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Finally, after hours of work you managed to finalise your HDL code 
and make it working in simulation!!!! 
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Once the bitfile is created you need to:

• Check if your design meet the timing.

• Debug your HW code if regression tests are not passed.
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Static Timing Analysis (STA)
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A design netlist is an interconnected set of ports, cells and nets
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A design netlist is an interconnected set of ports, cells and nets

• The functionality of a design is determined by RTL code  
(verilog, vhdl, etc.) and verified by simulation tools

• The quality of your RTL determines how easy timing will be met

• The performance of a design is determined by the delays of  
cells that compromise the design (STA)

• Static timing analysis doesn’t check the functionality of the  
components but rather performance of components



STA Goals
Many FPGA processes are timing driven:
- Synthesis for circuit construction
- Placer for optimal cells locations
- Router for choosing routing elements
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STA Goals
Many FPGA processes are timing driven:
- Synthesis for circuit construction
- Placer for optimal cells locations
- Router for choosing routing elements

Constraints are used to determine the desired performance goals

STA reports whether the design will provide the desired performance  
through reports
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Component delays
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Each component has delays to perform it function:
- LUT has propagation delay from it’s ins to outs
- Net has delay from driver to receiver
- FF required stable data for a certain time around sampling point
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Each component has delays to perform it function:
- LUT has propagation delay from it’s ins to outs
- Net has delay from driver to receiver
- FF required stable data for a certain time around sampling point

Delays are also dependent of environment factors. These are
determined and characterized by Xilinx during device design.

Timing is extracted over the operating range of the device:
- Process (different speed grades)
- Voltage (min ® max)
- Temperature (min ® max)



Static Timing Path
- A static timing path is a path that starts at a clock element
- Propagates through any # combinatorial elements and nets
- Ends at clocking element

Source clock delay – starting top level clock port and ending at the  
launch FF
Data path delay – delay to the capturing FF
Destination clock delay – there might be a difference bw these two  
FFs

Summer Course Technion, Haifa, IL 2015 14



Setup check
Setup Timing Check checks that data arrives in good time

Checks that change in a clocked element has time to propagate to other  
clocked elements before the next clock event

Simple case – same domain & only data path is considered:
T(D1_CLK) + T(FF1(Clk->Q)) + T(Comb) < T (CLKperiod) – T(FF2(setup)) – T(SU) + T(D2_CLK)
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Hold check
Hold time checks that data doesn’t arrive too quickly

Checks DATA isn’t caught at destination FF at the same clock as the  
clock that launched it at source FF

Simple case – same domain & only data path is considered:
T(D1_CLK) + T(FF1(Clk->Q)) + T(Comb) > T(FF2(hold)) + T(D2_CLK) + T(HU)
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Constraints Methodology
Design constraints define the requirements that must be met by the  
compilation flow in order for the design to be functional on the board
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Constraints Methodology
Design constraints define the requirements that must be met by the  
compilation flow in order for the design to be functional on the board

• Over-constraining and under-constraining is bad, so use  
reasonable constraints that correspond to your requirements

• Xilinx provides new Xilinx Design Constraint (XDC) file -- quite  
different from previously used User Constraints File (UCF)

• Single or multiple XDC files in a design might serve a different  
purpose
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Xilinx Design Constraint file
XDC constraints are a combination of:
• Synopsys Design Constraints format (SDC)
• Xilinx centric extensions
• Tcl-compatible for advanced scripting

XDC constraints have the following  
properties:
• follow the Tcl semantic,
• interpreted like any other Tcl command,
• read in and parsed sequentially.

You can use constraints for:
• Synthesis and/or Implementation

Options are specified in file properties or via tcl :
set_property used_in_synthesis false [get_files  
wave_gen_pins.xdc]
set_property used_in_implementation true [get_files  
wave_gen_pins.xdc]
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XDC File Order
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The constraint files are loaded in the same sequence as the  
way they are listed

To change order either drag and drop or reorder using:  
reorder_files -fileset constrs_1 -before [get_files  
wave_gen_timing.xdc] \
[get_files wave_gen_pins.xdc]

IPs:
If you use the native IPs, their XDC files are loaded after your  
files

You cannot change the IP XDC files order, but you can  
disable them and re-apply constraints in your XDC files



Common pitfalls
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Missing constraints:
- The corresponding paths are not optimized for timing
- No violation will be reported but design may not work on HW

Incorrect constraints:
- Runtime and optimization efforts will be spent on the wrong paths
- Reported timing violations may not result in any issues on HW

Unreasonable hold requirements:
- May result in long runtime and SETUP violations
- P&R fixes HOLD violations as #1 priority, because:

• Designs with HOLD violations won’t work on HW
• Designs with SETUP violations will work, but slower



Timing report

Ø Report Summary
Contains info about design, device, tool version, data and time of report

Ø Path summary
Summarizes timing information for the path: timing is met (Slack), source and
destination, clock used, setup and hold check (requirements), number of level of
logic, skew and uncertainty
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Timing command summary

Ø Create and validate clocks:
– check_timing: for missing clocks and IO constraints
– report_clocks: check frequency and phase
– report_clock_networks: possible clock root

Ø Validate clock groups:
– report_clock_interaction

Ø Validate I/O delays
– report_timing –from [input_port] –setup/-hold
– report_timing –to [output_port] –setup/-hold

Ø Add exceptions if necessary
– Validate using report_timing
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Once the bitfile is created you need to:

• Check if your design meet the timing.

• Debug your HW code if regression tests are not passed.



Debugging the design
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Ø RTL-level design simulation
ü Visibility of the entire design; ability to quickly iterate through debug  

cycle
x Difficulty of simulating larger designs in a reasonable amount of time

Ø Post-implemented design simulation
model for theü Debugging the post-implemented timing-accurate  

design
x Long run-times and system model accuracy

Ø In-system debugging
ü Debugging of post-implemented design on an FPGA device
ü Debugging actual system environment at system speeds
x Lower visibility of debug signals
x Longer design/implementation/debug iterations & hard close timing



Integrated Logic Analyzer
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Ø 1. Probing phase: Identifying what signals in your design you want  
to probe and how you want to probe them

Identifying what signals or nets you want to probe  
Deciding how you want to add debug cores to your design

Ø 2. Implementation phase: Implementing the design that includes the  
additional debug IP that is attached to the probed nets

The debug core hub must be implemented prior to running the PL & RT.

Ø 3. Analysis phase: Interacting with the debug IP contained in the 
design to debug and verify functional issues

Connecting to the Hardware Target and Programming the FPGA Device  
Setting up the ILA Core to Take a Measurement
Viewing ILA Cores in the Debug Probes Window  
Using Basic Trigger Mode
Viewing ILA Probe Data in the Waveform Viewer



Inserting ILA cores
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• Either Manually add the debug IP component instances through the  
source code, or

• Allow Vivado tool to automatically insert the debug cores into your  
post-synthesis netlist

The first approach is more straight forward:

Ø Start with Identifying signals for debugging at the HDL source level  
prior to synthesis

(* mark_debug = "true" *) wire [7:0] char_fifo_dout; -- Verilog example

Ø Once design is synthesized use Set up Debug wizard for core  
assignment and configuration



Inserting ILA cores (cont.)

You can insert it from GUI as well:

• Synthesize your design first

• Open synthesized design

• Set up debug

• The core can be seen in the  
Netlist folder
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Inserting Debug Cores
Open synthesized design and Insert Debug cores from the list of  
Unassigned nets.

The Set up Debug wizard automatically selects clock domains

The properties of each core can be customized using GUI or manually  

The appropriate code will be inserted automatically into XDC file
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Inserting Debug Cores (cont.)
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Ø XDC Commands can be also used to Insert Debug Cores
create_debug_core u_ila_0 ila
set_property C_DATA_DEPTH 1024 [get_debug_cores u_ila_0]  
set_property C_TRIGIN_EN false [get_debug_cores u_ila_0]  
set_property C_TRIGOUT_EN false [get_debug_cores u_ila_0]  
set_property C_ADV_TRIGGER false [get_debug_cores u_ila_0]
…

Ø Saving constraints may cause the synthesis and implementation to  
go out-of-date;

Ø you do not need to re-synthesize the design since the debug XDC  
constraints are only used during implementation

Ø Check Xil UG908 for advanced debugging capabilities and IBERT



Debugging Logic Designs in Hardware
1. Connect to the hardware target and program the FPGA with the .bit file
2. Set up the ILA debug core trigger and capture controls.
3. Arm the ILA debug core trigger.
4. View the captured data from the ILA debug core in the Waveform window
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Taking measurements
Ø Add Probes to Waveform
Ø Add Probes to Basic Trigger Setup
Ø Add Probes to Basic Capture Setup
Ø Specify capture conditions
Ø Arm the core and analyse received data
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