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ABSTRACT

In this paper we introduce a Content-oriented Networking
Architecture (CONA) and describe its implementation on
the NetFPGA-OpenFlow platform. CONA seeks to sub-
stantiate a content-centric communication model to address
accountability. In CONA, an access router is extended to
figure out what contents are requested, and hence is called
an agent. A CONA agent receives a content request from
an attached host and delivers the requested content. In this
way, CONA achieves the accountability and can take a coun-
termeasure against resource-exhaustive attacks like DDoS.
In the CONA implementation, we seek to support legacy
hosts by redirecting HT'TP requests (to the agent), captur-
ing HTTP GET messages, and extracting content names.
We implement CONA on a testbed consisting of NetFPGA-
OpenFlow platforms. We also carry out experiments to il-
lustrate a scenario in which CONA limits the behavior of a
malicious host that generates a resource-exhaustive attack.

1. INTRODUCTION

Over the 40 years, the current TCP/IP Internet architec-
ture has been evolving. However, there is a consensus that
we need to redesign a new network architecture to address
many technical issues of the Internet such as security, mo-
bility, routing scalability, accountability (e.g. [1, 2]). The
most controversial part of the original TCP/IP architecture
is the end-to-end communication principle, which is focused
on the endpoints. Recently, a novel approach to revolution-
ize the networking paradigm is gaining momentum, so called
content-centric or data-oriented networking (e.g. [3, 4, 5]).
The rationale behind the content-oriented networking ap-
proach is that users are oblivious to where the contents are
located. That is, when a user downloads files from peer-to-
peer or CDNs, the address of the endpoint (or the server)
does not matter; the user is concerned with the content only.

We believe the content-oriented networking approach can
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be exploited to bolster the security from the following rea-
sons. First, the current Internet service allows any host
to send any packets to any destination. This restriction-
free connectivity prevents an Internet service provider (ISP)
from effectively blocking the malicious packets (e.g. DDos).
Second, it is not easy to check the trustworthiness of the con-
tent that we download. For instance, by subverting a DNS
entry, an HT'TP GET request is forwarded to a wrong site,
which leads to phishing and pharming. Third, when a flash
crowd to a popular content takes place, the corresponding
server may crash or respond very slowly. The main culprit
of all the above problems is that the network forwards the
packets of a content without knowing the context of the con-
tent. In this paper, we take a content-oriented approach to
address the security and accountability issues in the current
Internet. We first propose a content-oriented networking ar-
chitecture (CONA) in which a user (or its host) requests a
content file from its ISP, and the ISP returns the requested
content file. Then we discuss how CONA can solve or mit-
igate the security and accountability problems. Finally, we
will explain how to design and implement CONA by using
the NetFPGA prototype.

2. CONTENT-ORIENTED NETWORKING AR-

CHITECTURE (CONA)
2.1 Assumptions

2.1.1 Host Identifier

A host does not necessarily have its own public IP address.
It just needs to communicate with its access router. So
the MAC address of the host or a private address assigned
to the host will suffice in CONA. The access router will
manage the hosts attached to its subnet. Henceforth, an
access router is called “an agent.” The reason is that an
agent will solicit the contents on behalf of its hosts instead of
blindly forwarding IP packets from the hosts. An agent has
a globally-routable (or public) IP address on its egress link.
If a host is a publisher or a server with a content file (e.g.
web page) to publish, it may have a domain name. Then its
agent’s public IP address is registered with the publisher’s
domain name in a mapping infrastructure (i.e. the DNS).
To summarize, the endpoints like hosts and servers cannot
directly communicate with each other.

2.1.2  Content Identifiers



A content is named (or specified) by an HTTP URI'. Its
publisher (actually, the agent of the publisher) can be lo-
cated by sending a DNS query®. Then the DNS will reply
with the corresponding entry that contains the public IP ad-
dress of the agent to which the publisher is attached. If the
publisher wishes to ensure the authenticity of the content
file, she can attach her digital signature and her certificate.

2.1.3 Internet connectivity

When a host first tries to set up Internet connectivity, it
first receives an agent advertisement message (similar to a
router advertisement message) from an agent. An agent ad-
vertisement message may include the domain name of the
agent and its certificate as well as the network configura-
tion information. Hence, a host can verify the identities
(and their authenticity) of agents®. To deliver content files,
we assume that the host can configure some locally unique
IP address for communications with the agent (e.g. using
DHCP), which could be a private address in IPv4 or a link
local address in IPv6. After the host and its agent estab-
lishes its association, the host can request a content file from
the agent.

2.2 CONA operations

2.2.1 User-ISP interaction

After the user’s host sets up local connectivity with the
agent, the host will send an HTTP GET message to the
agent to request a content. The agent will first check its
cache to find out whether the requested content is stored lo-
cally. (In some sense, it also serves as a web cache.) If not, it
will contact the DNS to find out the public IP address of the
agent of the publisher. The host’s agent will contact the the
publisher’s agent to download the content. The publisher’s
agent will get the content from the publisher. At this mo-
ment, let us assume both agents can communicate with the
current TCP/IP architecture.

When the agent (of the host) finishes downloading the
content, it forwards the content to the host*. Depending
on its policy, it may cache the content or not. In this way,
if there is a flash crowd for a particular HTTP URI, the
agent of the requesting host can directly return the content
efficiently.

2.2.2 ISP-ISP interaction

Let us explain how CONA works when the agent of the
content requesting host and the agent of the publisher belong
to different ISPs. Now the border routers that connect the
two ISPs are called gateways due to their CONA-related
functionalities other than packet forwarding. As similar to
User-ISP interactions, the gateways will deliver the contents
between each other.

! As more and more internet traffic is delivered over HTTP
[6], we consider web contents only in this study.

?Note that an agent will send the DNS query on behalf of
its host; in this way, a host cannot contact the DNS in-
frastructure, which helps fortify the security against DNS
poisoning.

3Especially in wireless environments, there can be multiple
agents.

4To expedite the content delivery to the host, the host’s
agent can relay the packets from the publisher’s agent while
downloading from the publisher’s agent.
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Figure 1: A reference OpenFlow switch pipeline
model

On receipt of the content request for a publisher outside
the ISP, the agent of a host can forward the content re-
quest message to the border router by current IP routing.
Or it may look up to a routing server. In this paper, we
take the latter approach. Then the routing server (e.g. a
BGP router with some extension) looks at the IP address of
the publisher’s agent, and returns the the IP address of the
gateway within the ISP toward the publisher®.

Let us denote the gateway selected by the routing server
in the given ISP and the next hop gateway in the neighbor
ISP by G and G,,, respectively. So Gs will send the content
request message to GG,,. If the publisher belongs to the same
ISP as G,, G, will contact the agent of the publisher to
download the content, which in turn is relayed to Gs. If the
publisher does not belong to G,’s ISP, Gs will contact its
own routing server and perform the same procedure.

There will be a lot of contents downloaded in parallel over
the link between two gateways (of the adjacent ISPs). For
the purposes of fast processing, we propose to prepend a
short-term flow label (similar to that of MPLS) in front of
the IP packets. There is a one-to-one correspondence be-
tween the content (or its flow) and the label. In this way,
each ISP can keep track of which contents are delivered and
how large is each content and so forth.

Like agents, gateways can also store the contents by their
own policy®. Thus, if the content request message results
in a cache hit, the gateway can directly send the content
without further forwarding the request.

3. CONA IMPLEMENTATION

To implement and test CONA, we adopt the OpenFlow
architecture to manage flows in the testbed. OpenFlow takes
a minimalist approach to control flows by managing the flow
tables of the network entities (e.g. switches). This Open-
Flow’s principle of flow management fits well with CONA in
the sense that an agent in CONA will establish a flow when
it receives a content request from a host.

Also, we implement CONA using NetFPGA hardware
platforms to expedite packet forwarding. A NetFPGA plat-
form is characterized by three parts: (1) the Xilinx Virtex-II
FPGA with 4 Ethernet cards and memories, (2) the Gate-

5This functionality is somewhat similar to the NOX server in
OpenFlow platform. If there are multiple candidate neigh-
bor ISPs for the publisher, some policy (similar to the BGP
policy) is needed to select a gateway connected to the best
neighbor ISP, which is out of the scope.

5We believe that an ISP can orchestrate the caching policy
over its agents and gateways (e.g. [10]).
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Figure 2: Architecture of the CONA agent

ware that deals with packet processing (e.g. to which output
port to forward a packet), and (3) the software including a
controller package that populates the hardware forwarding
table (in the NetFPGA board) that mirrors the Linux’s rout-
ing table in user space. These modules allow us to build a
full line rate router/switch (i.e. 4 X 1Gbps Ethernet for-
warding).

3.1 NetFPGA-OpenFlow Platform

Figure 1 [15] shows the reference design (also called the
“reference pipeline” due to parallelism in packet forward-
ing) of a NetFPGA platform that supports the OpenFlow
architecture, which we call a NetFPGA-OpenFlow platform
henceforth. The key functionality is to which port an in-
coming packet to forward, which is the job of the Out-
put_Port_Lookup part in the reference design. It contains

the matching module (i.e., exact_matching and Wildcard,ma‘cching)t

to match the corresponding flow entry by the control in-
formation of an incoming packet (i.e., MAC addresses, IP
addresses, port numbers).

The NetFPGA-Openflow platform is controlled by the

OpenFlow management software, which consists of two parts:

a user program and a kernel module. The user program
communicates with the OpenFlow controller and processes
the Openflow protocol messages. The kernel module keeps
track of the flow tables, processes the packets (if needed),
and updates the statistics.

To implement the CONA agent, we add a hardware com-
ponent in the NetFPGA-Openflow platform by Verilog pro-
gramming. Also we develop a software component which
interacts with both the NetFPGA-Openflow platform and
the Openflow management software. The hardware compo-
nent consists of (1) a URL interceptor to capture the packets
containing the content name, and (2) a flow limiter to block
or mitigate the DDoS attack. The software component mon-
itors the content request traffic which arrives at the agent.
Also it blocks the DDoS attack when it receives the DDoS
attack notification from the OpenFlow controller. The over-
all architecture of the agent is shown in Figure 2.

3.2 Hardware Implementation

To insert both the URL interceptor and the rate limiter
into the reference design in the NetFPGA-OpenFlow plat-
form, we slightly modified both the Output_Port_Lookup
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module in such a way that the URL-extractor and the rate
limiter operate compatible with the NetFPGA-OpenFlow
switch.

3.2.1 URL interceptor

The URL interceptor is a preprocessing module that iden-
tifies the packets containing the content name (e.g. HTTP
URI). Then it intercepts and forwards them to the agent
software.

To extract what content is requested (i.e., the content
name) from the received packets, it is necessary to parse
the packets’ header. In the NetFPGA-OpenFlow switch, all
packets pass through the Header_Parser in Figure 1. The
Header_Parser module looks at the 5-tuples (i.e. IP ad-
dresses, port numbers, protocol) of a packet header and
concatenates them as the flow information in order to match
against the flow table inside the hardware. In this way, we
can identify application-level protocol (i.e., the port num-
ber of DNS or HTTP) of the packet. Therefore, a packet
corresponding to the content request (e.g. web page) is in-
tercepted by this module. Then the packet is directed to
the agent software via a dedicated interface (i.e., nf2c0 in
Figure 2). On the other hand, all the other normal packets
pass through the normal pipeline of the NetFPGA-Openflow
switch.

3.2.2  Flow limiter

The flow limiter is the module to block/mitigate the DDoS
attack flows when the switch receives the DDoS alert mes-
sage from the controller. On receipt of the message, the
switch limits the rate of content request messages to a vic-
tim server. The NetFPGA base package provides the rate
limiter module. Although the module blocks a dedicated
interface (e.g., nf2cx), we believe that this provides similar
functionality of what we expect. Later, we will implement
he flow limiter to distinguish the flows passing through the
same interface.

3.3 Software

The CONA agent software extends the URL-Extractor
software implementation in [13]. This extracts 10-tuple (i.e.,
the flow information) from the IP packet delivered through
the particular interface (i.e., nf2c0) by using a raw socket.
One difference from the original URL-Extractor software
[13] is that the CONA agent interacts with the Openflow
management software by using the dpctl utility”.

To facilitate the URL extraction process while support-
ing legacy hosts (that are not CONA-compliant), we use a
trick to make the agent respond to DNS queries instead of
the DNS server. Before a user sends a content request (e.g.,
HTTP GET message), she sends a DNS query for the do-
main name of the corresponding content server. The DNS
query is captured by the CONA agent, who sends the DNS
reply with its own IP address on behalf of the DNS server.
In this way, the user will send the content request to the
agent. Note that this mechanism is to support non CONA-
compliant legacy hosts, who think of the agent as merely
a router. CONA-compliant hosts will send content-request
messages to its agent and hence the DNS redirect is not

"The dpctl is an administrative utility that monitors and
configures the Openflow datapath, and updates the routing
table entries. It is used to add, delete, modify, and monitor
the datapaths.
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Figure 3: The network setting to test the CONA
countermeasure for a DDoS attack. While a legiti-
mate normal user sends a content request message
and downloads a file over TCP, the attack host sends
the content request messages to the content server.
To adjust the rate of content request messages effec-
tively, we use UDP for sending the content request
messages.

needed.

The agent keeps track of all the incoming (and outgo-
ing) content requests (i.e., the request rate for each content
server), and monitors whether a particular server is under a
DDoS attack. When the agent detects the onslaught of the
DDoS attack (say, the incoming content request rate for a
server is higher than a threshold), it notifies the controller
of the incident. The controller will alert other agents to
block/reduce the content requests to the victim server.

4. EVALUATION

In this section we describe and evaluate the prototype
of the CONA agent implementation to substantiate a DDoS
countermeasure on the testbed made up of NetFPGA-OpenFlow
switches. The agents will react to DDoS attacks in a cooper-
ative fashion by regulating the content request rate toward a
victim server. Recall that, for the purpose of accountability,
each agent keep track of what contents are requested (over
the incoming link) and delivered (over the outgoing link).

4.1 Testbed Configuration

We set up a testbed whose topology has two CONA agents:
one for two hosts and the other for the publisher (or the
server). Two desktop computers are attached to the agent
on the left in Figure 3, while the server is attached to the
agent on the right in Figure 3.

In the testbed in Figure 3, we will illustrate a DDoS attack
scenario and show how CONA can take a reactive action.
The agent in the left has two hosts; so it aggregates all the
content requests from the two hosts toward the publisher.
The publisher of the content running a HTTP web server
has a high-definition video content.

4.2 A DDoS Attack Scenario

Suppose a large number of bots across multiple ISPs are
activated to launch a DDoS attack to a particular publisher.
If every agent allows the request of contents of well known
services only, bots might not be activated. However, we
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Figure 4: How a victim server reacts when there is a
gradual increase of content request messages from a
malicious host while a normal hosts is downloading
a large file.

conservatively assume that there are vulnerable points in
distributed environments; for example, commands to bots
can still be spread by mimicking a legitimate procedure in
CONA.

Once the DDoS attack starts, the agent of the publisher
will first detect the storming incoming requests toward the
target publisher because the content requests messages of
the DDoS attack traffic arrives at the point. We assume that
the requested contents are all different and hence content
caching is not effective in the scenario. The agent concludes
the DDoS attack if the arrival rate of content requests for a
particular server exceeds a threshold or if the content request
pattern is not normal (e.g. see [16]). On the conclusion of a
DDoS attack, the server’s agent notifies the controller that
which server is under DDoS attack. On receipt of the DDoS
notification, the controller performs two tasks: (1) it starts
checking incoming flows onto the attacked publisher from
the other agents in the testbed®, and (2) it sends a rate limit
message to each of the relevant agents (who relay malicious
content requests) to limit the content request rate onto the
publisher®. This rate limiting in terms of the content request
rate can be easily checked at the agent of the publisher and
propagated across ISP’s boundaries in a daisy-chain manner.
In this way, the DDoS attack traffic will be contained by a
backpressure mechanism.

To emulate the DDoS attack scenario, the normal host
requests and receives a large file (700 Mbytes) over TCP by
using iperf. Since TCP has the congestion control mecha-
nism, its bandwidth approaches the maximum bandwidth of
the link pipe. Meanwhile, the attacker can start the DDoS
attack by sending content request messages (emulated by
HTTP GET messages here) at a high rate.

8In real ISP’s network case, the controller will check the
incoming content requests from the adjacent ISPs and its
own agents.

9As for (2), we can think of a passive approach (e.g. [7])
that simply discards the DDoS attack traffic locally (at the
agent of the victim or some local clearing center [9]) with-
out explicit signaling; however, we believe that some active
approach (i.e. sending rate limit messages) across multiple
ISPs can effectively solve these resource-exhaustive attacks.



keep track of which contents are requested by which hosts,
180 which achieves the accountability. Due to the accountability
160 and content-aware supervision, CONA can react to resource-

”{’;_ 140 exhaustive attacks like DDoS effectively. We implement
g 120 CONA on a testbed that consists of NetFPGA switches with
T 1w .I OpenFlow modules. We carry out experiments to demon-
3 ' strate how CONA can take a countermeasure on a malicious
£ | host who generates a resource-exhaustive attack. We also
§ 60 ': discuss how CONA supports the legacy hosts by redirecting
= \ ——TCP traffic (Normal) and capturing HTTP messages.

2 | === TCP traffic (Attacker)

0 ”””””"‘””"””H””””””"””"””””””"””"‘|||"‘||||"lllll"Hlll”‘||||"llll””ll””ll””” . REFERENCES

TR SRRRBESIYANCO8RREREE6588 [1] NSF FIND Project, http://www.nets-find.net/

Time (Second)

Figure 5: This experiment shows how the rate lim-
iting mechanism in CONA reacts to a resource-
exhaustive attack scenario with enabling the rate
limiter. Here, the throughput of a malicious host is
limited to zero.

4.3 Experimental Results

In this section we carry out two kinds of experiments: (i)
to see how the server behaves with the mix of legitimate and
malicious incoming content requests and (ii) to validate the
effectiveness of the rate limiting mechanism when a DDoS
attack is activated.

Figure 4 shows the throughput result when there is no
rate limiting mechanism (e.g. no counter measure for DDoS
attacks). A normal legitimate host is emulated by receiving
a large video file. While the normal host keeps downloading
the video file at almost 300 Mbps throughput, a malicious
host gradually increase the content request rate onto the
publisher starting at 300 seconds. Here, each content re-
quest from the malicious host makes the server deliver the
requested small file; the average of the files requested by the
malicious hosts is about 100Kbytes. We can observe that
the resource-exhaustive attack from the malicious host af-
fects the throughput of the normal host, which is decreased
as the rate of the content requests (HTTP GET messages
per second) from the malicious host is increased.

Figure 5 shows how the throughput of the malicious host
is blocked by the rate limiter. Until 80 seconds, two hosts
keep receiving video streaming data from the content server.
At 80 seconds, however, a malicious host generates a surge
of content request messages onto the server. And all the
traffic is blocked by the agent of the malicious host because
all the flows from the malicious host are classified into the
resource-exhaustive attack by the agent of the publisher.
Even if the normal host is attached to the same agent as the
malicious host, the throughput of the normal host is hardly
affected. We believe the rate limiting mechanism illustrated
in this experiment can be a groundwork to substantiate a
more sophisticated countermeasure for DDoS attacks.

5. CONCLUSION

In this paper, we proposed a novel content-oriented net-
working architecture (CONA) in which hosts request con-
tents and its agent deliver the requested contents. In CONA,
a host cannot send any arbitrary packets to any destina-
tion, which enhances the security. Moreover, the agent can
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