
NetFPGA Summer Course

Presented by:
Andrew W Moore, Noa Zilberman, Gianni Antichi
Stephen Ibanez, Marcin Wojcik, Jong Hun Han,

Salvator Galea, Murali Ramanujam, Jingyun Zhang,
Yuta Tokusashi

University of Cambridge
July 24 – July 28, 2017

http://NetFPGA.org

Summer Course Technion, Haifa, IL 2015 2

Finally, after hours of work you managed to finalise your HDL code
and make it working in simulation!!!!

Summer Course Technion, Haifa, IL 2015 3

Once the bitfile is created you need to:

• Check if your design meet the timing.

• Debug your HW code if regression tests are not passed.

Summer Course Technion, Haifa, IL 2015 4

Once the bitfile is created you need to:

• Check if your design meet the timing.

• Debug your HW code if regression tests are not passed.

Static Timing Analysis (STA)

Summer Course Technion, Haifa, IL 2015 5

A design netlist is an interconnected set of ports, cells and nets

Static Timing Analysis (STA)

Summer Course Technion, Haifa, IL 2015 6

A design netlist is an interconnected set of ports, cells and nets

• The functionality of a design is determined by RTL code
(verilog, vhdl, etc.) and verified by simulation tools

Static Timing Analysis (STA)

Summer Course Technion, Haifa, IL 2015 7

A design netlist is an interconnected set of ports, cells and nets

• The functionality of a design is determined by RTL code
(verilog, vhdl, etc.) and verified by simulation tools

• The quality of your RTL determines how easy timing will be met

Static Timing Analysis (STA)

Summer Course Technion, Haifa, IL 2015 8

A design netlist is an interconnected set of ports, cells and nets

• The functionality of a design is determined by RTL code
(verilog, vhdl, etc.) and verified by simulation tools

• The quality of your RTL determines how easy timing will be met

• The performance of a design is determined by the delays of
cells that compromise the design (STA)

Static Timing Analysis (STA)

Summer Course Technion, Haifa, IL 2015 9

A design netlist is an interconnected set of ports, cells and nets

• The functionality of a design is determined by RTL code
(verilog, vhdl, etc.) and verified by simulation tools

• The quality of your RTL determines how easy timing will be met

• The performance of a design is determined by the delays of
cells that compromise the design (STA)

• Static timing analysis doesn’t check the functionality of the
components but rather performance of components

STA Goals
Many FPGA processes are timing driven:
- Synthesis for circuit construction
- Placer for optimal cells locations
- Router for choosing routing elements

Summer Course Technion, Haifa, IL 2015 10

STA Goals
Many FPGA processes are timing driven:
- Synthesis for circuit construction
- Placer for optimal cells locations
- Router for choosing routing elements

Constraints are used to determine the desired performance goals

STA reports whether the design will provide the desired performance
through reports

Summer Course Technion, Haifa, IL 2015 11

Component delays

Summer Course Technion, Haifa, IL 2015 12

Each component has delays to perform it function:
- LUT has propagation delay from it’s ins to outs
- Net has delay from driver to receiver
- FF required stable data for a certain time around sampling point

Component delays

Summer Course Technion, Haifa, IL 2015 13

Each component has delays to perform it function:
- LUT has propagation delay from it’s ins to outs
- Net has delay from driver to receiver
- FF required stable data for a certain time around sampling point

Delays are also dependent of environment factors. These are
determined and characterized by Xilinx during device design.

Timing is extracted over the operating range of the device:
- Process (different speed grades)
- Voltage (min ® max)
- Temperature (min ® max)

Static Timing Path
- A static timing path is a path that starts at a clock element
- Propagates through any # combinatorial elements and nets
- Ends at clocking element

Source clock delay – starting top level clock port and ending at the
launch FF
Data path delay – delay to the capturing FF
Destination clock delay – there might be a difference bw these two
FFs

Summer Course Technion, Haifa, IL 2015 14

Setup check
Setup Timing Check checks that data arrives in good time

Checks that change in a clocked element has time to propagate to other
clocked elements before the next clock event

Simple case – same domain & only data path is considered:
T(D1_CLK) + T(FF1(Clk->Q)) + T(Comb) < T (CLKperiod) – T(FF2(setup)) – T(SU) + T(D2_CLK)

Summer Course Technion, Haifa, IL 2015 15

Hold check
Hold time checks that data doesn’t arrive too quickly

Checks DATA isn’t caught at destination FF at the same clock as the
clock that launched it at source FF

Simple case – same domain & only data path is considered:
T(D1_CLK) + T(FF1(Clk->Q)) + T(Comb) > T(FF2(hold)) + T(D2_CLK) + T(HU)

Summer Course Technion, Haifa, IL 2015 16

Constraints Methodology
Design constraints define the requirements that must be met by the
compilation flow in order for the design to be functional on the board

Summer Course Technion, Haifa, IL 2015 17

Constraints Methodology
Design constraints define the requirements that must be met by the
compilation flow in order for the design to be functional on the board

• Over-constraining and under-constraining is bad, so use
reasonable constraints that correspond to your requirements

Summer Course Technion, Haifa, IL 2015 18

Constraints Methodology
Design constraints define the requirements that must be met by the
compilation flow in order for the design to be functional on the board

• Over-constraining and under-constraining is bad, so use
reasonable constraints that correspond to your requirements

• Xilinx provides new Xilinx Design Constraint (XDC) file -- quite
different from previously used User Constraints File (UCF)

Summer Course Technion, Haifa, IL 2015 19

Constraints Methodology
Design constraints define the requirements that must be met by the
compilation flow in order for the design to be functional on the board

• Over-constraining and under-constraining is bad, so use
reasonable constraints that correspond to your requirements

• Xilinx provides new Xilinx Design Constraint (XDC) file -- quite
different from previously used User Constraints File (UCF)

• Single or multiple XDC files in a design might serve a different
purpose

Summer Course Technion, Haifa, IL 2015 20

Xilinx Design Constraint file
XDC constraints are a combination of:
• Synopsys Design Constraints format (SDC)
• Xilinx centric extensions
• Tcl-compatible for advanced scripting

XDC constraints have the following
properties:
• follow the Tcl semantic,
• interpreted like any other Tcl command,
• read in and parsed sequentially.

You can use constraints for:
• Synthesis and/or Implementation

Options are specified in file properties or via tcl :
set_property used_in_synthesis false [get_files
wave_gen_pins.xdc]
set_property used_in_implementation true [get_files
wave_gen_pins.xdc]

Summer Course Technion, Haifa, IL 2015 21

XDC File Order

Summer Course Technion, Haifa, IL 2015 22

The constraint files are loaded in the same sequence as the
way they are listed

To change order either drag and drop or reorder using:
reorder_files -fileset constrs_1 -before [get_files
wave_gen_timing.xdc] \
[get_files wave_gen_pins.xdc]

IPs:
If you use the native IPs, their XDC files are loaded after your
files

You cannot change the IP XDC files order, but you can
disable them and re-apply constraints in your XDC files

Common pitfalls

Summer Course Technion, Haifa, IL 2015 23

Missing constraints:
- The corresponding paths are not optimized for timing
- No violation will be reported but design may not work on HW

Incorrect constraints:
- Runtime and optimization efforts will be spent on the wrong paths
- Reported timing violations may not result in any issues on HW

Unreasonable hold requirements:
- May result in long runtime and SETUP violations
- P&R fixes HOLD violations as #1 priority, because:

• Designs with HOLD violations won’t work on HW
• Designs with SETUP violations will work, but slower

Timing report

Ø Report Summary
Contains info about design, device, tool version, data and time of report

Ø Path summary
Summarizes timing information for the path: timing is met (Slack), source and
destination, clock used, setup and hold check (requirements), number of level of
logic, skew and uncertainty

Summer Course Technion, Haifa, IL 2015 24

Timing command summary

Ø Create and validate clocks:
– check_timing: for missing clocks and IO constraints
– report_clocks: check frequency and phase
– report_clock_networks: possible clock root

Ø Validate clock groups:
– report_clock_interaction

Ø Validate I/O delays
– report_timing –from [input_port] –setup/-hold
– report_timing –to [output_port] –setup/-hold

Ø Add exceptions if necessary
– Validate using report_timing

Summer Course Technion, Haifa, IL 2015 25

Summer Course Technion, Haifa, IL 2015 26

Once the bitfile is created you need to:

• Check if your design meet the timing.

• Debug your HW code if regression tests are not passed.

Debugging the design

Summer Course Technion, Haifa, IL 2015 27

Ø RTL-level design simulation
ü Visibility of the entire design; ability to quickly iterate through debug

cycle
x Difficulty of simulating larger designs in a reasonable amount of time

Ø Post-implemented design simulation
model for theü Debugging the post-implemented timing-accurate

design
x Long run-times and system model accuracy

Ø In-system debugging
ü Debugging of post-implemented design on an FPGA device
ü Debugging actual system environment at system speeds
x Lower visibility of debug signals
x Longer design/implementation/debug iterations & hard close timing

Integrated Logic Analyzer

Summer Course Technion, Haifa, IL 2015 28

Ø 1. Probing phase: Identifying what signals in your design you want
to probe and how you want to probe them

Identifying what signals or nets you want to probe
Deciding how you want to add debug cores to your design

Ø 2. Implementation phase: Implementing the design that includes the
additional debug IP that is attached to the probed nets

The debug core hub must be implemented prior to running the PL & RT.

Ø 3. Analysis phase: Interacting with the debug IP contained in the
design to debug and verify functional issues

Connecting to the Hardware Target and Programming the FPGA Device
Setting up the ILA Core to Take a Measurement
Viewing ILA Cores in the Debug Probes Window
Using Basic Trigger Mode
Viewing ILA Probe Data in the Waveform Viewer

Inserting ILA cores

Summer Course Technion, Haifa, IL 2015 29

• Either Manually add the debug IP component instances through the
source code, or

• Allow Vivado tool to automatically insert the debug cores into your
post-synthesis netlist

The first approach is more straight forward:

Ø Start with Identifying signals for debugging at the HDL source level
prior to synthesis

(* mark_debug = "true" *) wire [7:0] char_fifo_dout; -- Verilog example

Ø Once design is synthesized use Set up Debug wizard for core
assignment and configuration

Inserting ILA cores (cont.)

You can insert it from GUI as well:

• Synthesize your design first

• Open synthesized design

• Set up debug

• The core can be seen in the
Netlist folder

Summer Course Technion, Haifa, IL 2015 30

Inserting Debug Cores
Open synthesized design and Insert Debug cores from the list of
Unassigned nets.

The Set up Debug wizard automatically selects clock domains

The properties of each core can be customized using GUI or manually

The appropriate code will be inserted automatically into XDC file

Summer Course Technion, Haifa, IL 2015 31

Inserting Debug Cores (cont.)

Summer Course Technion, Haifa, IL 2015 32

Ø XDC Commands can be also used to Insert Debug Cores
create_debug_core u_ila_0 ila
set_property C_DATA_DEPTH 1024 [get_debug_cores u_ila_0]
set_property C_TRIGIN_EN false [get_debug_cores u_ila_0]
set_property C_TRIGOUT_EN false [get_debug_cores u_ila_0]
set_property C_ADV_TRIGGER false [get_debug_cores u_ila_0]
…

Ø Saving constraints may cause the synthesis and implementation to
go out-of-date;

Ø you do not need to re-synthesize the design since the debug XDC
constraints are only used during implementation

Ø Check Xil UG908 for advanced debugging capabilities and IBERT

Debugging Logic Designs in Hardware
1. Connect to the hardware target and program the FPGA with the .bit file
2. Set up the ILA debug core trigger and capture controls.
3. Arm the ILA debug core trigger.
4. View the captured data from the ILA debug core in the Waveform window

Summer Course Technion, Haifa, IL 2015 33

Taking measurements
Ø Add Probes to Waveform
Ø Add Probes to Basic Trigger Setup
Ø Add Probes to Basic Capture Setup
Ø Specify capture conditions
Ø Arm the core and analyse received data

Summer Course Technion, Haifa, IL 2015 34

Acknowledgments (I)

Summer Course Technion, Haifa, IL 2015 35

NetFPGA Team at University of Cambridge (Past and Present):
Andrew Moore, David Miller, Muhammad Shahbaz, Martin Zadnik

Matthew Grosvenor, Yury Audzevich, Neelakandan Manihatty-Bojan,
Georgina Kalogeridou, Jong Hun Han, Noa Zilberman, Gianni Antichi,
Charalampos Rotsos, Marco Forconesi, Jinyun Zhang, Bjoern Zeeb

NetFPGA Team at Stanford University (Past and Present):
Nick McKeown, Glen Gibb, Jad Naous, David Erickson,

G. Adam Covington, John W. Lockwood, Jianying Luo, Brandon Heller, Paul
Hartke, Neda Beheshti, Sara Bolouki, James Zeng,

Jonathan Ellithorpe, Sachidanandan Sambandan, Eric Lo
All Community members (including but not limited to):

Paul Rodman, Kumar Sanghvi, Wojciech A. Koszek,
Yahsar Ganjali, Martin Labrecque, Jeff Shafer, Eric Keller ,
Tatsuya Yabe, Bilal Anwer, Yashar Ganjali, Martin Labrecque,

Lisa Donatini, Sergio Lopez-Buedo

Kees Vissers, Michaela Blott, Shep Siegel, Cathal McCabe

Acknowledgements (II)

Disclaimer: Any opinions, findings, conclusions, or recommendations expressed in these materials do not
necessarily reflect the views of the National Science Foundation or of any other sponsors supporting this
project.
This effort is also sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-11-C-0249. This material is approved for public release,
distribution unlimited. The views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

Summer Course Technion, Haifa, IL 2015 36

