
Summer Course Cambridge, UK, 2017 1

NetFPGA Summer Course

Presented by:
Andrew W Moore, Noa Zilberman, Gianni Antichi
Stephen Ibanez, Marcin Wojcik, Jong Hun Han,

Salvator Galea, Murali Ramanujam, Jingyun Zhang,
Yuta Tokusashi

University of Cambridge
July 24 – July 28, 2017

http://NetFPGA.org

Summer Course Cambridge, UK, 2017 2

Reference NIC project
4x port NIC architecture:

H
os

ts
ys

te
m

PC
Ie

nd
po

in
t

D
ire

ct

M
em

or
y

Ac
ce

ss
10GE

10GE

10GE

10GE

In
pu

t
Ar

bi
te

r

O
ut

pu
t

Po
rt

Lo
ok

up

O
ut

pu
t

Q
ue

ue
s

AX
I

In
te

rc
on

ne
ct

Summer Course Cambridge, UK, 2017 3

Host architecture

Legacy vs. Recent (courtesy of Intel)

Summer Course Cambridge, UK, 2017 4

Interconnecting components
• Need interconnections between

– CPU, memory, storage, network, I/O controllers
• Shared Bus: shared communication channel

– A set of parallel wires for data and
synchronization of data transfer

– Can become a bottleneck
• Performance limited by physical factors

– Wire length, number of connections
• More recent alternative: high-speed serial connections

with switches
– Like networks

Summer Course Cambridge, UK, 2017 5

I/O System Characteristics

• Performance measures
– Latency (response time)
– Throughput (bandwidth)
– Desktops & embedded systems

• Mainly interested in response time & diversity of
devices

– Servers
• Mainly interested in throughput & expandability of

devices

• Reliability
– Particularly for storage devices (fault avoidance,

fault tolerance, fault forecasting)

Summer Course Cambridge, UK, 2017 6

I/O Management and strategies
• I/O is mediated by the OS

– Multiple programs share I/O resources
• Need protection and scheduling

– I/O causes asynchronous interrupts
• Same mechanism as exceptions

– I/O programming is fiddly
• OS provides abstractions to programs

Strategies characterize the amount of work done by the
CPU in the I/O operation:

• Polling
• Interrupt Driven
• Direct Memory Access

Summer Course Cambridge, UK, 2017 7

The I/O Access Problem
• Question: how to transfer data from I/O devices

to memory (RAM)?
• Trivial solution:

– Processor individually reads or writes every word
– Transferred to/from I/O through an internal register to

memory

• Problems:
– Extremely inefficient – can occupy a processor for 1000’s

of cycles
– Pollute cache

Summer Course Cambridge, UK, 2017 8

DMA
• DMA – Direct Memory Access
• A modern solution to the I/O access problem
• The peripheral I/O can issue read/write

commands directly to the memory
– Through the main memory controller
– The processor does not need to execute any operation

• Write: The processor is notified when a
transaction is completed (interrupt)

• Read: The processor issues a signal to the I/O
when the data is ready in memory

Summer Course Cambridge, UK, 2017 9

Example – Intel Xeon D

Summer Course Cambridge, UK, 2017 10

1

1. Message arrives on I/O
interface.
Message is decoded to
Mem read/write.
Address is converted to
internal address.

2

2. Mem Read/Write
command goes
through the switch to
the internal bus and
memory controller.

3

3. Memory controller
executes the
command to the
DRAM.
Returns data if
required in the same
manner.

Memory Mapped Access
Example (Embedded Processor)

Summer Course Cambridge, UK, 2017 11

DMA
• DMA accesses are usually handled in buffers

– Single word/block is typically inefficient

• The processors assigns the peripheral unit the
buffers in advance

• The buffers are typically handled by buffer
descriptors
– Pointer to the buffer in the memory
– May point to the next buffer as well
– Indicates buffer status: Owner, valid etc.
– May include additional buffer properties as well

Summer Course Cambridge, UK, 2017 12

Transfers blocks of data
between external
interfaces and local
address space

DMA Access

1
1. A transfer is started by

SW writing to DMA
engine configuration
registers

3

3. DMA engine fetches a
descriptor from memory

4. DMA engine reads block
of data from source

4

2

2. SW Polls DMA channel
state to idle and sets
trigger

5. DMA engine writes data
to destination

5

Example (Embedded Processor)

Summer Course Cambridge, UK, 2017 13

Intel Data Direct I/O (DDIO)
• Data is written and read directly to/from the

last level cache (LLC)

Summer Course Cambridge, UK, 2017 14

PCIe introduction
• PCIe is a serial point-to-point interconnect between two devices

• Implements packet based protocol (TLPs) for information transfer
• Scalable performance based on # of signal Lanes implemented on the

PCIe interconnect
• Supports credit-based point-to-point flow control (not end-to-end)

Provides:
• Processor

independence &
buffered isolation

• Bus mastering

• Plug and Play operation

Summer Course Cambridge, UK, 2017 15

PCIe transaction types
• Memory Read or Memory Write. Used to transfer data

from or to a memory mapped location

• I/O Read or I/O Write. Used to transfer data from or to
an I/O location

• Configuration Read or Configuration Write. Used to
discover device capabilities, program features, and check
status in the 4KB PCI Express configuration space.

• Messages. Handled like posted writes. Used for event
signaling and general purpose messaging.

Summer Course Cambridge, UK, 2017 16

PCIe architecture

Summer Course Cambridge, UK, 2017 17

Interrupt Model
PCI Express supports three interrupt reporting
mechanisms:

1. Message Signaled Interrupts (MSI)
- interrupt the CPU by writing to a specific address in memory
with a payload of 1 DW

2. Message Signaled Interrupts - X (MSI-X)
- MSI-X is an extension to MSI, allows targeting individual
interrupts to different processors

3. INTx Emulation
four physical interrupt signals INTA-INTD are messages
upstream

- ultimately be routed to the system interrupt controller

Summer Course Cambridge, UK, 2017 18

Reference NIC project
4x port NIC architecture:

H
os

ts
ys

te
m

PC
Ie

nd
po

in
t

D
ire

ct

M
em

or
y

Ac
ce

ss
10GE

10GE

10GE

10GE

In
pu

t
Ar

bi
te

r

O
ut

pu
t

Po
rt

Lo
ok

up

O
ut

pu
t

Q
ue

ue
s

AX
I

In
te

rc
on

ne
ct

Summer Course Cambridge, UK, 2017 19

RIFFA

RIFFA (Reusable Integration Framework for FPGA
Accelerators)
• Developed by UCSD
• RIFFA has been tested with both Altera and Xilinx

devices
• Driver supports Windows and Linux OSes
• Provide bindings for C/C++, Python, MATLAB and Java
• Latest generation of the original engine
• At the moment supports only Gen 2.0 PCIe
• Github: https://github.com/drichmond/riffa

Summer Course Cambridge, UK, 2017 20

RIFFA Overview

achieves 76% of the theoretical max

Summer Course Cambridge, UK, 2017 21

RIFFA architecture
 Data Abstraction / DMA Layer is

responsible for making requests to
read data from, or write data to
host memory

 SG DMA Layer: reading from
and writing to scatter gather
lists; supplying addresses to
data- request logic

 Formatting Engine Layer is
responsible for formatting
requests and completions into
packets.

 Translation Layer provides a set
of vendor-independent interfaces
and signal names

 Vendor IP interfaces provide
low-level access to the PCIe
bus

Summer Course Cambridge, UK, 2017 22

RIFFA Data transfer example

FPGA → Host Host → FPGA

Summer Course Cambridge, UK, 2017 23

RIFFA Data transfer example (cont.)
Note: each channel has its own
SG DMA list logic

Host SEND case
1)User wants to make a of transfer 128 32-bit words;
2)The RIFFA driver writes {32'd128} to Channel 0's RX Length register, and
{31'd0,1'b1} to Channel 0's RX OffLast register
3)The RIFFA driver allocates an SGL with 1 element (4 32-bit words) at

address
{64'h0000_ 0000_ BEEF_ 0000}
4)The driver fills the list with the length and address of the user data:
{32'd0,32'd128,64'h0000_ 0000_ FEED_ 0000}
5)driver communicates the address and length of the SGL by writing
{32'hBEEF0000} to Channel 0's RX SGL Address Low register,
{32'd0} to Channel 0's RX SGL Address High register, and
{32'd4} to Channel 0's RX SGL Length register

Summer Course Cambridge, UK, 2017 24

RIFFA Data transfer example (cont.)
Note: each channel has its own
SG DMA list logic

Host SEND case
6)SG List Requester on the FPGA issues a read request for 4 32-bit starting at

address 0xBEEF0000
7)The FPGA receieves a completion with 4 32-bit words
8)RX Port Reader removes the SG element from the FIFO, and issues several
read requests to receive all 128 32-bit words. Compl are reordered in reorder
buffer.
9)RIFFA raises an interrupt with the last word of data put into main FIFO.
driver reads the Interrupt Status Register of the FPGA and determines
that Channel 0 has nished the RX Transaction

Summer Course Cambridge, UK, 2017 25

Networking with RIFFA
SUME RIFFA driver:
 RIFFA DMA engine design dominated

 Single BAR for info and transfer programming

 2 channels: 1 for packets, 1 for registers

 Single interrupt

 Single global lock

 Supports 1..4 ports, Ethernet interfaces named nf<n>

Summer Course Cambridge, UK, 2017 26

Networking with RIFFA (cont.)

• First PCIe channel (De)Multiplexes
ports to interfaces and vice versa
based on 128bit meta data

• Currently uses a 4k temporary buffer
per direction currently (with 16bit
offset for 32bit L3 alignment, will DMA
directly to “skb” data area in the
future)

• 1 packet per DMA transaction

Packets – CHANNEL 0 IOCTL (Register r/w) – CHANNEL 1
• Based on an interface of the card (can

have multiple cards)
• Uses standard struct ifreq with struct

sume_ifreq data pointer
• Supports read write operations on

registers (see: nf_sume.h, rwaxi tool)
• Second PCIe channel
• Only one outstanding register r/w

possible at a time
• Writing initiates full DMA transaction

with address, value, and 0x1f STRB
• Read is like a write with 0x00 STRB,

followed by a 2nd DMA transaction to
read value back

• Each read/write goes through similar
DMA transfer cycle packet data goes
through

Summer Course Cambridge, UK, 2017 27

UAM DMA

Built by University Autonoma Madrid (UAM) in collaboration
with NetFPGA’s Cambridge team

• Supports PCIe Gen 3.0 x8 speeds

• Designed to be lightweight and easy to understand

• Tailored for Xilinx platform only

• Designed for virtualized environments (SR-IOV)

• Has been tested on Linux platform

Summer Course Cambridge, UK, 2017 28

DMA Architecture

Summer Course Cambridge, UK, 2017 29

DMA Architecture (cont.)

Summer Course Cambridge, UK, 2017 30

SW/HW perspective

Summer Course Cambridge, UK, 2017 31

SW/HW perspective (cont.)

Summer Course Cambridge, UK, 2017 32

Evaluation

DMA Performance, C2S

Setup:
• Supermicro X9DRD-iF motherboard
• Dual Intel Xeon CPU E5-2650 v2 @ 2.60GHz
• 64 GiB of DDR3 RAM clocked at 1600 MHz
• NetFPGA SUME board
• One VM and one VF

• using KVM
• 8GB of RAM
• Up to 4 cores

• Enabled VT-x, VT-d
and SR-IOV
• Both BIOS and OS

Summer Course Cambridge, UK, 2017 33

Nick McKeown, Glen Gibb, Jad Naous, David Erickson, G. Adam Covington, John W. Lockwood,
Jianying Luo, Brandon Heller, Paul Hartke, Neda Beheshti, Sara Bolouki, James Zeng,

Jonathan Ellithorpe, Sachidanandan Sambandan, Eric Lo, Stephen Gabriel Ibanez

Acknowledgments (I)

NetFPGA Team at Stanford University (Past and Present):

NetFPGA Team at University of Cambridge (Past and Present):
Andrew Moore, David Miller, Muhammad Shahbaz, Martin Zadnik, Matthew Grosvenor, Yury

Audzevich, Neelakandan Manihatty-Bojan, Georgina Kalogeridou, Jong Hun Han, Noa
Zilberman, Gianni Antichi, Charalampos Rotsos, Hwanju Kim, Marco Forconesi, Jinyun Zhang,

Bjoern Zeeb, Robert Watson, Salvator Galea, Marcin Wojcik, Diana Andreea Popescu,
Murali Ramanujam

All Community members (including but not limited to):
Paul Rodman, Kumar Sanghvi, Wojciech A. Koszek, Yahsar Ganjali, Martin Labrecque, Jeff

Shafer, Eric Keller, Tatsuya Yabe, Bilal Anwer, Yashar Ganjali, Martin Labrecque, Lisa Donatini,
Sergio Lopez-Buedo , Andreas Fiessler, Robert Soule, Pietro Bressana, Yuta Tokusashi

Patrick Lysaght, Kees Vissers, Michaela Blott, Shep Siegel, Cathal McCabe

Steve Wang, Erik Cengar, Michael Alexander, Sam Bobrowicz, Garrett Aufdemberg,
Patrick Kane, Tom Weldon

Summer Course Cambridge, UK, 2017 34

Acknowledgements (II)

	 NetFPGA Summer Course
	Reference NIC project
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	The I/O Access Problem
	DMA
	Example – Intel Xeon D
	Example (Embedded Processor)
	DMA
	Example (Embedded Processor)
	Intel Data Direct I/O (DDIO)
	Slide Number 14
	Slide Number 15
	PCIe architecture
	Slide Number 17
	Reference NIC project
	RIFFA
	Slide Number 20
	Slide Number 21
	RIFFA Data transfer example
	Slide Number 23
	Slide Number 24
	Networking with RIFFA
	Slide Number 26
	Slide Number 27
	DMA Architecture
	Slide Number 29
	SW/HW perspective
	SW/HW perspective (cont.)
	Evaluation
	Acknowledgments (I)
	Acknowledgements (II)

