
Summer Course Cambridge, UK, 2017 1

NetFPGA Summer Course

Presented by:
Andrew W Moore, Noa Zilberman, Gianni Antichi
Stephen Ibanez, Marcin Wojcik, Jong Hun Han,

Salvator Galea, Murali Ramanujam, Jingyun Zhang,
Yuta Tokusashi

University of Cambridge
July 24 – July 28, 2017

http://NetFPGA.org

Summer Course Cambridge, UK, 2017 2

Day 1 Outline
• The NetFPGA platform

– Introduction
– Overview of the NetFPGA

Platform
• NetFPGA SUME

– Hardware overview
• Network Review

– Basic IP review
• The Base Reference Switch

– Example I: Reference Switch
running on the NetFPGA

• The Life of a Packet Through
the NetFPGA
– Hardware Datapath
– Interface to software: Exceptions

and Host I/O

• Infrastructure
– Tree
– Verification Infrastructure

• Examples of Using NetFPGA
• Example Project: Crypto

Switch
– Introduction to a Crypto Switch
– What is an IP core?
– Getting started with a new

project.
– Crypto FSM

• Simulation and Debug
– Write and Run Simulations for

Crypto Switch
• Concluding Remarks

Summer Course Cambridge, UK, 2017 3

Section V: Infrastructure

Summer Course Cambridge, UK, 2017 4

Infrastructure

• Tree structure

• NetFPGA package contents
– Reusable Verilog modules
– Verification infrastructure
– Build infrastructure
– Utilities
– Software libraries

Summer Course Cambridge, UK, 2017 5

NetFPGA package contents

• Projects:
– HW: router, switch, NIC
– SW: router kit, SCONE

• Reusable Verilog modules
• Verification infrastructure:

– simulate designs (from AXI interface)
– run tests against hardware
– test data generation libraries (eg. packets)

• Build infrastructure
• Utilities:

– register I/O
• Software libraries

Summer Course Cambridge, UK, 2017 6

Tree Structure (1)
NetFPGA-SUME

projects (including reference designs)

contrib-projects (contributed user projects)

lib (custom and reference IP Cores
and software libraries)

tools (scripts for running simulations etc.)

docs (design documentations and user-guides)

https://github.com/NetFPGA/NetFPGA-SUME-live

Summer Course Cambridge, UK, 2017 7

Tree Structure (2)

lib
hw (hardware logic as IP cores)

sw (core specific software drivers/libraries)

std (reference cores)
contrib (contributed cores)

std (reference libraries)
contrib (contributed libraries)

xilinx (Xilinx based cores)

Summer Course Cambridge, UK, 2017 8

Tree Structure (3)
projects/reference_switch

hw (Vivado based project)
constraints (contains user constraint files)

bitfiles (FPGA executables)

tcl (contains scripts used to run various tools)
hdl (contains project-specific hdl code)

sw
embedded (contains code for microblaze)
host (contains code for host communication etc.)

test (contains code for project verification)

create_ip (contains files used to configure IP cores)

Summer Course Cambridge, UK, 2017 9

Reusable logic (IP cores)

Category IP Core(s)
I/O interfaces Ethernet 10G Port

PCI Express
UART
GPIO

Output queues BRAM based
Output port lookup NIC

CAM based Learning switch
Memory interfaces SRAM

DRAM
FLASH

Miscellaneous FIFOs
AXIS width converter

Summer Course Cambridge, UK, 2017 10

Verification Infrastructure (1)

• Simulation and Debugging
– built on industry standard Xilinx “xSim” simulator

and “Scapy”

– Python scripts for stimuli construction and
verification

Summer Course Cambridge, UK, 2017 11

Verification Infrastructure (2)

• xSim
– a High Level Description (HDL) simulator
– performs functional and timing simulations for

embedded, VHDL, Verilog and mixed designs
• Scapy

– a powerful interactive packet manipulation library
for creating “test data”

– provides primitives for many standard packet
formats

– allows addition of custom formats

Summer Course Cambridge, UK, 2017 12

Build Infrastructure (2)

• Build/Synthesis (using Xilinx Vivado)
– collection of shared hardware peripherals cores

stitched together with AXI4: Lite and Stream
buses

– bitfile generation and verification using Xilinx
synthesis and implementation tools

Summer Course Cambridge, UK, 2017 13

Build Infrastructure (3)

• Register system
– collects and generates addresses for all the

registers and memories in a project
– uses integrated python and tcl scripts to generate

HDL code (for hw) and header files (for sw)

Summer Course Cambridge, UK, 2017 14

Section VI: Examples of using NetFPGA

Summer Course Cambridge, UK, 2017 15

FPGA

Memory

Running the Reference Router

User-space development, 4x10GE line-rate forwarding

PCI-Express

CPU Memory
OSPF BGP

My
Protocol user

kernel
Routing

Table

IPv4
Router

Fwding
Table

Packet
Buffer

“Mirror”
10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

Summer Course Cambridge, UK, 2017 16

FPGA

Memory

Enhancing Modular Reference Designs

PCI-Express

CPU Memory

NetFPGA Driver

Java GUI
Front Panel
(Extensible)

PW-OSPF

In Q
Mgmt

IP
Lookup

L2
Parse

L3
Parse

Out Q
Mgmt

Verilog modules interconnected by FIFO interface

My
Block

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

Verilog,
VHDL,
P4,
C#, ….

EDA Tools
(Xilinx,

Mentor, etc.)

1.Design
2.Simulate
3.Synthesize
4.Download

Summer Course Cambridge, UK, 2017 17

FPGA

Memory

Creating new systems

PCI-Express

CPU Memory

NetFPGA Driver

My Design

(10GE MAC is soft/replaceable)

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

EDA Tools
(Xilinx,

Mentor, etc.)

Verilog,
VHDL,
P4,
C#,….

1.Design
2.Simulate
3.Synthesize
4.Download

Summer Course Cambridge, UK, 2017 18

Contributed Projects
Platform Project Contributor
1G OpenFlow switch Stanford University

Packet generator Stanford University
NetFlow Probe Brno University
NetThreads University of Toronto
zFilter (Sp)router Ericsson
Traffic Monitor University of Catania
DFA UMass Lowell

10G /
SUME

Bluespec switch UCAM/SRI International
Traffic Monitor University of Pisa
NF1G legacy on NF10G Uni Pisa & Uni Cambridge
High perf. DMA core University of Cambridge
NetSoC UCAM/SRI International
OSNT UCAM/Stanford/GTech/CNRS

Summer Course Cambridge, UK, 2017 19

OpenFlow
• The most prominent NetFPGA success
• Has reignited the Software Defined

Networking movement
• NetFPGA enabled OpenFlow

– A widely available open-source development
platform

– Capable of line-rate and
• Was, until its commercial uptake, the

reference platform for OpenFlow.

Summer Course Cambridge, UK, 2017 20

FPGA

 Soft processors: processors in the FPGA fabric
 User uploads program to soft processor
 Easier to program software than hardware in the FPGA
 Could be customized at the instruction level
 CHERI – 64bit MIPS soft processor, BSD OS
 RISC-V, Linux OS

Processor(s)DDR controller

Ethernet MAC

NetSoC: Soft Processors in FPGAs

Summer Course Cambridge, UK, 2017 21

• Compiling .Net programs
– To x86
– To simulation environment
– To multiple FPGA targets

Emu : Accelerating Network Services

Summer Course Cambridge, UK, 2017 22

• Build an accurate, fast, line-rate NetDummy/nistnet element

• A flexible home-grown monitoring card

• Evaluate new packet classifiers
– (and application classifiers, and other neat network apps….)

• Prototype a full line-rate next-generation Ethernet-type

• Trying any of Jon Crowcrofts’ ideas (Sourceless IP routing for example)

• Demonstrate the wonders of Metarouting in a different implementation (dedicated
hardware)

• Provable hardware (using a C# implementation and kiwi with NetFPGA as target
h/w)

• Hardware supporting Virtual Routers

• Check that some brave new idea actually works
e g Rate Control Protocol (RCP) Multipath TCP

How might we use NetFPGA?
Well I’m not sure about you but here is a list I created:• Build an accurate, fast, line-rate NetDummy/nistnet element

• A flexible home-grown monitoring card
• Evaluate new packet classifiers

– (and application classifiers, and other neat network apps….)
• Prototype a full line-rate next-generation Ethernet-type
• Trying any of Jon Crowcrofts’ ideas (Sourceless IP routing for example)
• Demonstrate the wonders of Metarouting in a different implementation (dedicated hardware)
• Provable hardware (using a C# implementation and kiwi with NetFPGA as target h/w)
• Hardware supporting Virtual Routers
• Check that some brave new idea actually works

e.g. Rate Control Protocol (RCP), Multipath TCP,
• toolkit for hardware hashing
• MOOSE implementation
• IP address anonymization
• SSL decoding “bump in the wire”
• Xen specialist nic
• computational co-processor
• Distributed computational co-processor
• IPv6 anything
• IPv6 – IPv4 gateway (6in4, 4in6, 6over4, 4over6, ….)
• Netflow v9 reference
• PSAMP reference
• IPFIX reference
• Different driver/buffer interfaces (e.g. PFRING)
• or “escalators” (from gridprobe) for faster network monitors
• Firewall reference
• GPS packet-timestamp things
• High-Speed Host Bus Adapter reference implementations

– Infiniband
– iSCSI
– Myranet
– Fiber Channel

• Smart Disk adapter (presuming a direct-disk interface)
• Software Defined Radio (SDR) directly on the FPGA (probably UWB only)
• Routing accelerator

– Hardware route-reflector
– Internet exchange route accelerator

• Hardware channel bonding reference implementation
• TCP sanitizer
• Other protocol sanitizer (applications… UDP DCCP, etc.)
• Full and complete Crypto NIC
• IPSec endpoint/ VPN appliance
• VLAN reference implementation
• metarouting implementation
• virtual <pick-something>
• intelligent proxy
• application embargo-er
• Layer-4 gateway
• h/w gateway for VoIP/SIP/skype
• h/w gateway for video conference spaces
• security pattern/rules matching
• Anti-spoof traceback implementations (e.g. BBN stuff)
• IPtv multicast controller
• Intelligent IP-enabled device controller (e.g. IP cameras or IP powerm
• DES breaker
• platform for flexible NIC API evaluations
• snmp statistics reference implementation
• sflow (hp) reference implementation
• trajectory sampling (reference implementation)
• implementation of zeroconf/netconf configuration language for rout
• h/w openflow and (simple) NOX controller in one…
• Network RAID (multicast TCP with redundancy)
• inline compression
• hardware accelorator for TOR
• load-balancer
• openflow with (netflow, ACL, ….)
• reference NAT device
• active measurement kit
• network discovery tool
• passive performance measurement
• active sender control (e.g. performance feedback fed to endpoints fo
• Prototype platform for NON-Ethernet or near-Ethernet MACs

– Optical LAN (no buffers)

Summer Course Cambridge, UK, 2017 23

How might YOU use NetFPGA?
• Build an accurate, fast, line-rate NetDummy/nistnet element
• A flexible home-grown monitoring card
• Evaluate new packet classifiers

– (and application classifiers, and other neat network apps….)
• Prototype a full line-rate next-generation Ethernet-type
• Trying any of Jon Crowcrofts’ ideas (Sourceless IP routing for example)
• Demonstrate the wonders of Metarouting in a different implementation (dedicated hardware)
• Provable hardware (using a C# implementation and kiwi with NetFPGA as target h/w)
• Hardware supporting Virtual Routers
• Check that some brave new idea actually works

e.g. Rate Control Protocol (RCP), Multipath TCP,
• toolkit for hardware hashing
• MOOSE implementation
• IP address anonymization
• SSL decoding “bump in the wire”
• Xen specialist nic
• computational co-processor
• Distributed computational co-processor
• IPv6 anything
• IPv6 – IPv4 gateway (6in4, 4in6, 6over4, 4over6, ….)
• Netflow v9 reference
• PSAMP reference
• IPFIX reference
• Different driver/buffer interfaces (e.g. PFRING)
• or “escalators” (from gridprobe) for faster network monitors
• Firewall reference
• GPS packet-timestamp things
• High-Speed Host Bus Adapter reference implementations

– Infiniband
– iSCSI
– Myranet
– Fiber Channel

• Smart Disk adapter (presuming a direct-disk interface)
• Software Defined Radio (SDR) directly on the FPGA (probably UWB only)
• Routing accelerator

– Hardware route-reflector
– Internet exchange route accelerator

• Hardware channel bonding reference implementation
• TCP sanitizer
• Other protocol sanitizer (applications… UDP DCCP, etc.)
• Full and complete Crypto NIC
• IPSec endpoint/ VPN appliance
• VLAN reference implementation
• metarouting implementation
• virtual <pick-something>
• intelligent proxy
• application embargo-er
• Layer-4 gateway
• h/w gateway for VoIP/SIP/skype
• h/w gateway for video conference spaces
• security pattern/rules matching
• Anti-spoof traceback implementations (e.g. BBN stuff)
• IPtv multicast controller
• Intelligent IP-enabled device controller (e.g. IP cameras or IP powerm
• DES breaker
• platform for flexible NIC API evaluations
• snmp statistics reference implementation
• sflow (hp) reference implementation
• trajectory sampling (reference implementation)
• implementation of zeroconf/netconf configuration language for rout
• h/w openflow and (simple) NOX controller in one…
• Network RAID (multicast TCP with redundancy)
• inline compression
• hardware accelorator for TOR
• load-balancer
• openflow with (netflow, ACL, ….)
• reference NAT device
• active measurement kit
• network discovery tool
• passive performance measurement
• active sender control (e.g. performance feedback fed to endpoints fo
• Prototype platform for NON-Ethernet or near-Ethernet MACs

– Optical LAN (no buffers)

Summer Course Cambridge, UK, 2017 24

Section VII: Example Project:
Crypto Switch

Summer Course Cambridge, UK, 2017 25

Project: Cryptographic Switch

Implement a learning switch that encrypts
upon transmission and decrypts upon

reception

Summer Course Cambridge, UK, 2017 26

Cryptography
XOR function

XOR written as: ^ ⊻ ⨁
XOR is commutative: (A ^ B) ^ C = A ^ (B ^ C)

A B A ^ B
0 0 0
0 1 1
1 0 1
1 1 0

XORing a
value with
itself always
yields 0

Summer Course Cambridge, UK, 2017 27

Cryptography (cont.)
Simple cryptography:

– Generate a secret key
– Encrypt the message by XORing the message and key
– Decrypt the ciphertext by XORing with the key

Explanation:

(M ^ K) ^ K = M ^ (K ^ K)

= M
= M ^ 0

Commutativity
A ^ A = 0

Summer Course Cambridge, UK, 2017 28

Cryptography (cont.)
Example:

Message: 00111011
Key: 10110001

Message ^ Key: 10001010
Key: 10110001

Message ^ Key ^ Key: 00111011

Summer Course Cambridge, UK, 2017 29

Cryptography (cont.)

Idea: Implement simple cryptography using XOR
– 32-bit key
– Encrypt every word in payload with key

Note: XORing with a one-time pad of the same length of the message is
secure/uncrackable. See: http://en.wikipedia.org/wiki/One-time_pad

PayloadHeader

Key Key Key Key Key
⨁

Summer Course Cambridge, UK, 2017 30

implementation goes
wild…

Summer Course Cambridge, UK, 2017 31

What’s a core?

•“IP Core” in Vivado
– Standalone Module
– Configurable and reuseable

•HDL (Verilog/VHDL) + TCL files

•Examples:
–10G Port
–SRAM Controller
–NIC Output port lookup

Summer Course Cambridge, UK, 2017 32

HDL (Verilog)
• NetFPGA cores

– AXI-compliant

• AXI = Advanced eXtensible Interface
– Used in ARM-based embedded systems
– Standard interface
– AXI4/AXI4-Lite: Control and status interface
– AXI4-Stream: Data path interface

• Xilinx IPs and tool chains
– Mostly AXI-compliant

Summer Course Cambridge, UK, 2017 33

Scripts (TCL)
• Integrated into Vivado toolchain

– Supports Vivado-specific commands
– Allows to interactively query Vivado

• Has a large number of uses:
– Create projects
– Set properties
– Generate cores
– Define connectivity
– Etc.

Summer Course Cambridge, UK, 2017 34

Module
i

Module
i+1

TDATA

Inter-Module Communication

TUSER

TVALID

TREADY

– Using AXI-4 Stream (Packets are moved as Stream)

TKEEP
TLAST

Summer Course Cambridge, UK, 2017 35

AXI4-Stream

AXI4-Stream Description
TDATA Data Stream
TKEEP Marks qualified bytes (i.e. byte enable)
TVALID Valid Indication
TREADY Flow control indication
TLAST End of packet/burst indication
TUSER Out of band metadata

Summer Course Cambridge, UK, 2017 36

Packet Format

TLAST TUSER TKEEP TDATA
0 V 0xFF…F Eth Hdr

0 X 0xFF…F IP Hdr

0 X 0xFF…F …

1 X 0x0…1F Last word

Summer Course Cambridge, UK, 2017 37

TUSER

Position Content
[15:0] length of the packet in bytes
[23:16] source port: one-hot encoded
[31:24] destination port: one-hot encoded
[127:32] 6 user defined slots, 16bit each

Summer Course Cambridge, UK, 2017 38

TVALID/TREADY Signal timing

– No waiting!
– Assert TREADY/TVALID whenever

appropriate
– TVALID should not depend on TREADY

TVALID
TREADY

Summer Course Cambridge, UK, 2017 39

Byte ordering
• In compliance to AXI, NetFPGA has a

specific byte ordering
– 1st byte of the packet @ TDATA[7:0]
– 2nd byte of the packet @ TDATA[15:8]

Summer Course Cambridge, UK, 2017 40

Getting started with a new project:

Summer Course Cambridge, UK, 2017 41

Embedded Development Kit

• Xilinx integrated design environment
contains:
– Vivado, a top level integrated design tool for

“hardware” synthesis , implementation and
bitstream generation

– Software Development Kit (SDK), a
development environment for “software
application” running on embedded processors
like Microblaze

– Additional tools (e.g. Vivado HLS)

Summer Course Cambridge, UK, 2017 42

Xilinx Vivado

• A Vivado project consists of following:
– <project_name>.xpr

• top level Vivado project file
– tcl and HDL files that define the project
– system.xdc

• user constraint file
• defines constraints such as timing, area, IO placement

etc.

Summer Course Cambridge, UK, 2017 43

Xilinx Vivado (2)

• To invoke Vivado design tool, run:
vivado <project_root>/hw/project/<project_name>.xpr

• This will open the project in the Vivado
graphical user interface

• open a new terminal
• cd <project_root>/projects/ <project_name>/
• source /opt/Xilinx/Vivado/2016.4/settings64.sh
• vivado hw/project/<project name>.xpr

Summer Course Cambridge, UK, 2017 44

Vivado Design Tool (1)

Design

Project Summary

Flow
Navigation

Summer Course Cambridge, UK, 2017 45

Vivado Design Tool (2)
• IP Catalog: contains categorized list of all

available peripheral cores

• IP Integrator: shows connectivity of various
modules over AXI bus

• Project manager: provides a complete view
of instantiated cores

Summer Course Cambridge, UK, 2017 46

Vivado Design Tool (3)

Address view

• Address Editor:
- Under IP Integrator
- Defines base and high address value for
peripherals connected to AXI4 or AXI-LITE
bus

• Not AXI-Stream!
• These values can be controlled manually, using

tcl

Summer Course Cambridge, UK, 2017 47

Getting started with a new project (1)
• Projects:

– Each design is represented by a project

– Location: NetFPGA-SUME-live/projects/<proj_name>

– Create a new project:
• Normally:

– copy an existing project as the starting point
• Today:

– pre-created project (crypto_switch)
– Consists of:

• Verilog source
• Simulation tests
• Hardware tests
• Optional software

Summer Course Cambridge, UK, 2017 48

10G
RxQ

10G
RxQ

10G
RxQ

10G
RxQ

Input Arbiter

Output Port Lookup

Output Queues

10G
TxQ

10G
TxQ

10G
TxQ

10G
TxQ

Getting started with a new project (3)

Typically implement
functionality in one or
more modules under
the top wrapper

Crypto module
to encrypt and
decrypt packets

Crypto

Summer Course Cambridge, UK, 2017 49

Getting started with a new project (4)
– Shared modules included from netfpga/lib/hw

• Generic modules that are re-used in multiple projects
• Specify shared modules in project’s tcl file

– crypto_switch:

Local Shared
crypto Everything else

Summer Course Cambridge, UK, 2017 50

Getting started with a new project (5)
We already created the core for you:

1. cd $NF_DESIGN_DIR/hw/local_ip/crypto_v1_0_0
2. Write and edit files under crypto_v1_0_0/hdl Folder

hint: TODO indicates where you should add your code
3. cd $NF_DESIGN_DIR/hw/local_ip/crypto_v1_0_0
4. make

Notes:
1. review ~/NetFPGA-SUME-live/tools/settings.sh
2. make sure NF_PROJECT_NAME=crypto_switch
3. If you make changes: source ~/NetFPGA-SUME-

live/tools/settings.sh
4. Check that make passes without errors

Summer Course Cambridge, UK, 2017 51

crypto.v

Module crypto
#(

parameter C_M_AXIS_DATA_WIDTH = 256,
parameter C_S_AXIS_DATA_WIDTH = 256,
...)

(
...

)

//----------------------- regs/wires ---------------------------
...
//----------------------- modules ------------------------------
...
//----------------------- logic ------------------------------
...

endmodule

Module port declaration

Summer Course Cambridge, UK, 2017 52

crypto.v (2)
//------------------------- Modules-------------------------------

fallthrough_small_fifo #(
.WIDTH(...),
.MAX_DEPTH_BITS(2)

) input_fifo (
.din ({fifo_out_tlast, fifo_out_tuser,..}), // Data in
.wr_en (s_axis_tvalid & s_axis_tready), // Write enable
.rd_en (in_fifo_rd_en), // Read the next word
.dout ({s_axis_tlast, s_axis_tuser, ..}),
.full (),
.nearly_full(in_fifo_nearly_full),
.prog_full (),
.empty (in_fifo_empty),
.reset (!axi_aresetn),
.clk (axi_aclk)

);

Packet data dumped in
a FIFO. Allows some
“decoupling” between
input and output.

Summer Course Cambridge, UK, 2017 53

crypto.v (3)
//------------------------- Logic-------------------------------

assign s_axis_tready = !in_fifo_nearly_full;
assign m_axis_tuser = fifo_out_tuser;
...

always @(*) begin
// Default value
in_fifo_rd_en = 0;

if (m_axis_tready && !in_fifo_empty) begin
in_fifo_rd_en = 1;

end
end

Combinational logic to
read data from the FIFO.
(Data is output to
output ports.)

You’ll want to add your
state in this section.

Summer Course Cambridge, UK, 2017 54

Project Design Flow
• There are several ways to design and

integrate a project, e.g.
– Using Verilog files for connectivity and TCL

scripts for project definition
– Using Vivado’s Block Design (IPI) flow

• We will use the first, but introduce the
second

Summer Course Cambridge, UK, 2017 55

Project Integration
• vi $NF_DESIGN_DIR/hw/nf_datapath.v

• Add the new module between the output
port lookup and output queues

Summer Course Cambridge, UK, 2017 56

Project Integration
• Edit the TCL file which generates the project:
• vi $NF_DESIGN_DIR/hw/tcl/ crypto_switch_sim.tcl
• Add the following lines (line 96):
create_ip -name crypto -vendor NetFPGA -library NetFPGA -module_name crypto_ip

set_property generate_synth_checkpoint false [get_files crypto_ip.xci]

reset_target all [get_ips crypto_ip]

generate_target all [get_ips crypto_ip]

• name and module_name should match your hdl

• Save time for later, add the same text also in:

$NF_DESIGN_DIR/tcl/crypto_switch.tcl (line 98)

Summer Course Cambridge, UK, 2017 57

Project Integration – Block Design

Create a new project
OR

Open an existing project
OR

run a TCL script
(also through tools)

Summer Course Cambridge, UK, 2017 58

Project Integration – Block Design (2)

Open
block
design

Diagram

Summer Course Cambridge, UK, 2017 59

Project Integration – Block Design (3)

Sub-BD

Opening Sub-BD

Summer Course Cambridge, UK, 2017 60

Project Integration – Block Design (4)

Connectivity

Summer Course Cambridge, UK, 2017 61

Project Integration – Block Design (5)
Setting module parameters

Summer Course Cambridge, UK, 2017 62

Project Integration – Block Design (6)

Offset RangeAddress Editor

Summer Course Cambridge, UK, 2017 63

Project Integration – Block Design (7)

Validate
design

Summer Course Cambridge, UK, 2017 64

Summary to this Point
• Created a new project

• Created a new core named crypto

• Wired the new core into the pipline
– After output_port_lookup
– Before output_queues

• Next we will write the Verilog code!

Summer Course Cambridge, UK, 2017 65

Implementing the Crypto Module (1)
• What do we want to encrypt?

– IP payload only
• Plaintext IP header allows routing
• Content is hidden

– Encrypt bytes 35 onward
• Bytes 1-14 – Ethernet header
• Bytes 15-34 – IPv4 header (assume no options)
• Remember AXI byte ordering

– For simplicity, assume all packets are IPv4
without options

Summer Course Cambridge, UK, 2017 66

Implementing the Crypto Module (2)
• State machine (shown next):

– Module headers on each packet
– Datapath 256-bits wide

• 34 / 32 is not an integer!
• Inside the crypto module

Registers

in_fifo_empty

in_fifo_rd_en

data/ctrl

valid

ready

data/ctrl

S_AXIS M_AXIS

Summer Course Cambridge, UK, 2017 67

Crypto Module State Diagram
Hint: We suggest 3 states

Detect
Packet’s
Header

Summer Course Cambridge, UK, 2017 68

Implement your state machine inside crypto.v

Suggested sequence of steps:
1. Set the key value

• set the key = 32’hffffffff;
2. Write your state machine to modify the packet by

XORing the key and the payload
• Use eight copies of the key to create a 256-bit value to XOR

with data words
3. Do not pay attention to the register infrastructure that

will be explained later.

Afraid of Verilog? Start with easy_crypto.v

Implementing the Crypto Module (3)

Summer Course Cambridge, UK, 2017 69

More Verilog: Assignments 1
• Continuous assignments

– appear outside processes (always @ blocks):

assign foo = baz & bar;

– targets must be declared as wires
– always “happening” (ie, are concurrent)

Summer Course Cambridge, UK, 2017 70

More Verilog: Assignments 2
• Non-blocking assignments

– appear inside processes (always @ blocks)
– use only in sequential (clocked) processes:

always @(posedge clk) begin
a <= b;
b <= a;

end

– occur in next delta (‘moment’ in simulation time)
– targets must be declared as regs
– never clock any process other than with a clock!

Summer Course Cambridge, UK, 2017 71

More Verilog: Assignments 3
• Blocking assignments

– appear inside processes (always @ blocks)
– use only in combinatorial processes:

• (combinatorial processes are much like continuous assignments)

always @(*) begin

a = b;
b = a;

end

– occur one after the other (as in sequential langs like C)
– targets must be declared as regs – even though not a register

– never use in sequential (clocked) processes!

Summer Course Cambridge, UK, 2017 72

More Verilog: Assignments 3
• Blocking assignments

– appear inside processes (always @ blocks)
– use only in combinatorial processes:

• (combinatorial processes are much like continuous assignments)

always @(*) begin
tmp = a;
a = b;
b = tmp;

end

– occur one after the other (as in sequential langs like C)
– targets must be declared as regs – even though not a register

– never use in sequential (clocked) processes!

unlike non-blocking,
have to use a
temporary signal

Summer Course Cambridge, UK, 2017 73

(hints)
• Never assign one signal from two processes:

always @(posedge clk) begin
foo <= bar;

end

always @(posedge clk) begin
foo <= quux;

end

Summer Course Cambridge, UK, 2017 74

(hints)
• In combinatorial processes:

– take great care to assign in all possible cases

always @(*) begin
if (cond) begin

foo = bar;
end

end

– (latches ‹as opposed to flip-flops› are bad for timing closure)

Summer Course Cambridge, UK, 2017 75

(hints)
• In combinatorial processes:

– take great care to assign in all possible cases

always @(*) begin
if (cond) begin

foo = bar;
else

foo = quux;
end

end

Summer Course Cambridge, UK, 2017 76

(hints)
• In combinatorial processes:

– (or assign a default)

always @(*) begin
foo = quux;

if (cond) begin
foo = bar;

end
end

Summer Course Cambridge, UK, 2017 77

Getting started: step by step
Preparing the crypto module:

1. cd $NF_DESIGN_DIR/hw/local_ip/crypto_v1_0_0
2. Write and edit files under crypto_v1_0_0/hdl Folder

hint: TODO indicates where you should add your code
3. cd $NF_DESIGN_DIR/hw/local_ip/crypto_v1_0_0
4. make

Notes:
1. review ~/NetFPGA-SUME-live/tools/settings.sh
2. make sure NF_PROJECT_NAME=crypto_switch
3. If you make changes: source ~/NetFPGA-SUME-

live/tools/settings.sh
4. Check that make passes without errors

Summer Course Cambridge, UK, 2017 78

Project Integration: step by step
1. vi $NF_DESIGN_DIR/hw/nf_datapath.v
2. Add the new module between the output port lookup and output

queues
Afraid of Verilog? Start with easy_crypto.v

Edit the TCL file which generates the project:
1. vi $NF_DESIGN_DIR/hw/tcl/ crypto_switch_sim.tcl
2. Add the following lines (line 96):

create_ip -name crypto -vendor NetFPGA -library NetFPGA -
module_name crypto_ip
set_property generate_synth_checkpoint false [get_files
crypto_ip.xci]
reset_target all [get_ips crypto_ip]
generate_target all [get_ips crypto_ip]

3. name and module_name should match your hdl

4. Save time for later, add the same text also in:

$NF_DESIGN_DIR/tcl/crypto_switch.tcl (line 98)

Summer Course Cambridge, UK, 2017 79

Section VIII: Simulation and Debug

Summer Course Cambridge, UK, 2017 80

Testing: Simulation
• Simulation allows testing without requiring

lengthy synthesis process

• NetFPGA simulation environment allows:
– Send/receive packets

• Physical ports and CPU
– Read/write registers
– Verify results

• Simulations run in xSim

• We provide a unified infrastructure for both
HW and simulation tests

Summer Course Cambridge, UK, 2017 81

Testing: Simulation

• We will simulate the “crypto_switch” design under
the “simulation framework”

• We will show you how to
– create simple packets using scapy
– transmit and reconcile packets sent over 10G

Ethernet and PCIe interfaces
– the code can be found in the “test” directory inside

the crypto_switch project

Summer Course Cambridge, UK, 2017 82

Testing: Simulation(2)
Run a simulation to verify changes:

1. make sure “NF_DESIGN_DIR” variable in the tools/settings.sh
file located in ~/NetFPGA-SUME-live points to the
crypto_switch project.

2. source ~/NetFPGA-SUME-live/tools/settings.sh

3. cd ~/NetFPGA-SUME-live/tools/scripts

4. ./nf_test.py sim --major crypto –minor test
Or ./nf_test.py sim --major crypto –major test --gui (if you want to run the gui)

Now we can simulate the crypto functionality

Summer Course Cambridge, UK, 2017 83

cd $NF_DESIGN_DIR/test/both_crypto_test
vim run.py

• The “isHW” statement enables the HW test (we will look into it
tomorrow)

• Let’s focus on the “else” part of the statement
• make_IP_pkt fuction creates the IP packet that will be used as stimuli
• pkt.tuser_sport is used to set up the correct source port of the packet
• encrypt_pkt encrypts the packet
• pkt.time selects the time the packet is supposed to be sent
• nftest_send_phy/dma are used to send a packet to a given interface
• nftest_expected_phy/dma are used to expect a packet in a given

interface
• nftest_barrier is used to block the simulation till the previous statement

has been completed (e.g., send_pkts -> barrier -> send_more_pkts)

Crypto Switch simulation

Summer Course Cambridge, UK, 2017 84

4

• As expected, total of 10 packets are received on each interface

The results are in…

Summer Course Cambridge, UK, 2017 85

Running simulation in xSim

Objects panel

Scopes

Waveform window

Tcl console

Summer Course Cambridge, UK, 2017 86

Running simulation in xSim (2)

• Scopes panel: displays process and instance
hierarchy

• Objects panel: displays simulation objects
associated with the instance selected in the
instance panel

• Waveform window: displays wave configuration
consisting of signals and busses

• Tcl console: displays simulator generated messages
and can executes Tcl commands

Summer Course Cambridge, UK, 2017 87

make core going wild
CRITICAL WARNING: [filemgmt 20-742] The top module "crypto"
specified for this project can not be validated. The current project is
using automatic hierarchy update mode, and hence a new suitable
replacement top will be automatically selected. If this is not desired,
please change the hierarchy update mode to one of the manual
compile order modes first, and then set top to any desired value.
…..
ERROR: [filemgmt 20-730] Could not find a top module in the fileset
sources_1.
……

You’ve got syntax errors!!!
Start by checking ports and parameters syntax

Summer Course Cambridge, UK, 2017 88

Simulation gone wild
When “./nf_test.py sim …..”
1
source /opt/Xilinx/Vivado/2016.4/settings64.sh

2
Edit and source NetFPGA-SUME-live/tools/settings.sh

3
Run “make core” under projects/crypto_switch/hw/

4
Check that crypto_switch.tcl, crypto_switch_sim.tcl, export_registers.tcl are
all up to date with your changes

5
if sim finishes but complains that each test passes 10 packets but all tests
FAIL – this means your static key is different between your code and your
run.py file, check the log

Summer Course Cambridge, UK, 2017 90

Crypto Module State Diagram: Solution
change_state = m_axis_tvalid && m_axis_tready

Detect
Packet’s
Header

Payload

Second
word

change_state

change_state && m_axis_tlast

change_statechange_state && m_axis_tlast

Summer Course Cambridge, UK, 2017 91

it is time for the first synthesis!!!

Summer Course Cambridge, UK, 2017 92

Synthesis
• To synthesize your project:

cd $NF_DESIGN_DIR
make

Summer Course Cambridge, UK, 2017 93

Important Notes
• Make sure to backup your work

• You can fork the course’s repo to your user
and push updates

• Careful – running simulation erases
previous $NF_DESIGN_DIR/hw/project
created by a synthesis

Summer Course Cambridge, UK, 2017 94

Section IX: Conclusion

Summer Course Cambridge, UK, 2017 95

Nick McKeown, Glen Gibb, Jad Naous, David Erickson, G. Adam Covington, John W. Lockwood,
Jianying Luo, Brandon Heller, Paul Hartke, Neda Beheshti, Sara Bolouki, James Zeng,

Jonathan Ellithorpe, Sachidanandan Sambandan, Eric Lo, Stephen Gabriel Ibanez

Acknowledgments (I)

NetFPGA Team at Stanford University (Past and Present):

NetFPGA Team at University of Cambridge (Past and Present):
Andrew Moore, David Miller, Muhammad Shahbaz, Martin Zadnik, Matthew Grosvenor, Yury

Audzevich, Neelakandan Manihatty-Bojan, Georgina Kalogeridou, Jong Hun Han, Noa
Zilberman, Gianni Antichi, Charalampos Rotsos, Hwanju Kim, Marco Forconesi, Jinyun Zhang,

Bjoern Zeeb, Robert Watson, Salvator Galea, Marcin Wojcik, Diana Andreea Popescu,
Murali Ramanujam

All Community members (including but not limited to):
Paul Rodman, Kumar Sanghvi, Wojciech A. Koszek, Yahsar Ganjali, Martin Labrecque, Jeff

Shafer, Eric Keller, Tatsuya Yabe, Bilal Anwer, Yashar Ganjali, Martin Labrecque, Lisa Donatini,
Sergio Lopez-Buedo , Andreas Fiessler, Robert Soule, Pietro Bressana, Yuta Tokusashi

Patrick Lysaght, Kees Vissers, Michaela Blott, Shep Siegel, Cathal McCabe

Steve Wang, Erik Cengar, Michael Alexander, Sam Bobrowicz, Garrett Aufdemberg,
Patrick Kane, Tom Weldon

Summer Course Cambridge, UK, 2017 96

Acknowledgements (II)

	 NetFPGA Summer Course
	Day 1 Outline
	Slide Number 3
	Infrastructure
	NetFPGA package contents
	Tree Structure (1)
	Tree Structure (2)
	Tree Structure (3)
	Reusable logic (IP cores)
	Verification Infrastructure (1)
	Verification Infrastructure (2)
	Build Infrastructure (2)
	Build Infrastructure (3)
	Slide Number 14
	Running the Reference Router��User-space development, 4x10GE line-rate forwarding
	Enhancing Modular Reference Designs
	Creating new systems
	Contributed Projects
	OpenFlow
	NetSoC: Soft Processors in FPGAs
	Slide Number 21
	How might we use NetFPGA?
	How might YOU use NetFPGA?
	�
	Project: Cryptographic Switch
	Cryptography
	Cryptography (cont.)
	Cryptography (cont.)
	Cryptography (cont.)
	Slide Number 30
	What’s a core?
	HDL (Verilog)
	Scripts (TCL)
	Inter-Module Communication
	AXI4-Stream
	Packet Format
	TUSER
	TVALID/TREADY Signal timing
	Byte ordering
	Slide Number 40
	Embedded Development Kit
	Xilinx Vivado
	Xilinx Vivado (2)
	Vivado Design Tool (1)
	Vivado Design Tool (2)
	Vivado Design Tool (3)
	Getting started with a new project (1)
	Getting started with a new project (3)
	Getting started with a new project (4)
	Getting started with a new project (5)
	crypto.v
	crypto.v (2)
	crypto.v (3)
	Project Design Flow
	Project Integration
	Project Integration
	Project Integration – Block Design
	Project Integration – Block Design (2)
	Project Integration – Block Design (3)
	Project Integration – Block Design (4)
	Project Integration – Block Design (5)
	Project Integration – Block Design (6)
	Project Integration – Block Design (7)
	Summary to this Point
	Implementing the Crypto Module (1)
	Implementing the Crypto Module (2)
	Crypto Module State Diagram
	Implementing the Crypto Module (3)
	More Verilog: Assignments 1
	More Verilog: Assignments 2
	More Verilog: Assignments 3
	More Verilog: Assignments 3
	(hints)
	(hints)
	(hints)
	(hints)
	Getting started: step by step
	Project Integration: step by step
	Slide Number 79
	Testing: Simulation
	Testing: Simulation
	Testing: Simulation(2)
	cd $NF_DESIGN_DIR/test/both_crypto_test�vim run.py
	The results are in…
	Running simulation in xSim
	Running simulation in xSim (2)
	make core going wild
	Simulation gone wild
	Crypto Module State Diagram: Solution
	Slide Number 91
	Synthesis
	Important Notes
	Slide Number 94
	Acknowledgments (I)
	Acknowledgements (II)

