NetFPGA Summer Course

P
@NeltFPGA

Presented by:
Noa Zilberman
Yury Audzevich

Technion
August 2 — August 6, 2015

http://NetFPGA.org

A~
eNetFPGA e Technion, Haifa, IL 2015

Section I: General Overview

A~
eNetFPGA e Technion, Haifa, IL 2015

Constraints Methodology

Design constraints define the requirements that must be met by the
compilation flow in order for the design to be functional on the board

« Qver-constraining and under-constraining is bad, so use
reasonable constraints that correspond to your requirements

o Xilinx provides new Xilinx Design Constraint (XDC) file -- quite
different from previously used User Constraints File (UCF)

« Single or multiple XDC files in a designh might serve a different
purpose

Vivado Tcl

A~
eNetFPGA e Technion, Haifa, IL 2015

Xilinx Design Constraint file

Project Manager - project_wave_gen

s
*

Sources — =

T XDC constraints are a combination of:
; 2 v1> o Synopsys Design Constraints format (SDC)
essages: () Lwaring e Xilinx centric extensions

EECY Design Sources (2)
B4l R o Tcl-compatible for advanced scripting
== C‘onstraints ? - B
| B constrs_1 (active] . .
- wave_gen_timing.xdc (target XDC constraints have the following
4 wave_gen_pins.xdc .
| S onstrs 2 properties:
i --HY wave_gen.xdc .
[#-4= Simulation Sources (1 i fO”OW the TCl SemanUC,
Hierarchy | IP Sources | Libraries | Compile Order ° I nterp reted l I ke any Oth er TCl comman d y
£, Sources |) Templates « read in and parsed sequentially.
Source File Properties e e SN
| [stapply || [mcCancel |
g4 wave_gen_pins.xdc*
l:cahon: C:/2012.2/project_wave_gen/project_wave_gen.srd YO u C an u S e C O n S t r ai n tS fO r :
ype: XDC -
2748 » Synthesis and/or Implementation
Modified: Tuesday 07/03/12 04: 18:02 AM
Copied to: project_wave_gen.srcs/constrs_1/imports/verilog
Copied from: C: Xilinx/14.2_P28xc/14.2/ISE_DS/Avrum/verilogfwa
e e Ee Options are specified in file properties or via tcl :
i E:“‘“ set_property used_in_synthesis false [get_files
Used In .
R wave_gen_pins.xdc]
7] Implementaton set_property used_in_implementation true [get_files

wave_gen_pins.xdc]

General | Attributes

A~
eNetFPGA e Technion, Haifa, IL 2015

XDC File Order

The constraint files are loaded in the same sequence as the
way they are listed

To change order either drag and drop or reorder using:
reorder_files -fileset constrs_1 -before [get_files
wave_gen_timing.xdc] \

[get_files wave_gen_pins.xdc]

IPs:

If you use the native IPs, their XDC files are loaded after your
files

You cannot change the IP XDC files order, but you can
disable them and re-apply constraints in your XDC files

A~
SNetFPGA M e

Common pitfalls

Missing constraints:

- The corresponding paths are not optimized for timing
- No violation will be reported but design may not work on HW

Incorrect constraints:

- Runtime and optimization efforts will be spent on the wrong paths
- Reported timing violations may not result in any issues on HW

Unreasonable hold requirements:

- May result in long runtime and SETUP violations
- P&R fixes HOLD violations as #1 priority, because:
e Designs with HOLD violations won’t work on HW
* Designs with SETUP violations will work, but slower

A~
eNetFPGA e Technion, Haifa, IL 2015

Key to creating XDC constraints

Organize your constraints in the following sequence:

1) ## Timing Assertions Section 2) ## Timing Exceptions Section
Primary clocks # False Paths
Virtual clocks # Max Delay / Min Delay
Generated clocks # Multicycle Paths
Clock Groups # Case Analysis
Input and output delay constraints # Disable Timing

3) ## Physical Constraints Section

Vivado System Builder
?——* 1P, DSP, uP

Verlog/VHDL _~~ Verlog'VHOL,

System Planning and

HDL Design

VALIDATE constraints at each step:
- ini Netlist Linki d
Constrain it, check reports
- Validate timing
Optimization

Routing, Post-Route

Optimization

Static Timing
Analysis

DRC and Bitstream

Generation

A~
6NE':FF'EIH Summer Course Technion, Haifa, IL 2015

Constraining the design

Window | Layout View Help 4 Synthesis 4 Implementation
L Project Summary % Synthesis Settings % Implementation Settings
&b Sources & Run Synthesis [» Run Implementation
! Language Templates 4 [H| synthesized Design 4 || Implemented Design
3 Properties Ctri+E (&4 Edit Timing Constraints I {24, Edit Timing Constraints I
Rk Selection @ Report Timing Summary \:'3 Report Timing Summary
5l Netlist L, Report Clock Networks Iy, Report Clock Networks
[E Physical Constraints £ Report Clock Interaction §51 Report Clock Interaction
] Tir;1.ing Constraints . (@ ReportDRC D Report DRC
») Package Pins @ Report Noise E;\ﬂ Report Noise
O VOPorts /| Report Utilization [F] Report Utilization
@ Clock Regions g}:ﬂ Report Power %]:’ Report Power
W Debug Pl schematic
= Metrics

Constraints include: Timing constraints, Pin assignments, Placement constraints
(floorplanning), Properties and Attributes.

Syntax of commonly used XDC commands can be checked through:
* Help pages in tcl command line
o« XDC Templates (accessed through Ul)

Start with an Elaborated Design:
fix timing at early stages -- debug and optimize your RTL

A~
eNE':I:F'EIH Summer Course Technion, Haifa, IL 2015

Synthesis Constraints

Vivado IDE synthesis engine transforms the RTL description into technology mapped

netlist

With synth design net delay modelling is not very accurate; synth netlist should
either meet timing or fail by a small amount before starting implementation.

There are three categories of constraints for synthesis:

e RTL Attributes

- directives written in the RTL files (MARK_DEBUG, etc.)

 Timing Constraints (XDC)
- the following have real impact on synthesis

create_clock
create_generated_clock
set_input_delay
set_output_delay
set clock _groups
set_false path
set_max_delay
set_multicycle_path

 Physical and Configuration Constraints
- ignored by synthesis algorithms

A~
eNetFPGA e Technion, Haifa, IL 2015

| RTL source files '
Y

\

/
Vivado
Database
(elaborated)
1
i

|
\

Open (or reload) .
Elaborated Design XDC files

A

Query names in your design

Copy/paste good XDC commands
from Tcl Console to XDC files

|_~ Validate XDC syntax in Tcl Console
NO /K
| Syntax Clean?

Implementation Constraints

Synthesized netlist allows running
timing analysis:

o Correct the timing constraints and save

them to an implementation-only XDC "
\
« Add missing constraints, such as Open or eoad @
asynchronous and exclusive clock e =
groups. !

« Add timing exceptions, such as Eb ()

multicycle paths and max delay I
constraints.

Use Vivado IDE editors or the Tcl

Console to enter new constraints
» Identify large violations due to long |_. I
paths in the design and correct the Mo misngconstains Fix AL Dosign
. . Timing clean? NO (clean constraints) —- Add Synthesis Attributes
RT L d eSC” ptl O n . Use different Synthesis Options

Save your constraints
Run implementation

A~
eNetFPGA e Technion, Haifa, IL 2015

Section Il: Static Timing Analysis

A~
eNetFPGA e Technion, Haifa, IL 2015

Static Timing Analysis (STA)

A design netlist is an interconnected set of ports, cells and nets

« The functionality of a design is determined by RTL code
(verilog, vhdl, etc.) and verified by simulation tools

« The quality of your RTL determines how easy timing will be met

« The performance of a design is determined by the delays of
cells that compromise the design (STA)

o Static timing analysis doesn’t check the functionality of the
components but rather performance of components

A~
SNetFPGA M e

STA Goals

Many FPGA processes are timing driven:

- Synthesis for circuit construction
- Placer for optimal cells locations
- Router for choosing routing elements

Constraints are used to determine the desired performance goals

STA reports whether the design will provide the desired performance
through reports

» Have you heard of Setup/Hold requirements for a single FF?

1 I — O
D 0

... hot quite the same as Setup and Hold path delays that STA is using

A~
eNetFPGA e Technion, Haifa, IL 2015

Component delays

Each component has delays to perform it function:

- LUT has propagation delay from it’s ins to outs

- Net has delay from driver to receiver

- FF required stable data for a certain time around sampling point

Delays are also dependent of environment factors. These are
determined and characterized by Xilinx during device design.

Timing is extracted over the operating range of the device:

- Process (different speed grades)
- Voltage (min — max)
- Temperature (min —» max)

Range delays are extracted at various process corners (STA):

- Slow process corner: slow process, lowest voltage, highest temperature
- Fast process corner: fastest process, highest voltage, lowest temperature

A~
SNetFPGA M e

Static Timing Path

- A static timing path is a path that starts at a clock element
- Propagates through any # combinatorial elements and nets
- Ends at clocking element

Vivado’s synthesis, place and route tool does STA of all paths both fast and slow
corners

Source clock delay — starting top level clock port and ending at the
launch FF

Data path delay — delay to the capturing FF

Destination clock delay — there might be a difference bw these two
FFs

A~
eNetFPGA e Technion, Haifa, IL 2015

Setup check

Setup Timing Check checks that data arrives in good time < T Q
/.

| Destination | .
I. Clock Delay : : ™ wart o 0 N
. o uan_baud _gen_m 0 i

>

[p "
- -”‘"-"E‘] BUFG cik j0 BUFO_cli_ne_ill ™,
+ O o o

clk_pin_p _o— et e
-_ BUFG 1 internal_count_inferredi_3
IBUFGDS T -0 /5 &
/ internal_count_reg|(2) . deLr
—e o
—/ ——"J[\ intemnal_count_m_1i_4 —o b~ FOCE
e b R - ’

Source Clock
Delay - wr: we Data Path
FOCE
Delay

\ uart_baud_gen

uar_m

CLK

Checks that change in a clocked element has time to propagate to other
clocked elements before the next clock event

Simple case — same domain & only data path is considered:

A~
eNE':I:F'EIH Summer Course Technion, Haifa, IL 2015

Hold check

PN
Hold time checks that data doesn’t arrive too quickly / i T
uadd e 0 / CL:
B - uar_baud gen e i0 / \\-//
et pinn BUFG_ck 10 BUFG_clk_n_j0 B

e et 3 :;-»: e — = = internal cé!m req]
L] BUFG \\ internal_count inferredi_3 =
IBUFGDS - ~|¢0 c
L nternal_cound_regl2) - —im <1
- [+]
-L"J:\ intemal_count_m_1i_4 -1 v

| FDC
e f ﬁll— —ni_/ OCE
LR

1 -1=
-

[NV 5 LUTe

uar_baud_gen

uan_n

CLK

Checks DATA isn’t caught at destination FF at the same clock as the
clock that launched it at launch FF

Simple case — same domain & only data path is considered:
T(D1_CLK) + T(FFLgysq) + T(Comb) > T(FF2,01q) + T(D2_CLK) + T(HU)

A~
eNE':I:F'EIH Summer Course Technion, Haifa, IL 2015

Section IlI: Timing constraints in
Vivado

A~
eNetFPGA e Technion, Haifa, IL 2015

Method to create good constraints

Create clocks and define clock interactions:
- 4 step rule

Setup Input and Output delays
- Try not creating wrong HOLD violations

Set timing exceptions
- Less is more — let Vivado do magic for you
- Try not creating wrong HOLD violations

Use report commands to validate each step

A~
eNetFPGA e Technion, Haifa, IL 2015

Clocks Iin the design

CLKs are periodic signals with:

- 1) period —time from rising edge to the next rising edge
- 2) Duty cycle — high to low ratio of the clock

- 3) Jitter — variation of period from nominal

- 4) Phase — position of the rising edge

Clocks are created with create _clock Tcl command:
- create_clock —-name <name> -period <period> <objects>
- <objects> are the list of pins, ports, or nets to which attach the clock,

Example: | |

create_clock —name sys_clk —period 5.0 [get_ports clk_in] 0.0 5.0

Clocks with phase offsets and different duty cycles can be created using
“waveform” option:
- waveform <edges> - list of numbers representing times of successive edges

create_clock —name sys_clk1l —period 5.0 —waveform {1.0 4.0} \
[get_ports clk_in1]

A
eNelFPGA e Technion, Haifa, IL 2015

Clock rules

» Clock only exist when you create them

» Clocks propagate automatically through clocking modules
- MMCM/PLL/BUFR clock clocks are automatically generated
- Transceiver clocks are not supported — create them manually

create clock u von:]

- I create clock here
#

> CLK IN1 CLK OUT1

mmcm_0_u0

clockl

» Use create _generated clocks for internal clocks (if needed)
> Note that timing analysis will be performed using originating primary clock

» ALL inter-clock path are evaluated by default

A~
eNE':I:F'EIH Summer Course Technion, Haifa, IL 2015

4 Steps for creating clocks

BEWARE: In Vivado all clocks are related unless you specifically
say that they are not!

» Step 1

- Use create clock for all primary clocks on top level ports
- Run the synthesis or open netlist design

» Step 2
- Run report_clocks

- Study the report to verify period, phase and propagation
- Apply corrections to your constraints if needed

Attributes
P: Propagated
G: Generated

Clock Period Waveform Attributes Sources

sys_clk 10.000 {0.000 5.000} P {sys_clk}

plle/clkfbout 10.000 {0.000 5.000} P,G {plle/plle2_adv_inst/CLKFBOUT}
plle/clkouted 2.560 {0.000 1.250} P,G {plle/plle2_adv_inst/CLKOUT®O}
plle/clkoutl 10.000 {0.000 5.000} P,G {plle/plle2_adv_inst/CLKOUT1}

Output of report_clocks

A~
eNetFPGA e Technion, Haifa, IL 2015

4 Steps for creating clocks (cont.)

» Step 3

- Evaluate the clock interaction using report clock interaction
BEWARE: All inter-clock paths are constrained by default!

- Unconstraint inter-clock paths (Clock Domain Crossing) as
needed:
- Make sure you designed proper CDC synchronizers
- Use set_clock _groups (preferred method to set_false path)
- usereport_cdc command in Vivado 2015

- Do you have unconstrained objects?
- Find out with check timing

» Step 4

- Run report_clock networks

- You want the design to have clean clock lines without logic
- Tip: Use clock gating option in synthesis to remove LUTs on the clock line

A~
eNetFPGA e Technion, Haifa, IL 2015

Constraining clock crossing domains

Use appropriate synchronizing techniques
- 2 or more register synchronizers, for single bit ey, e

- Asynchronous FIFOs for buses %{‘)j ~ | ce

o =

CLKB |
| g

Maximize Mean Time Between Failures (MTBF)
- Use ASYNC_REG to place synchronizing flops in the same slice

set_property ASYNC REG TRUE\
[get_cells [list syncO _reg syncl reg]]

Set the tool to ignore timing paths between individual clocks

set_clock _groups —asynchronous —group {clk1} —group {clk2}

This is equivalent to:
set false path —from [get_clocks clk1l] —to [get clocks clk2]
set_false path —from [get_clocks clk2] —to [get clocks clk1]

A~
eNetFPGA e Technion, Haifa, IL 2015

Asynchronous CDC

Ignoring timing paths between groups of clocks

create_clock for the two primary clocks
create_clock -name clk_oxo -period 10 [get_ports clk_0x0]
create_clock -name clk_core -period 10 [get_ports clk_core]

MMCIM1
clk_oxo o
% CLIONL
+ CLKOUTY
Prinaary Auto
Async Clocks generated
Clocks T Clocks
a7
clk_core S
% CLIaN1
KT ——

Set Asynchronous Clock Groups

set_clock _groups -asynchronous -group [get_clocks —include_generated clocks
clk_oxo] \

-group [get_clocks —include_generated clocks clk_core}]

A~
eNE':I:F'EIH Summer Course Technion, Haifa, IL 2015

Setting Input/Output delay

Constraints should be developed in the following order:

1) Baseline constraints — Optimize Internal Paths first

2) Add I/O constraints — Optimize entire chip

3) Add timing exceptions and Floorplan — Fine-tuning step

set _input delay (check options):
a) Data propagation from external chip to input package pin of FPGA
device, and b) Relative reference board clock

set output delay (setup requirement of external source):

a) Data propagating from the output package pin of FPGA device
through the board to another device and, b) relative ref. board clock

» Use set_input_delay and set_output_delay for realistic delays
 Wrong delay value (e.g. 0 ns) can cause wrong HOLD violations

A~
eNetFPGA e Technion, Haifa, IL 2015

Timing exceptions

» are needed when the logic behaves in a way that is not
timed correctly by default:

« set _multicycle path - # clock cycles required to propagate
data from the start to the end of a path.

- set false path -logic path in the design that should not be
analysed.

« set max_delay, set_ min_delay - overrides the default setup
and hold constraints with user specified max & min delays.

 set case analysis - restricts certain signals being
propagated through the design.

A~
eNE':I:F'EIH Summer Course Technion, Haifa, IL 2015

Timing report

INFQ: [Timing 38-91] UpdaieLi ey Rela
INFO: [Timing 3 Tithreading enabled for timing update
8-78] ReportTimingParams: -max_paths 1 -nworst 1 -delay_tyP
1986-2014 Xilinx, Inc. A1l Rights Reserved.

Type: max.
e axinun of 8 CPUs
agx -sort_by slack.

Tool Version : Vivado v.2014.4 (1in64) Build 1071353 Tue Nov 18 16:47:07 MST 20
| Date : Tue Jul 28 20:19:21 2015

| Host : godzilla running 64-bit Ubuntu 14.04.2 LTS
| Command : report_timing

Design : reference_nic_wrapper

+ 7vx690t-fql76l

: -3 PRODUCTION 1.11 2014-09-11

o

Timing Report

slack (MET) :
Source:

v3l7ns (required time - arrival time)
reference_nic_i/nf_sume_dma/nf_riffa_dma_Osinst/riffa/riffa_inst/rRst_reg/C
(rising edge-triggered cell FDRE clocked by userclkl {rise@@.eoons falle2.000ns period=%wgocns})
reference_nic_i/nf_sume_dma/nf_riffa_dma_O/inst/riffa_axis_attachment/riffa_to_axis_conv/tuser g
(rising edge-triggered cell FORE clocked by userclkl {rise@d.000ns fall@2.00Gns period=4.000ns?
Group: userclkl
Path Type: Setup (Max at Slow Process Corner)
Requirement: 4.000ns (userclkl rise@4.000ns - userclkl rise@@.Q00ns)
Data Path Delay: 3.141ns (logic 0.232ns (7.387%) route 2.969ns (92.613%))
Logic Levels: [¢]
Clock Path Skew: -0.107ns (DCD - SCD + CPR)
Destination Clock Delay (DCD): 3.197ns = (7.197 - 4,000)
. Source Clock Delay (5CD) : 3.465ns
lock Pessimism Remowal (CPR): 0.161ns
Uncertainty: 0.085ns (({TSJ"2 + DI"2)"1/2) / 2 + PE
System Jitter (TsJ): 0.071ns
aitter (D1): 0.108ns
(PE): 0.000ns

Phase Error

Location Incrins) Path(ns) Netlist Resource(s
(clock userclkl rise edge)
0.000 0.000 r
GTHE2_CHANMEL_X1Y23 GTHE2 CHANNEL 0.008 0.000 r reference_nic_i/nf_sume_dma/pcie3 7x_1/inst/gt_top_i/pipe_wrapper_i/pipe_lane[0].gt_wrapper_i/gth_channel.gthe2 channel_i/TXOUTCLK
net (fo=l. routed) 0.975 0.975 reference_nic_i/nf_sume_dma/pcie3 7x_l/inst/gt_top_i/pipe_wrapper_i/pipe_clock_int.pipe_clock_i/pipe_txoutclk_out
MMCME2_ADV_X1YS MMCME2 ADV (Prop_mmcme2 adv_CLKINL_CLKOLT2)
0.063 1.044 r reference_nic_i/nf_sume_dma/pcie3_7x_l/inst/gt_top_i/pipe_wrapper_i/pipe_clock_int.pipe_clock_i/mmen_i/CLKOUT2
net (fo=l. routed) 1.148 2.190 reference_nic_i/nf_sume_dma/pcie3_7x_1/inst/gt_top_i/pipe_wrapper_i/pipe_clock_int.pipe_clock_i/userclkl

» Report Summary
Contains info about design, device, tool version, data and time of report

» Path summary

Summarizes timing information for the path: timing is met (Slack), source and
destination, clock used, setup and hold check (requirements), number of level of
logic, skew and uncertainty

A~
@NetFPGA hnion, Haifa, IL

Timing report (cont.)

» Source clock delay

Delays of clock network: edge of the SRC clock, through clock network, until clk
pin of launch FF

» Data path delay

Delay: clock pin of launch FF, plus combinational delay until D input of the
capturing FF

The above 2 are accumulated for slack calculation

» Destination Clock delay
Propagation from destination clk to the clk pin of destination clocked element

» Slack calculation

Subtracts the arrival time (end of Data Path section) from the required time (end of
Destination Clock section)

A~
eNetFPGA e Technion, Haifa, IL 2015

Timing command summary

Design Timing Surmmary

Setup Hold Pulse Width
worst Negative Slack (wNSk 0317 ns waorst Hold Slack (WwHS): 0.023 ns wrorst Pulse Width Slack (WPws): 0.000 ns
Total Megative Slack (TNS) 0.000 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS): 0.000 ns
MNumber of Failing Endpoints: 0 Mumber of Failing Endpoints: 0 Hurmnber of Failing Endpoints: v
Total Mumber of Endpaints: 154580 Total Number of Endpoints: 164580 Total Number of Endpoints: 73283

All user specified timing constraints are met.

3» Design Runs & Timing

» Create and validate clocks:
— check timing: for missing clocks and IO constraints

—report clocks: check frequency and phase
—report_clock networks: possible clock root

» Validate clock groups:
—report_clock_interaction

» Validate I/O delays
—report_timing —from [input_port] —setup/-hold
—report_timing —to [output_port] —setup/-hold

» Add exceptions if necessary
— Validate using report_timing

A~
eNetFPGA e Technion, Haifa, IL 2015

Section lll: Integrated Logic Analyzer

A~
eNetFPGA e Technion, Haifa, IL 2015

Debugging the design

» RTL-level design simulation

v Visibility of the entire design; ability to quickly iterate through debug
cycle
x Difficulty of simulating larger designs in a reasonable amount of time

» Post-implemented design simulation

v Debugging the post-implemented timing-accurate model for the
design
X Long run-times and system model accuracy

» In-system debugging

v' Debugging of post-implemented design on an FPGA device
v' Debugging actual system environment at system speeds

X Lower visibility of debug signals
X Longer design/implementation/debug iterations & hard close timing

A~
eNetFPGA e Technion, Haifa, IL 2015

Integrated Logic Analyzer

» 1. Probing phase: Identifying what signals in your design you want
to probe and how you want to probe them

Identifying what signals or nets you want to probe
Deciding how you want to add debug cores to your design

> 2. Implementation phase: Implementing the design that includes the
additional debug IP that is attached to the probed nets

The debug core hub must be implemented prior to running the PL & RT.

» 3. Analysis phase: Interacting with the debug IP contained in the
design to debug and verify functional issues
Connecting to the Hardware Target and Programming the FPGA Device
Setting up the ILA Core to Take a Measurement
Viewing ILA Cores in the Debug Probes Window
Using Basic Trigger Mode
Viewing ILA Probe Data in the Waveform Viewer

A~
eNetFPGA e Technion, Haifa, IL 2015

Inserting ILA cores

 Either Manually add the debug IP component instances through the
source code, or

« Allow Vivado tool to automatically insert the debug cores into your
post-synthesis netlist

The first approach is more straight forward:

» Start with Identifying signals for debugging at the HDL source level
prior to synthesis

(*mark_debug ="true" *) wire [7:0] char fifo _dout; -- Verilog example

» Once design is synthesized use Set up Debug wizard for core
assignment and configuration

A~
eNetFPGA e Technion, Haifa, IL 2015

Inserting ILA cores (cont.)

File Edit Flow Tools Window Layout \iew Help
ArBvoRh X d>D> B 5HNGOD X|T @=0ebug - |
« Synthesized Design - xc7vx690tffgl761 3 (active)

Flow Navigator
QA L= Netlist — 0Oz x

chg o3

) e e 3 reference_nic_wrapper

&3 Project Settings Nets (76 . . .

e You can insert it from GUI as well:
Language Templates i referen o nic

1F IP catalog u_ila_0 0

4 |P Integrator
create Block Design
= Open Block Design
&% Generate Block Design

 Synthesize your design first

4 Simulation
3 Simulation Settings
@) Run Simulation

4 RTL Analysis
o Open Elaborated Design

 Open synthesized design

s Synthesis
&3 synthesis Settings

&b Sources 3 Netlist

Set up debug

Properti

¥ Set Up Debug

Fowvpomua = 1 The core can be seen in the
;jRe::ort Clock Interaction NetIiSt fOlder

@ Report DRC

¥ Report Noise

@] Rreport Utilization
ﬁ)‘ Report Power
71 schematic

4 |mplementation

& implementation Settings Tirning - Tirming Summary - timing_L

[» Run Implementation

AT S &2
General Information .
Timer Settings :

N Design Timing Summary

3 Bitstream Settings Clock Summary (24

¥ Generate Bitstream Check Timing (273

L ~
@ Open Hardware Manager ':HEFEﬂOCE §a§25
nter-Cloc aths

CL)- Other Path Groups
i:User Ignored Paths
Unconstrained Paths

Timing Summary -timing_1 X

&% Open Implemented Design

4 Program and Debug

& Tcl Console Messages [dLog (& Reports

A~
@NetFPGA Course Technion, Haifa, 1L

Inserting Debug Cores

Open synthesized design and Insert Debug cores from the list of

Unassigned nets.

-
ﬁ‘i. Set up Debug

Specify Nets to Debug
Specify Nets for debugging '

A | Name Clock Domain Driver Cell TRIG DATA

LE: @-J72 counterA (32 dk FDRE v v

e | -0 £ counterB (32 dk FDRE v v

|- Jr# counterC (32 dk FORE v v

E +- I counterD (32 dk FORE v v

5 T A_or B dk LUT6 v 4

) =8 BorC dk LUTE v v

D I Cor D dk LUTE v v

o | T8 Dor A dk LUTE v v

i T Eos dk STARTUPE2 v v

| Add/Remove Nets... Nets to debug: 133

| < Back |[Next =] ‘ Cancel ‘

o
o
&

e [l M

Name
=-3F dbg_hub (labt

a 0 (labtools_ila
Unassigned Debug Nets ‘

2 H P F
=

: Debug Cores Debug Nets

Cell Properties
& = ’0_‘, I3
fFuiao

C_TRIGIN_EN

o N L. 4

C_TRIGOUT_EN
C_ADV_TRIGGER
C_INPUT_PIPE_STAGES
C_EN_STRG_QUAL
ALL_PROBE_SAME_MU
ALL_PROBE_SAME_MU_CNT |131072

C_DATA_DEPTH
Number of data samples to store

General | Properties Debug Core Options Debugf q » @

The Set up Debug wizard automatically selects clock domains

The properties of each core can be customized using GUI or manually

The appropriate code will be inserted automatically into XDC file

A~
eNetFPGA e Technion, Haifa, IL 2015

Inserting Debug Cores (cont.)

» XDC Commands can be also used to Insert Debug Cores

create_debug coreu_ila Oila

set_property C_DATA DEPTH 1024 [get_debug cores u_ila 0]
set_property C_TRIGIN_EN false [get_debug_cores u_ila 0]
set_property C_TRIGOUT _EN false [get _debug _cores u_ila 0]
set_property C_ADV_TRIGGER false [get_debug cores u_ila 0]

» Saving constraints may cause the synthesis and implementation to
go out-of-date;

» you do not need to re-synthesize the design since the debug XDC
constraints are only used during implementation

» Check Xil UG908 for advanced debugging capabilities and IBERT

A~
eNetFPGA e Technion, Haifa, IL 2015

Debugging Logic Designs in Hardware

1. Connect to the hardware target and program the FPGA with the .bit file

2. Set up the ILA debug core trigger and capture controls.

3. Arm the ILA debug core trigger.

4. View the captured data from the ILA debug core in the Waveform window

2 project 1= [Ci/projects/ks counter2 K7/ praject 17 project 1pr] = Vivado 20141

Fle Edt Flow Toos Window Layout View Help
g2 ARl X D> S X I E Soefutlayout -

write_bitstream Complete

Hardware Manager - localhost/xilin_tcf/Digilent/210203339385A (172.20.9.47) X
Hardware _ O X DebugProbes = a1 S ILA -hw a2 X |8 VIO -hw vio 1 x e
L et B pp \ Q, = = 3] ILA Properties <« Trigger Capture Status 20
Mame Status 2.2 i || | -Trigger Mode Settings Core status: 1dle | waiting for Trigger | Post-Trigger | Ful
-1 Jocalncet. (172 e Connected Ag fast_cnt_count_1[31:0] = T s BASIC_ONLY = Window 16f 1 Window sample 0 of 1024 Total sample 0 of 1024
o xiinx_tef/Digient/2102033393954 (1) Open i ety o s Capture status: | e W Ide i e i
@ xc7k3ast 0 Programmed -Ag fast_nt_incr_val_1[30:0] @3 TRIG_OUT mode: |DISABLED -
o fast ot load_en_1 |]
oLl g fast_ent_load_va_1(330)| || |)y - capture Mode Settings
e fast_mnt_reset 1 Basic Trigger Setup 20
o fast_ent_up_down_1 Capture mode: ALWAYS = —
- e ilal_trig_out &, Name Compare Value
B xilin_tefXiinx/0000128f03F401 (0) b :Izz-ﬁ:i-i“ Number of windows: 1 [1-10 2
: g fla2_trig_in_ack_1 window data depth: 1024 - [1-10
ILA Core Properties e D,
PN Trigger position in window: |0 [0-10
F hw a1 --1g vio_feedback_2[31:0]
2w ta_ g vio_slice15_fo_2[14:0] General Settings
o vio_slice1_fb_2
Name: hw_ila_1 o vio_slice1a_fb_2 i Refresh rate (ms): | 500
Device: i xc7k32 g vio_slice200_fb_2[199:0]
HW core: core_3 g vio_slice34_fb_2[33:0]
% g vio_slice5_fb_2[4:0]
Capture sample count: 0 of 1024
Core status: Idle i@ fast_ont_count[31:0]
N P . o la2_trig_in_ack
o view editable ILA properties:
Open ILA Dashboard = 122 rg_out
g vio_feedback[31:0]
ig vio_slice15_fb[14:0]
o vio_slicel_fo
e vio_sicela_fo
ig vio_sice200_fb[199:0] _
General | Properties e s — »
Td Console e e
I‘Z set_property FROGRAM.FILE (C:/projects/ks_counter2 k7/project_l/project_l.runs/impl 1/ks_counter2.bit} [lindex [get_hw_devices] 0] o

cas| | set_property FROBES.FILE {C:/projects/ks_counter? k7/project_l/project_l.runs/impl_1/debug_nets.lex} [lindex [get_hw_devices] 0]
=

current hw device [lindex [get hw devices] 0]

refresh_hw_device [lindex [get_hw_devices] 0]

INFO: [Labtools 27-2024] Device xc7k325t { JIAG device index=0) has 1 JTAG_AXI cores.

INFO: [Labtools 27-1432] Device xc7k325t (JTAG device index = 0) is programmed with a design that has 2 ILA core(s) in it.
INFO: [Labtools 27 Device xcTk325t (JTAG device index = 0) is programmed with a design that has 1 VIO core(s) in it.
refresh hw device: Time (3): cpu = 00:00:04 ;: elapsed = 00:01:17 . Memory (MB): peak = 1226.832 ; gain = 8.648

[

< r

A~
@NetFPGA hnion, Haifa, IL

Taking measurements

» Add Probes to Waveform

» Add Probes to Basic Trigger Setu

» Add Probes to Basic Capture Setu

» Specify capture conditions

» Arm the core and analyse received data

2 project_L - [C/projects/ks_counter2_K7/project_1/project 1 xpr] - Vivado 2014.1
Fle Edit Flow Tools Window Layout View Help

P il P P ¥ S K| T G S oefautLayout -
Hardware Manager - localhostjxin_tcf/Diglent/2102033383954 (172.20.9.47) X
Hardware i I Debug Probes - Ki|=IA-hw_la_2 X |8 VIO -hw_vio_1 X [E
Q= =|E D b \ Q= =|E 3] ILA Properties « | Trigger Capture Status 20
Name Status 1 3% hojia 2 O [25| Trigger Mode settings Core status: | e | Waiting for Trigger | Post-Trigger Ful
B localhost 7) (2 Connected =] - w
e A3 fast_cnt_count_1[31:0] 52| Tigeermode: | BASIC oMLY s Window 1 of 1 Window sample 0 of 1024 Total sample 0 of 1024
.t = o fast_cnt_count_en_1 Y Capture status: dle Idle Idie
Frogrammed -\]| TRIG_OUT mode: | DISABLED =
TS o fast_cnt_load_en_1]
- Outputs Rese
g fast_cnt_load_val_1[31:0]]| - Capture Mode Settings
“lo fast_cnt_reset_1 Y
! o fast_ant_up_down_1 Capture mode: ALWAYS + Basic Trigger Sebp =0 =)
i P e ilal_trig_out i, Q Compare Vak
B adlinx_tcfyXiinx/0000128f03401 (0 Rl Z’UQ* N Raises 07 v 1 T - e Value
lla _trig_in 5 ¥ s fast_ont_count[31:0) = 1 JOOK_XXXX ~
o ila2_trig_in_ack_1 Window data depth: 1024 - [1-10 ~ fast_ont_count_en
ILA Care Properties) ey o ila2_trig_in_req_t D). e ot ot 12 g -
« +[EE " ila2_trig_in_req_dly1 Trigger position in window: |0 -1 =i
e -1 vio_feedback_2[31:0]
s -1 vio_slice15_fo_a[14:0] General Settings
1o vio_slice1_fb_2
Name: hw_ila_t o vio_sice1a_fb_2 Refresh rate (ms): 500
Device: @ xc7k325 g vio_slice200_fb_2[199:0]
HW core: s g vio_slice34_b_2[33:0]
?| | capture sample count: 0 of 1024 o e
: TS fw_vio_T
Core status: Ide Ei-ig fast_nt_count{31:0]
o ila2_trig_in_ack
To view editable ILA properties: i “az’mg’u&
Open LA Dashboard . i
~lo vio_slicel fb
~1e vio_slicel1a_fb
[#-3g vio_slice200_fb[199:0]
General | Properties a e 7 |C « il 0
_Ow x

Td Console
5[| set_property PROGRAM.FILE {C:/projects/ks_counter2_k7/proiect_l/prolect_l.runs/impl_l/ks_countes2.bit} [lindex [get_hw_devices] 0]
ca;| | set_property PROBES.FILE [C:/projects/ks_counterZ k7/project 1/project 1.runs/impl l/debug nets.ltz} [lindex [get hw devices] 0]
7| current_hw device [lindex [get_hw_devices] 0]

0} rerresn me device [lindex [get_mw_devices] 0]

nﬁ INFO: [Labtools 27-2024] Device xc7k325t (JIAG device index=0) has 1 JTAG AXI cores

INFO: [Labtools 27-1432] Device xc7k325T (JTAG device index = 0) is programmed with a design that has 2 ILA core(s) in it.

INFO: [Labtools 27-1828] Device xc7k325t (JTAG device index = 0) is programmed with a design that has 1 VIO core(s) in it.
refresh hw_device: Time (s): opu = 00:00:04 ; elapsed = 00:01:17 . Memory (MB): peak = 1226.832 ; gain = 5.648

I

Pl

A~
eNetFPGA e Technion, Haifa, IL 2015

Section IX: Conclusion

A~
eNetFPGA e Technion, Haifa, IL 2015

Acknowledgments ()

NetFPGA Team at University of Cambridge (Past and Present):

Andrew Moore, David Miller, Muhammad Shahbaz, Martin Zadnik
Matthew Grosvenor, Yury Audzevich, Neelakandan Manihatty-Bojan,
Georgina Kalogeridou, Jong Hun Han, Noa Zilberman, Gianni Antichi,
Charalampos Rotsos, Marco Forconesi, Jinyun Zhang, Bjoern Zeeb

NetFPGA Team at Stanford University (Past and Present):

Nick McKeown, Glen Gibb, Jad Naous, David Erickson,

G. Adam Covington, John W. Lockwood, Jianying Luo, Brandon Heller, Paul
Hartke, Neda Beheshti, Sara Bolouki, James Zeng,
Jonathan Ellithorpe, Sachidanandan Sambandan, Eric Lo

All Community members (including but not limited to):

Paul Rodman, Kumar Sanghvi, Wojciech A. Koszek,
Yahsar Ganjali, Martin Labrecque, Jeff Shafer, Eric Keller ,
Tatsuya Yabe, Bilal Anwer, Yashar Ganjali, Martin Labrecque,
Lisa Donatini, Sergio Lopez-Buedo

Kees Vissers, Michaela Blott, Shep Siegel, Cathal McCabe
SN [=ld S R E12 0 Summer Course Technion, Haifa, IL 2015

Acknowledgements (II)

5 UNIVERSITY OF
CAMBRIDGE

$XILINX® EPSRC

and skills

BROA’}JCOME C.E/'?I cron %;%YPRESS
HLGO-LOLGILC

- GrosaL
/&*‘3’ ic ITECH

Google oRC

Disclaimer: Any opinions, findings, conclusions, or recommendations expressed in these materials do not
necessarily reflect the views of the National Science Foundation or of any other sponsors supporting this

“

\ DIGILENT"®

project.
This effort is also sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force

Research Laboratory (AFRL), under contract FA8750-11-C-0249. This material is approved for public release,
distribution unlimited. The views expressed are those of the authors and do not reflect the official policy or

position of the Department of Defense or the U.S. Government.

eNEl:I:F'EIFI Summer Course Technion, Haifa, IL 2015

