear order (Linux’ KSM, Linux Symposium’09)

Classify pages based on their modification
frequency

“Has the page’s content changed since last visit?”

Build index of infrequently modified pages

Merge/mark COW equal pages that have been
found through the index

Physical

Memory

Hypervisor

?

?

?

?

?

?

Memory

Scanner

Scan

pages

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 7a/11

Memory Scanners

Pay memory density with CPU/memory bandwidth overhead

Scan Rate Scan Time CPU Overhead

Default 1000 pages
second 5 minutes

gigabyte ∼ 28%

Aggressive 5000 pages
second 1 minute

gigabyte ∼ 70%

Initial benchmarks: more than 70 % of mergable pages modified. . .
. . . within a single scan round→ not caught by scanner
. . . late enough to amortize the merge cost

0 5 10 15

Time

[m]

Sharing

Opportunity

Scan Interval

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 8b/11

Closing the Semantic Gap
Paravirtualization/Introspection closes
the semantic gap

Assumption:
Many deduplication candidates. . .

. . . stem from Virtual Disk Image (VDI)
(programs, libraries, data)

. . . are copies from other data in the system

Transport information about duplication
from guests to host

Modify guests’ VDI driver
(Satori, USENIX’09)
Hook guests’ syscalls
(Disco, SOSP’97)

Physical

Memory

Hypervisor VM 1

 libA.so

 kernel

 Data A

VM 2

 kernel

 libA.so

 Data B

Free

kernel

libA.so

Data A

kernel

Data B

libB.so

Free

In
te

rf
a

c
e

In
te

rf
a

c
e

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 9/11

State of the Art

Memory scanners:
Deduplicate sharing opportunities of any source
Can catch sharing opportunities if they live long enough (> 5 – 30 min)

Paravirtualization based approaches:
Deduplicate short and long-lived opportunities that stem from disk
Process all I/O→ Bottleneck for I/O-intensive workloads

Take-away message:
Memory scanners exploit sharing opportunities from all sources
Deduplication schemes can be improved through semantic information
Guests’ I/O pages are prime deduplication candidates

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 10/11

Temporal Memory Duplication Characteristics
3 VMs: Ubuntu + Firefox + {LibreOffice, Gimp, Eclipse} in Simics

54,5%

15,0%
13,0%

9,8%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

≥ 1 sec ≥ 30 sec ≥ 5 min ≥ 30 min

C
u

m
u

la
ti
v
e

 S
h

a
ri
n

g

Deduplication
Improvement
Potential

E[tVisit]

E[tVisit]

E[tVisit]

E[tVisit]

1

1121

KSM

KSM++

E
q

u
a

l
P

a
g

e
s

t

2

Sharing opportunities live. . .
. . . extremely short→ not worth sharing
. . . between 1 sec – 30 sec→ not caught by memory scanners
. . . long→ already caught by memory scanners

Visiting sharing opportunities earlier leads to more deduplicated pages

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 11/11

Semantic Memory Duplication Characteristics
3 VMs: Ubuntu + Firefox + {LibreOffice, Gimp, Eclipse} in Simics

Memory Prop. of
Category Sharing

File 73.7 %
Heap 9.2 %

Anonymous 6.3 %
Slab Cache 5.8 %
Reserved1 3.8 %

Other 1.3 %
1 Non-free pages not explicitly tracked by OS

introspection (e.g., driver private pages)

File

Heap

Anonymous

Slab
Cache

Reserved Other

Barker et al.: 50 % Heap, 43 % File
Kloster et al.: 64 % – 94 % File

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 12/11

KSM++: Hints for Memory Scanners

Best of both worlds: Integrate I/O-based dedup into memory scanner

Host/Hypervisor does I/O on behalf of guest VMs
I/O-operations target guests’ buffer caches and mmap areas
Record Host-VFS target memory areas in a “Hints Buffer”

Visit I/O-pages earlier in memory scanner

No paravirtualization required
guest-agnostic
also works for native apps
(e.g., Zero Install)

Hypervisor

Host OS

App App

Guest OS Guest OS

Native

App

VDI File VDI File
Physical

Disk

Guest

VFS Read

VDMA

Read

Host

VFS Read

Real DMA

Read

KSM++Hint

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 13/11

Storing and Processing Hints
Hints are buffered in a bounded circular stack

Keeps history of last unprocessed $stack size disk accesses
Bounded memory requirements, e.g., during I/O-burts
Implicit pruning and aging

E

D

C

B

ABase

Top 2x push

F

E

D

C

B

G

Base

Top

3x pop

D

C

BBase

Top

KSM daemon loops through all virtual mappings
Wakes up periodically and scans a fixed number of pages

KSM++ decides on wakeup if scanning or processing hints
Processes hints interleaved to regular KSM scan
Does not starve non-I/O scan→ catches duplicates from all sources
Obeys scan rate limits (can limit CPU/IO resource consumption)

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 14/11

Merge Performance: Kernel Build
2 VMs: Linux kernel build

Default scan rate: 5000 pages
second → 100 pages every 20 ms

100 MiB

200 MiB

300 MiB

400 MiB

500 MiB

 0 60 120 180 240 300 360 420 480 540 600

D
et

ec
te

d
 S

h
ar

in
g

 O
p

p
o

rt
u

n
it

ie
s

Time [s]

Opportunities
KSM (20 ms)

KSM++ (20 ms)

KSM++ (100 ms)
KSM++ (200 ms)

Opportunities peak at about 37 % of total memory assigned to both
Opportunities determined with 1s snapshots

Measured same benchmark runtimes for KSM and KSM++

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 15/11

Merge Performance: Apache + HTTPerf
2 VMs: Apache, serving the same set of files

Sum of served files does not fit into main memory
Different, random access order for both VMs

100 MiB

200 MiB

300 MiB

400 MiB

500 MiB

 0 120 240 360 480 600 720 840 960 1080

D
et

ec
te

d
 S

h
ar

in
g

 O
p

p
o

rt
u

n
it

ie
s

Time [s]

Opportunities
KSM (20 ms)

KSM++ (20 ms)

KSM++ (100 ms)
KSM++ (200 ms)

Higher line = more pages shared = more memory saved
Measured same throughput with HTTPerf

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 16/11

Overhead of Hint Generation
1 VM: Bonnie++ stress test

Average of 30 measurements with .05 and .95 quantiles

480

500

520

540

T
h

ro
u

g
h

p
u

t
[M

/s
ec

]

scan rate [ms]

20 100 200

KSM++ KSM

Disk throughput does not vary significantly when choosing KSM++

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 17/11

KSM++ Overhead

CPU consumption:

Approach 20 ms 100 ms 200 ms

KSM 68.8 % 27.5 % 16.3 %

KSM++ 67.1 % 33.6 % 17.0 %

Negligible additional memory consumption
Hint buffer→ 2 MiB
Lock for serialization of buffer accesses

Runtime variation between KSM and KSM++ below 1 %

Breaking shared pages may happen at a bad time
malloc→ initialize with pattern→ deduplicate→ write
This is why we don’t merge the free-pool (zero-pages)
Not due to hinting but due to more effective deduplication

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 18/11

Worse deduplication through hints?

Nothing to share?→ can’t get worse/no difference
No I/O?→ no hints→ scan rate is fully used for linear scan

Worst case: Many sharing opportunities not based on files
Hints slow down detection of sharing opportunities
Interleaving ratio limits how much worse it gets
e.g., 1:1→ memory scan at most twice as slow

Mixed workload (1. VM: Apache, 2. VM: Kernel build):

100 MiB

125 MiB

150 MiB

175 MiB

 0 120 240 360 480 600 720 840 960D
et

ec
te

d
 S

h
ar

in
g
 O

p
p
o
rt

u
n
it

ie
s

Time [s]

KSM++ (20ms)
KSM++ (100ms)

KSM (20 ms)
KSM (100 ms)

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 19/11

Future Work I
Enable/Disable I/O-hints based on static analysis of used VDI’s

Turn off hinting if VDI’s are very different

Dynamically adapt settings
Scan rate: based on merge success
Interleaving ratio: based on merge success of hints/scan
Buffer size: based on scan rate and page fluctuation

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 20/11

Future Work I
Enable/Disable I/O-hints based on static analysis of used VDI’s

Turn off hinting if VDI’s are very different

Dynamically adapt settings
Scan rate: based on merge success
Interleaving ratio: based on merge success of hints/scan
Buffer size: based on scan rate and page fluctuation

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 20/11

Future Work II
Incorporate hints from other sources

TLB-miss handler

Statistical analysis of sharing history via full system simulation
Which page histories predict sharing opportunities?
Which pages are overwritten with same content?

NUMA-aware memory deduplication
Remote memory accesses are expensive: + 75 % latency, - 33% bandwidth

Worst case: all pages on remote node (e.g., SPEC libquantum: 2 × run time)
High page access frequency→ avoid sharing across nodes
Which nodes reference a certain page?
Revoke deduplication, replicate shared pages

Storage class memory (PCM, STT-RAM) shows poor write characteristics
Deduplicated pages are good candidates for SCM due to long-lasting
RO/COW mapping

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 21/11

Future Work II
Incorporate hints from other sources

TLB-miss handler

Statistical analysis of sharing history via full system simulation
Which page histories predict sharing opportunities?
Which pages are overwritten with same content?

NUMA-aware memory deduplication
Remote memory accesses are expensive: + 75 % latency, - 33% bandwidth

Worst case: all pages on remote node (e.g., SPEC libquantum: 2 × run time)
High page access frequency→ avoid sharing across nodes
Which nodes reference a certain page?
Revoke deduplication, replicate shared pages

Storage class memory (PCM, STT-RAM) shows poor write characteristics
Deduplicated pages are good candidates for SCM due to long-lasting
RO/COW mapping

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 21/11

Future Work II
Incorporate hints from other sources

TLB-miss handler

Statistical analysis of sharing history via full system simulation
Which page histories predict sharing opportunities?
Which pages are overwritten with same content?

NUMA-aware memory deduplication
Remote memory accesses are expensive: + 75 % latency, - 33% bandwidth

Worst case: all pages on remote node (e.g., SPEC libquantum: 2 × run time)
High page access frequency→ avoid sharing across nodes
Which nodes reference a certain page?
Revoke deduplication, replicate shared pages

Storage class memory (PCM, STT-RAM) shows poor write characteristics
Deduplicated pages are good candidates for SCM due to long-lasting
RO/COW mapping

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 21/11

Conclusion
Main memory is scarce in virtualized environments→ deduplication

Memory scanners can find long-lived sharing opportunities
I/O-based systems can find short lived opportunities

KSM++: Combination of memory scanning and I/O-based approaches
Deduplicate pages from all sources (named and anonymous)
Quick detection of VDI-based sharing opportunities
Lossy buffer copes with bursty I/O
Configurable, limited overhead
No paravirtualization

KSM++ hints may help detecting up to 4x more sharing opportunities
than pure random or linear scanning in our benchmarks

K. Miller, M. Rittinghaus, F. Bellosa – Deduplication in VM Environments 22/11

