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Day 1 Outline
• The NetFPGA platform

– Introduction
– Overview of the NetFPGA

Platform
• NetFPGA SUME

– Hardware overview
• Network Review

– Basic IP review
• The Base Reference Switch

– Example I: Reference Switch 
running on the NetFPGA

• The Life of a Packet Through 
the NetFPGA
– Hardware Datapath
– Interface to software: Exceptions 

and Host I/O

• Infrastructure
– Tree
– Verification Infrastructure

• Examples of Using NetFPGA
• Example Project: Crypto 

Switch
– Introduction to a Crypto Switch
– What is an IP core?
– Getting started with a new 

project.
– Crypto FSM

• Simulation and Debug
– Write and Run Simulations for 

Crypto Switch
• Concluding Remarks
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Section V: Infrastructure
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Infrastructure

• Tree structure

• NetFPGA package contents
– Reusable Verilog modules
– Verification infrastructure
– Build infrastructure
– Utilities
– Software libraries



Summer Course Cambridge, UK, 2017 5

NetFPGA package contents

• Projects:
– HW: router, switch, NIC
– SW: router kit, SCONE

• Reusable Verilog modules
• Verification infrastructure:

– simulate designs (from AXI interface)
– run tests against hardware
– test data generation libraries (eg. packets)

• Build infrastructure
• Utilities:

– register I/O
• Software libraries
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Tree Structure (1)
NetFPGA-SUME

projects (including reference designs)

contrib-projects (contributed user projects)

lib (custom and reference IP Cores 
and software libraries)

tools (scripts for running simulations etc.)

docs (design documentations and user-guides)

https://github.com/NetFPGA/NetFPGA-SUME-live
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Tree Structure (2)

lib
hw (hardware logic as IP cores)

sw (core specific software drivers/libraries)

std (reference cores)
contrib (contributed cores)

std (reference libraries)
contrib (contributed libraries)

xilinx (Xilinx based cores)
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Tree Structure (3)
projects/reference_switch

hw (Vivado based project)
constraints (contains user constraint files)

bitfiles (FPGA executables)

tcl (contains scripts used to run various tools)
hdl (contains project-specific hdl code)

sw
embedded (contains code for microblaze)
host (contains code for host communication etc.)

test (contains code for project verification)

create_ip (contains files used to configure IP cores)
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Reusable logic (IP cores)

Category IP Core(s)
I/O interfaces Ethernet 10G Port 

PCI Express                                     
UART
GPIO

Output queues BRAM based
Output port lookup NIC

CAM based Learning switch
Memory interfaces SRAM       

DRAM
FLASH

Miscellaneous FIFOs 
AXIS width converter
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Verification Infrastructure (1)

• Simulation and Debugging
– built on industry standard Xilinx “xSim” simulator 

and “Scapy”

– Python scripts for stimuli construction and 
verification
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Verification Infrastructure (2)

• xSim
– a High Level Description (HDL) simulator
– performs functional and timing simulations for 

embedded, VHDL, Verilog and mixed designs
• Scapy

– a powerful interactive packet manipulation library 
for creating “test data”

– provides primitives for many standard packet 
formats

– allows addition of custom formats
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Build Infrastructure (2)

• Build/Synthesis (using Xilinx Vivado)
– collection of shared hardware peripherals cores

stitched together with AXI4: Lite and Stream
buses

– bitfile generation and verification using Xilinx 
synthesis and implementation tools 
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Build Infrastructure (3)

• Register system
– collects and generates addresses for all the 

registers and memories in a project
– uses integrated python and tcl scripts to generate 

HDL code (for hw) and header files (for sw)
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Section VI: Examples of using NetFPGA
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FPGA

Memory

Running the Reference Router

User-space development, 4x10GE line-rate forwarding

PCI-Express

CPU Memory
OSPF BGP

My
Protocol user

kernel
Routing

Table

IPv4
Router

Fwding
Table

Packet
Buffer

“Mirror”
10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE
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FPGA

Memory

Enhancing Modular Reference Designs

PCI-Express

CPU Memory

NetFPGA Driver

Java GUI
Front Panel
(Extensible)

PW-OSPF

In Q
Mgmt

IP
Lookup

L2
Parse

L3
Parse

Out Q
Mgmt

Verilog modules interconnected by FIFO interface

My
Block

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

Verilog, 
VHDL, 
P4,
C#, ….

EDA Tools
(Xilinx, 

Mentor, etc.)

1.Design
2.Simulate
3.Synthesize
4.Download
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FPGA

Memory

Creating new systems

PCI-Express

CPU Memory

NetFPGA Driver

My Design

(10GE MAC is soft/replaceable)

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

EDA Tools
(Xilinx, 

Mentor, etc.)

Verilog, 
VHDL, 
P4,
C#,….

1.Design
2.Simulate
3.Synthesize
4.Download
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Contributed Projects
Platform Project Contributor
1G OpenFlow switch Stanford University

Packet generator Stanford University
NetFlow Probe Brno University
NetThreads University of Toronto
zFilter (Sp)router Ericsson
Traffic Monitor University of Catania
DFA UMass Lowell

10G / 
SUME

Bluespec switch UCAM/SRI International
Traffic Monitor University of Pisa
NF1G legacy on NF10G Uni Pisa & Uni Cambridge
High perf. DMA core University of Cambridge
NetSoC UCAM/SRI International
OSNT UCAM/Stanford/GTech/CNRS
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OpenFlow
• The most prominent NetFPGA success 
• Has reignited the Software Defined 

Networking movement
• NetFPGA enabled OpenFlow

– A widely available open-source development 
platform 

– Capable of line-rate and 
• Was, until its commercial uptake, the 

reference platform for OpenFlow.
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FPGA

 Soft processors: processors in the FPGA fabric
 User uploads program to soft processor
 Easier to program software than hardware in the FPGA
 Could be customized at the instruction level
 CHERI – 64bit MIPS soft processor, BSD OS
 RISC-V, Linux OS

Processor(s)DDR controller

Ethernet MAC

NetSoC: Soft Processors in FPGAs
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• Compiling .Net programs
– To x86 
– To simulation environment
– To multiple FPGA targets

Emu : Accelerating Network Services 
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• Build an accurate, fast, line-rate NetDummy/nistnet element

• A flexible home-grown monitoring card

• Evaluate new packet classifiers 
– (and application classifiers, and other neat network apps….)

• Prototype a full line-rate next-generation Ethernet-type

• Trying any of Jon Crowcrofts’ ideas (Sourceless IP routing for example)

• Demonstrate the wonders of Metarouting in a different implementation (dedicated 
hardware)

• Provable hardware (using a C# implementation and kiwi with NetFPGA as target 
h/w)

• Hardware supporting Virtual Routers

• Check that some brave new idea actually works 
e g  Rate Control Protocol (RCP)  Multipath TCP  

How might we use NetFPGA?
Well I’m not sure about you but here is a list I created:• Build an accurate, fast, line-rate NetDummy/nistnet element

• A flexible home-grown monitoring card
• Evaluate new packet classifiers 

– (and application classifiers, and other neat network apps….)
• Prototype a full line-rate next-generation Ethernet-type
• Trying any of Jon Crowcrofts’ ideas (Sourceless IP routing for example)
• Demonstrate the wonders of Metarouting in a different implementation (dedicated hardware)
• Provable hardware (using a C# implementation and kiwi with NetFPGA as target h/w)
• Hardware supporting Virtual Routers
• Check that some brave new idea actually works 

e.g. Rate Control Protocol (RCP), Multipath TCP, 
• toolkit for hardware hashing
• MOOSE implementation
• IP address anonymization 
• SSL decoding “bump in the wire”
• Xen specialist nic
• computational co-processor
• Distributed computational co-processor
• IPv6 anything
• IPv6 – IPv4 gateway (6in4, 4in6, 6over4, 4over6, ….)
• Netflow v9 reference
• PSAMP reference
• IPFIX reference
• Different driver/buffer interfaces (e.g. PFRING)
• or “escalators” (from gridprobe) for faster network monitors
• Firewall reference
• GPS packet-timestamp things
• High-Speed Host Bus Adapter reference implementations

– Infiniband
– iSCSI
– Myranet
– Fiber Channel

• Smart Disk adapter (presuming a direct-disk interface)
• Software Defined Radio (SDR) directly on the FPGA (probably UWB only)
• Routing accelerator

– Hardware route-reflector
– Internet exchange route accelerator

• Hardware channel bonding reference implementation
• TCP sanitizer
• Other protocol sanitizer (applications… UDP DCCP, etc.)
• Full and complete Crypto NIC
• IPSec endpoint/ VPN appliance
• VLAN reference implementation
• metarouting implementation
• virtual <pick-something>
• intelligent proxy
• application embargo-er
• Layer-4 gateway
• h/w gateway for VoIP/SIP/skype
• h/w gateway for video conference spaces
• security pattern/rules matching
• Anti-spoof traceback implementations (e.g. BBN stuff)
• IPtv multicast controller
• Intelligent IP-enabled device controller (e.g. IP cameras or IP powerm
• DES breaker
• platform for flexible NIC API evaluations
• snmp statistics reference implementation
• sflow (hp) reference implementation
• trajectory sampling (reference implementation)
• implementation of zeroconf/netconf configuration language for rout
• h/w openflow and (simple) NOX controller in one…
• Network RAID (multicast TCP with redundancy)
• inline compression
• hardware accelorator for TOR
• load-balancer
• openflow with (netflow, ACL, ….)
• reference NAT device
• active measurement kit
• network discovery tool
• passive performance measurement
• active sender control (e.g. performance feedback fed to endpoints fo  
• Prototype platform for NON-Ethernet or near-Ethernet MACs

– Optical LAN (no buffers)
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How might YOU use NetFPGA?
• Build an accurate, fast, line-rate NetDummy/nistnet element
• A flexible home-grown monitoring card
• Evaluate new packet classifiers 

– (and application classifiers, and other neat network apps….)
• Prototype a full line-rate next-generation Ethernet-type
• Trying any of Jon Crowcrofts’ ideas (Sourceless IP routing for example)
• Demonstrate the wonders of Metarouting in a different implementation (dedicated hardware)
• Provable hardware (using a C# implementation and kiwi with NetFPGA as target h/w)
• Hardware supporting Virtual Routers
• Check that some brave new idea actually works 

e.g. Rate Control Protocol (RCP), Multipath TCP, 
• toolkit for hardware hashing
• MOOSE implementation
• IP address anonymization 
• SSL decoding “bump in the wire”
• Xen specialist nic
• computational co-processor
• Distributed computational co-processor
• IPv6 anything
• IPv6 – IPv4 gateway (6in4, 4in6, 6over4, 4over6, ….)
• Netflow v9 reference
• PSAMP reference
• IPFIX reference
• Different driver/buffer interfaces (e.g. PFRING)
• or “escalators” (from gridprobe) for faster network monitors
• Firewall reference
• GPS packet-timestamp things
• High-Speed Host Bus Adapter reference implementations

– Infiniband
– iSCSI
– Myranet
– Fiber Channel

• Smart Disk adapter (presuming a direct-disk interface)
• Software Defined Radio (SDR) directly on the FPGA (probably UWB only)
• Routing accelerator

– Hardware route-reflector
– Internet exchange route accelerator

• Hardware channel bonding reference implementation
• TCP sanitizer
• Other protocol sanitizer (applications… UDP DCCP, etc.)
• Full and complete Crypto NIC
• IPSec endpoint/ VPN appliance
• VLAN reference implementation
• metarouting implementation
• virtual <pick-something>
• intelligent proxy
• application embargo-er
• Layer-4 gateway
• h/w gateway for VoIP/SIP/skype
• h/w gateway for video conference spaces
• security pattern/rules matching
• Anti-spoof traceback implementations (e.g. BBN stuff)
• IPtv multicast controller
• Intelligent IP-enabled device controller (e.g. IP cameras or IP powerm
• DES breaker
• platform for flexible NIC API evaluations
• snmp statistics reference implementation
• sflow (hp) reference implementation
• trajectory sampling (reference implementation)
• implementation of zeroconf/netconf configuration language for rout
• h/w openflow and (simple) NOX controller in one…
• Network RAID (multicast TCP with redundancy)
• inline compression
• hardware accelorator for TOR
• load-balancer
• openflow with (netflow, ACL, ….)
• reference NAT device
• active measurement kit
• network discovery tool
• passive performance measurement
• active sender control (e.g. performance feedback fed to endpoints fo  
• Prototype platform for NON-Ethernet or near-Ethernet MACs

– Optical LAN (no buffers)
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Section VII: Example Project: 
Crypto Switch
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Project: Cryptographic Switch

Implement a learning switch that encrypts 
upon transmission and decrypts upon 

reception
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Cryptography
XOR function

XOR written as: ^ ⊻ ⨁
XOR is commutative: (A ^ B) ^ C = A ^ (B ^ C)

A B A ^ B
0 0 0
0 1 1
1 0 1
1 1 0

XORing a 
value with 
itself always
yields 0
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Cryptography (cont.)
Simple cryptography:

– Generate a secret key
– Encrypt the message by XORing the message and key
– Decrypt the ciphertext by XORing with the key

Explanation:

(M ^ K) ^ K = M ^ (K ^ K)

= M
= M ^ 0

Commutativity
A ^ A = 0
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Cryptography (cont.)
Example:

Message: 00111011
Key: 10110001

Message ^ Key: 10001010
Key: 10110001

Message ^ Key ^ Key: 00111011
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Cryptography (cont.)

Idea: Implement simple cryptography using XOR
– 32-bit key
– Encrypt every word in payload with key

Note: XORing with a one-time pad of the same length of the message is 
secure/uncrackable. See: http://en.wikipedia.org/wiki/One-time_pad

PayloadHeader

Key Key Key Key Key
⨁
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implementation goes 
wild…
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What’s a core?

•“IP Core” in Vivado
– Standalone Module
– Configurable and reuseable

•HDL (Verilog/VHDL) + TCL files

•Examples:
–10G Port
–SRAM Controller
–NIC Output port lookup
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HDL (Verilog)
• NetFPGA cores 

– AXI-compliant 

• AXI = Advanced eXtensible Interface
– Used in ARM-based embedded systems
– Standard interface
– AXI4/AXI4-Lite: Control and status interface
– AXI4-Stream: Data path interface

• Xilinx IPs and tool chains 
– Mostly AXI-compliant
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Scripts (TCL)
• Integrated into Vivado toolchain

– Supports Vivado-specific commands
– Allows to interactively query Vivado

• Has a large number of uses:
– Create projects
– Set properties
– Generate cores
– Define connectivity 
– Etc.
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Module 
i

Module 
i+1

TDATA

Inter-Module Communication

TUSER

TVALID

TREADY

– Using AXI-4 Stream (Packets are moved as Stream)

TKEEP
TLAST
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AXI4-Stream

AXI4-Stream Description
TDATA Data Stream
TKEEP Marks qualified bytes (i.e. byte enable)
TVALID Valid Indication
TREADY Flow control indication
TLAST End of packet/burst indication
TUSER Out of band metadata
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Packet Format

TLAST TUSER TKEEP TDATA
0 V 0xFF…F Eth Hdr

0 X 0xFF…F IP Hdr

0 X 0xFF…F …

1 X 0x0…1F Last word
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TUSER

Position Content
[15:0] length of the packet in bytes
[23:16] source port: one-hot encoded
[31:24] destination port: one-hot encoded
[127:32] 6 user defined slots, 16bit each
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TVALID/TREADY Signal timing

– No waiting!
– Assert TREADY/TVALID whenever 

appropriate
– TVALID should not depend on TREADY

TVALID
TREADY
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Byte ordering
• In compliance to AXI, NetFPGA has a 

specific byte ordering
– 1st byte of the packet @ TDATA[7:0]
– 2nd byte of the packet @ TDATA[15:8]
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Getting started with a new project: 
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Embedded Development Kit

• Xilinx integrated design environment 
contains:
– Vivado, a top level integrated design tool for 

“hardware” synthesis , implementation and 
bitstream generation

– Software Development Kit (SDK), a 
development environment for “software 
application” running on embedded processors 
like Microblaze

– Additional tools (e.g. Vivado HLS)
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Xilinx Vivado

• A Vivado project consists of following:
– <project_name>.xpr

• top level Vivado project file 
– tcl and HDL files that define the project
– system.xdc

• user constraint file
• defines constraints such as timing, area, IO placement 

etc.
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Xilinx Vivado (2)

• To invoke Vivado design tool, run:
# vivado <project_root>/hw/project/<project_name>.xpr

• This will open the project in the Vivado
graphical user interface

• open a new terminal
• cd <project_root>/projects/ <project_name>/ 
• source /opt/Xilinx/Vivado/2016.4/settings64.sh
• vivado hw/project/<project name>.xpr
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Vivado Design Tool (1)

Design

Project Summary

Flow
Navigation
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Vivado Design Tool (2)
• IP Catalog: contains categorized list of all 

available peripheral cores

• IP Integrator: shows connectivity of various 
modules over AXI bus

• Project manager: provides a complete view 
of instantiated cores
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Vivado Design Tool (3)

Address view

• Address Editor: 
- Under IP Integrator
- Defines base and high address value for 
peripherals connected to AXI4 or AXI-LITE 
bus

• Not AXI-Stream!
• These values can be controlled manually, using 

tcl
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Getting started with a new project (1)
• Projects:

– Each design is represented by a project

– Location: NetFPGA-SUME-live/projects/<proj_name>

– Create a new project:
• Normally:

– copy an existing project as the starting point
• Today:

– pre-created project (crypto_switch)
– Consists of:

• Verilog source
• Simulation tests
• Hardware tests
• Optional software
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10G
RxQ

10G 
RxQ

10G
RxQ

10G
RxQ

Input Arbiter

Output Port Lookup

Output Queues

10G
TxQ

10G
TxQ

10G
TxQ

10G
TxQ

Getting started with a new project (3)

Typically implement 
functionality in one or 
more modules under 
the top wrapper

Crypto module
to encrypt and 
decrypt packets

Crypto
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Getting started with a new project (4)
– Shared modules included from netfpga/lib/hw

• Generic modules that are re-used in multiple projects
• Specify shared modules in project’s tcl file

– crypto_switch:

Local Shared
crypto Everything else
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Getting started with a new project (5)
We already created the core for you:

1. cd $NF_DESIGN_DIR/hw/local_ip/crypto_v1_0_0
2. Write and edit files under crypto_v1_0_0/hdl Folder

hint: TODO indicates where you should add your code
3. cd $NF_DESIGN_DIR/hw/local_ip/crypto_v1_0_0
4. make

Notes:
1. review ~/NetFPGA-SUME-live/tools/settings.sh
2. make sure NF_PROJECT_NAME=crypto_switch
3. If you make changes: source ~/NetFPGA-SUME-

live/tools/settings.sh
4. Check that make passes without errors
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crypto.v

Module crypto
#(

parameter C_M_AXIS_DATA_WIDTH = 256,
parameter C_S_AXIS_DATA_WIDTH = 256,
...)

(
...

)

//----------------------- regs/wires ---------------------------
...
//----------------------- modules ------------------------------
...
//----------------------- logic ------------------------------
...

endmodule

Module port declaration
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crypto.v (2)
//------------------------- Modules-------------------------------

fallthrough_small_fifo #(
.WIDTH(...),
.MAX_DEPTH_BITS(2)

) input_fifo (
.din        ({fifo_out_tlast, fifo_out_tuser,..}), // Data in
.wr_en      (s_axis_tvalid & s_axis_tready),  // Write enable
.rd_en      (in_fifo_rd_en),        // Read the next word
.dout       ({s_axis_tlast, s_axis_tuser, ..}),
.full       (),
.nearly_full(in_fifo_nearly_full),
.prog_full  (),
.empty      (in_fifo_empty),
.reset      (!axi_aresetn),
.clk        (axi_aclk)

);

Packet data dumped in 
a FIFO. Allows some 
“decoupling” between 
input and output.



Summer Course Cambridge, UK, 2017 53

crypto.v (3)
//------------------------- Logic-------------------------------

assign s_axis_tready = !in_fifo_nearly_full;
assign m_axis_tuser = fifo_out_tuser;
...

always @(*) begin
// Default value
in_fifo_rd_en = 0;

if (m_axis_tready && !in_fifo_empty) begin
in_fifo_rd_en = 1;

end
end

Combinational logic to 
read data from the FIFO. 
(Data is output to 
output ports.)

You’ll want to add your 
state in this section.
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Project Design Flow
• There are several ways to design and 

integrate a project, e.g.
– Using Verilog files for connectivity and TCL 

scripts for project definition
– Using Vivado’s Block Design (IPI) flow

• We will use the first, but introduce the 
second
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Project Integration
• vi $NF_DESIGN_DIR/hw/nf_datapath.v

• Add the new module between the output 
port lookup and output queues
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Project Integration
• Edit the TCL file which generates the project:
• vi $NF_DESIGN_DIR/hw/tcl/ crypto_switch_sim.tcl
• Add the following lines (line 96):
create_ip -name crypto -vendor NetFPGA -library NetFPGA -module_name crypto_ip

set_property generate_synth_checkpoint false [get_files crypto_ip.xci]

reset_target all [get_ips crypto_ip]

generate_target all [get_ips crypto_ip]

• name and module_name should match your hdl

• Save time for later, add the same text also in: 

$NF_DESIGN_DIR/tcl/crypto_switch.tcl (line 98)
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Project Integration – Block Design

Create a new project
OR

Open an existing project
OR

run a TCL script
(also through tools)
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Project Integration – Block Design (2)

Open 
block 
design

Diagram
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Project Integration – Block Design (3)

Sub-BD

Opening Sub-BD
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Project Integration – Block Design (4)

Connectivity
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Project Integration – Block Design (5)
Setting module parameters
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Project Integration – Block Design (6)

Offset RangeAddress Editor
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Project Integration – Block Design (7)

Validate
design
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Summary to this Point
• Created a new project

• Created a new core named crypto

• Wired the new core into the pipline
– After output_port_lookup
– Before output_queues

• Next we will write the Verilog code!
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Implementing the Crypto Module (1)
• What do we want to encrypt?

– IP payload only
• Plaintext IP header allows routing
• Content is hidden

– Encrypt bytes 35 onward
• Bytes 1-14 – Ethernet header
• Bytes 15-34 – IPv4 header (assume no options)
• Remember AXI byte ordering

– For simplicity, assume all packets are IPv4 
without options
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Implementing the Crypto Module (2)
• State machine (shown next):

– Module headers on each packet
– Datapath 256-bits wide

• 34 / 32 is not an integer! 
• Inside the crypto module

Registers

in_fifo_empty

in_fifo_rd_en

data/ctrl

valid

ready

data/ctrl

S_AXIS M_AXIS
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Crypto Module State Diagram
Hint: We suggest 3 states

Detect
Packet’s
Header
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Implement your state machine inside crypto.v

Suggested sequence of steps:
1. Set the key value

• set the key  = 32’hffffffff;
2. Write your state machine to modify the packet by 

XORing the key and the payload
• Use eight copies of the key to create a 256-bit value to XOR 

with data words
3. Do not pay attention to the register infrastructure that 

will be explained later.

Afraid of Verilog? Start with easy_crypto.v

Implementing the Crypto Module (3)
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More Verilog: Assignments 1
• Continuous assignments

– appear outside processes (always @ blocks):

assign foo = baz & bar;

– targets must be declared as wires
– always “happening” (ie, are concurrent)
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More Verilog: Assignments 2
• Non-blocking assignments

– appear inside processes (always @ blocks)
– use only in sequential (clocked) processes:

always @(posedge clk) begin
a <= b;
b <= a;

end

– occur in next delta (‘moment’ in simulation time)
– targets must be declared as regs
– never clock any process other than with a clock!
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More Verilog: Assignments 3
• Blocking assignments

– appear inside processes (always @ blocks)
– use only in combinatorial processes:

• (combinatorial processes are much like continuous assignments)

always @(*) begin

a = b;
b = a;

end

– occur one after the other (as in sequential langs like C)
– targets must be declared as regs – even though not a register

– never use in sequential (clocked) processes!
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More Verilog: Assignments 3
• Blocking assignments

– appear inside processes (always @ blocks)
– use only in combinatorial processes:

• (combinatorial processes are much like continuous assignments)

always @(*) begin
tmp = a;
a = b;
b = tmp;

end

– occur one after the other (as in sequential langs like C)
– targets must be declared as regs – even though not a register

– never use in sequential (clocked) processes!

unlike non-blocking, 
have to use a 
temporary signal
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(hints)
• Never assign one signal from two processes:

always @(posedge clk) begin
foo <= bar;

end

always @(posedge clk) begin
foo <= quux;

end
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(hints)
• In combinatorial processes:

– take great care to assign in all possible cases

always @(*) begin
if (cond) begin

foo = bar;
end

end

– (latches ‹as opposed to flip-flops› are bad for timing closure)
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(hints)
• In combinatorial processes:

– take great care to assign in all possible cases

always @(*) begin
if (cond) begin

foo = bar;
else

foo = quux;
end

end
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(hints)
• In combinatorial processes:

– (or assign a default)

always @(*) begin
foo = quux;

if (cond) begin
foo = bar;

end
end
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Getting started: step by step
Preparing the crypto module:

1. cd $NF_DESIGN_DIR/hw/local_ip/crypto_v1_0_0
2. Write and edit files under crypto_v1_0_0/hdl Folder

hint: TODO indicates where you should add your code
3. cd $NF_DESIGN_DIR/hw/local_ip/crypto_v1_0_0
4. make

Notes:
1. review ~/NetFPGA-SUME-live/tools/settings.sh
2. make sure NF_PROJECT_NAME=crypto_switch
3. If you make changes: source ~/NetFPGA-SUME-

live/tools/settings.sh
4. Check that make passes without errors
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Project Integration: step by step
1. vi $NF_DESIGN_DIR/hw/nf_datapath.v
2. Add the new module between the output port lookup and output 

queues
Afraid of Verilog? Start with easy_crypto.v

Edit the TCL file which generates the project:
1. vi $NF_DESIGN_DIR/hw/tcl/ crypto_switch_sim.tcl
2. Add the following lines (line 96):

create_ip -name crypto -vendor NetFPGA -library NetFPGA -
module_name crypto_ip
set_property generate_synth_checkpoint false [get_files
crypto_ip.xci]
reset_target all [get_ips crypto_ip]
generate_target all [get_ips crypto_ip]

3. name and module_name should match your hdl

4. Save time for later, add the same text also in: 

$NF_DESIGN_DIR/tcl/crypto_switch.tcl (line 98)
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Section VIII: Simulation and Debug 
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Testing: Simulation
• Simulation allows testing without requiring 

lengthy synthesis process

• NetFPGA simulation environment allows:
– Send/receive packets

• Physical ports and CPU
– Read/write registers
– Verify results

• Simulations run in xSim

• We provide a unified infrastructure for both 
HW and simulation tests
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Testing: Simulation

• We will simulate the “crypto_switch” design under 
the “simulation framework”

• We will show you how to
– create simple packets using scapy
– transmit and reconcile packets sent over 10G 

Ethernet and PCIe interfaces
– the code can be found in the “test” directory inside 

the crypto_switch project
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Testing: Simulation(2)
Run a simulation to verify changes:

1. make sure “NF_DESIGN_DIR” variable in the tools/settings.sh 
file located in  ~/NetFPGA-SUME-live points to the 
crypto_switch project.

2. source  ~/NetFPGA-SUME-live/tools/settings.sh 

3. cd ~/NetFPGA-SUME-live/tools/scripts

4. ./nf_test.py sim --major crypto –minor test
Or ./nf_test.py sim --major crypto –major test --gui (if you want to run the gui)

Now we can simulate the crypto functionality
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cd $NF_DESIGN_DIR/test/both_crypto_test
vim run.py

• The “isHW” statement enables the HW test (we will look into it 
tomorrow)

• Let’s focus on the “else” part of the statement
• make_IP_pkt fuction creates the IP packet that will be used as stimuli
• pkt.tuser_sport is used to set up the correct source port of the packet
• encrypt_pkt encrypts the packet
• pkt.time selects the time the packet is supposed to be sent
• nftest_send_phy/dma are used to send a packet to a given interface
• nftest_expected_phy/dma are used to expect a packet in a given 

interface
• nftest_barrier is used to block the simulation till the previous statement 

has been completed (e.g., send_pkts -> barrier -> send_more_pkts)

Crypto Switch simulation
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4

• As expected, total of 10 packets are received on each interface

The results are in…
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Running simulation in xSim

Objects panel

Scopes

Waveform window

Tcl console
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Running simulation in xSim (2)

• Scopes panel: displays process and instance 
hierarchy

• Objects panel: displays simulation objects 
associated with the instance selected in the 
instance panel

• Waveform window: displays wave configuration 
consisting of signals and busses

• Tcl console: displays simulator generated messages 
and can executes Tcl commands



Summer Course Cambridge, UK, 2017 87

make core going wild
CRITICAL WARNING: [filemgmt 20-742] The top module "crypto" 
specified for this project can not be validated. The current project is 
using automatic hierarchy update mode, and hence a new suitable 
replacement top will be automatically selected. If this is not desired, 
please change the hierarchy update mode to one of the manual 
compile order modes first, and then set top to any desired value.
…..
ERROR: [filemgmt 20-730] Could not find a top module in the fileset
sources_1.
……

You’ve got syntax errors!!!
Start by checking ports and parameters syntax
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Simulation gone wild
When “./nf_test.py sim …..”
1
source /opt/Xilinx/Vivado/2016.4/settings64.sh

2
Edit and source NetFPGA-SUME-live/tools/settings.sh

3
Run “make core” under projects/crypto_switch/hw/

4
Check that crypto_switch.tcl, crypto_switch_sim.tcl, export_registers.tcl are 
all up to date with your changes

5
if sim finishes but complains that each test passes 10 packets but all tests 
FAIL – this means your static key is different between your code and your 
run.py file, check the log 
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Crypto Module State Diagram: Solution
change_state = m_axis_tvalid && m_axis_tready

Detect
Packet’s
Header

Payload

Second 
word

change_state

change_state && m_axis_tlast

change_statechange_state && m_axis_tlast
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it is time for the first synthesis!!! 
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Synthesis
• To synthesize your project:

cd $NF_DESIGN_DIR
make
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Important Notes
• Make sure to backup your work

• You can fork the course’s repo to your user 
and push updates  

• Careful – running simulation erases 
previous $NF_DESIGN_DIR/hw/project 
created by a synthesis
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Section IX: Conclusion 
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