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The idea of end hosts participating in the implementation of 
network functionality has been extensively explored in 

enterprise and datacenter networks  
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• Isolation 
• QoS 
• Load balancing 
• Application specific processing 
• ….

More recently, programmable NICs and FPGAs enable offload 
and NIC customisation 
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Not “just” in academia, but in production!



Implementing offloads is not easy

Many potential bottlenecks
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Implementing offloads is not easy

Many potential bottlenecks 

PCI Express (PCIe) and its implementation by the host 
is one of them!
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PCIe overview
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• De facto standard to connect high 
performance IO devices to the rest of the 
system. Ex: NICs, NVMe, graphics, TPUs 

• PCIe devices transfer data to/from host 
memory via DMA (direct memory access)  

• DMA engines on each device translate 
requests like “Write these 1500 bytes to host 
address 0x1234” into multiple PCIe Memory 
Write (MWr) “packets”. 

• PCIe is almost like a network protocol with 
packets (TLPs), headers, MTU (MPS), flow 
control, addressing and switching (and NAT ;)
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PCIe protocol overheads  

62.96 Gb/s at the 
physical layer

~ 32 - 50 Gb/s for 
data transfers

Model: PCIe gen 3 x8 64 bit addressing

PCIe protocol
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PCIe protocol overheads 

62.96 Gb/s at the 
physical layer

~ 32 - 50 Gb/s for 
data transfers

PCIe protocol

~ 12 - 48 Gb/s

Queue pointer 
updates, descriptors, 
interrupts

Complexity!Model: PCIe gen 3 x8 64 bit addressing
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PCIe latency  
ExaNIC round trip 
times (loopback) with 
kernel bypass 

PCIe contributes the 
majority of latency 

Homa [SIGCOMM2018]: 
Desire single digit us 
latency for small 
messages
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PCIe latency imposes constraints  
Ethernet line rate at 
40Gb/s for 128B 
packets means a new 
packet every 30ns. 

= 
NIC has to handle at 
least 30 concurrent 
DMAs in each 
direction plus 
descriptor DMA 600
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PCIe latency imposes constraints  
Ethernet line rate at 
40Gbps for 128B 
packets means a new 
packet every 30ns. 

= 
NIC has to handle at 
least 30 concurrent 
DMAs in each 
direction plus 
descriptor DMA 600
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It get’s worse…
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Distribution of 64B DMA Read latency 

Xeon E5 
•547ns median 
•573ns 99th percentile 
•1136ns max 

Xeon E3 
•1213ns(!) median 
•5707ns(!) 99th percentile 
•5.8ms(!!!) max

Netronome NFP-6000, Intel Xeon E5-2637v3 @ 3.5GHz (Haswell) 
Netronome NFP-6000, Intel Xeon E3-1226v3 @ 3.3GHz (Haswell)
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Distribution of 64B DMA Read latency 

Xeon E5 
•547ns median 
•573ns 99th percentile 
•1136ns max 

Xeon E3 
•1213ns(!) median 
•5707ns(!) 99th percentile 
•5.8ms(!!!) max

Netronome NFP-6000, Intel Xeon E5-2637v3 @ 3.5GHz (Haswell) 
Netronome NFP-6000, Intel Xeon E3-1226v3 @ 3.3GHz (Haswell)

Your offload implementation has to handle this!
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PCIe host implementation is evolving 

• Tighter integration of PCIe and CPU caches (e.g. Intel’s DDIO) 

• PCIe device is local to some memory (NUMA) 

• IOMMU interposed between PCIe device and host memory

PCIe transactions are dependent on temporal state on the host and 
the location in host memory
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PCIe host implementation is evolving 

• Tighter integration of PCIe and caches (e.g. Intel’s DDIO) 

• PCIe is local to some memory (NUMA) 

• IOMMU interposed between PCIe device and host memory

PCIe transactions are dependent on temporal state on the host and 
the location in host memory



PCIe data-path with IOMMU (simplified)
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IOMMU

Host Memory

IO-TLB

0x1234 0x2234

Device

Pagetable

RD 0x1234

RD 0x2234
DMA Address

Host Physical 
Address

• IOMMUs translate addresses in PCIe transactions to host addresses 
• Use a Translation Lookaside Buffer (TLB) as cache 
• On TLB miss, perform a costly pageable walk, replace TLB entry



Measuring the impact of the IOMMU
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• DMA reads of fixed size 
• From random addresses on the host 

• Systematically change the address range (window) we access 

• Measure achieved bandwidth (or latency) 

• Compare with non-IOMMU case
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• Different transfer sizes 
• Throughput drops 

dramatically once region 
exceeds 256K. 

• TLB thrashing 

• TLB has 64 entries 
(256KB/4096B)  
Not published by Intel!  

• Effect more dramatic 
for smaller transfer sizes

IOMMU results 

Netronome NFP-6000, Intel Xeon E5-2630 v4 @2.2GHz (Broadwell), IOMMU forced to 4k pages
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• A plethora of tools exist to analyse and understand OS and 
application performance 
 
… but very little data available on PCIe contributions 

• Important when implementing offloads to programmable NICs 
 
… but also applicable to other high performance IO devices such 
as ML accelerators, modern storage adapters, etc

Understanding PCIe performance is important 
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• A model of PCIe to quickly analyse protocol overheads  

• A suite of benchmark tools in the spirit of lmbench/hbench 
• Records latency of individual transactions and bandwidth of batches 
• Allows to systematically change 
• Type of PCIe transaction (PCIe read/write) 
• Transfer size of PCIe transaction 
• Offsets for host memory address (for unaligned DMA) 
• Address range and NUMA location of memory to access 
• Access pattern (seq/rand) 
• State of host caches 

‣ Provides detailed insights into PCIe host and device implementations

Introducing pcie-bench 



 24

• Netronome NFP-4000 and NFP-6000 
• Firmware written in Micro-C (~1500 loc) 
• Timer resolution 19.2ns 
• Kernel driver (~400 loc) and control program (~1600 loc)  

• NetFPGA and Xilinx VC709 evaluation board 
• Logic written in Verilog (~1200 loc) 
• Timer resolution 4ns 
• Kernel driver (~800 loc) and control program (~600 loc) 

[implementations on other devices possible]

Two independent implementations 
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• The PCIe protocol adds significant overhead esp for small transactions 

• PCIe implementations have a significant impact on IO performance: 
• Contributes significantly to the latency (70-90% on ExaNIC) 
• Big difference between two the implementations we measured 

(what about AMD, arm64, power?) 
• Performance is dependent on temporal host state (TLB, caches) 
• Dependent on other devices?  

• Introduced pcie-bench to 
• understand PCIe performance in detail 
• aid development of custom NIC offload and other IO accelerators  

• Presented the first detailed study of PCIe performance in modern servers

Conclusions 
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Thank you! 
Source code and all the data is available at: 

https://www.pcie-bench.org 

https://github.com/pcie-bench 

http://www.pcie-bench.org
https://github.com/pcie-bench

