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ABSTRACT
Commercial C-to-silicon compilers, such as Catapult C and 
AutoPilot, are able to compile statically defined C and C++ pro-
grams into hardware definitions in VHDL or Verilog.  However, 
they typically fail when they are fed anything more complex, such 
as virtual function calls, pointers to pointers, or dynamic memory 
management.  Hence, generating hardware out of anything as 
complex as Click Modular Router elements, which represent a 
complex mix of quite dynamic C++, simply doesn't work out-of-
the-box with these tools.
In this paper, we present our early results  towards producing a tool 
chain for generating static, synthesisable C code out of Click ele-
ments.  Our approach includes using the LLVM clang compiler to 
compile Click elements into an LLVM intermediate representa-
tion, combining the Click  configuration front end with clang li-
braries, thereby generating  a "Click compiler", and adding a few 
new link time optimisations to LLVM.  With this approach, we are 
currently able to generate hardware out of a few simple Click 
elements, including the standard elements PushNull and Sim-
pleIdle, and run those elements as a part  of the Stanford NetFPGA 
reference router.

Categories and Subject Descriptors
B.5.2 [RTL Implementation]: Design Aids, D.3.4  [Software 
Engineering]: Processors — Translators

General Terms
Algorithms, Experimentation, Languages

Keywords
Click Modular Router, Stanford NetFPGA, LLVM, High-level 
Synthesis, C++, Verilog.

1. Introduction
Since its introduction 10 years ago, the Click modular router [1] 
has proven a popular platform for researching software routers 
and other packet processing applications. Written in C++, Click 
provides a collection of basic elements important in packet  proc-
essing applications  (e.g. queues, demultiplexers, etc.) and a 
framework for connecting these elements into packet  processing 
pipelines. The Click platform allows students to build basic appli-
cations and researchers to extend the platform with new applica-
tions using C++.
The NetFPGA platform [2] provides a similar capability for re-
searchers who are interested in  investigating line speed packet 
processing applications.  The NetFPGA platform provides a hard-
ware board with a Xilinx Virtex-II Pro FPGA and a Verilog 

framework supporting  hardware with a PCI bus and four 1  Gbps 
Ethernet ports. Within this framework, students and researchers 
can write code to implement a variety of routing and packet proc-
essing applications that are then synthesised into hardware. The 
NetFPGA board can be plugged into a PC providing control  plane 
support, and the resulting application can  be tested at  line speed in 
actual networks.
The two systems seem to have complimentary strengths and 
weaknesses. The weakness of the Click platform is that the appli-
cations do not run at  line speed. Since an important part of vali-
dating new research ideas in packet processing applications is 
measuring their performance, the lack of ability to run Click ap-
plications at line speed hinders the assessment of the research 
ideas behind them. Similarly, because NetFPGA is  only program-
mable in  Verilog, it is much less  accessible to the network re-
search community than a platform like Click. While developing 
hardware will always require some familiarity with basic hard-
ware concepts, the learning curve behind Verilog is much steeper 
than many researchers are willing to climb. One approach to ease 
this  learning curve would be to  define a new (domain specific) 
high  level language that can be transformed to a hardware descrip-
tion  by a compiler. One example of this approach is the ‘G’  lan-
guage [3]. However, we feel that  the ideal research platform 
would allow researchers to express their designs for packet proc-
essing applications in a familiar language, such as C or C++ 
within  the Click  framework, then compile that to Verilog for syn-
thesis into the NetFPGA.
Within the last several years, several CAD vendors have begun to 
offer tools that allow C or C++ code to be synthesised into hard-
ware. These tools compile code describing a hardware design into 
Verilog or VHDL, which is  then synthesised into hardware for an 
ASIC or for programming an FPGA. Examples of such tools  are 
Catapult C from Mentor Graphics [4], C-to-Silicon from Ca-
dence [5], and AutoPilot from AutoESL [6].  
In this paper, we describe an experiment  to investigate whether 
commercial high-level synthesis tools can support synthesis of 
Click modular router configurations into hardware. We chose to 
work with the LLVM compiler toolkit  [7], as there are a wide 
variety of tools and an active development community working on 
LLVM. This allows  us to take advantage of parallelising optimisa-
tions, originally developed for supporting multi-core processors, 
that are well supported in LLVM. 
The rest  of the paper is  organised as follows. First, in  Section 2, 
we provide some background on the Click modular router, high-
level synthesis, and the LLVM compiler toolkit. Section 3 con-
tains a description of our overall approach, while Section 4 pro-
vides more details on the experiment. In Section 5, a couple of  
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examples with early evaluation results are described. Section 6 
discusses possible future work, while Section 7 concludes the 
paper. 

2. Background
In order to understand our approach, it is necessary to understand 
the basic nature of the Click Modular Router, what high-level 
hardware synthesis involves  in general, what kind of transforma-
tions are required on a software program in order to be able to 
generate hardware out of it, and what  tools the LLVM Compiler 
Toolkit provides.

2.1 Click Modular Router
Click was introduced by Eddie Kohler [8] as a platform for devel-
oping software routers  and packet  processing applications. A 
packet processing application is assembled from a collection of 
simpler elements that implement basic functions, such as  packet 
classification, queuing, or interfacing with other network devices. 
The elements are assembled into a directed graph using a configu-
ration language, and packets flow along the links in the graph. 
Click provides a few features to simplify writing complex applica-
tions, including pull connections  to model packet flow driven  by 
hardware and flow-based contexts to  help elements locate other 
relevant elements. Since its introduction, Click has been used as a 
tool  for research into a wide variety of packet processing applica-
tions. Some representative examples are multiprocessor routers 
[9] and prototyping a new architecture for large enterprise net-
works [10].
Click modules use the full power of C++ as an object-oriented 
programming language. That  includes  virtual functions  and dy-
namically allocated memory. While these language constructs  
facilitate code reuse and ease of programming, they complicate 
the task of synthesising hardware from the code.  A major part of 
the task in building the Click hardware synthesis  tool chain was to 
figure out how the high-level  synthesis tools  dealt with  these lan-
guage constructs and to develop specific optimisations to get 
around them.
To characterise the complexity of the task ahead of us, we note 
that Click  consists of some 730 classes, and  has  altogether about 
340,000 lines of code (including comments and empty lines). 
However, out of these only about 80 belong the essential “library” 
classes that implement the underlying functional  logic and the 
Click-specific C++ coding conventions. Furthermore, only a small 
fraction of the code lines of these library classes are related to the 
packet processing. The rest of the code mostly deals with the ex-
tensive configuration flexibility.
In order to support the packet  processing functions  of Click con-
figurations in hardware, we have to modify the related code of the 
library classes, and create a tool chain that compiles all  the rest  of 
the packet processing code (in the non-library classes) into code 
that can be synthesised with current tools. So far we have com-
pleted only small faction of the needed library-related work, being 
able to support  only quite limited Click configurations. For exam-
ple, we do not yet support creating new packets.

2.2 High-level Synthesis
High-level synthesis is  the process of generating a hardware de-
scription starting from an executable specification, usually in the 
form of a program written in a high-level  programming language. 
The use of high-level specifications lowers the domain expertise 
required to  produce hardware. Also, if the compiler guarantees 
correctness, then the need to verify the resulting hardware is also 

reduced; only the original high-level specification must be veri-
fied, which can make use of existing software methods.
Hardware generated from such a high-level program is expected 
to  be inefficient in all the relevant aspects such as size, perform-
ance and energy efficiency. High-level synthesis can be effective 
only  when the inefficiencies are small  enough to be offset by the 
advantages. The quality of the hardware produced is affected by 
the following factors:
1. The features provided by the programming language for ex-

pressing the design — in particular, the ability to expose the 
parallelism inherent in the behaviour being implemented.

2. The quality of the input program — in other words, the free-
dom available to  the programmer in using the features pro-
vided by the language.

An effective high-level synthesis flow should allow the program-
mer to write “pure” specifications that  are not influenced by the 
specific target platform. For this, the compiler should not  restrict 
or reinterpret the input programming language in a way that ex-
poses the details of the target platform. 
The state of the art, represented by commercial tools, only sup-
ports a restricted subset of C and C++ constructs. In the typical 
case, the software has to be specifically written with hardware in 
mind. That is, the programmer has to be aware, at least  at some 
level, that  the code will be synthesised into hardware, when writ-
ing and optimising the code. However, the ability  to design hard-
ware in a widely known and easy-to-use language far outweighs 
the drawbacks of having to program in a particular way.
From this point of view, our approach goes much further, aiming 
at supporting the full Click usage of C++. This requires  support-
ing a subset of the C++ language that  is larger than what  the cur-
rent tools support. However, the task is  made easier by the quality 
of the Click code, since it is a mature library designed to  run 
within the Linux kernel.

2.3  Extending compilation into hardware
Compared to software, hardware is characterised by parallel op-
erations and inflexibility, typically resulting in better energy effi-
ciency and higher speed. But this  also makes it difficult to bridge 
the gap from a software program to  a hardware description, and a 
lot depends on the way in which high-level concepts are modelled 
in  hardware. For example, function pointers or C++ virtual meth-
ods can be supported only  if the notion of a “function call” is  first 
mapped to a suitable mechanism in hardware. Also, when a pro-
gram extensively uses pointers for accessing  data, performance is 
greatly affected by the rate at which data can be accessed from 
memory.
Standard software optimisations can be effective in removing 
these obstacles  in a large number of cases. For example, if the 
entire executable program is statically accessible, then function 
pointers can be replaced by branches in the control-flow. Simi-
larly, a memory reference analysis of the program can replace 
memory accesses with data-flow, or at  least provide sufficient  
information to remove bottlenecks encountered by the memory 
accesses.
In general, high-level synthesis aims to utilise the control and data 
parallelism, inherent to any design, to the highest possible degree. 
Many of the optimisations for parallel execution, including su-
perscalar and VLIW processors, when applied to their extreme, 
result in code that has maximal parallelism and may therefore 
produce highest performing hardware with multiple parallel exe-
cution elements. Typical examples of such approaches include 



duplicating basic blocks into superblocks  [11], as well as loop 
peeling and unrolling [12]. In  practice, however, the current com-
mercial HLS tools  have difficulties but with the simplest, stati-
cally defined loops. Dynamically bounded loops and variable 
sized arrays are both likely to cause difficulties.
Our current approach combines typical software-oriented optimi-
sations and some parallelising optimisations together with 
compile-time generated constant  data structures and very aggres-
sive link-time constant propagation. This allows us to  compensate 
for the limitations of the high-level synthesis process in  general, 
and those in the current commercial  tools in particular. Our cus-
tomised compiler flow lowers the original Click programs into 
versions that are more suitable for hardware synthesis. The flow 
generates code that  gives reasonable results when processed by 
the commercial synthesis tools.

2.4 LLVM Compiler Toolkit
LLVM [7] is a collection of modular components for building 
compiler tool chains. The LLVM components operate on an inter-
mediate language, called the LLVM Intermediate Representation 
(LLVM IR). The LLVM core consists of the following compo-
nents:
• A compiler for C, C++, and Objective-C, called clang, which 

compiles these source languages into LLVM IR.
• A number of code optimisers.
• Backends for many popular target hardware architectures.
• A debugger, LLVMDB, that  operates on code compiled 

through LLVM.
LLVM also provides support for the GCC family of compilers, 
thereby including all their supported languages. LLVM has been 
used to implement a variety of language tool chains, including 
previous attempts to generate hardware [13] and bit-level optimi-
sation of HLS data flows [14].
One of the most interesting uses  of LLVM is as an intermediate 
representation based  on the Single Static Assignment (SSA) form. 
The approach has also some promise for high-level hardware 
synthesis. For example, TCE [15] is a set  of tools for designing 
processors based on Transport Triggered Architecture. TCE uses 
the LLVM clang  compiler as the front end for compiling hardware 
designs written in C and C++. As another example, the UCLA 
xPilot project  developed a high level language hardware synthesis 
tool  chain using LLVM [16]. While the goals  of xPilot were quite 
ambitious, the basic high level hardware synthesis technology was 
successful enough that  it  evolved into a product, the AutoPilot 
product from AutoESL [6].

3. Overall approach
Our overall approach to preparing a Click application for hard-
ware synthesis is shown in Figure 1. The tool chain starts with 
compiling each  Click element  (both standard and user-supplied 
ones) with both the normal Click libraries  and with our adapted, 
hardware-friendly Click hardware “runtime” include files1; see 
Section 4.1.  The former compilation creates a usual, “standard” 
Click module, which can be fed to the Click tools and executed in 
software. The latter compilation results in precompiled versions of 
the Click elements in the LLVM IR format. 
At the next step, we use our click “compiler” to generate LLVM 
IR out of a user-supplied Click configuration file (see Section 

4.2).  The compiler first parses the Click configuration and initial-
ises the resulting Click software router. We then “freeze” the ini-
tialised router and generate an LLVM IR description out of it. The 
LLVM IR description is  then combined with the Click elements 
with  LLVM ld (not really an object code linker, but more of a 
module combination tool). This forms a single large IR module 
that is then run through a set of optimisers  to improve the hard-
ware synthesis characteristics; see Section 4.3. Finally, the linked 
IR module is decompiled back into  C by LLVM llc. This forms an 
optimised C source code file, which can then be submitted to a 
commercial HLS tool.

Figure 1: Click hardware synthesis tool chain

Hence, technically, our contribution consists  of two new tools, 
together with the supporting libraries:
• Click++, a Click compiler that reads in  a Click configuration 

file, instantiates  a Click software router, and generates a static 
LLVM IR configuration, and

• Opt++, a set of LLVM IR optimisers that take a linked LLVM 
module and improve it, together with the standard LLVM 
optimisers, for hardware synthesis.

4. Implementation details
While the overall approach appears simple enough, the devil hides 
in  the details, as usual.  In  this section, we describe some of the 
issues we have solved so far, and some of the aspects we are still 
trying to find solutions for.

4.1  A hardware-friendly Click “runtime”
Click, as distributed, consists of a runtime library and a large set 
of standard elements. The library implements the essential  com-
ponents, such as  the Element, Packet, and Router classes; 
altogether some 80 classes. However, most elements use only a 
few of these classes directly, and even fewer in the actual packet 
processing methods.
A big problem from the hardware synthesis point  of view is that 
many of the library classes are far too complex to be synthesised 
as such. For example, the Element class has almost 3000 lines 
of source code (including comments), out of which only some 30 
lines are directly related to packet processing. Now, while in the-
ory most of the non-packet-processing functionality could be 
dropped at the optimisation time by dead code elimination, in 

1 We are currently using both clang and GCC as our front ends, due to some clang bugs preventing us from using clang for compiling all 
Click code; however, we are planning to move solely to a clang as soon as feasible. Hence, we ignore this detail in the following.



practise the source code defines global constants  and non-static 
constructors that  would  require explicit removal so  that  dead code 
elimination could fully exclude all unneeded code.
Another problem is  that some of the essential classes, such as the 
Packet class, include features and fields that are not  needed in a 
hardware implementation or that need to be implemented in a 
different way in order to allow efficient hardware synthesis.
Our initial approach  to solve these problems has been to construct 
a simplified version of the Click runtime library, suitable for 
hardware synthesis.  In most cases, we don’t even need  to imple-
ment the actual  classes;  it is sufficient to have suitable class decla-
rations that allow the actual Click elements  to compile into IR. 
Hence, our current runtime consists of only three class implemen-
tations and the declarations for about 30 classes.
The other “side” of the “runtime” (not shown in Figure 1) is then 
written in Verilog, and consists of modules that integrate the syn-
thesised results out of our tool  chain with the NetFPGA reference 
router. The current implementation simply buffers a packet in 
BRAM and gives a handle to it, through a FIFO, to the synthe-
sised  Click configuration, which in the end hands back the packet 
handle through another FIFO.  Unless  the packet was dropped, the 
Verilog runtime then feeds the (perhaps  modified) packet further 
along the NetFPGA reference router user-data pipeline.
While this approach works well enough, it causes  at minimum a 
packet-long buffering delay and in practise more. We are currently 
trying to identify  how to generate more streamlined code, at least 
for the simplest Click configurations.

4.2 Compiling Click configurations
A Click configuration defines a particular assembly of Click ele-
ments, thereby constructing a packet processing application; in 
Click terms, a Router. In practise, when the user-level click tool 
is  used to  execute the router, the tool first  parses the configuration, 
then initialises the router, and finally starts packet processing. In 
the typical case, the packet processing phase then continues until 
the user terminates it. (More recent versions  of Click also support 
limited runtime reconfiguration. We do not plan to support  such 
features, though.) In our tool chain, the first  two steps of this 
process are performed by our Click compiler. The last, actual 
packet processing step is then performed by the synthesised hard-
ware. 
When Click parses and initialises a configuration, it also instanti-
ates all the elements defined in the configuration and invokes the 
initialisation methods of the resulting element instances. In prac-
tise, the elements are either statically compiled to the tool itself, or 
the Click tool dynamically loads the elements into its address 
space from a dynamically  linked shared  library. The tool then 
instantiates the C++ classes representing the elements and invokes 
the virtual methods configure and initialize. 
Our Click compiler is essentially identical with  the click user-
level tool up to this point. However, while the standard tool now 
initiates packet processing, our compiler writes out the resulting 
initialised router.  For this, our compiler uses the clang libraries.
We have implemented a new clang Action that first compiles a 
single C++ source code file into the internal  Abstract Syntax Tree 
(AST) representation, just as clang++ would do. As the next 
step, our action inspects the initialised Click router and adds to the 
AST a set of constants that  define the router structure. Finally, the 
LLVM libraries generate LLVM IR out of the AST representation.
With this  approach, we drive the action first to read in  the C++ 
declarations of the Click used elements, using the “hardware-

friendly” library include files. This gives us the needed type defi-
nitions, as used in the synthesised hardware; we don’t  need to 
hard-code any type information into the tool itself. Using this type 
information, we can then generate constants that define the packet 
processing graph, and another set  of constants and variables that 
define the element values and registers. The Click library, then, 
has enough of introspection facilities that we can relatively easily 
loop  up the required information from the initialised software 
router.

4.3 Optimising dynamic C++ constructions
The simple combination of the LLVM IR representing  Click ele-
ment classes and the Click initialised router is still a relatively 
large and dynamic piece of code. Among other things, we have to 
deal with C++ constructors, virtual method calls, and flattening 
control flow.
Firstly, the IR  data definitions generated from the AST-level con-
stant instances rely on explicit calls to the class constructors, 
meant to be run when the resulting software process is  loaded for 
execution. In  our hardware implementation such explicit construc-
tions would both mean unnecessary hardware and unnecessarily 
complex control logic. Hence, we want to make sure that all C++ 
constructors are either optimised away already during the compi-
lation time or replaced with specialised, Click-specific circuits. 
We currently implement only the former, relying on aggressive 
constant propagation. However, we do recognise that we will  also 
need to support the latter, e.g. in order to allow the elements to 
create new packets on the fly.
Secondly, each Click element may implement  a couple of dozen 
virtual methods. Fortunately, most of these are meant to be used at 
configuration and initialisation time, with only a handful  being 
executed at packet processing time in the typical case. 
One of the major tasks in optimising the system for synthesis is to 
deal with the virtual method calls. In general, there are two practi-
cal ways to deal with them: either optimise them into static func-
tion  calls, or figure out all the possible functions that  the virtual 
method call may branch to, depending on the current object type, 
and replace the IR-level function pointers with explicit control 
structures. Again, at this stage we implement only the simple ap-
proach, where use repeated aggressive constant propagation 
phases, interleaved with our own optimisations, to replace all of 
the virtual method calls with their statically computed equivalents.

Listing 1. Simplified Click packet pushing source code 

class Element {
  virtual void push(int port, Packet *p){
    p = simple_action(p);
    if (p) output(0).push(p);
  }
  Port& output(int port) {
    return port(true, port);
  }
  Port& port(bool isout, int port) {
    return _ports[isout][port];
  }
private:
  Port* _ports[2];
}
class Port {
  void push(Packet* p) { _e->push(_port, p); }
private:
  Element* _e;
  int _port;
}



Finally, the basic software-level flow control of Click is  based on 
recursive virtual  method calls from one element, through an in-
termediate class, to  another element. The relevant source code is 
depicted in Listing 1. In there, the default implementation of the 
virtual Element method push finds the right output Port 
through the output and port methods, and calls the push 
method of the port. The Port in turn calls the push method of 
the next element in the graph. 
From the optimisation point of view, there are two problematic 
aspects in this call path. First, the _ports instance field is a 
variable, and may change during execution;  indeed, it  is  changed 
when the elements  are assembled into the graph during the con-
figuration phase.  Second, the actual function called by the first 
virtual method call depends on the type of the Element.
With our separate hardware-friendly runtime, Click compiler, and 
constant propagation, these problems can be overcome relatively 
easily:
1. In the runtime, we define the _ports[] field as a constant 

pointer pointer, pointing to constant pointers, each pointing to 
a constant Port.

2. In the Click compiler, we emit readily assembled, constant 
Ports, and install the constant pointers pointing to them into 
the Elements. We also  emit the first  push invocation, from 
the runtime to the first Element in the graph.

3. Assuming that the first element in the graph does not redefine 
the push method, once the resulting LLVM IR is run through 
optimisation, the optimisers are able to correctly determine the 
type of the first Element in  the graph and inline the code, all 
the way to the next Element, essentially producing IR 
equivalent to the code shown in Listing 2.

Listing 2. Simplified Click packet pushing source code

Careful inspection shows that this can be further optimised, since 
the Element in the end is  a known constant.  Hence, we run the 
repeatedly optimisers again, until the code cannot be any further 
optimised. A typical result, hand-converted to C, is shown in List-
ing 3 (the simple_action methods are also inlined, but that is 
not shown.)
This code is now simple enough to be synthesised by the com-
mercial tools, since it  simply contains a single basic block, with 
simple exit points.

  Element *e; Packet *p;
  ...
  p = E1::simple_action(p); // inlined
  if (!p) return;
  e = e->_ports[true][0]->_e;
  e->push(CONSTANT, p); // tail recursion
  return;

In practise the process  is somewhat more involved than indicated 
above, though.  For example, in certain cases the standard opti-
misers are able to turn the recursive calls into a loop, requiring 
loop  peeling for the repeated constant  propagation to  work. As 
another aspect, the code must be slightly  transformed to explicitly 
return the resulting packet back to the hardware-friendly  runtime 
so that the optimisers don’t optimise everything away.

Listing 3. Optimised Click packet pushing

At this moment, we are able to compile only very simple Click 
configurations, such as linear graphs, into synthesisable C. Any-
thing more complex typically results in constructions that  cannot 
be synthesised directly, requiring more manual tweaking with the 
optimisations.  However, we expect  the situation to grow progres-
sively better as we keep enhancing the system components.

5. Examples and early evaluation results
While we so far support only a small fraction of the Click packet 
handling APIs, the obstacles encountered and solutions to them 
have been quite instructive. In  this section, we first  give a couple 
of detailed  examples, illustrating the current  tool chain in action. 
Then, we summarise the current status of the commercial HLS 
tools, in the light of our still  quite limited experience, and discuss 
the lessons we’ve learned so far.

5.1 The tool chain in action
We first focus on how the tool chain works in practise. For this 
purpose, we use a very  simple configuration, in Listing  4. In this 
configuration, the generated hardware reduces to essentially noth-
ing, since this SimpleIdle element in the configuration simply 
eats the packets, without doing anything.

Listing 4. A very simple Click configuration file

We first run our Click compiler with the given Click configuration 
file. The compiler generates an LLVM IR file, named 
configuration.ir. This file contains the class definitions 
for Click elements FromFPGA and SimpleIdle, as well as 
Element, Element::Port, and Packet.

  Element *e; Packet *p;
  ...
  // First element
  p = E1::simple_action(p); // inlined
  if (!p) return;
  // Second element
  p = E2::simple_action(p); // inlined
  // Never drops packets
  ...
  // Last element
  p = EN::simple_action(p); // inlined
  // Always returns a NULL
  return;

FromFPGA -> SimpleIdle;

define zeroext i8 @veriglue(i64* %memory, i8 zeroext %pi, i8* %pkt_dropped) nounwind ssp {
bb5:
  %0 = zext i8 %pi to i64
  %1 = shl i64 %0, 8
  %2 = getelementptr inbounds i64* %memory, i64 %1
  %3 = load i64* %2, align 8
  %4 = or i64 %3, 0x800000000000000
  store i64 %4, i64* %2, align 8
  store i8 1, i8* %pkt_dropped, align 1
  ret i8 0
}

Listing 5. The final veriglue() function, corresponding to the configuration in Listing 4, in LLVM IR



We also separately compile the Click element classes into LLVM 
IR files. A separate C++ source file, glue.cc, is compiled  into 
glue.ir. This file contains a function called veriglue, the  
C++-side interface to the existing NetFPGA user data path. Once 
all the source files have been compiled into IR, we apply 
llvm-link to mix them together into a single linked.ir file 
(currently 679 lines of code).
After having  all the needed code in  a single LLVM IR source file, 
we can then run a number of optimisations to the code, as de-
scribed earlier in the paper. We first run standard -O3 and 
-std-link-opts once, then iteratively perform loop peeling 
and constant propagation optimisations, followed by the standard 
-O3 and -std-link-opts until the code doesn’t optimise any 
further. The resulting code is  in a file called veriglue.ir (19 
lines of code) (see Listing 5 for the function veriglue()).

The final step is to convert the LLVM IR back into C, with llc 
-march=c, because the HLS tool we are using does not read 
LLVM IR. We also need to perform some modifications (using 
awk) to the C code, due to some bugs and limitations in the HLS 
tool. Eventually, we have a veriglue.c which we can then use 
as a source file for the HLS tool (see Listing 6). The 
veriglue() and its  enclosing function are used together the top 
level module in the synthesis.
Looking into the details of final veriglue(), we can see that 
there are three function arguments: %memory, %pi and 
%pkt_dropped. The first argument is  bound to the BRAM 
memory in our hand-written Verilog wrapper, the second one is 
the packet index, which tells where the incoming packet is stored 
in  the BRAM memory, and the third one is used to signal  if any of 
the Click elements decided to drop the packet.
In this first example, the actual operation of the function is very 
simple. As the Click element SimpleIdle simply  drops each 
packet by calling the standard Click method Packet::kill(), 
the resulting code is ultimately  optimized into simply storing a 
“killed” flag into the status word of the packet and setting 

%pkt_dropped to 1. Storing the flag seems unnecessary in this 
case, but the compiler cannot infer that storing the flag is  actually 
unnecessary. This can potentially be optimised away in the future.
The next step is  to compile this  C source into Verilog with the 
HLS tool, together with the hand written process_packet.c 
file, which interfaces with the NetFPGA user data path. The result 
is  a single Verilog module that  is finally used as a part of the Net-
FPGA user data path, and the operation can be verified with the 
existing test scripts of the NetFPGA project and simulating  in e.g. 
ModelSim. Finally, the NetFPGA card can be flashed with  the 
synthesized hardware image and used with real network traffic.

5.2 Minimally modifying packets
In the previous example we saw how the tool chain works.  In this 
example, we now focus on actually doing something (almost) 
useful.

Listing 7. Click configuration to minimally modify packets

The Click configuration  file for this example is  shown in Listing 
7. The Minimal element  adds a one to the first word of each 
packet passing by;  the relevant simple_action method is  
illustrated in Listing 8. 

Listing 8. The simple_action method for Minimal

We run exactly  the same tool  chain as in the first example. The 
resulting code is slightly longer, and the resulting veriglue()  
is  illustrated in Listing 9. The bolded lines contains the code that 
increments the first word of the packet data by one.

FromFPGA -> Minimal -> ToFPGA;

Packet *
Minimal::simple_action(Packet *p) const {
  unsigned long long *data 
     = p->uniqueify()->data();
  data[0]++;
  return p;
}

unsigned char veriglue(unsigned long long llvm_cbe_memory[16][256], 
                       unsigned char llvm_cbe_pi, unsigned char *llvm_cbe_pkt_dropped) {
  unsigned long long *llvm_cbe_tmp__1;
  unsigned long long llvm_cbe_tmp__2;
  llvm_cbe_tmp__1 
     = (&llvm_cbe_memory[((signed long long)((((unsigned long long)llvm_cbe_pi)) << 8ull))]);
  llvm_cbe_tmp__2 = *llvm_cbe_tmp__1;
  *llvm_cbe_tmp__1 = (llvm_cbe_tmp__2 | 0x800000000000000ull);
  *llvm_cbe_pkt_dropped = ((unsigned char )1);
  return ((unsigned char )0);
}

Listing 6. The final veriglue() function, corresponding to the configuration in Listing 4, in C

unsigned char veriglue(unsigned long long llvm_cbe_memory[16][256], 
                       unsigned char llvm_cbe_pi, unsigned char *llvm_cbe_pkt_dropped) {
  ...
  llvm_cbe_tmp__1 = (((unsigned long long )(unsigned char )llvm_cbe_pi)) << 8ull;
  llvm_cbe_tmp__2 = (&llvm_cbe_memory[((signed long long )llvm_cbe_tmp__1)]);
  llvm_cbe_tmp__3 = *llvm_cbe_tmp__2;
 *llvm_cbe_tmp__2 = (llvm_cbe_tmp__3 & 0xF7FFFFFFFFFFFFFFull);
  llvm_cbe_tmp__4 = (&llvm_cbe_memory[((signed long long )(llvm_cbe_tmp__1 | 1ull))]);
  llvm_cbe_tmp__5 = *llvm_cbe_tmp__4;
 *llvm_cbe_tmp__4 = (((unsigned long long )(((unsigned long long )llvm_cbe_tmp__5) 
                        + ((unsigned long long )1ull))));
  *llvm_cbe_pkt_dropped = ((unsigned char )0);
  return llvm_cbe_pi;
}

Listing 9. The resulting C code for the Click configuration in Listing 7 (local variable declarations removed)



5.3 Limitations in commercial HLS tools
So far we have real experience of only  one commercial HLS tool, 
denoted as “HLS A” in this paper. In addition to that, we have had 
the possibility to briefly  test our system with another commercial 
tool  (“HLS B”) and with  the few years old, prototype level xPi-
lot [16] tool from UCLA. Hence, what we describe here reflects 
almost solely our experience with the tool that we have had most 
experience with, HLS A; however, as of now we have little reason 
to  believe that  there are really substantial  differences between the 
available commercial tools. Of course, in the light of our results 
outlined below, we hope that  our further testing would prove the 
situation to be otherwise.
In HLS A, the number of bugs and limitations has been quite high, 
considering that  the tool has been available for a number of years 
already.  Apparently  we are using the tool in a very different way 
than what most people do, e.g., as we feed the tool with machine 
generated C code, which sometimes is quite convoluted.  
However, not all  bugs or limitations are explained by this;  instead, 
the vendor of HLS A has  clearly  simply decided not to support 
some C / C++ constructions. For example, the tool explicitly  does 
not support  unions, goto, or pointers to pointers. It disallows con-
version of certain data types to void pointers, and this makes void 
pointers almost  useless in practise. Even in the case of explicitly 
mapping arrays to memory, it has difficulties in accessing  the 
arrays through pointers, sometimes  silently failing to generate 
RTL for certain constructions at all.  Furthermore, it has  problems 
in  handling dynamically bounded loop exit conditions; in many of 
our cases, it simply has not been able to generate RTL at all.
With both  HLS A and xPilot, the number of C /  C++ constructions 
that simply failed  to compile was quite high.  In many cases, try-
ing to feed them with Click source code, as such, caused either 
assertion failures, silent  crashes (core dumps), or explicit error 
messages about unsupported C or C++ features. Even with the 
commercial tool HLS A, the number of assertion failures and 
silent crashes was surprisingly high in our initial testing.

5.4 Lessons learned
Hardware acceleration of software applications is still more an  art 
than an engineering discipline. While the marketing material for 
the commercial HLS tools  lead one to think that they are able to 
produces synthesisable RTL out of most C /  C++ programs, the 
reality seems to be that they only support  programs that have been 
written with the hardware in mind. They are, understandably, still 
quite far from allowing one to take any existing software-oriented 
C or C++ code and to generate hardware out  of that with only 
minimal or no modifications.
Conversely, when starting from an existing legacy code base (like 
the Click code base in our case), one has to understand the appli-
cation semantics  of the software, be imaginative in figuring out 
how to map those semantics into hardware, and build at least 
some custom tools that embed this domain-specific knowledge.
In our case, and we imagine this to be fairly common, the features 
of the software can be divided into start-up time operations and 
actual “run-time” operations. The former are performed when a 
software process is started, and are often guided by a number of 
configuration files, settings, command line flags, and other such 
external pieces of information. In essence, the software parses 
those external data and adjusts its run-time operation accordingly. 
During the actual “run-time” processing, the software performs a 
relatively repetitive task  on some data set. In our case, the packet 
handling operations are applied on the incoming packets. In some 
other case, the software may process data coming out of a file or a 

set of sensors. In the typical case, the same piece of software is 
able to perform a large and often essentially unbounded set of 
operations on the input data, depending on the configuration. For 
hardware synthesis, what is typically wanted is less flexibility and 
higher performance. Hence, instead of supporting all  the options 
the legacy software permits, the desired hardware configuration 
typically would just perform a relatively fixed set  of operations on 
the input data.
An old trick is  to “freeze” a software process immediately after it 
has performed the start-up  time configurations but but before it 
starts the “run-time” processing. This allows the specific configu-
ration of the software to start up much faster, enhancing user ex-
perience. This has  been used at least since the 70's, for example, in 
the GNU Emacs editor to precompile and dump lisp code during 
the startup  phase [17], and also in modern  operating systems to 
improve boot-up times.
For hardware synthesis, such “configuration freezing” is essential 
in  order to reduce flexibility and produce more efficient, more 
fixed hardware. While the “freezing” process  itself could be es-
sentially automated, domain-specific knowledge is  needed for 
knowing when to  freeze and how to interpret  the frozen memory 
configuration. For hardware synthesis, especially the latter is 
tricky, since the memory dump itself does  not contain any infor-
mation of which parts of the memory will remain unchanged and 
which will change during the “run-time” processing.
In our work, we have tried to apply the high-level hints  in the C++ 
source code (const fields in  classes, const instances, etc.) to 
figure out  the relevant data. Unfortunately, both the LLVM GCC 
and LLVM clang compilers are buggy in this respect; they do not 
always faithfully represent the const information in the gener-
ated IR but sometimes simply drop it, especially in  the case of 
constant instances  of more complex C++ classes. For now, we 
have fixed this mostly with simple scripts that  modify the textual 
IR based on our domain-specific knowledge. Our plan is to move 
most of these “hacks” into clang proper as we proceed further.
Another related problem is that even the modern compilers, such 
as GCC and clang, do not try hard enough with  constant propaga-
tion  when facing complex control  flow. For typical  software, they 
have little incentive, as such transformations would considerably 
increase the code size. However, for hardware generation, such 
aggressive constant propagation is absolutely essential, since each 
variable-turned-into-a-constant means less hardware, and thereby 
higher speed and less energy consumption. For now, we simply 
manually force LLVM to run its optimisation phases multiple 
times, interspersed with our domain-specific transformations, in 
order to force it to do all constant propagation.
A final  problem we have faced is that LLVM does  not try to opti-
mise loops at the IR level very hard. Hence, we have used  manual 
loop-unrolling options and repeated iterations to  make LLVM to 
try harder, and to peel or unroll the loops as far as is possible. 

6. Future work
As of now, we have only started our journey. However, by now it 
has become apparent that the current HLS tool we use (HLS A) 
starts to be more a nuisance than genuine help. Hence, we are 
trying to move away from it, testing some other commercial HLS 
tools and university research results, such as AHIR [18]. We hope 
to  get rid of many of the present  hacks with such (hopefully) bet-
ter back-end tools, allowing us to focus on  enhancing the Click 
compiler, our domain-specific LLVM transformations, and the 
Click hardware-friendly “run-time” library. With this approach we 



hope to be able to support maybe half of the existing Click ele-
ments.
However, we expect  that some of the existing Click elements do 
things  that are simply  not possible to  implement in hardware, at 
least not with the current  HLS tools. For example, some elements 
communicate with user-level manement entities through sockets, 
and some other elements communicate with other elements  by ad 
hoc C++-level mechanisms that rely on dynamic memory man-
agement and packet-processing-time usage of Click metadata. In 
such cases, we plan to punt part of the code into  a built-in co-
processor. (Dual PowerPC in the case of current NetFPGA.) 
While we do not expect any real progress in this space for some 
time, so far we have been able to push packets to the NetFPGA 
PPC for processing, and make the PPC to perform minimal ma-
nipulation on the packets2.

7. Conclusions
In this paper, we have described our early efforts in generating 
NetFPGA RTL out  of the Click Modular Router software configu-
rations. Our approach is based on using the LLVM Compiler 
Toolkit to build a new compiler front end that reads in a Click 
configuration file and produces a corresponding static configura-
tion  in LLVM IR, representing the Click elements as constant C++ 
class instances. In addition to that, we have written an early ver-
sion  of a Click hardware “run-time” library, consisting of modi-
fied version of the Click library classes, and a few LLVM trans-
formations, applying domain-knowledge-embedding optimisa-
tions to  the LLVM IR. With this  approach, we are able to produce 
synthesisable C code, and using a commercial  HLS tool, Verilog 
out of that C code.
Perhaps the most important  step in  our approach is the “freezing” 
of a Click configuration, once it  has been instantiated, configured, 
and initialised. This approach allows us to use the out-of-the-box 
Click code for the lexer and parser of our Click compiler. We then 
implement our own logic to construct a C++ Abstract  Syntax Tree 
(AST) out of the “frozen” Click configuration, letting the LLVM 
clang libraries to produce LLVM IR out of that.
Our efforts  so far indicate that the currently available commercial 
HLS tools are quite restricted and even buggy. They currently 
don't support high-level C++ constructions, such as  virtual method 
calls, pointers  to pointers, or dynamic memory management. 
Hence, an  essential part of our tool  chain is  to use domain-specific 
knowledge to transform the quite dynamic and flexible Click C++ 
code into configuration-specific, fixed C code, which then can be 
fed to a HLS tool.
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