NetFPGA Summer Course

P
SNeltFPGH

Presented by:

Andrew W Moore, Noa Zilberman, Gianni Antichi
Stephen Ibanez, Marcin Wojcik, Jong Hun Han,
Salvator Galea, Murali Ramanujam, Jingyun Zhang,
Yuta Tokusashi

University of Cambridge
July 24 — July 28, 2017

http://NetFPGA.org

<
SNetFPGA

Reference NIC project
4x port NIC architecture:

Iy

PCl endpoint

o)

Q.
>
— X
> O
Qo
=
O =
o
al

N

Output
Queues

| -
+~ O
> =
Q o
C -
— <

10GE

Host system

>

10GE

AXI
Interconnect

SNetFPGA

Summer Course Cambridge, UK, 2017

Host architecture

Intel
Pentium lil/Celeron
Processor (CPU)

AGP Connector

AGP
Graphics

I Intel 815 Chipset Family

System Memory

hiead SDRAM 1
100/133MHz
AGP 2.0 :| 82815 GMCH | : !
< (ntelgise [>
Northbridge) ; SDRAM 2

e - T 4

Hub
Interface

' PCI
Intel Slots
PCIB "
ICH2 —
(Southbridge)

Firmware Hub (FWH)

Interface

Flash BIOS

Core 2 Core 3 Core 4

(BSP) (AP) (AP) (AP)
I T I T
¥ integrated }
i Graphics |
Ext | PCI PCie Root G “"“..“.: :'"“"“ﬂ
erna e " b Mo
Graphics !-—-! CM ony
(PCle Endpoint) g

System Memory

+ ooRs odule 1] §

L

. Chipset Interconnect ¢
. Loﬁic { J

This PCle link is viewed as
originating from the root port
(in PCle graphics point of view)

Proprietary
Chipset Interconnect

(Chipset 1

; II DDR3 Module 2 | i

This PCle link is viewed
as originaling from root
port (from the PCle switch
point of view)

Bridge

Virtual Virtual
PCl-to-PCI {{ i PCl-to-PCI
Bridge Bridge ¥

PCle link originating from [_{ % PCle link originating
the PCle switch port from the PCle switch port
Add-In Network Card Add-In SCSI Controller
(PCle Endpoint) (PCle Endpoint)

Legacy vs. Recent (courtesy of Intel)
ﬁNetFF'EFI

Interconnecting components

 Need interconnections between
— CPU, memory, storage, network, 1/O controllers

 Shared Bus: shared communication channel
— A set of parallel wires for data and
synchronization of data transfer

— Can become a bottleneck
 Performance limited by physical factors

— Wire length, number of connections
 More recent alternative: high-speed serial connections

with switches

— Like networks
mﬁ"ﬂm Ii PCle switch PCle swilch I

PCle endpoints I PCle endpoints I PCle endpoints I

<
SNetFPGA

/O System Characteristics

 Performance measures
— Latency (response time)

— Throughput (bandwidth)

— Desktops & embedded systems

* Mainly interested in response time & diversity of
devices

— Servers

« Mainly interested in throughput & expandability of
devices

* Reliability
— Particularly for storage devices (fault avoidance,
fault tolerance, fault forecasting)

A
SNetFPGA BT Cambridge, UK. 2017

/O Management and strategies

e [/OIs mediated by the OS

— Multiple programs share I/O resources
* Need protection and scheduling

— /O causes asynchronous interrupts
e« Same mechanism as exceptions

— /O programming is fiddly

 OS provides abstractions to programs

Strategies characterize the amount of work done by the
CPU in the I/O operation:

« Polling
 Interrupt Driven
. Direct Memory Access

<
SNetFPGA

The I/O Access Problem

 Question: how to transfer data from I/O devices
to memory (RAM)?

e Trivial solution:
— Processor individually reads or writes every word

— Transferred to/from I/O through an internal register to
memory

e Problems:

— Extremely inefficient — can occupy a processor for 1000’s
of cycles

— Pollute cache

<
SNetFPGA

DMA

e DMA — Direct Memory Access
« A modern solution to the I/O access problem

« The peripheral I/O can issue read/write
commands directly to the memory

— Through the main memory controller
— The processor does not need to execute any operation

 Write: The processor Is notified when a
transaction is completed (interrupt)

« Read: The processor issues a signal to the I/O
when the data is ready in memory

<
SNetFPGA

Example — Intel Xeon D

e,

DDR3L-1600 DDR3L-1600 PCle Gen3
DDR4-2133 DDR4-2133 24 Lanes, 6 Controllers
g T
Intel®
* Ethernet
rf 2x10 GbE . ——
{ | |

o —

SATA
3.0x6

PCle Gen2
8 Lanes
8 Controllers

SNetFPGA

Summer Course Cambridge, UK, 2017

Example (Embedded Processor)

Memory Mapped Access
1. Message arrives on /O

interface.
Message is decoded to _ obrR_,[ooropRz |3 | | || Securiy
) SDRAM Memory Controll Engine
Mem read/write. ' N —
. -Khyte
Address is converted to sopies| Locagusconroler fe»l || S5 ||| C2cocn
. SRAM
Intern al ad d Fess. Programmable Interrupt e500 Core
IRQs <> <>
_ Controller (PIC) 500 ¢ ooyt [32-Koyte

2. Mem Read /erte Serial<—>| DUART Cﬂ;;i{;cy m Instruction L1 Data

command goes Pue || Cache || Cache
. ’C « .
th rou g h th e SW'tC h tO o< Contraller Serial RapidiO
the internal bus and e T M xR0
[as5s
memory controller. MII, GMII, TBI eTSEC DL «— @:
RTBI, RGMIl, <—> - > <
3. Memory controller AwiL 107100 | , -
MII, GMIL, TBI, cTSEC - 32-bit PCI Bus Interface 6 MHz _
executes the RTBI, RGMIL, <> e > (If 64-bit not used)
RMI|
32-bit PCI/
command to the Ml G, T, eTSEC | < o] 64bit PCIPCEX <> forex
DRAM. "RMI 10/1001 Gb Bus Interface
Returns data if RTBLRGMIL | €TSEC | « sl HChanne DMA
. d . th RMII 101001 Gh - = Controller

requirea in the same
manner.

<
SNetFPGA

DMA

« DMA accesses are usually handled in buffers
— Single word/block is typically inefficient

e The processors assigns the peripheral unit the
buffers in advance

 The buffers are typically handled by buffer
descriptors
— Pointer to the buffer in the memory
— May point to the next buffer as well
— Indicates buffer status: Owner, valid etc.
— May include additional buffer properties as well

<
SNetFPGA

Example (Embedded Processor)

<
SNetFPGA

DMA Access

Transfers blocks of data
between external
interfaces and local
address space

A transfer is started by
SW writing to DMA
engine configuration

registers
SW Polls DMA channel

state to idle and sets
trigger

DMA engine fetches a
descriptor from memory

DMA engine reads block
of data from source

DMA engine writes data
to destination

DDR

SDRAM

DDR/DDR2/ <=
Memory Controller

Flash
SDRAM-=—»
GPIO

Local Bus Controller

IRQs <>

Programmable Interrupt

Controller (PIC)

Serial <—>| DUART }<—>
12c
e Controller
2
26 < 2c
Controller
MII, GMII, TBI, eTSEC
RTBI, RGMII, <—> -
AMIl 101001 Gb
MII, GMII, TBI, eTSEC
RTBI, RGMII, <— < >
ABMII 101001 Gb
MII, GMII, TBI, eTSEC
RTBI, RGMII, <—> - >
aMil 101001 Gb
RTBI, RGMII, eTSEC | -
AMII 101001 Gb

Summer Course Cambridge, UK, 2017

Security
Engine
XOR 512-Kbyte
Engine L2 Cache/ 112
SRAM .
’ &500 Core
e500
-ﬁf-KbyteH 32-Kbyte
Module | Core Complex || Instruction | | L1 Data
Bus Cache Cache
Serial RapidlO
o 4x RapidIO
PCTEXpress <=8 PC| Express
QOcefiN
Switch
e 32.bit PCI Bus Interface |« < 32-bit
' (If 64-bit not used) 66 MHz
32-bit PCI/
<> 64-bit PCIPCI-X s
Bus Interface
4-Channel DMA
Controller

Intel Data Direct 1/O (DDIO)

« Data is written and read directly to/from the
last level cache (LLC)

‘M| M
i CPU | cPU CPU . CPU | CPU CPU
¢ 1| 2 N 1 | 2 N
- M o
h)
o
r
; ? Last Level Cache y P Last Level Cache
CPU Sccket C"EJ Socket
Many Cores/Socket Many Cores/Socket
2 l 1
I/O Irterconnect
I/C Interconnect J
I Intel Adapter/NIC
Intel Adagter/NIC
' Fabric Interconnect
Fabric Intercannect l

<
SNetFPGA

PCle introduction

 PCle is a serial point-to-point interconnect between two devices

* Implements packet based protocol (TLPs) for information transfer
» Scalable performance based on # of signal Lanes implemented on the

PCle interconnect

e Supports credit-based point-to-point flow control (not end-to-end)

CPU

PCle
Bridge To
PCI/PCI-X

Provides:

* Processor
iIndependence &
buffered isolation

 Bus mastering

* Plug and Play operation

<
SNetFPGA

PCle transaction types

« Memory Read or Memory Write. Used to transfer data
from or to a memory mapped location

e |/O Read or I/O Write. Used to transfer data from or to
an 1/O location

 Configuration Read or Configuration Write. Used to
discover device capabilities, program features, and check
status in the 4KB PCI Express configuration space.

« Messages. Handled like posted writes. Used for event
signhaling and general purpose messaging.

A
SNetFPGA BT Cambridge, UK. 2017

PCle architecture

PCI Express Device A

Device Core
PCI Express Core
o sleQGIC JNICETRCC e o
Transacdon Layer

Data L'n< Layer

Physica' Layer

PCI Express Device B

Device Core

PCI Express Core
s s bRGICIBIEALES o

Transact.on Layer
Data | irk Layer

Physizal Layer

Transaction Layer

Data Link Layer

T-Layer Packet

L-Layer Packet Physical Layer

Transmitter

Buffer space
available

TLP
C Buffer

111 g

v

Flow Control DLLP (FCx)

P!
SNetFPGA

Interrupt Model

PCIl Express supports three interrupt reporting
mechanisms:

1. Message Signaled Interrupts (MSI)
- interrupt the CPU by writing to a specific address in memory

with a payload of 1 DW

2. Message Signaled Interrupts - X (MSI-X)
- MSI-X is an extension to MSI, allows targeting individual

Interrupts to different processors

3. INTx Emulation
four physical interrupt signals INTA-INTD are messages

upstream
- ultimately be routed to the system interrupt controller

<
SNetFPGA

Reference NIC project
4x port NIC architecture:

Iy

PCIl endpoint

Input
Arbiter
Output

Port Lookup
Output
Queues

10GE

Host system

>

10GE

AXI
Interconnect

SNetFPGA

Summer Course Cambridge, UK, 2017

RIFFA

RIFFA (Reusable Integration Framework for FPGA
Accelerators)

 Developed by UCSD

e RIFFA has been tested with both Altera and Xilinx
devices

 Driver supports Windows and Linux OSes

 Provide bindings for C/C++, Python, MATLAB and Java
 Latest generation of the original engine

« Atthe moment supports only Gen 2.0 PCle

o Github: https://github.com/drichmond/riffa

P!
SNetFPGA

RIFFA Overview

[USER IP CORE ‘

T

CHANNEL

AT

UPFT1O12

; | u D 1 Q D CHAP:«I[*J.ELS

CHANNEL CHANMEL

RIFFA

T I ENDPOINT

CHANNEL

]

—_—

X
ENGINE

+ +

RX
ENGINE

XILINX INTEGRATED BLOCK FOR PCI EXPRESS

...................

PCl EXPRESé

PC MEMORY
RIFFA DRIVER
USER
RIFFA LIBRARY APPLICATION

MB per second

achieves 76% of the theoretical max

RIFFA 2.1 Transfer Bandwidth
4,000 S e e R e e e e e
2w) 7/ - mp = B ole
1] NS 20 M T e e e S e e e
1,000k oo R ..[—— Upstream —PCle Gen 2 x8[128] |-

Downstream —PCle Gen 2 x8 [128]
— Upstream —PCle Gen 1 x8 [64]

500+ — — — Downstream —PCle Gen 1 x8 [64] | -
“ Upstream —PCle Gen 1 x1 [32]
— — — Downstream —PCle Gen 1 x1 [32]
250
125_ S P o T i T W 0 0 0 W 0 R 0 R R o A B M i R i et
25+

| S I RN ! S (NN MU N G N S U W S S U U N S CE N
2 gggggegggegeegeegezgozre g g
HNwmﬁmsﬁSgﬁNemmmgggégg
S N in L 4 8 R
Transfer size

P!
SNetFPGA

RIFFA architecture

» Data Abstraction / DMA Layer is
responsible for making requests to
read data from, or write data to
host memory

» SG DMA Layer: reading from
and writing to scatter gather
lists; supplying addresses to
data- requestlogic

» Formatting Engine Layer is
responsible for formatting
requests and completions into
packets.

» Translation Layer provides a set
of vendor-independent interfaces

and signal names ‘,....E..
> Vendor IP interfaces provide\

low-level access to the PCle
bus -

T T

Traremticn Lager

-EEEL

Xilinx Ultrascale Core 52 i 3

E3gIa

A
SNetFPGA BT Cambridge, UK. 2017

RIFFA Data transfer example

FPGA — Host

User RIFFA PC RIFFA RIFFA User
Application Library Memory TX Engine Channel IP Core
fpga_recv
—p
start TX
+—

new transfer

<

build scatter gather list

tt ther list
scatter gather lis >
¢ write
write
t—
transferring
——————— »>
——————— >
done
—_—>
4 end TX
transfer complete
< P
get transferred amount >
‘_ _________________________
<-2mount _
User RIFFA PC RIFFA RIFFA User
Application Library Memory TX Engine Channel IP Core

Host - FPGA

User RIFFA PC RIFFA RIFFA User

Application Library Memory RX Engine Channel IP Core
fpga_send
—_—
new transfer >
start RX
e
build scatter gather list

scatter gather list

r g | >
read
—
read
transferring
——————— »>
———————— >
end RX |
transfer complete
< P
get transferred amount >
‘_ _________________________
<--2mount |
User RIFFA PC RIFFA RIFFA User

Application Library Memory RXEngine Channel IP Core

<
SNetFPGA

RIFFA Data transfer example (cont.)

Parameter Value . .

Data Transfer Length 128 (32-bit words) NOte . eaCh Channel haS ItS own
Data Transfer Offsfet 0 . .

Data Transfer Last 1 SG DMA IISt |Og|C

Data Transfer Channel 0

Data Page Address (DMA) | 0x00000000_-FEEDO0000 H S E N D

SGL Head Address 0x00000000_BEEF0000 O S t C aS e

1)User wants to make a of transfer 128 32-bit words;

2)The RIFFA driver writes {32'd128} to Channel 0's RX Length register, and
{31'd0,1'b1} to Channel 0's RX OffLast register

3)The RIFFA driver allocates an SGL with 1 element (4 32-bit words) at
address
{64'h0000_ 0000 _BEEF_ 0000}

4)The driver fills the list with the length and address of the user data:
{32'd0,32'd128,64'h0000_ 0000 FEED 0000}

5)driver communicates the address and length of the SGL by writing
{32'nBEEFO0000} to Channel 0's RX SGL Address Low register,

{32'd0} to Channel 0's RX SGL Address High register, and
{32'd4} to Channel 0's RX SGL Length register

P!
SNetFPGA

RIFFA Data transfer example (cont.)

Parameter

Value

Data Transfer Length

128 (32-bit words)

Data Transfer Offsfet

0

Data Transfer Last

|

Data Transfer Channel

0

Data Page Address (DMA)

0x00000000_FEEDO0000

SGL Head Address

0x00000000_BEEF0000

Note: each channel has its own
SG DMA listlogic

Host SEND case

6)SG List Requester on the FPGA issues a read request for 4 32-bit starting at
address OxBEEFO0000

7)The FPGA receieves a completion with 4 32-bit words

8)RX Port Reader removes the SG element from the FIFO, and issues several
read requests to receive all 128 32-bit words. Compl are reordered in reorder

buffer.

9)RIFFA raises an interrupt with the last word of data put into main FIFO.
driver reads the Interrupt Status Register of the FPGA and determines
that Channel O has nished the RX Transaction

P!
SNetFPGA

Networking with RIFFA

SUME RIFFA driver:
d RIFFA DMA engine design dominated

Single BAR for info and transfer programming
2 channels: 1 for packets, 1 for registers
Single interrupt

Single global lock

O O O O

Supports 1..4 ports, Ethernet interfaces named nf<n>

<
SNetFPGA

Networking with RIFFA (cont.)

Packets — CHANNEL O

First PCle channel (De)Multiplexes
ports to interfaces and vice versa
based on 128bit meta data

Currently uses a 4k temporary buffer
per direction currently (with 16bit
offset for 32bit L3 alignment, will DMA
directly to “skb” data area in the
future)

1 packet per DMA transaction

IOCTL (Register riw) — CHANNEL 1

Based on an interface of the card (can
have multiple cards)

Uses standard struct ifreq with struct
sume_ifreq data pointer

Supports read write operations on
registers (see: nf_sume.h, rwaxi tool)

Second PCle channel

Only one outstanding register r/w
possible at atime

Writing initiates full DMA transaction
with address, value, and Ox1f STRB

Read is like a write with O0x00 STRB,
followed by a 2nd DMA transaction to
read value back

Each read/write goes through similar
DMA transfer cycle packet data goes
through

<
SNetFPGA

UAM DMA

Built by University Autonoma Madrid (UAM) in collaboration
with NetFPGA's Cambridge team

o Supports PCle Gen 3.0 x8 speeds

e Designed to be lightweight and easy to understand
« Tailored for Xilinx platform only

« Designed for virtualized environments (SR-IOV)

 Has been tested on Linux platform

A
SNetFPGA BT Cambridge, UK. 2017

DMA Architecture

= DMA SR-IOV PCle Support
5 DMA logic
. —
b ;’ 7 Series FPGAs < Code
SR- IOV Integrated Block for PCle o)
Control— Arbiter L pC{e_lx
Slalus IRQ address-’ < pcie_clk
= IRQ data == ¢ peie_rst
2
; h@m s l°g|C CLK 250 MHz
: |
o IRQ
DIN
IRQ Manager u Q—D;:JT_-’ Completer logic
X W
j_ ACK—P
. | PCle Completer
DMA Logic
Card2System (C2S) Engine System2Card (S2C) Engine
Im> Descriptor 1 Analogous to C2S engine
v
[lastactive > D iptor 2
. IRQ Manager
Data fifo MSI-x Table

Descriptor N
Size Address

A
SNetFPGA BT Cambridge, UK. 2017 28

Pending bit array

DMA Architecture (cont.)

DMA SR-IOV PCle Support
DMA logic
7 Series FPGAs
p—) Integrated Block for PCle
Coo—— SRATY
[— R e
—— IRQ deta =P

IRQ Manager

en—— Complater logic
e
ACK:

| PCle Completer

rat

k for PCI Expr

i L | 1
Completer | Completer Requester Requester IRQs: I'«!SI}'I’“'ISI-)(_w
reQuest (CQ) Completion (CC) reQuest (RQ) 4 Completion (RC) Configuration
L i Raoeilvea Split the data)
23 ':'350;’.‘9‘07 According to the

__| From the BARD
DMA status

From the BAR2
(HDL design)

To the BARO
DMA control
To the BAR2
(HDL design)

Lead
to

Assoaciated
elements

Operation

Future
inclusion
Currently
provided

Component

Memory Read Requests
will provide information
about the transfer

- [Extract address and size)

[Identify type: C25/52C)

)

ransmit data from the FPGA to

T
Request Operations

the host through Memory Write

MAX READ
REQUEST size
S2C operation

According to the
MAX PAYLOAD
size
{C2S operation)

lemory Read Request Operation:

] L [Ask the Host for the data using)
M S

to the TAG when it is received

[Reord er the information accordin

i

-
SNetFPGA

SW/HW perspective

Huge Huge Huge Huge Huge Huge Huge Huge

—> page page page Page page page page page

m (1GB) (1GB) (1 GB) (1GB) (1GB)
Memory manager r

The use of huge pages will reduce the

OS Kernel

number of entries in the MMU and will assure
the user to be in conditions of obtain an
humongous quantity of contiguous data

A
Write bar and size specified by the user in the ik g2;s;;jﬁgfﬁ;gﬁz:ger?n U:SJ LI
Mgf;:;pl:%rgls nglzmg;zgg LJI:tTTGB Address 0: Huge page 0, Size 0: Until 1GB.
) ; i . Address 1: Huge paqge 1. Size 1: Until 1GB.
Indicate last element to process and enable a Indicate last element to process and enable a
DMA CZS engine. DMA 52C engine.
Last element: 0 (1 descriptor), Enable: 1 Last element: 1 (2 descriptors), Enable: 1
[Apply the driver policy {IRQ or polling)] [Apply the driver policy (IRQ or polling) J
[Wait for the stop condition] [‘Wait for the stop condition]
c2s logic s2C Iogic
»i’zh el
IOCTL manager o

Device controller

efsnquunanfunn

IEERRERERE ERENY

[Produce data to the huge page]

[

Communicate the kemel driver
the desire of receiveing data

— 1 Huge [Communicate to kemel driver]
page

.)

Example process type 1

Wait until reception

Wait until the data is ready for
its treatment

[
(

Operate over the data

Example process type 2

User Space

@NE'tFF'ElFl

SW/HW perspective (cont.)

: . Write bar and size:
Write bar and size: ; : .
’ ke Addr 0: Huge page 0, Size 0: 1GB.
| Addr: Huge page 0, Size: 1GB. || Aqdr 1: Huge page 1. Size 1: 1GB. |
Last element: O (1 descriptor) Last element: 1 (2 descriptors)
\ Enable: 1 J{ Enable: 1)
Wait for the stop condition Wait for the stop condition
L (IRQ or polling)) | (IRQ or polling))
C2S logic S2C logic
IOCTL manager
Device controller
1 Huge (Produce data) [Desire ng%ceiveing] 2 Huge
page (Communicate] [.] pages
(1GB) [Wat] Wait e
— . [Operate J
Example process type 1 Example process type 2
User Space

<
SNetFPGA

Evaluation

Setup:
e Supermicro X9DRD-IF motherboard
e Dual Intel Xeon CPU E5-2650 v2 @ 2.60GHz
« 64 GIB of DDR3 RAM clocked at 1600 MHz
* NetFPGA SUME board DMA Performance, C2S
* One VM and one VF
e using KVM
« 8GB of RAM
e Upto4 cores
 Enabled VT-x, VT-d
and SR-IOV
 Both BIOS and OS

Gbps

—— Native
PF
VE

—— VFover VM

(11T &1 17 T 1"

Bytes to transmit

<
SNetFPGA

Acknowledgments ()

NetFPGA Team at University of Cambridge (Past and Present):

Andrew Moore, David Miller, Muhammad Shahbaz, Martin Zadnik, Matthew Grosvenor, Yury
Audzevich, Neelakandan Manihatty-Bojan, Georgina Kalogeridou, Jong Hun Han, Noa
Zilberman, Gianni Antichi, Charalampos Rotsos, Hwanju Kim, Marco Forconesi, Jinyun Zhang,
Bjoern Zeeb, Robert Watson, Salvator Galea, Marcin Wojcik, Diana Andreea Popescu,
Murali Ramanujam

NetFPGA Team at Stanford University (Past and Present):
Nick McKeown, Glen Gibb, Jad Naous, David Erickson, G. Adam Covington, John W. Lockwood,
Jianying Luo, Brandon Heller, Paul Hartke, Neda Beheshti, Sara Bolouki, James Zeng,
Jonathan Ellithorpe, Sachidanandan Sambandan, Eric Lo, Stephen Gabriel Ibanez

All Community members (including but not limited to):
Paul Rodman, Kumar Sanghvi, Wojciech A. Koszek, Yahsar Ganjali, Martin Labrecque, Jeff
Shafer, Eric Keller, Tatsuya Yabe, Bilal Anwer, Yashar Ganjali, Martin Labrecque, Lisa Donatini,
Sergio Lopez-Buedo , Andreas Fiessler, Robert Soule, Pietro Bressana, Yuta Tokusashi

Steve Wang, Erik Cengar, Michael Alexander, Sam Bobrowicz, Garrett Aufdemberg,
Patrick Kane, Tom Weldon

Patrick Lysaght, Kees Vissers, Michaela Blott, Shep Siegel, Cathal McCabe

<
&NeltFPGA

Acknowledgements (i)

5B UNIVERSITY OF EPSRC

P|oneer|ng research
and skills

O $TXILNX

Aicron

Isaac”
ég/g 'I;T'rel:asr:on
n The Leverhulme Trust
[BROADCOM. ", Goo 816 A-toai . ITECH

HUAWEI ALGO-LOGIC d‘m IIMC

A
SNetFPGA BT Cambridge, UK. 2017

	 NetFPGA Summer Course
	Reference NIC project
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	The I/O Access Problem
	DMA
	Example – Intel Xeon D
	Example (Embedded Processor)
	DMA
	Example (Embedded Processor)
	Intel Data Direct I/O (DDIO)
	Slide Number 14
	Slide Number 15
	PCIe architecture
	Slide Number 17
	Reference NIC project
	RIFFA
	Slide Number 20
	Slide Number 21
	RIFFA Data transfer example
	Slide Number 23
	Slide Number 24
	Networking with RIFFA
	Slide Number 26
	Slide Number 27
	DMA Architecture
	Slide Number 29
	SW/HW perspective
	SW/HW perspective (cont.)
	Evaluation
	Acknowledgments (I)
	Acknowledgements (II)

