
Summer Course Technion, Haifa, IL 2015 1

NetFPGA Summer Course

Presented by:
Noa Zilberman
Yury Audzevich

Technion
August 2 – August 6, 2015

http://NetFPGA.org

Summer Course Technion, Haifa, IL 2015 2

Section I: General Overview

Summer Course Technion, Haifa, IL 2015 3

Constraints Methodology
Design constraints define the requirements that must be met by the
compilation flow in order for the design to be functional on the board

• Over-constraining and under-constraining is bad, so use
reasonable constraints that correspond to your requirements

• Xilinx provides new Xilinx Design Constraint (XDC) file -- quite
different from previously used User Constraints File (UCF)

• Single or multiple XDC files in a design might serve a different
purpose

Summer Course Technion, Haifa, IL 2015 4

Xilinx Design Constraint file
XDC constraints are a combination of:
• Synopsys Design Constraints format (SDC)
• Xilinx centric extensions
• Tcl-compatible for advanced scripting

XDC constraints have the following
properties:
• follow the Tcl semantic,
• interpreted like any other Tcl command,
• read in and parsed sequentially.

You can use constraints for:
• Synthesis and/or Implementation

Options are specified in file properties or via tcl :
set_property used_in_synthesis false [get_files
wave_gen_pins.xdc]
set_property used_in_implementation true [get_files
wave_gen_pins.xdc]

Summer Course Technion, Haifa, IL 2015 5

XDC File Order
The constraint files are loaded in the same sequence as the
way they are listed

To change order either drag and drop or reorder using:
reorder_files -fileset constrs_1 -before [get_files
wave_gen_timing.xdc] \
[get_files wave_gen_pins.xdc]

IPs:
If you use the native IPs, their XDC files are loaded after your
files

You cannot change the IP XDC files order, but you can
disable them and re-apply constraints in your XDC files

Summer Course Technion, Haifa, IL 2015 6

Common pitfalls
Missing constraints:

- The corresponding paths are not optimized for timing
- No violation will be reported but design may not work on HW

Incorrect constraints:
- Runtime and optimization efforts will be spent on the wrong paths
- Reported timing violations may not result in any issues on HW

Unreasonable hold requirements:
- May result in long runtime and SETUP violations
- P&R fixes HOLD violations as #1 priority, because:

• Designs with HOLD violations won’t work on HW
• Designs with SETUP violations will work, but slower

Summer Course Technion, Haifa, IL 2015 7

Key to creating XDC constraints
Organize your constraints in the following sequence:
1) 2)

3)

VALIDATE constraints at each step:

- Constrain it, check reports

- Validate timing

Summer Course Technion, Haifa, IL 2015 8

Constraining the design

Constraints include: Timing constraints, Pin assignments, Placement constraints
(floorplanning), Properties and Attributes.

Syntax of commonly used XDC commands can be checked through:
• Help pages in tcl command line
• XDC Templates (accessed through UI)

Start with an Elaborated Design:
fix timing at early stages -- debug and optimize your RTL

Summer Course Technion, Haifa, IL 2015 9

Synthesis Constraints
Vivado IDE synthesis engine transforms the RTL description into technology mapped
netlist

With synth design net delay modelling is not very accurate; synth netlist should
either meet timing or fail by a small amount before starting implementation.

There are three categories of constraints for synthesis:
• RTL Attributes

- directives written in the RTL files (MARK_DEBUG, etc.)

• Timing Constraints (XDC)
- the following have real impact on synthesis

create_clock
create_generated_clock
set_input_delay
set_output_delay
set_clock_groups
set_false_path
set_max_delay
set_multicycle_path

• Physical and Configuration Constraints
- ignored by synthesis algorithms

Summer Course Technion, Haifa, IL 2015 10

Implementation Constraints
Synthesized netlist allows running
timing analysis:

• Correct the timing constraints and save
them to an implementation-only XDC
file.

• Add missing constraints, such as
asynchronous and exclusive clock
groups.

• Add timing exceptions, such as
multicycle paths and max delay
constraints.

• Identify large violations due to long
paths in the design and correct the
RTL description.

Summer Course Technion, Haifa, IL 2015 11

Section II: Static Timing Analysis

Summer Course Technion, Haifa, IL 2015 12

Static Timing Analysis (STA)
A design netlist is an interconnected set of ports, cells and nets

• The functionality of a design is determined by RTL code
(verilog, vhdl, etc.) and verified by simulation tools

• The quality of your RTL determines how easy timing will be met

• The performance of a design is determined by the delays of
cells that compromise the design (STA)

• Static timing analysis doesn’t check the functionality of the
components but rather performance of components

Summer Course Technion, Haifa, IL 2015 13

STA Goals
Many FPGA processes are timing driven:
- Synthesis for circuit construction
- Placer for optimal cells locations
- Router for choosing routing elements

Constraints are used to determine the desired performance goals

STA reports whether the design will provide the desired performance
through reports

 Have you heard of Setup/Hold requirements for a single FF?

… not quite the same as Setup and Hold path delays that STA is using

Summer Course Technion, Haifa, IL 2015 14

Component delays
Each component has delays to perform it function:
- LUT has propagation delay from it’s ins to outs
- Net has delay from driver to receiver
- FF required stable data for a certain time around sampling point

Delays are also dependent of environment factors. These are
determined and characterized by Xilinx during device design.

Timing is extracted over the operating range of the device:
- Process (different speed grades)
- Voltage (min  max)
- Temperature (min  max)

Range delays are extracted at various process corners (STA):
- Slow process corner: slow process, lowest voltage, highest temperature
- Fast process corner: fastest process, highest voltage, lowest temperature

Summer Course Technion, Haifa, IL 2015 15

Static Timing Path
- A static timing path is a path that starts at a clock element
- Propagates through any # combinatorial elements and nets
- Ends at clocking element

Vivado’s synthesis, place and route tool does STA of all paths both fast and slow
corners

Source clock delay – starting top level clock port and ending at the
launch FF
Data path delay – delay to the capturing FF
Destination clock delay – there might be a difference bw these two
FFs

Summer Course Technion, Haifa, IL 2015 16

Setup check
Setup Timing Check checks that data arrives in good time

Checks that change in a clocked element has time to propagate to other
clocked elements before the next clock event

Simple case – same domain & only data path is considered:
T(D1_CLK) + T(FF1(Clk->Q)) + T(Comb) < T (CLKperiod) – T(FF2(setup)) – T(SU) + T(D2_CLK)

Summer Course Technion, Haifa, IL 2015 17

Hold check
Hold time checks that data doesn’t arrive too quickly

Checks DATA isn’t caught at destination FF at the same clock as the
clock that launched it at launch FF

Simple case – same domain & only data path is considered:
T(D1_CLK) + T(FF1(Clk->Q)) + T(Comb) > T(FF2(hold)) + T(D2_CLK) + T(HU)

Summer Course Technion, Haifa, IL 2015 18

Section III: Timing constraints in
Vivado

Summer Course Technion, Haifa, IL 2015 19

Method to create good constraints
Create clocks and define clock interactions:

- 4 step rule

Setup Input and Output delays
- Try not creating wrong HOLD violations

Set timing exceptions
- Less is more – let Vivado do magic for you
- Try not creating wrong HOLD violations

Use report commands to validate each step

Summer Course Technion, Haifa, IL 2015 20

Clocks in the design
CLKs are periodic signals with:
- 1) period – time from rising edge to the next rising edge
- 2) Duty cycle – high to low ratio of the clock
- 3) Jitter – variation of period from nominal
- 4) Phase – position of the rising edge

Clocks are created with create_clock Tcl command:
- create_clock –name <name> -period <period> <objects>
- <objects> are the list of pins, ports, or nets to which attach the clock,

Example:
create_clock –name sys_clk –period 5.0 [get_ports clk_in]

Clocks with phase offsets and different duty cycles can be created using
“waveform” option:
- waveform <edges> - list of numbers representing times of successive edges

create_clock –name sys_clk1 –period 5.0 –waveform {1.0 4.0} \
[get_ports clk_in1]

1.0 4.0 6.0

0.0 5.0

Summer Course Technion, Haifa, IL 2015 21

Clock rules
 Clock only exist when you create them

 Clocks propagate automatically through clocking modules
- MMCM/PLL/BUFR clock clocks are automatically generated
- Transceiver clocks are not supported – create them manually

 Use create_generated_clocks for internal clocks (if needed)
 Note that timing analysis will be performed using originating primary clock

 ALL inter-clock path are evaluated by default

Summer Course Technion, Haifa, IL 2015 22

4 Steps for creating clocks
BEWARE: In Vivado all clocks are related unless you specifically

say that they are not!

 Step 1
- Use create_clock for all primary clocks on top level ports
- Run the synthesis or open netlist design

 Step 2
- Run report_clocks
- Study the report to verify period, phase and propagation
- Apply corrections to your constraints if needed

Output of report_clocks

Summer Course Technion, Haifa, IL 2015 23

4 Steps for creating clocks (cont.)
 Step 3

- Evaluate the clock interaction using report_clock_interaction
BEWARE: All inter-clock paths are constrained by default!

- Unconstraint inter-clock paths (Clock Domain Crossing) as
needed:

- Make sure you designed proper CDC synchronizers
- Use set_clock_groups (preferred method to set_false_path)
- use report_cdc command in Vivado 2015

- Do you have unconstrained objects?
- Find out with check_timing

 Step 4

- Run report_clock_networks
- You want the design to have clean clock lines without logic

- Tip: Use clock gating option in synthesis to remove LUTs on the clock line

Summer Course Technion, Haifa, IL 2015 24

Constraining clock crossing domains
Use appropriate synchronizing techniques

- 2 or more register synchronizers, for single bit
- Asynchronous FIFOs for buses

Maximize Mean Time Between Failures (MTBF)
- Use ASYNC_REG to place synchronizing flops in the same slice

set_property ASYNC_REG TRUE \
[get_cells [list sync0_reg sync1_reg]]

Set the tool to ignore timing paths between individual clocks
set_clock_groups –asynchronous –group {clk1} –group {clk2}
This is equivalent to:
set_false_path –from [get_clocks clk1] –to [get_clocks clk2]
set_false_path –from [get_clocks clk2] –to [get_clocks clk1]

Summer Course Technion, Haifa, IL 2015 25

Asynchronous CDC
Ignoring timing paths between groups of clocks

create_clock for the two primary clocks
create_clock -name clk_oxo -period 10 [get_ports clk_oxo]
create_clock -name clk_core -period 10 [get_ports clk_core]

Set Asynchronous Clock Groups
set_clock_groups -asynchronous -group [get_clocks –include_generated_clocks
clk_oxo] \
-group [get_clocks –include_generated_clocks clk_core}]

Summer Course Technion, Haifa, IL 2015 26

Setting Input/Output delay
Constraints should be developed in the following order:
1) Baseline constraints – Optimize Internal Paths first
2) Add I/O constraints – Optimize entire chip
3) Add timing exceptions and Floorplan – Fine-tuning step

set_input_delay (check options):
a) Data propagation from external chip to input package pin of FPGA
device, and b) Relative reference board clock

set_output_delay (setup requirement of external source):
a) Data propagating from the output package pin of FPGA device
through the board to another device and, b) relative ref. board clock

• Use set_input_delay and set_output_delay for realistic delays
• Wrong delay value (e.g. 0 ns) can cause wrong HOLD violations

Summer Course Technion, Haifa, IL 2015 27

Timing exceptions
 are needed when the logic behaves in a way that is not

timed correctly by default:

• set_multicycle_path - # clock cycles required to propagate
data from the start to the end of a path.

• set_false_path - logic path in the design that should not be
analysed.

• set_max_delay, set_min_delay - overrides the default setup
and hold constraints with user specified max & min delays.

• set_case_analysis - restricts certain signals being
propagated through the design.

Summer Course Technion, Haifa, IL 2015 28

Timing report

 Report Summary
Contains info about design, device, tool version, data and time of report

 Path summary
Summarizes timing information for the path: timing is met (Slack), source and
destination, clock used, setup and hold check (requirements), number of level of
logic, skew and uncertainty

Summer Course Technion, Haifa, IL 2015 29

Timing report (cont.)

 Source clock delay
Delays of clock network: edge of the SRC clock, through clock network, until clk
pin of launch FF

 Data path delay
Delay: clock pin of launch FF, plus combinational delay until D input of the
capturing FF

The above 2 are accumulated for slack calculation

 Destination Clock delay
Propagation from destination clk to the clk pin of destination clocked element

 Slack calculation
Subtracts the arrival time (end of Data Path section) from the required time (end of
Destination Clock section)

Summer Course Technion, Haifa, IL 2015 30

Timing command summary

 Create and validate clocks:
– check_timing: for missing clocks and IO constraints
– report_clocks: check frequency and phase
– report_clock_networks: possible clock root

 Validate clock groups:
– report_clock_interaction

 Validate I/O delays
– report_timing –from [input_port] –setup/-hold
– report_timing –to [output_port] –setup/-hold

 Add exceptions if necessary
– Validate using report_timing

Summer Course Technion, Haifa, IL 2015 31

Section III: Integrated Logic Analyzer

Summer Course Technion, Haifa, IL 2015 32

Debugging the design
 RTL-level design simulation

 Visibility of the entire design; ability to quickly iterate through debug
cycle

x Difficulty of simulating larger designs in a reasonable amount of time

 Post-implemented design simulation
 Debugging the post-implemented timing-accurate model for the

design
x Long run-times and system model accuracy

 In-system debugging
 Debugging of post-implemented design on an FPGA device
 Debugging actual system environment at system speeds
x Lower visibility of debug signals
x Longer design/implementation/debug iterations & hard close timing

Summer Course Technion, Haifa, IL 2015 33

Integrated Logic Analyzer
 1. Probing phase: Identifying what signals in your design you want

to probe and how you want to probe them
Identifying what signals or nets you want to probe
Deciding how you want to add debug cores to your design

 2. Implementation phase: Implementing the design that includes the
additional debug IP that is attached to the probed nets

The debug core hub must be implemented prior to running the PL & RT.

 3. Analysis phase: Interacting with the debug IP contained in the
design to debug and verify functional issues

Connecting to the Hardware Target and Programming the FPGA Device
Setting up the ILA Core to Take a Measurement
Viewing ILA Cores in the Debug Probes Window
Using Basic Trigger Mode
Viewing ILA Probe Data in the Waveform Viewer

Summer Course Technion, Haifa, IL 2015 34

Inserting ILA cores
• Either Manually add the debug IP component instances through the

source code, or

• Allow Vivado tool to automatically insert the debug cores into your
post-synthesis netlist

The first approach is more straight forward:

 Start with Identifying signals for debugging at the HDL source level
prior to synthesis

(* mark_debug = "true" *) wire [7:0] char_fifo_dout; -- Verilog example

 Once design is synthesized use Set up Debug wizard for core
assignment and configuration

Summer Course Technion, Haifa, IL 2015 35

Inserting ILA cores (cont.)

You can insert it from GUI as well:

• Synthesize your design first

• Open synthesized design

• Set up debug

• The core can be seen in the
Netlist folder

Summer Course Technion, Haifa, IL 2015 36

Inserting Debug Cores
Open synthesized design and Insert Debug cores from the list of
Unassigned nets.

The Set up Debug wizard automatically selects clock domains

The properties of each core can be customized using GUI or manually

The appropriate code will be inserted automatically into XDC file

Summer Course Technion, Haifa, IL 2015 37

Inserting Debug Cores (cont.)

 XDC Commands can be also used to Insert Debug Cores
create_debug_core u_ila_0 ila
set_property C_DATA_DEPTH 1024 [get_debug_cores u_ila_0]
set_property C_TRIGIN_EN false [get_debug_cores u_ila_0]
set_property C_TRIGOUT_EN false [get_debug_cores u_ila_0]
set_property C_ADV_TRIGGER false [get_debug_cores u_ila_0]
…

 Saving constraints may cause the synthesis and implementation to
go out-of-date;

 you do not need to re-synthesize the design since the debug XDC
constraints are only used during implementation

 Check Xil UG908 for advanced debugging capabilities and IBERT

Summer Course Technion, Haifa, IL 2015 38

Debugging Logic Designs in Hardware
1. Connect to the hardware target and program the FPGA with the .bit file
2. Set up the ILA debug core trigger and capture controls.
3. Arm the ILA debug core trigger.
4. View the captured data from the ILA debug core in the Waveform window

Summer Course Technion, Haifa, IL 2015 39

Taking measurements
 Add Probes to Waveform
 Add Probes to Basic Trigger Setup
 Add Probes to Basic Capture Setup
 Specify capture conditions
 Arm the core and analyse received data

Summer Course Technion, Haifa, IL 2015 40

Section IX: Conclusion

Summer Course Technion, Haifa, IL 2015 41

Nick McKeown, Glen Gibb, Jad Naous, David Erickson,
G. Adam Covington, John W. Lockwood, Jianying Luo, Brandon Heller, Paul

Hartke, Neda Beheshti, Sara Bolouki, James Zeng,
Jonathan Ellithorpe, Sachidanandan Sambandan, Eric Lo

Acknowledgments (I)

NetFPGA Team at Stanford University (Past and Present):

NetFPGA Team at University of Cambridge (Past and Present):
Andrew Moore, David Miller, Muhammad Shahbaz, Martin Zadnik

Matthew Grosvenor, Yury Audzevich, Neelakandan Manihatty-Bojan,
Georgina Kalogeridou, Jong Hun Han, Noa Zilberman, Gianni Antichi,
Charalampos Rotsos, Marco Forconesi, Jinyun Zhang, Bjoern Zeeb

All Community members (including but not limited to):
Paul Rodman, Kumar Sanghvi, Wojciech A. Koszek,

Yahsar Ganjali, Martin Labrecque, Jeff Shafer, Eric Keller ,
Tatsuya Yabe, Bilal Anwer, Yashar Ganjali, Martin Labrecque,

Lisa Donatini, Sergio Lopez-Buedo

Kees Vissers, Michaela Blott, Shep Siegel, Cathal McCabe

Summer Course Technion, Haifa, IL 2015 42

Acknowledgements (II)

Disclaimer: Any opinions, findings, conclusions, or recommendations expressed in these materials do not
necessarily reflect the views of the National Science Foundation or of any other sponsors supporting this
project.
This effort is also sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-11-C-0249. This material is approved for public release,
distribution unlimited. The views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

