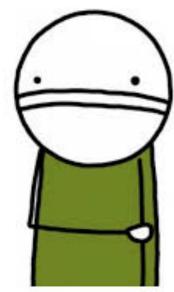
NetFPGA Summer Course

Presented by:

Andrew W Moore, Noa Zilberman, Gianni Antichi Stephen Ibanez, Marcin Wojcik, Jong Hun Han, Salvator Galea, Murali Ramanujam, Jingyun Zhang, Yuta Tokusashi

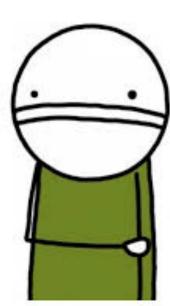
> University of Cambridge July 24 – July 28, 2017

> > http://NetFPGA.org


Finally, after hours of work you managed to finalise your HDL code and make it working in simulation!!!!

Once the bitfile is created you need to:

- Check if your design meet the timing.
- Debug your HW code if regression tests are not passed.



Once the bitfile is created you need to:

- Check if your design meet the timing.
- Debug your HW code if regression tests are not passed.

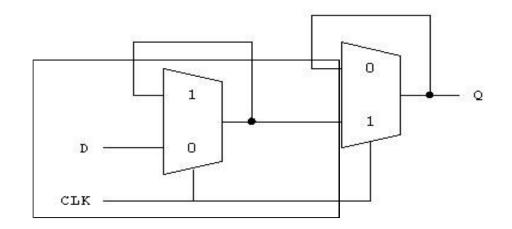
YAY.

Natalie Dee Machine.com

A design netlist is an interconnected set of ports, cells and nets

 The functionality of a design is determined by RTL code (verilog, vhdl, etc.) and verified by simulation tools

- The functionality of a design is determined by RTL code (verilog, vhdl, etc.) and *verified by simulation tools*
- The *quality of your RTL* determines how easy timing will be met

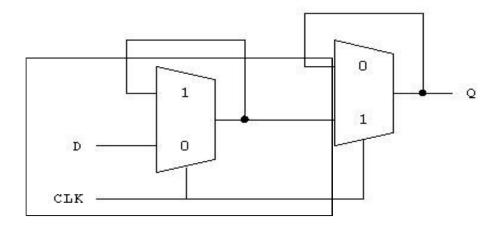

- The functionality of a design is determined by RTL code (verilog, vhdl, etc.) and verified by simulation tools
- The *quality of your RTL* determines how easy timing will be met
- The performance of a design is determined by the delays of cells that compromise the design (STA)

- The functionality of a design is determined by RTL code (verilog, vhdl, etc.) and verified by simulation tools
- The *quality of your RTL* determines how easy timing will be met
- The performance of a design is determined by the delays of cells that compromise the design (STA)
- Static timing analysis doesn't check the functionality of the components but rather performance of components

STA Goals

Many FPGA processes are timing driven:

- Synthesis for circuit construction
- Placer for optimal cells locations
- Router for choosing routing elements


STA Goals

Many FPGA processes are timing driven:

- Synthesis for circuit construction
- Placer for optimal cells locations
- Router for choosing routing elements

Constraints are used to determine the desired performance goals

STA reports whether the design will provide the desired performance through reports

Component delays

Each component has delays to perform it function:

- LUT has propagation delay from it's ins to outs
- Net has delay from driver to receiver
- FF required stable data for a certain time around sampling point

Component delays

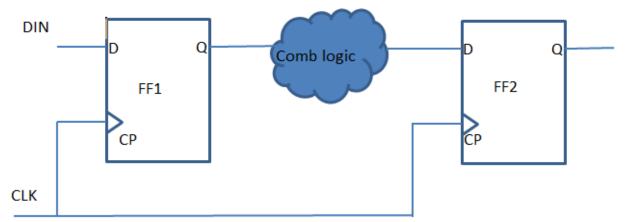
Each component has delays to perform it function:

- LUT has propagation delay from it's ins to outs
- Net has delay from driver to receiver
- FF required stable data for a certain time around sampling point

Delays are also dependent of environment factors. These are determined and characterized by Xilinx during device design.

Timing is extracted over the operating range of the device:

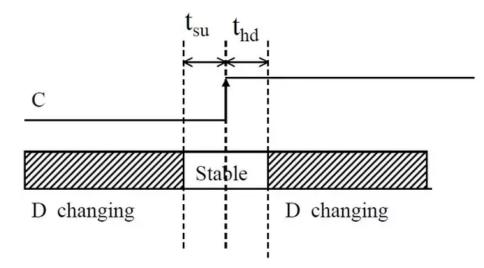
- Process (different speed grades)
- Voltage (min \rightarrow max)
- Temperature (min \rightarrow max)


Static Timing Path

- A static timing path is a path that starts at a clock element
- Propagates through any # combinatorial elements and nets
- Ends at clocking element

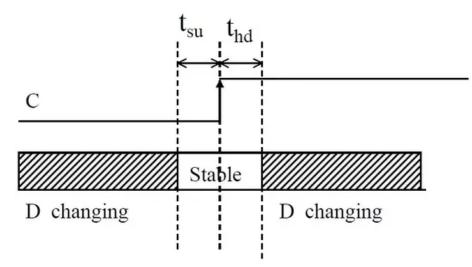
Source clock delay – starting top level clock port and ending at the launch FF

Data path delay – delay to the capturing FF


Destination clock delay – there might be a difference bw these two FFs

Setup check

Setup Timing Check checks that data arrives in good time Setup, Hold Time



Checks that change in a clocked element has time to propagate to other clocked elements before the next clock event

Simple case – same domain & only data path is considered: T(D1_CLK) + T(FF1_(Clk->Q)) + T(Comb) < T (CLK_{period}) – T(FF2_(setup)) – T(SU) + T(D2_CLK)

Hold check

Hold time checks that data doesn't arrive too quickly Setup, Hold Time

Checks DATA isn't caught at destination FF at the same clock as the clock that launched it at source FF

Simple case – same domain & only data path is considered: $T(D1_CLK) + T(FF1_{(Clk->Q)}) + T(Comb) > T(FF2_{(hold)}) + T(D2_CLK) + T(HU)$

Design constraints define the requirements that must be met by the compilation flow in order for the design to be functional on the board

Design constraints define the requirements that must be met by the compilation flow in order for the design to be functional on the board

 Over-constraining and under-constraining is bad, so use reasonable constraints that correspond to your requirements

Design constraints define the requirements that must be met by the compilation flow in order for the design to be functional on the board

- Over-constraining and under-constraining is bad, so use reasonable constraints that correspond to your requirements
- Xilinx provides new Xilinx Design Constraint (XDC) file -- quite different from previously used User Constraints File (UCF)

Design constraints define the requirements that must be met by the compilation flow in order for the design to be functional on the board

- Over-constraining and under-constraining is bad, so use reasonable constraints that correspond to your requirements
- Xilinx provides new Xilinx Design Constraint (XDC) file -- quite different from previously used User Constraints File (UCF)
- Single or multiple XDC files in a design might serve a different purpose

Xilinx Design Constraint file

Project Manager - project_wave_gen	
Sources	_ 🗆 🖻 ×
옥 🛣 🖨 🖬 🔂	
Messages: () <u>1 warning</u>	
🖃 😚 Design Sources (2)	
😟 🔚 Verilog Header (1)	
🗄 🐨 🐨 👬 wave_gen (wave_gen.v) (14)	
🖻 🗁 Constraints (2)	
🖨 🚾 constrs_1 (active)	
wave_gen_timing.xdc (target)	
wave_gen_pins.xdc	
🖻 📠 constrs_2	
wave_gen.xdc	
⊕ Simulation Sources (1)	
Hierarchy IP Sources Libraries Compile Order	
& Sources 🖓 Templates	

📝 Apply 🛛 🙀	Cancel
wave_gen_pins.xdc*	
Location: Type:	C:/2012.2/project_wave_gen/project_wave_gen.
Size:	2.7 KB
Modified:	Tuesday 07/03/12 04:18:02 AM
Copied to:	project_wave_gen.srcs/constrs_1/imports/verilog
Copied from:	C:/Xilinx/14.2_P28xc/14.2/ISE_DS/Avrum/verilog/
Copied on:	Monday 05/14/12 10:33:58 AM
Read-only:	No
C Enabled	
Used In	
Synthesis	
Implementation	
•	III
General Attributes	

XDC constraints are a combination of:

- Synopsys Design Constraints format (SDC)
- Xilinx centric extensions
- Tcl-compatible for advanced scripting

XDC constraints have the following properties:

- follow the Tcl semantic,
- interpreted like any other Tcl command,
- read in and parsed sequentially.

You can use constraints for:

Synthesis and/or Implementation

Options are specified in file properties or via tcl :

set_property used_in_synthesis false [get_files
wave_gen_pins.xdc]

set_property used_in_implementation true [get_files
wave_gen_pins.xdc]

XDC File Order

The constraint files are loaded in **the same sequence as the** way they are listed

To change order either drag and drop or reorder using:

reorder_files -fileset constrs_1 -before [get_files wave_gen_timing.xdc] \ [get_files wave_gen_pins.xdc]

IPs:

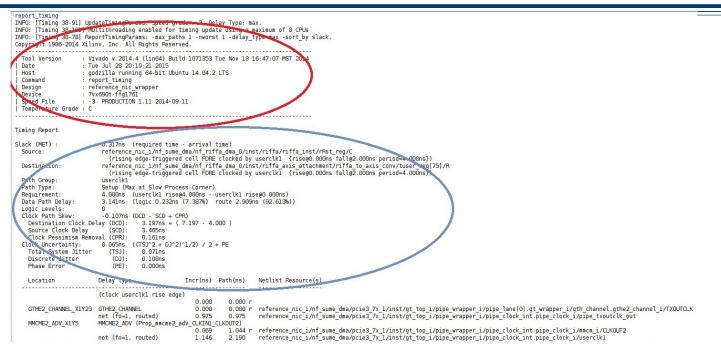
If you use the native IPs, their XDC files are loaded after your files

You cannot change the IP XDC files order, but you can disable them and re-apply constraints in your XDC files

Common pitfalls

Missing constraints:

- The corresponding paths are not optimized for timing
- No violation will be reported but design may not work on HW


Incorrect constraints:

- Runtime and optimization efforts will be spent on the wrong paths
- Reported timing violations may not result in any issues on HW

Unreasonable hold requirements:

- May result in long runtime and SETUP violations
- P&R fixes HOLD violations as #1 priority, because:
 - Designs with HOLD violations won't work on HW
 - Designs with SETUP violations will work, but slower

Timing report

Report Summary

Contains info about design, device, tool version, data and time of report

> Path summary

Summarizes timing information for the path: timing is met (Slack), source and destination, clock used, setup and hold check (requirements), number of level of logic, skew and uncertainty

Timing command summary

ietup		Hold		Pulse Width		
Worst Negative Slack (WNS):	0.317 ns	Worst Hold Slack (WHS):	0.023 ns	Worst Pulse Width Slack (WPWS):	0.000 ns	
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns	
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	
Total Number of Endpoints:	164580	Total Number of Endpoints:	164580	Total Number of Endpoints:	73283	
ll user specified timing const	raints are	met.				
						4

Create and validate clocks:

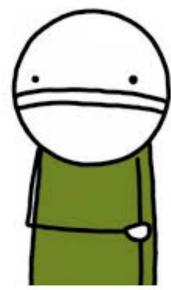
- check_timing: for missing clocks and IO constraints
- report_clocks: check frequency and phase
- report_clock_networks: possible clock root

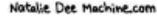
Validate clock groups:

- report_clock_interaction

Validate I/O delays

- report_timing –from [input_port] –setup/-hold
- report_timing –to [output_port] –setup/-hold


Add exceptions if necessary


Validate using report_timing

Once the bitfile is created you need to:

- Check if your design meet the timing.
- Debug your HW code if regression tests are not passed.

Debugging the design

RTL-level design simulation

- Visibility of the entire design; ability to quickly iterate through debug cycle
- x Difficulty of simulating larger designs in a reasonable amount of time
- Post-implemented design simulation
 - Debugging the post-implemented timing-accurate model for the design
 - x Long run-times and system model accuracy
- In-system debugging
 - ✓ **Debugging of post-implemented design on an FPGA device**
 - ✓ **Debugging** actual system environment at system speeds
 - x Lower visibility of debug signals
 - x Longer design/implementation/debug iterations & hard close timing

Integrated Logic Analyzer

I. Probing phase: Identifying what signals in your design you want to probe and how you want to probe them

> Identifying what signals or nets you want to probe Deciding how you want to add debug cores to your design

2. Implementation phase: Implementing the design that includes the additional debug IP that is attached to the probed nets

The debug core hub must be implemented prior to running the PL & RT.

3. Analysis phase: Interacting with the debug IP contained in the design to debug and verify functional issues

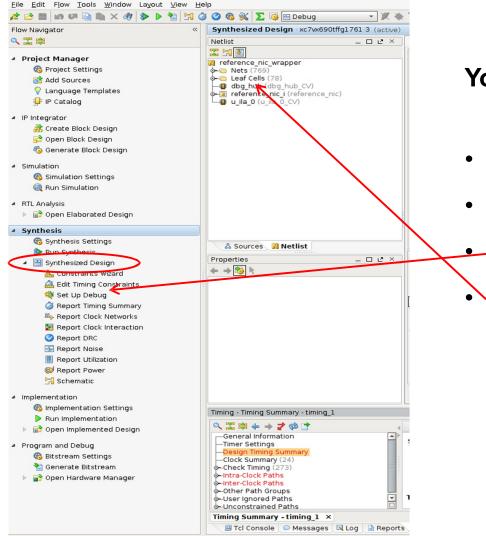
Connecting to the Hardware Target and Programming the FPGA Device

Setting up the ILA Core to Take a Measurement

Viewing ILA Cores in the Debug Probes Window

Using Basic Trigger Mode

Viewing ILA Probe Data in the Waveform Viewer


Inserting ILA cores

- Either *Manually* add the debug IP component instances through the source code, or
- Allow Vivado tool to *automatically insert* the debug cores into your post-synthesis netlist

The first approach is more straight forward:

- Start with Identifying signals for debugging at the HDL source level prior to synthesis
- (* mark_debug = "true" *) wire [7:0] char_fifo_dout; -- Verilog example
- Once design is synthesized use Set up Debug wizard for core assignment and configuration

Inserting ILA cores (cont.)

You can insert it from GUI as well:

- Synthesize your design first
- Open synthesized design
- Set up debug
- The core can be seen in the Netlist folder

Inserting Debug Cores

Open synthesized design and Insert Debug cores from the list of Unassigned nets.

cify Nets to Debug pecify Nets for debugging					Chassigned Debug Nets (0)
					Debug Cores Debug Nets
Name	Clock Domain	Driver Cell	TRIG	DATA	Cell Properties
⊕ ∮r≋ counterA (32)	dk	FDRE	V	~	
⊕ ∰¤ counterB (32)	dk	FDRE	V	V	🦉 u_ila_0
违	dk	FDRE	\checkmark	\checkmark	C_DATA_DEPTH 1024
⊕- √∱≋ counterD (32)	dk	FDRE	\checkmark	\checkmark	C_TRIGIN_EN 1024
☆ A_or_B	dk	LUT6	\checkmark	\checkmark	C TRIGOUT EN 2048
SorC	dk	LUT6	\checkmark	\checkmark	C ADV TRIGGER 4096
∽ C_or_D	dk	LUT6	\checkmark	\checkmark	C_INPUT_PIPE_STAGES 16384
∽_S D_or_A	dk	LUT6	\checkmark	\checkmark	C_EN_STRG_QUAL 32768
CS	clk	STARTUPE2	\checkmark	\checkmark	ALL_PROBE_SAME_MU 65536
					ALL_PROBE_SAME_MU_CNT 131072
dd/Remove Nets				Nets to debug: 133	C_DATA_DEPTH Number of data samples to store

The Set up Debug wizard automatically selects clock domains

The properties of each **core can be customized** using GUI or manually

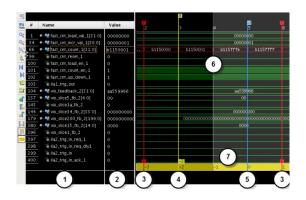
The appropriate code will be **inserted automatically** into XDC file

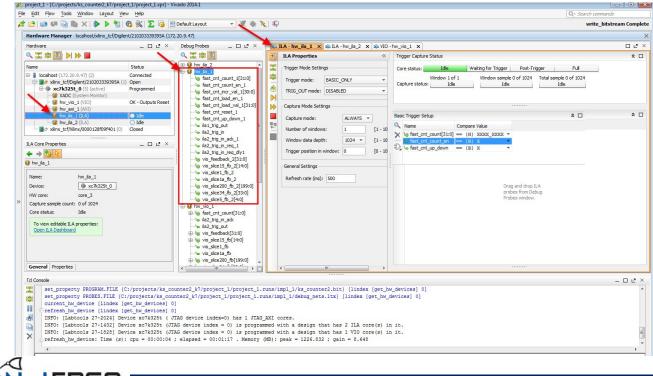
Inserting Debug Cores (cont.)

> XDC Commands can be also used to Insert Debug Cores

create_debug_core u_ila_0 ila set_property C_DATA_DEPTH 1024 [get_debug_cores u_ila_0] set_property C_TRIGIN_EN false [get_debug_cores u_ila_0] set_property C_TRIGOUT_EN false [get_debug_cores u_ila_0] set_property C_ADV_TRIGGER false [get_debug_cores u_ila_0] ...

- Saving constraints may cause the synthesis and implementation to go out-of-date;
- you do not need to re-synthesize the design since the debug XDC constraints are only used during implementation
- Check Xil UG908 for advanced debugging capabilities and IBERT


Debugging Logic Designs in Hardware


- 1. Connect to the hardware target and program the FPGA with the .bit file
- 2. Set up the ILA debug core trigger and capture controls.
- 3. Arm the ILA debug core trigger.
- 4. View the captured data from the ILA debug core in the **Waveform** window

😂 🕼 💵 🗈 🏗 🗙 🔈 🍖		Default Layout 👻 💘 🔖 🔭	(F)		bitstream Comple
			Q/	write	
Hardware Manager - localhost/xilinx_tcf/Digil		.20.9.47)			
Hardware	- 🗆 🖻 ×		🔊 ILA - hw_ila_1 🗙 🔊 ILA - hw_ila_2 🗙 🔊 VIC	0-hw_vio_1 ×	003
🌋 🖨 🛃 🕨 🕨 🔳		🔍 🛣 🖨 🛃	ILA Properties «	Trigger Capture Status	* □
Name 3- 🚪 localhost (172.20.9.47) (2)	Status Connected		Trigger Mode Settings	Core status: Idle Waiting for Trigger Post-Trigger Full Window 1 of 1 Window sample 0 of 1024 Total sample 0 of 1024	
☐ ■ / xilinx_tcf/Digilent/210203339395A (Inggerniode. DASIC_ONCT	Capture status: Idle Idle Idle	
xc7k325t_0 (5) (active) XADC (System Monitor)	Programmed		TRIG_OUT mode: DISABLED *		
1 hw_vio_1 (VIO)	OK - Outputs Reset		Capture Mode Settings		
hw_axi_1 (AXI)	Idle	fast_cnt_reset_1		Basic Trigger Setup	а П
hw_ila_2 (ILA)	○ Idle	∿o fast_cnt_up_down_1 ∿o ila1_trig_out	Capture mode: ALWAYS V	Name Compare Value	
	Closed	- ∿ ila2_trig_in	Number of windows: 1 [1 - 10	X	
A Core Properties	- D & X	- idz_dig_il_dot_z	Window data depth: 1024 - [1 - 10		
			Trigger position in window: 0 [0 - 10	-0,	
•		vio_feedback_2[31:0]			
riw_iia_1		vio_slice15_fb_2[14:0]	General Settings		
Name: hw_ila_1		wio_slice1_fb_2 vio_slice1a_fb_2	Refresh rate (ms): 500		
Device: 🔷 xc7k325t_0		vio_slice200_fb_2[199:0]		Drag and drop ILA	
HW core: core_3				probes from Debug Probes window.	
Capture sample count: 0 of 1024		Holaices_ib_2[4.0]			
Core status: Idle		fast_cnt_count[31:0]			
To view editable ILA properties:		∿o ila2_trig_in_ack			
Open ILA Dashboard		🕀 🍓 vio_feedback[31:0]			
		vio_slice15_fb[14:0]			
		vio_slice1_fb			
		In-text of dice200 fb[109-0]			
General Properties			< [
d Console					_ 🗆 🖻 ×
set_property PROGRAM.FILE {	C:/projects/ks_cou	unter2_k7/project_1/project_1.run	s/impl_1/ks_counter2.bit} [lindex [get_]	hw_devices] 0]	
set_property PROBES.FILE {C			/impl_1/debug_nets.ltx} [lindex [get_hw]	_devices] 0]	
current_hw_device [lindex [
		AG device index=0) has 1 JTAG AX	I cores.		
INFO: [Labtools 27-1432] De	vice xc7k325t (JI)	AG device index = 0) is programme	d with a design that has 2 ILA core(s) :		_
INFO: [Labtools 27-1828] De			d with a design that has 1 VIO core(s) :	in it.	E
<pre>refresh_hw_device: Time (s)</pre>	: cpu = 00:00:04 ;	elapsed = 00:01:17 . Memory (MB): peak = 1226.832 ; gain = 8.648		

Taking measurements

- Add Probes to Waveform
- > Add Probes to Basic Trigger Setup
- Add Probes to Basic Capture Setup
- Specify capture conditions
- > Arm the core and analyse received data

Acknowledgments (I)

NetFPGA Team at University of Cambridge (Past and Present):

Andrew Moore, David Miller, Muhammad Shahbaz, Martin Zadnik Matthew Grosvenor, Yury Audzevich, Neelakandan Manihatty-Bojan, Georgina Kalogeridou, Jong Hun Han, Noa Zilberman, Gianni Antichi, Charalampos Rotsos, Marco Forconesi, Jinyun Zhang, Bjoern Zeeb

NetFPGA Team at Stanford University (Past and Present):

Nick McKeown, Glen Gibb, Jad Naous, David Erickson,

G. Adam Covington, John W. Lockwood, Jianying Luo, Brandon Heller, Paul Hartke, Neda Beheshti, Sara Bolouki, James Zeng, Jonathan Ellithorpe, Sachidanandan Sambandan, Eric Lo

All Community members (including but not limited to):

Paul Rodman, Kumar Sanghvi, Wojciech A. Koszek, Yahsar Ganjali, Martin Labrecque, Jeff Shafer, Eric Keller, Tatsuya Yabe, Bilal Anwer, Yashar Ganjali, Martin Labrecque, Lisa Donatini, Sergio Lopez-Buedo

Kees Vissers, Michaela Blott, Shep Siegel, Cathal McCabe

Acknowledgements (II)

<u>Disclaimer:</u> Any opinions, findings, conclusions, or recommendations expressed in these materials do not necessarily reflect the views of the National Science Foundation or of any other sponsors supporting this project.

This effort is also sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contract FA8750-11-C-0249. This material is approved for public release, distribution unlimited. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

Summer Course Technion, Haifa, IL 2015