NetFPGA Summer Course

Presented by:

Andrew W Moore, Noa Zilberman, Gianni Antichi Stephen Ibanez, Marcin Wojcik, Jong Hun Han, Salvator Galea, Murali Ramanujam, Jingyun Zhang, Yuta Tokusashi

> University of Cambridge July 24 – July 28, 2017

> > http://NetFPGA.org

The power of OpenSource: build your own proof of concept!

Gianni Antichi

Computer Laboratory University of Cambridge

gianni.antichi@cl.cam.ac.uk https://www.cl.cam.ac.uk/~ga288

NetFPGA: Networked FPGA

BlueSwitch: A Multi Table OpenFlow Switch

Your design can look completely different!

Blueswitch: Enabling provably consistent configuration of network switches, Han J.H., Mundkur P., Rotsos C., Antichi G., Dave N., Moore A.W., Neumann P.G., ACM/IEEE ANCS, Oakland, CA, USA, 7-8 May, 2015

NetSoc: NetFPGA + Open Source Processors

- Open source, RISC based SoC architectures
- *RISC-V RISC-V ISA soft processor, Linux OS*
- CHERI 64bit MIPS soft processor, BSD OS

Prototyping RISC Based, Reconfigurable Networking Applications in Open Source, Han J.H., Zilberman N., Zeeb B.A, Fiessler A. and Moore A.W., Technical Report, CoRR abs/1612.05547, 2016

there is a limited understanding of PCIe functionality, nor the trade-offs that must be made to get best-performance from PCIe systems

- pciebench tool open source available
- It builds on NetFPGA and Netronome boards

Power Efficient MAC

- A Platform for 100Gb/s power-saving MAC design (e.g. lights-out MAC)
- Porting MAC design to SUME permits:
 - Power measurements
 - Testing protocol's response
 - Reconsideration of power-saving mechanisms
 - Evaluating suitability for complex architectures and systems

Emu: Rapid FPGA Prototyping of Networking Services in C#

- Accelerating networking services
- Compiling .Net programs
 - To x86
 - To simulation environment
 - To multiple FPGA targets

Emu: Rapid Prototyping of Networking Services, Sultana N., et al., Usenix Annual Technical Conference (ATC), July 2017

- NetFPGA platform enabled the first prototype of OSNT.
- The open nature of NetFPGA ecosystem represents the best starting point for open HW/SW communityoriented projects.
- OSNT aims to build a community as NetFPGA did.

OSNT: Open Source Network Tester, Antichi G. et al., IEEE Network Magazine, Special issue on Open Source for Networking: Tools and Applications, 2014

OSNT: Open Source Network Tester

Open source hardware and software platform for network monitoring and testing.

https://osnt.org

Low cost, flexible to update, scale-out, no CPU usage, nanosecond resolution measurements

OSNT: Open Source Network Tester, Antichi G. et al., IEEE Network Magazine, Special issue on Open Source for Networking: Tools and Applications, 2014

Network Tester Comparison

	Cost	Flexibility	Precision	Line Rate
ÍXÍA SPIRENT. SPIRENT. Mendace power to see all	\$\$\$ \$\$	K	0	6
DPDK, Moongen	(#)	3	X	
 L	#			

OSNT is an open source HW/SW platform for network testing

OSNT is an open source HW/SW platform for network testing

OSNT **<u>currently</u>** is:

- 4x10Gbps traffic generator.
- Capture card with high resolution timestamp (6.4nsec).
- GPS-ready synchronized measurement kit.

OSNT **<u>currently</u>** is:

- 4x10Gbps traffic generator.
- Capture card with high resolution timestamp (6.4nsec).
- GPS-ready synchronized measurement kit.

a starting point

OSNT monitor

OSNT monitor

OSNT generator

OSNT RX interface

Timestamp taken before RX queues to reduce FIFO-induced jitter

OSNT RX interface

- Timestamp taken before RX queues to reduce FIFO-induced jitter
- Timestamp overwrites packet data at a configurable offset

OSNT TX interface

Timestamp taken after TX queues to reduce FIFO-induced jitter

OSNT TX interface

- Timestamp taken after TX queues to reduce FIFO-induced jitter
- Timestamp overwrites packet data at a configurable offset

OSNT TX interface

- Timestamp taken after TX queues to reduce FIFO-induced jitter
- Timestamp overwrites packet data at a configurable offset
- If enabled, it will overwrite 128bit data:

- Free running counter?
- We could use a 64-bit counter driven by the 156.25MHz system clock (naïve solution)

- Free running counter?
- We could use a 64-bit counter driven by the 156.25MHz system clock (naïve solution)
 - provides no means by which to correct oscillator frequency drift

- Free running counter?
- We could use a 64-bit counter driven by the 156.25MHz system clock (naïve solution)
 - provides no means by which to correct oscillator frequency drift
 - produces timestamps expressed in unit of 6.4 ns

- Free running counter?
- We could use a 64-bit counter driven by the 156.25MHz system clock (naïve solution)
 - provides no means by which to correct oscillator frequency drift
 - produces timestamps expressed in unit of 6.4 ns
 - fixed-point representation of time in seconds more useful to host

- Direct Digital Synthesis (DDS) is the <u>solution</u>!!
- DDS is a technique by which arbitrary variable frequencies can be generated

- Direct Digital Synthesis (DDS) is the <u>solution</u>!!
- DDS is a technique by which arbitrary variable frequencies can be generated
 - need a time reference to correct DDS rate (the GPS provides long-term stability)

- Direct Digital Synthesis (DDS) is the <u>solution</u>!!
- DDS is a technique by which arbitrary variable frequencies can be generated
 - need a time reference to correct DDS rate (the GPS provides long-term stability)
 - allow 64 bit value in fixed-point representation

- Direct Digital Synthesis (DDS) is the <u>solution</u>!!
- DDS is a technique by which arbitrary variable frequencies can be generated
 - need a time reference to correct DDS rate (the GPS provides long-term stability)
 - allow 64 bit value in fixed-point representation
 - how Endace DAG card works!

OSNT Generator

OSNT Generator

- 4x10G PCAP replay engine
- SRAM: 27MB
- DRAM: 8GB
OSNT Generator

OSNT Generator

- 4x10G PCAP replay engine
- SRAM: 27MB
- DRAM: 8GB

- Delay module
- Rate limiter

OSNT Generator

- 4x10G PCAP replay engine
- SRAM: 27MB
- DRAM: 8GB

- Delay module
- Rate limiter
- TX timestamping

OSNT Architeture

OSNT GUI

- OSNT GUI Extensible Generator and Monitor GUI in Python.
- Command-Line-Interface is also available.

Console	SNT Generator	Genera	ator G	UI												
PCAP ENGIN	IE															
Interface	Pcap File	Replay Cnt	Replay Cnt Display	Mem_addr_low	Mem_ac	dr_high										
0	1500.cap	10000000	10000000	0x0	0x30											
1	Select Pcap File	0	0	0x30	0x30				itor		• .					
2	Select Pcap File	0	0	0x30	0x30		Console			<u>IVI0</u>	nito	r Gl				
3	Select Pcap File	0	0	0x30	0x30		Port	Pkt Cnt	Vlan Cnt	IP Cnt	UDP	Cnt	TCP Cnt	Pkts/s	Bits/s	
RATE LIMITE	ER						0	12061355	0	1206135	5 1206	1355	0	822.368K	9.868G	
Interface	Rate Input	Rate Displa	ay Enabl	2	Reset		1	0	0	0	0		0	0.0	0.0	
0		9.87Gbps 1	100.0000%	Enable		Reset	2	0	0	0	0		0	0.0	0.0	
1	.	9.87Gbps 1	100.0000%	Enable		Reset	3	0	0	0	0		0	0.0	0.0	
		0.0766					FILTER R	ULES		DETID	DETIDAMACK	LADODT	140007		DDOTO M	ACK
2	0	9.87Gbps 1	100.0000%	Enable		Reset	Entry	SRC IP	SRC IP MASK	DSTIP		L4 PORT	L4 PORT I	MASK PROTO	PROTO MA	ASK
3	8	9.87Gbps 1	100.0000%	Enable		Pecet	0	N/A	N/A	N/A	N/A N/A	N/A N/A	N/A	N/A	N/A	ĥ
				LINDIC		Reset	2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Interface	Delay Source	Delay Reg Input	Delay Reg Display	Enable	Reset		3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	-	5 5 1	, , , ,				4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
0	Set IPG	0	Ons	Enable		Reset	5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
1			Ons				6 -	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
	Set IPG	0	0115	Enable		Reset	7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
2	Set IPG	0	Ons	Enable		Reset	8 9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
3			0.05				10	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Ţ
5	Set IPG	0	0115	Enable		Reset	CUTTER	and TIME	R							
Timestamp	Rx and Tx F	Position					Cut to Length:	N/A		FPGA Timer:	183.1	3438784			Hash	
0	RX TS Pos	0	TX TS	Pos	0											
1	RX TS Pos	0	TX TS	Pos	0											
2	RX TS Pos	0	TX TS	Pos	0											
3	RX TS Pos	0	TX TS	Pos	0											

OSNT command line

 Command-Line-Interface is available to create a script automating the test process.

/root/osnt-sume-master/OSNT-SUME-live/projects/osnt/sw/host/app/tools /root/osnt-sume-master/OSNT-SUME-live/projects/osnt/sw/host/app/tools 11	3x40							
<pre>total 6256 drwxr-xr-x 2 root root</pre>	<pre>sx40</pre>							
-rwxr-xr-x 1 root root 2012 Apr 4 15:22 Osht-test-template-0.sh -rwxr-xr-x 1 root root 2311 Mar 25 10:53 osht-test-template-7.sh -rwxr-xr-x 1 root root 4 Apr 10 15:19 rd_reg32.dat -rwxr-xr-x 1 root root 1665 Apr 11 13:31 run_pcap_gen.sh	Packet No : 0 Byte No : 0 VLAN No : 0 IP No : 0 UDP No : 0 TCP No : 0							
<pre>- rw-rr-1 root root 80364 Apr 10 15:11 tcpdump_latency_data.dat -rw-rr-1 root root 964 Apr 11 13:31 test_pcap_01.cap -rw-rr-1 root root 3192 War 25 10:53 timestamp_capture_cli.py root@nf-test111:tools\$ root@nf-test111:tools\$ root@nf-test111:tools\$ python/cli/osnt-tool-cmd.py -ifp0/sample_traces/1500.cap -flt/ 0 10000 -rpn0 1000 -txs0 6 -rxs0 7 -lpn 1000 -lty0 -rnm</pre>	Pkt/Sec :0.0 Byte/Sec :0.0 nf1 => Packet No : 0 Byte No : 0 VLAN No : 0 IP No : 0 UDP No : 0 TCP No : 0 g							
	nf2 => Packet No : 0 Byte No : 0 VLAN No : 0 IP No : 0 UDP No : 0 TCP No : 0 							
	nf3 => Packet No : 0 Byte No : 0 VLAN No : 0 IP No : 0 UDP No : 0 TCP No : 0 Pkt/Sec :0.0 Byte/Sec :0.0							
	OSNT TimsStamp Counter: 34.381888 sec. Cutter size : Disabled Press Ctrl-C to exit							

OSNT in action

Enabling **network innovation** with accurate **networking systems characterization**

Forwarding latency measurement

Unloaded switches baseline latency no cross traffic

Forwarding latency measurement

SDN Testing Suite

- SDN enables unprecedented flexible and extensible network control
- OpenFlow specifications lack performance semantics
 What does a barrier reply signifies?
- OpenFlow performance aspects are yet to be explored
 How do you compare two OpenFlow switches?
- OpenFlow flexibility is not always portable on switch ASIC

THE PROACTIVE CASE

SDN Controller

01.Barrier request 02.Set of new rules

THE PROACTIVE CASE

01.Barrier request02.Set of new rules

Barrier reply

THE PROACTIVE CASE

SDN Controller

01.Barrier request02.Set of new rules

Barrier reply

SW controller

HW datapath

THE PROACTIVE CASE

SDN Controller

01.Barrier request02.Set of new rules

Barrier reply

Consistent policy update affects security in SDN.

Target state needed to update

1. Initial rule $: 0 \rightarrow 1$ (as a set of different IP rules)

2. Rule update : $0 \rightarrow 2$

We generate an aggregate 2Gbps with 150B packets

1. Initial rule $: 0 \rightarrow 1$ (as a set of different IP rules)

2. Rule update : $0 \rightarrow 2$

A flow modification requires only to change the "action" in the RAM. The flow is already present in the TCAM.
Control/Data plane consistency

A flow insertion requires also to write the matching fields in the TCAM.

Blueswitch: Enabling provably consistent configuration of network switches, Han J.H., Mundkur P., Rotsos C., Antichi G., Dave N., Moore A.W., Neumann P.G., ACM/IEEE ANCS, Oakland, CA, USA, 7-8 May, 2015

THE REACTIVE CASE

SDN Controller

Controller performances in SDN networks

Data Traffic Link

Controller performances in SDN networks

OSNT-SUME-live Github

OSNT-SUME-live is publicly available.

NetFPGA / OSNT-SUME-liv	/e Private	O U	nwatch 👻 20 🔺 Star	0 V Fork 2
↔ Code ① Issues 0 11 P	ull requests 0 🔢 Projects 0 🗐	Wiki 🧄 Pulse 🔟 Graph	hs 🔅 Settings	
SNT for NetFPGA-SUME board				Edit
Add topics ② 47 commits	្រំ1 branch		🎎 3 contr	ributors
iranch: master 👻 New pull request		Create new file	Upload files Find file G	one or download -
jhhan Merge branch 'master' of ht	ttps://github.com/NetFPGA/OSNT-SUME-live		Latest commit 1	a058a2 7 days ago
contrib/challenge2017	NetFPGA design challenge 2017, added t	the first test		12 days ago
ib	Update the extmem packet replay contro	oller and add the qdr i/f contro		7 days ago
rojects	Update minor in 10g rx and tx cores. Add	d comments to the timestamp m	·O	a month ago
ripts	Add the first clean repo.			8 months ago
til	update pcap_gen to support configurable	e source and dest MAC addresse	es	12 days ago
lakefile	Add Makefile for ip core and sw driver ge	eneration.		
README.md	Update the release not link.			
EREADME.md				
OSNT				

Acknowledgments (I)

NetFPGA Team at University of Cambridge (Past and Present):

Andrew Moore, David Miller, Muhammad Shahbaz, Martin Zadnik, Matthew Grosvenor, Yury Audzevich, Neelakandan Manihatty-Bojan, Georgina Kalogeridou, Jong Hun Han, Noa Zilberman, Gianni Antichi, Charalampos Rotsos, Hwanju Kim, Marco Forconesi, Jinyun Zhang, Bjoern Zeeb, Robert Watson, Salvator Galea, Marcin Wojcik, Diana Andreea Popescu, Murali Ramanujam

NetFPGA Team at Stanford University (Past and Present):

Nick McKeown, Glen Gibb, Jad Naous, David Erickson, G. Adam Covington, John W. Lockwood, Jianying Luo, Brandon Heller, Paul Hartke, Neda Beheshti, Sara Bolouki, James Zeng, Jonathan Ellithorpe, Sachidanandan Sambandan, Eric Lo, Stephen Gabriel Ibanez

All Community members (including but not limited to):

Paul Rodman, Kumar Sanghvi, Wojciech A. Koszek, Yahsar Ganjali, Martin Labrecque, Jeff Shafer, Eric Keller, Tatsuya Yabe, Bilal Anwer, Yashar Ganjali, Martin Labrecque, Lisa Donatini, Sergio Lopez-Buedo, Andreas Fiessler, Robert Soule, Pietro Bressana, Yuta Tokusashi

Steve Wang, Erik Cengar, Michael Alexander, Sam Bobrowicz, Garrett Aufdemberg, Patrick Kane, Tom Weldon

Patrick Lysaght, Kees Vissers, Michaela Blott, Shep Siegel, Cathal McCabe

Acknowledgements (II)

