
 1

Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,  
Yury Audzevich, Sergio López-Buedo, Andrew W. Moore

Understanding PCIe performance
for end host networking

 2

The idea of end hosts participating in the implementation of
network functionality has been extensively explored in

enterprise and datacenter networks

 3

• Isolation
• QoS
• Load balancing
• Application specific processing
• ….

More recently, programmable NICs and FPGAs enable offload
and NIC customisation

 4

Not “just” in academia, but in production!

Implementing offloads is not easy

Many potential bottlenecks

 5

Implementing offloads is not easy

Many potential bottlenecks

PCI Express (PCIe) and its implementation by the host
is one of them!

 6

PCIe overview

 7

CPU  
Core

Devices

• De facto standard to connect high
performance IO devices to the rest of the
system. Ex: NICs, NVMe, graphics, TPUs 

• PCIe devices transfer data to/from host
memory via DMA (direct memory access)  

• DMA engines on each device translate
requests like “Write these 1500 bytes to host
address 0x1234” into multiple PCIe Memory
Write (MWr) “packets”. 

• PCIe is almost like a network protocol with
packets (TLPs), headers, MTU (MPS), flow
control, addressing and switching (and NAT ;)

Cache

CPU  
Core

Memory
controller

PCIe root 
complex

Memory

PCIe

 8

PCIe protocol overheads

62.96 Gb/s at the
physical layer

~ 32 - 50 Gb/s for
data transfers

Model: PCIe gen 3 x8 64 bit addressing

PCIe protocol

 9

PCIe protocol overheads

62.96 Gb/s at the
physical layer

~ 32 - 50 Gb/s for
data transfers

PCIe protocol

~ 12 - 48 Gb/s

Queue pointer
updates, descriptors,
interrupts

Model: PCIe gen 3 x8 64 bit addressing

 10

PCIe protocol overheads

62.96 Gb/s at the
physical layer

~ 32 - 50 Gb/s for
data transfers

PCIe protocol

~ 12 - 48 Gb/s

Queue pointer
updates, descriptors,
interrupts

Complexity!Model: PCIe gen 3 x8 64 bit addressing

 11

PCIe latency
ExaNIC round trip
times (loopback) with
kernel bypass

PCIe contributes the
majority of latency

Homa [SIGCOMM2018]:
Desire single digit us
latency for small
messages

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 200 400 600 800 1000 1200 1400 1600

90.6%
84.4%

77.2%

M
ed

ia
n

La
te

nc
y

(n
s)

Transfer Size (Bytes)

NIC
PCIe contribution

Exablaze ExaNIC x40, Intel Xeon E5-2637v3 @3.5GHz (Haswell)

 12

PCIe latency imposes constraints
Ethernet line rate at
40Gb/s for 128B
packets means a new
packet every 30ns.

=
NIC has to handle at
least 30 concurrent
DMAs in each
direction plus
descriptor DMA 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 200 400 600 800 1000 1200 1400 1600

90.6%
84.4%

77.2%

M
ed

ia
n

La
te

nc
y

(n
s)

Transfer Size (Bytes)

NIC
PCIe contribution

Exablaze ExaNIC x40, Intel Xeon E5-2637v3 @3.5GHz (Haswell)

 13

PCIe latency imposes constraints
Ethernet line rate at
40Gbps for 128B
packets means a new
packet every 30ns.

=
NIC has to handle at
least 30 concurrent
DMAs in each
direction plus
descriptor DMA 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 200 400 600 800 1000 1200 1400 1600

90.6%
84.4%

77.2%

M
ed

ia
n

La
te

nc
y

(n
s)

Transfer Size (Bytes)

NIC
PCIe contribution

Exablaze ExaNIC x40, Intel Xeon E5-2637v3 @3.5GHz (Haswell)
Complexity!

It get’s worse…

 14

 15

Distribution of 64B DMA Read latency

Xeon E5
•547ns median
•573ns 99th percentile
•1136ns max 

Xeon E3
•1213ns(!) median
•5707ns(!) 99th percentile
•5.8ms(!!!) max

Netronome NFP-6000, Intel Xeon E5-2637v3 @ 3.5GHz (Haswell)
Netronome NFP-6000, Intel Xeon E3-1226v3 @ 3.3GHz (Haswell)

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000

C
D
F

Latency (ns)

Xeon E5 (Haswell)
Xeon E3 (Haswell)

 16

Distribution of 64B DMA Read latency

Xeon E5
•547ns median
•573ns 99th percentile
•1136ns max 

Xeon E3
•1213ns(!) median
•5707ns(!) 99th percentile
•5.8ms(!!!) max

Netronome NFP-6000, Intel Xeon E5-2637v3 @ 3.5GHz (Haswell)
Netronome NFP-6000, Intel Xeon E3-1226v3 @ 3.3GHz (Haswell)

Your offload implementation has to handle this!

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000

C
D
F

Latency (ns)

Xeon E5 (Haswell)
Xeon E3 (Haswell)

 17

PCIe host implementation is evolving

• Tighter integration of PCIe and CPU caches (e.g. Intel’s DDIO)

• PCIe device is local to some memory (NUMA)

• IOMMU interposed between PCIe device and host memory

PCIe transactions are dependent on temporal state on the host and
the location in host memory

 18

PCIe host implementation is evolving

• Tighter integration of PCIe and caches (e.g. Intel’s DDIO)

• PCIe is local to some memory (NUMA)

• IOMMU interposed between PCIe device and host memory

PCIe transactions are dependent on temporal state on the host and
the location in host memory

PCIe data-path with IOMMU (simplified)

 19

IOMMU

Host Memory

IO-TLB

0x1234 0x2234

Device

Pagetable

RD 0x1234

RD 0x2234
DMA Address

Host Physical
Address

• IOMMUs translate addresses in PCIe transactions to host addresses
• Use a Translation Lookaside Buffer (TLB) as cache
• On TLB miss, perform a costly pageable walk, replace TLB entry

Measuring the impact of the IOMMU

 20

• DMA reads of fixed size
• From random addresses on the host 

• Systematically change the address range (window) we access 

• Measure achieved bandwidth (or latency) 

• Compare with non-IOMMU case

 21

• Different transfer sizes
• Throughput drops

dramatically once region
exceeds 256K.

• TLB thrashing 

• TLB has 64 entries 
(256KB/4096B)  
Not published by Intel!  

• Effect more dramatic
for smaller transfer sizes

IOMMU results

Netronome NFP-6000, Intel Xeon E5-2630 v4 @2.2GHz (Broadwell), IOMMU forced to 4k pages

 22

• A plethora of tools exist to analyse and understand OS and
application performance 
 
… but very little data available on PCIe contributions

• Important when implementing offloads to programmable NICs 
 
… but also applicable to other high performance IO devices such
as ML accelerators, modern storage adapters, etc

Understanding PCIe performance is important

 23

• A model of PCIe to quickly analyse protocol overheads  

• A suite of benchmark tools in the spirit of lmbench/hbench
• Records latency of individual transactions and bandwidth of batches
• Allows to systematically change
• Type of PCIe transaction (PCIe read/write)
• Transfer size of PCIe transaction
• Offsets for host memory address (for unaligned DMA)
• Address range and NUMA location of memory to access
• Access pattern (seq/rand)
• State of host caches 

‣ Provides detailed insights into PCIe host and device implementations

Introducing pcie-bench

 24

• Netronome NFP-4000 and NFP-6000
• Firmware written in Micro-C (~1500 loc)
• Timer resolution 19.2ns
• Kernel driver (~400 loc) and control program (~1600 loc)  

• NetFPGA and Xilinx VC709 evaluation board
• Logic written in Verilog (~1200 loc)
• Timer resolution 4ns
• Kernel driver (~800 loc) and control program (~600 loc)

[implementations on other devices possible]

Two independent implementations

 25

• The PCIe protocol adds significant overhead esp for small transactions 

• PCIe implementations have a significant impact on IO performance:
• Contributes significantly to the latency (70-90% on ExaNIC)
• Big difference between two the implementations we measured 

(what about AMD, arm64, power?)
• Performance is dependent on temporal host state (TLB, caches)
• Dependent on other devices?  

• Introduced pcie-bench to
• understand PCIe performance in detail
• aid development of custom NIC offload and other IO accelerators  

• Presented the first detailed study of PCIe performance in modern servers

Conclusions

 26

Thank you!
Source code and all the data is available at:

https://www.pcie-bench.org

https://github.com/pcie-bench

http://www.pcie-bench.org
https://github.com/pcie-bench

