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Reference NIC project
4x port NIC architecture:
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Host architecture

Legacy vs. Recent (courtesy of Intel)



Summer Course Cambridge, UK, 2017 4

Interconnecting components
• Need interconnections between

– CPU, memory, storage, network, I/O controllers
• Shared Bus: shared communication channel

– A set of parallel wires for data and
synchronization of data transfer

– Can become a bottleneck
• Performance limited by physical factors

– Wire length, number of connections
• More recent alternative: high-speed serial  connections 

with switches
– Like networks
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I/O System Characteristics

• Performance measures
– Latency (response time)
– Throughput (bandwidth)
– Desktops & embedded systems

• Mainly interested in response time & diversity of
devices

– Servers
• Mainly interested in throughput & expandability of

devices

• Reliability
– Particularly for storage devices (fault avoidance,  

fault tolerance, fault forecasting)
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I/O Management and strategies
• I/O is mediated by the OS

– Multiple programs share I/O resources
• Need protection and scheduling

– I/O causes asynchronous interrupts
• Same mechanism as exceptions

– I/O programming is fiddly
• OS provides abstractions to programs

Strategies characterize the amount of work done by the  
CPU in the I/O operation:

• Polling
• Interrupt Driven
• Direct Memory Access
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The I/O Access Problem
• Question: how to transfer data from I/O devices 

to memory (RAM)?
• Trivial solution:

– Processor individually reads or writes every word
– Transferred to/from I/O through an internal register to 

memory

• Problems:
– Extremely inefficient – can occupy a processor for 1000’s 

of cycles
– Pollute cache 
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DMA
• DMA – Direct Memory Access
• A modern solution to the I/O access problem
• The peripheral I/O can issue read/write 

commands directly to the memory
– Through the main memory controller
– The processor does not need to execute any operation

• Write: The processor is notified when a 
transaction is completed (interrupt)

• Read: The processor issues a signal to the I/O 
when the data is ready in memory
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Example – Intel Xeon D
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1

1. Message arrives on I/O 
interface.
Message is decoded to 
Mem read/write.
Address is converted to 
internal address.

2

2. Mem Read/Write 
command goes 
through the switch to 
the internal bus and 
memory controller.

3

3. Memory controller 
executes the 
command to the 
DRAM.
Returns data if 
required in the same 
manner.

Memory Mapped Access
Example (Embedded Processor)
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DMA
• DMA accesses are usually handled in buffers

– Single word/block is typically inefficient

• The processors assigns the peripheral unit the 
buffers in advance

• The buffers are typically handled by buffer 
descriptors
– Pointer to the buffer in the memory
– May point to the next buffer as well
– Indicates buffer status: Owner, valid etc.
– May include additional buffer properties as well
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Transfers blocks of data 
between external 
interfaces and local 
address space

DMA Access

1
1. A transfer is started by 

SW writing to DMA 
engine configuration 
registers

3

3. DMA engine fetches a 
descriptor from memory

4. DMA engine reads block 
of data from source

4

2

2. SW Polls DMA channel 
state to idle and sets 
trigger

5. DMA engine writes data 
to destination

5

Example (Embedded Processor)
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Intel Data Direct I/O (DDIO)
• Data is written and read directly to/from the 

last level cache (LLC)
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PCIe introduction
• PCIe is a serial point-to-point interconnect between two devices

• Implements packet based protocol (TLPs) for information transfer
• Scalable performance based on # of signal Lanes implemented on the  

PCIe interconnect
• Supports credit-based point-to-point flow control (not end-to-end)

Provides:
• Processor

independence &  
buffered isolation

• Bus mastering

• Plug and Play operation
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PCIe transaction types
• Memory Read or Memory Write. Used to transfer data 

from or  to a memory mapped location

• I/O Read or I/O Write. Used to transfer data from or to 
an I/O location

• Configuration Read or Configuration Write. Used to  
discover device capabilities, program features, and check 
status in the  4KB PCI Express configuration space.

• Messages. Handled like posted writes. Used for event  
signaling and general purpose messaging.
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PCIe architecture
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Interrupt Model
PCI Express supports three interrupt reporting  
mechanisms:

1. Message Signaled Interrupts (MSI)
- interrupt the CPU by writing to a specific address in memory 
with a  payload of 1 DW

2. Message Signaled Interrupts - X (MSI-X)
- MSI-X is an extension to MSI, allows targeting individual 
interrupts to  different processors

3. INTx Emulation
four physical interrupt signals INTA-INTD are messages
upstream

- ultimately be routed to the system interrupt controller



Summer Course Cambridge, UK, 2017 18

Reference NIC project
4x port NIC architecture:
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RIFFA

RIFFA (Reusable Integration Framework for FPGA  
Accelerators)
• Developed by UCSD
• RIFFA has been tested with both Altera and Xilinx

devices
• Driver supports Windows and Linux OSes
• Provide bindings for C/C++, Python, MATLAB and Java
• Latest generation of the original engine
• At the moment supports only Gen 2.0 PCIe
• Github: https://github.com/drichmond/riffa
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RIFFA Overview

achieves 76% of the theoretical max
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RIFFA architecture
 Data Abstraction / DMA Layer is  

responsible for making requests to  
read data from, or write data to 
host  memory

 SG DMA Layer: reading from 
and  writing to scatter gather 
lists;  supplying addresses to 
data- request logic

 Formatting Engine Layer is  
responsible for formatting 
requests  and completions into
packets.

 Translation Layer provides a set
of vendor-independent interfaces
and signal names

 Vendor IP interfaces provide 
low-level access to the PCIe
bus
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RIFFA Data transfer example

FPGA → Host Host → FPGA
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RIFFA Data transfer example (cont.)
Note: each channel has its own  
SG DMA list logic

Host SEND case
1)User wants to make a  of transfer 128 32-bit words;
2)The RIFFA driver writes {32'd128} to Channel 0's RX Length register, and 
{31'd0,1'b1} to Channel  0's RX OffLast register
3)The RIFFA driver allocates an SGL with 1 element (4 32-bit words) at

address
{64'h0000_ 0000_ BEEF_ 0000}
4)The driver fills the list with the length and address of the user data: 
{32'd0,32'd128,64'h0000_  0000_ FEED_ 0000}
5)driver communicates the address and length of the SGL by writing
{32'hBEEF0000} to Channel 0's RX SGL Address Low register, 
{32'd0} to Channel  0's RX SGL Address High register, and 
{32'd4} to Channel 0's RX SGL Length register
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RIFFA Data transfer example (cont.)
Note: each channel has its own  
SG DMA list logic

Host SEND case
6)SG List Requester on the FPGA issues a read request for 4 32-bit starting at 

address 0xBEEF0000
7)The FPGA receieves a completion with 4 32-bit words
8)RX Port Reader removes the SG element from the FIFO, and issues several 
read requests to receive  all 128 32-bit words. Compl are reordered in reorder
buffer.
9)RIFFA raises an interrupt with the last word of data put into main FIFO. 
driver reads the Interrupt  Status Register of the FPGA and determines 
that Channel 0 has nished the RX Transaction
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Networking with RIFFA
SUME RIFFA driver:
 RIFFA DMA engine design dominated

 Single BAR for info and transfer programming

 2 channels: 1 for packets, 1 for registers

 Single interrupt

 Single global lock

 Supports 1..4 ports, Ethernet interfaces named nf<n>
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Networking with RIFFA (cont.)

• First PCIe channel (De)Multiplexes  
ports to interfaces and vice versa  
based on 128bit meta data

• Currently uses a 4k temporary buffer  
per direction currently (with 16bit  
offset for 32bit L3 alignment, will DMA  
directly to “skb” data area in the  
future)

• 1 packet per DMA transaction

Packets – CHANNEL 0 IOCTL (Register r/w) – CHANNEL 1
• Based on an interface of the card (can  

have multiple cards)
• Uses standard struct ifreq with struct  

sume_ifreq data pointer
• Supports read write operations on  

registers (see: nf_sume.h, rwaxi tool)
• Second PCIe channel
• Only one outstanding register r/w  

possible at a time
• Writing initiates full DMA transaction  

with address, value, and 0x1f STRB
• Read is like a write with 0x00 STRB,  

followed by a 2nd DMA transaction to  
read value back

• Each read/write goes through similar
DMA transfer cycle packet data goes
through
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UAM DMA

Built by University Autonoma Madrid (UAM) in collaboration
with  NetFPGA’s Cambridge team

• Supports PCIe Gen 3.0 x8 speeds

• Designed to be lightweight and easy to understand

• Tailored for Xilinx platform only

• Designed for virtualized environments (SR-IOV)

• Has been tested on Linux platform
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DMA Architecture
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DMA Architecture (cont.)
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SW/HW perspective
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SW/HW perspective (cont.)
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Evaluation

DMA Performance, C2S

Setup:
• Supermicro X9DRD-iF motherboard
• Dual Intel Xeon CPU E5-2650 v2 @ 2.60GHz 
• 64 GiB of DDR3 RAM clocked at 1600 MHz 
• NetFPGA SUME board
• One VM and one VF 

• using KVM
• 8GB of RAM 
• Up to 4 cores

• Enabled VT-x, VT-d
and SR-IOV
• Both BIOS and OS
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