
Towards Software-defined Silicon:
Experiences in Compiling Click to NetFPGA

Pekka Nikander, Benny
Nyman, Teemu Rinta-aho

Ericsson Research Nomadic Lab
Hirsalantie, 02420 Jorvas, Finland

first.last@ericsson.com

Sameer D. Sahasrabuddhe
Indian Institute of Technology Bombay

Powai, Mumbai
400076, India

sameerds@it.iitb.ac.in

James Kempf
Ericsson Research

200 Holger Way
San Jose, CA, 95314

James.Kempf@ericsson.com

ABSTRACT
Commercial C-to-silicon compilers, such as Catapult C and
AutoPilot, are able to compile statically defined C and C++ pro-
grams into hardware definitions in VHDL or Verilog. However,
they typically fail when they are fed anything more complex, such
as virtual function calls, pointers to pointers, or dynamic memory
management. Hence, generating hardware out of anything as
complex as Click Modular Router elements, which represent a
complex mix of quite dynamic C++, simply doesn't work out-of-
the-box with these tools.
In this paper, we present our early results towards producing a tool
chain for generating static, synthesisable C code out of Click ele-
ments. Our approach includes using the LLVM clang compiler to
compile Click elements into an LLVM intermediate representa-
tion, combining the Click configuration front end with clang li-
braries, thereby generating a "Click compiler", and adding a few
new link time optimisations to LLVM. With this approach, we are
currently able to generate hardware out of a few simple Click
elements, including the standard elements PushNull and Sim-
pleIdle, and run those elements as a part of the Stanford NetFPGA
reference router.

Categories and Subject Descriptors
B.5.2 [RTL Implementation]: Design Aids, D.3.4 [Software
Engineering]: Processors — Translators

General Terms
Algorithms, Experimentation, Languages

Keywords
Click Modular Router, Stanford NetFPGA, LLVM, High-level
Synthesis, C++, Verilog.

1. Introduction
Since its introduction 10 years ago, the Click modular router [1]
has proven a popular platform for researching software routers
and other packet processing applications. Written in C++, Click
provides a collection of basic elements important in packet proc-
essing applications (e.g. queues, demultiplexers, etc.) and a
framework for connecting these elements into packet processing
pipelines. The Click platform allows students to build basic appli-
cations and researchers to extend the platform with new applica-
tions using C++.
The NetFPGA platform [2] provides a similar capability for re-
searchers who are interested in investigating line speed packet
processing applications. The NetFPGA platform provides a hard-
ware board with a Xilinx Virtex-II Pro FPGA and a Verilog

framework supporting hardware with a PCI bus and four 1 Gbps
Ethernet ports. Within this framework, students and researchers
can write code to implement a variety of routing and packet proc-
essing applications that are then synthesised into hardware. The
NetFPGA board can be plugged into a PC providing control plane
support, and the resulting application can be tested at line speed in
actual networks.
The two systems seem to have complimentary strengths and
weaknesses. The weakness of the Click platform is that the appli-
cations do not run at line speed. Since an important part of vali-
dating new research ideas in packet processing applications is
measuring their performance, the lack of ability to run Click ap-
plications at line speed hinders the assessment of the research
ideas behind them. Similarly, because NetFPGA is only program-
mable in Verilog, it is much less accessible to the network re-
search community than a platform like Click. While developing
hardware will always require some familiarity with basic hard-
ware concepts, the learning curve behind Verilog is much steeper
than many researchers are willing to climb. One approach to ease
this learning curve would be to define a new (domain specific)
high level language that can be transformed to a hardware descrip-
tion by a compiler. One example of this approach is the ‘G’ lan-
guage [3]. However, we feel that the ideal research platform
would allow researchers to express their designs for packet proc-
essing applications in a familiar language, such as C or C++
within the Click framework, then compile that to Verilog for syn-
thesis into the NetFPGA.
Within the last several years, several CAD vendors have begun to
offer tools that allow C or C++ code to be synthesised into hard-
ware. These tools compile code describing a hardware design into
Verilog or VHDL, which is then synthesised into hardware for an
ASIC or for programming an FPGA. Examples of such tools are
Catapult C from Mentor Graphics [4], C-to-Silicon from Ca-
dence [5], and AutoPilot from AutoESL [6].
In this paper, we describe an experiment to investigate whether
commercial high-level synthesis tools can support synthesis of
Click modular router configurations into hardware. We chose to
work with the LLVM compiler toolkit [7], as there are a wide
variety of tools and an active development community working on
LLVM. This allows us to take advantage of parallelising optimisa-
tions, originally developed for supporting multi-core processors,
that are well supported in LLVM.
The rest of the paper is organised as follows. First, in Section 2,
we provide some background on the Click modular router, high-
level synthesis, and the LLVM compiler toolkit. Section 3 con-
tains a description of our overall approach, while Section 4 pro-
vides more details on the experiment. In Section 5, a couple of

mailto:first.last@ericsson.com
mailto:first.last@ericsson.com

examples with early evaluation results are described. Section 6
discusses possible future work, while Section 7 concludes the
paper.

2. Background
In order to understand our approach, it is necessary to understand
the basic nature of the Click Modular Router, what high-level
hardware synthesis involves in general, what kind of transforma-
tions are required on a software program in order to be able to
generate hardware out of it, and what tools the LLVM Compiler
Toolkit provides.

2.1 Click Modular Router
Click was introduced by Eddie Kohler [8] as a platform for devel-
oping software routers and packet processing applications. A
packet processing application is assembled from a collection of
simpler elements that implement basic functions, such as packet
classification, queuing, or interfacing with other network devices.
The elements are assembled into a directed graph using a configu-
ration language, and packets flow along the links in the graph.
Click provides a few features to simplify writing complex applica-
tions, including pull connections to model packet flow driven by
hardware and flow-based contexts to help elements locate other
relevant elements. Since its introduction, Click has been used as a
tool for research into a wide variety of packet processing applica-
tions. Some representative examples are multiprocessor routers
[9] and prototyping a new architecture for large enterprise net-
works [10].
Click modules use the full power of C++ as an object-oriented
programming language. That includes virtual functions and dy-
namically allocated memory. While these language constructs
facilitate code reuse and ease of programming, they complicate
the task of synthesising hardware from the code. A major part of
the task in building the Click hardware synthesis tool chain was to
figure out how the high-level synthesis tools dealt with these lan-
guage constructs and to develop specific optimisations to get
around them.
To characterise the complexity of the task ahead of us, we note
that Click consists of some 730 classes, and has altogether about
340,000 lines of code (including comments and empty lines).
However, out of these only about 80 belong the essential “library”
classes that implement the underlying functional logic and the
Click-specific C++ coding conventions. Furthermore, only a small
fraction of the code lines of these library classes are related to the
packet processing. The rest of the code mostly deals with the ex-
tensive configuration flexibility.
In order to support the packet processing functions of Click con-
figurations in hardware, we have to modify the related code of the
library classes, and create a tool chain that compiles all the rest of
the packet processing code (in the non-library classes) into code
that can be synthesised with current tools. So far we have com-
pleted only small faction of the needed library-related work, being
able to support only quite limited Click configurations. For exam-
ple, we do not yet support creating new packets.

2.2 High-level Synthesis
High-level synthesis is the process of generating a hardware de-
scription starting from an executable specification, usually in the
form of a program written in a high-level programming language.
The use of high-level specifications lowers the domain expertise
required to produce hardware. Also, if the compiler guarantees
correctness, then the need to verify the resulting hardware is also

reduced; only the original high-level specification must be veri-
fied, which can make use of existing software methods.
Hardware generated from such a high-level program is expected
to be inefficient in all the relevant aspects such as size, perform-
ance and energy efficiency. High-level synthesis can be effective
only when the inefficiencies are small enough to be offset by the
advantages. The quality of the hardware produced is affected by
the following factors:
1. The features provided by the programming language for ex-

pressing the design — in particular, the ability to expose the
parallelism inherent in the behaviour being implemented.

2. The quality of the input program — in other words, the free-
dom available to the programmer in using the features pro-
vided by the language.

An effective high-level synthesis flow should allow the program-
mer to write “pure” specifications that are not influenced by the
specific target platform. For this, the compiler should not restrict
or reinterpret the input programming language in a way that ex-
poses the details of the target platform.
The state of the art, represented by commercial tools, only sup-
ports a restricted subset of C and C++ constructs. In the typical
case, the software has to be specifically written with hardware in
mind. That is, the programmer has to be aware, at least at some
level, that the code will be synthesised into hardware, when writ-
ing and optimising the code. However, the ability to design hard-
ware in a widely known and easy-to-use language far outweighs
the drawbacks of having to program in a particular way.
From this point of view, our approach goes much further, aiming
at supporting the full Click usage of C++. This requires support-
ing a subset of the C++ language that is larger than what the cur-
rent tools support. However, the task is made easier by the quality
of the Click code, since it is a mature library designed to run
within the Linux kernel.

2.3 Extending compilation into hardware
Compared to software, hardware is characterised by parallel op-
erations and inflexibility, typically resulting in better energy effi-
ciency and higher speed. But this also makes it difficult to bridge
the gap from a software program to a hardware description, and a
lot depends on the way in which high-level concepts are modelled
in hardware. For example, function pointers or C++ virtual meth-
ods can be supported only if the notion of a “function call” is first
mapped to a suitable mechanism in hardware. Also, when a pro-
gram extensively uses pointers for accessing data, performance is
greatly affected by the rate at which data can be accessed from
memory.
Standard software optimisations can be effective in removing
these obstacles in a large number of cases. For example, if the
entire executable program is statically accessible, then function
pointers can be replaced by branches in the control-flow. Simi-
larly, a memory reference analysis of the program can replace
memory accesses with data-flow, or at least provide sufficient
information to remove bottlenecks encountered by the memory
accesses.
In general, high-level synthesis aims to utilise the control and data
parallelism, inherent to any design, to the highest possible degree.
Many of the optimisations for parallel execution, including su-
perscalar and VLIW processors, when applied to their extreme,
result in code that has maximal parallelism and may therefore
produce highest performing hardware with multiple parallel exe-
cution elements. Typical examples of such approaches include

duplicating basic blocks into superblocks [11], as well as loop
peeling and unrolling [12]. In practice, however, the current com-
mercial HLS tools have difficulties but with the simplest, stati-
cally defined loops. Dynamically bounded loops and variable
sized arrays are both likely to cause difficulties.
Our current approach combines typical software-oriented optimi-
sations and some parallelising optimisations together with
compile-time generated constant data structures and very aggres-
sive link-time constant propagation. This allows us to compensate
for the limitations of the high-level synthesis process in general,
and those in the current commercial tools in particular. Our cus-
tomised compiler flow lowers the original Click programs into
versions that are more suitable for hardware synthesis. The flow
generates code that gives reasonable results when processed by
the commercial synthesis tools.

2.4 LLVM Compiler Toolkit
LLVM [7] is a collection of modular components for building
compiler tool chains. The LLVM components operate on an inter-
mediate language, called the LLVM Intermediate Representation
(LLVM IR). The LLVM core consists of the following compo-
nents:
• A compiler for C, C++, and Objective-C, called clang, which

compiles these source languages into LLVM IR.
• A number of code optimisers.
• Backends for many popular target hardware architectures.
• A debugger, LLVMDB, that operates on code compiled

through LLVM.
LLVM also provides support for the GCC family of compilers,
thereby including all their supported languages. LLVM has been
used to implement a variety of language tool chains, including
previous attempts to generate hardware [13] and bit-level optimi-
sation of HLS data flows [14].
One of the most interesting uses of LLVM is as an intermediate
representation based on the Single Static Assignment (SSA) form.
The approach has also some promise for high-level hardware
synthesis. For example, TCE [15] is a set of tools for designing
processors based on Transport Triggered Architecture. TCE uses
the LLVM clang compiler as the front end for compiling hardware
designs written in C and C++. As another example, the UCLA
xPilot project developed a high level language hardware synthesis
tool chain using LLVM [16]. While the goals of xPilot were quite
ambitious, the basic high level hardware synthesis technology was
successful enough that it evolved into a product, the AutoPilot
product from AutoESL [6].

3. Overall approach
Our overall approach to preparing a Click application for hard-
ware synthesis is shown in Figure 1. The tool chain starts with
compiling each Click element (both standard and user-supplied
ones) with both the normal Click libraries and with our adapted,
hardware-friendly Click hardware “runtime” include files1; see
Section 4.1. The former compilation creates a usual, “standard”
Click module, which can be fed to the Click tools and executed in
software. The latter compilation results in precompiled versions of
the Click elements in the LLVM IR format.
At the next step, we use our click “compiler” to generate LLVM
IR out of a user-supplied Click configuration file (see Section

4.2). The compiler first parses the Click configuration and initial-
ises the resulting Click software router. We then “freeze” the ini-
tialised router and generate an LLVM IR description out of it. The
LLVM IR description is then combined with the Click elements
with LLVM ld (not really an object code linker, but more of a
module combination tool). This forms a single large IR module
that is then run through a set of optimisers to improve the hard-
ware synthesis characteristics; see Section 4.3. Finally, the linked
IR module is decompiled back into C by LLVM llc. This forms an
optimised C source code file, which can then be submitted to a
commercial HLS tool.

Figure 1: Click hardware synthesis tool chain

Hence, technically, our contribution consists of two new tools,
together with the supporting libraries:
• Click++, a Click compiler that reads in a Click configuration

file, instantiates a Click software router, and generates a static
LLVM IR configuration, and

• Opt++, a set of LLVM IR optimisers that take a linked LLVM
module and improve it, together with the standard LLVM
optimisers, for hardware synthesis.

4. Implementation details
While the overall approach appears simple enough, the devil hides
in the details, as usual. In this section, we describe some of the
issues we have solved so far, and some of the aspects we are still
trying to find solutions for.

4.1 A hardware-friendly Click “runtime”
Click, as distributed, consists of a runtime library and a large set
of standard elements. The library implements the essential com-
ponents, such as the Element, Packet, and Router classes;
altogether some 80 classes. However, most elements use only a
few of these classes directly, and even fewer in the actual packet
processing methods.
A big problem from the hardware synthesis point of view is that
many of the library classes are far too complex to be synthesised
as such. For example, the Element class has almost 3000 lines
of source code (including comments), out of which only some 30
lines are directly related to packet processing. Now, while in the-
ory most of the non-packet-processing functionality could be
dropped at the optimisation time by dead code elimination, in

1 We are currently using both clang and GCC as our front ends, due to some clang bugs preventing us from using clang for compiling all
Click code; however, we are planning to move solely to a clang as soon as feasible. Hence, we ignore this detail in the following.

practise the source code defines global constants and non-static
constructors that would require explicit removal so that dead code
elimination could fully exclude all unneeded code.
Another problem is that some of the essential classes, such as the
Packet class, include features and fields that are not needed in a
hardware implementation or that need to be implemented in a
different way in order to allow efficient hardware synthesis.
Our initial approach to solve these problems has been to construct
a simplified version of the Click runtime library, suitable for
hardware synthesis. In most cases, we don’t even need to imple-
ment the actual classes; it is sufficient to have suitable class decla-
rations that allow the actual Click elements to compile into IR.
Hence, our current runtime consists of only three class implemen-
tations and the declarations for about 30 classes.
The other “side” of the “runtime” (not shown in Figure 1) is then
written in Verilog, and consists of modules that integrate the syn-
thesised results out of our tool chain with the NetFPGA reference
router. The current implementation simply buffers a packet in
BRAM and gives a handle to it, through a FIFO, to the synthe-
sised Click configuration, which in the end hands back the packet
handle through another FIFO. Unless the packet was dropped, the
Verilog runtime then feeds the (perhaps modified) packet further
along the NetFPGA reference router user-data pipeline.
While this approach works well enough, it causes at minimum a
packet-long buffering delay and in practise more. We are currently
trying to identify how to generate more streamlined code, at least
for the simplest Click configurations.

4.2 Compiling Click configurations
A Click configuration defines a particular assembly of Click ele-
ments, thereby constructing a packet processing application; in
Click terms, a Router. In practise, when the user-level click tool
is used to execute the router, the tool first parses the configuration,
then initialises the router, and finally starts packet processing. In
the typical case, the packet processing phase then continues until
the user terminates it. (More recent versions of Click also support
limited runtime reconfiguration. We do not plan to support such
features, though.) In our tool chain, the first two steps of this
process are performed by our Click compiler. The last, actual
packet processing step is then performed by the synthesised hard-
ware.
When Click parses and initialises a configuration, it also instanti-
ates all the elements defined in the configuration and invokes the
initialisation methods of the resulting element instances. In prac-
tise, the elements are either statically compiled to the tool itself, or
the Click tool dynamically loads the elements into its address
space from a dynamically linked shared library. The tool then
instantiates the C++ classes representing the elements and invokes
the virtual methods configure and initialize.
Our Click compiler is essentially identical with the click user-
level tool up to this point. However, while the standard tool now
initiates packet processing, our compiler writes out the resulting
initialised router. For this, our compiler uses the clang libraries.
We have implemented a new clang Action that first compiles a
single C++ source code file into the internal Abstract Syntax Tree
(AST) representation, just as clang++ would do. As the next
step, our action inspects the initialised Click router and adds to the
AST a set of constants that define the router structure. Finally, the
LLVM libraries generate LLVM IR out of the AST representation.
With this approach, we drive the action first to read in the C++
declarations of the Click used elements, using the “hardware-

friendly” library include files. This gives us the needed type defi-
nitions, as used in the synthesised hardware; we don’t need to
hard-code any type information into the tool itself. Using this type
information, we can then generate constants that define the packet
processing graph, and another set of constants and variables that
define the element values and registers. The Click library, then,
has enough of introspection facilities that we can relatively easily
loop up the required information from the initialised software
router.

4.3 Optimising dynamic C++ constructions
The simple combination of the LLVM IR representing Click ele-
ment classes and the Click initialised router is still a relatively
large and dynamic piece of code. Among other things, we have to
deal with C++ constructors, virtual method calls, and flattening
control flow.
Firstly, the IR data definitions generated from the AST-level con-
stant instances rely on explicit calls to the class constructors,
meant to be run when the resulting software process is loaded for
execution. In our hardware implementation such explicit construc-
tions would both mean unnecessary hardware and unnecessarily
complex control logic. Hence, we want to make sure that all C++
constructors are either optimised away already during the compi-
lation time or replaced with specialised, Click-specific circuits.
We currently implement only the former, relying on aggressive
constant propagation. However, we do recognise that we will also
need to support the latter, e.g. in order to allow the elements to
create new packets on the fly.
Secondly, each Click element may implement a couple of dozen
virtual methods. Fortunately, most of these are meant to be used at
configuration and initialisation time, with only a handful being
executed at packet processing time in the typical case.
One of the major tasks in optimising the system for synthesis is to
deal with the virtual method calls. In general, there are two practi-
cal ways to deal with them: either optimise them into static func-
tion calls, or figure out all the possible functions that the virtual
method call may branch to, depending on the current object type,
and replace the IR-level function pointers with explicit control
structures. Again, at this stage we implement only the simple ap-
proach, where use repeated aggressive constant propagation
phases, interleaved with our own optimisations, to replace all of
the virtual method calls with their statically computed equivalents.

Listing 1. Simplified Click packet pushing source code

class Element {
 virtual void push(int port, Packet *p){
 p = simple_action(p);
 if (p) output(0).push(p);
 }
 Port& output(int port) {
 return port(true, port);
 }
 Port& port(bool isout, int port) {
 return _ports[isout][port];
 }
private:
 Port* _ports[2];
}
class Port {
 void push(Packet* p) { _e->push(_port, p); }
private:
 Element* _e;
 int _port;
}

Finally, the basic software-level flow control of Click is based on
recursive virtual method calls from one element, through an in-
termediate class, to another element. The relevant source code is
depicted in Listing 1. In there, the default implementation of the
virtual Element method push finds the right output Port
through the output and port methods, and calls the push
method of the port. The Port in turn calls the push method of
the next element in the graph.
From the optimisation point of view, there are two problematic
aspects in this call path. First, the _ports instance field is a
variable, and may change during execution; indeed, it is changed
when the elements are assembled into the graph during the con-
figuration phase. Second, the actual function called by the first
virtual method call depends on the type of the Element.
With our separate hardware-friendly runtime, Click compiler, and
constant propagation, these problems can be overcome relatively
easily:
1. In the runtime, we define the _ports[] field as a constant

pointer pointer, pointing to constant pointers, each pointing to
a constant Port.

2. In the Click compiler, we emit readily assembled, constant
Ports, and install the constant pointers pointing to them into
the Elements. We also emit the first push invocation, from
the runtime to the first Element in the graph.

3. Assuming that the first element in the graph does not redefine
the push method, once the resulting LLVM IR is run through
optimisation, the optimisers are able to correctly determine the
type of the first Element in the graph and inline the code, all
the way to the next Element, essentially producing IR
equivalent to the code shown in Listing 2.

Listing 2. Simplified Click packet pushing source code

Careful inspection shows that this can be further optimised, since
the Element in the end is a known constant. Hence, we run the
repeatedly optimisers again, until the code cannot be any further
optimised. A typical result, hand-converted to C, is shown in List-
ing 3 (the simple_action methods are also inlined, but that is
not shown.)
This code is now simple enough to be synthesised by the com-
mercial tools, since it simply contains a single basic block, with
simple exit points.

 Element *e; Packet *p;
 ...
 p = E1::simple_action(p); // inlined
 if (!p) return;
 e = e->_ports[true][0]->_e;
 e->push(CONSTANT, p); // tail recursion
 return;

In practise the process is somewhat more involved than indicated
above, though. For example, in certain cases the standard opti-
misers are able to turn the recursive calls into a loop, requiring
loop peeling for the repeated constant propagation to work. As
another aspect, the code must be slightly transformed to explicitly
return the resulting packet back to the hardware-friendly runtime
so that the optimisers don’t optimise everything away.

Listing 3. Optimised Click packet pushing

At this moment, we are able to compile only very simple Click
configurations, such as linear graphs, into synthesisable C. Any-
thing more complex typically results in constructions that cannot
be synthesised directly, requiring more manual tweaking with the
optimisations. However, we expect the situation to grow progres-
sively better as we keep enhancing the system components.

5. Examples and early evaluation results
While we so far support only a small fraction of the Click packet
handling APIs, the obstacles encountered and solutions to them
have been quite instructive. In this section, we first give a couple
of detailed examples, illustrating the current tool chain in action.
Then, we summarise the current status of the commercial HLS
tools, in the light of our still quite limited experience, and discuss
the lessons we’ve learned so far.

5.1 The tool chain in action
We first focus on how the tool chain works in practise. For this
purpose, we use a very simple configuration, in Listing 4. In this
configuration, the generated hardware reduces to essentially noth-
ing, since this SimpleIdle element in the configuration simply
eats the packets, without doing anything.

Listing 4. A very simple Click configuration file

We first run our Click compiler with the given Click configuration
file. The compiler generates an LLVM IR file, named
configuration.ir. This file contains the class definitions
for Click elements FromFPGA and SimpleIdle, as well as
Element, Element::Port, and Packet.

 Element *e; Packet *p;
 ...
 // First element
 p = E1::simple_action(p); // inlined
 if (!p) return;
 // Second element
 p = E2::simple_action(p); // inlined
 // Never drops packets
 ...
 // Last element
 p = EN::simple_action(p); // inlined
 // Always returns a NULL
 return;

FromFPGA -> SimpleIdle;

define zeroext i8 @veriglue(i64* %memory, i8 zeroext %pi, i8* %pkt_dropped) nounwind ssp {
bb5:
 %0 = zext i8 %pi to i64
 %1 = shl i64 %0, 8
 %2 = getelementptr inbounds i64* %memory, i64 %1
 %3 = load i64* %2, align 8
 %4 = or i64 %3, 0x800000000000000
 store i64 %4, i64* %2, align 8
 store i8 1, i8* %pkt_dropped, align 1
 ret i8 0
}

Listing 5. The final veriglue() function, corresponding to the configuration in Listing 4, in LLVM IR

We also separately compile the Click element classes into LLVM
IR files. A separate C++ source file, glue.cc, is compiled into
glue.ir. This file contains a function called veriglue, the
C++-side interface to the existing NetFPGA user data path. Once
all the source files have been compiled into IR, we apply
llvm-link to mix them together into a single linked.ir file
(currently 679 lines of code).
After having all the needed code in a single LLVM IR source file,
we can then run a number of optimisations to the code, as de-
scribed earlier in the paper. We first run standard -O3 and
-std-link-opts once, then iteratively perform loop peeling
and constant propagation optimisations, followed by the standard
-O3 and -std-link-opts until the code doesn’t optimise any
further. The resulting code is in a file called veriglue.ir (19
lines of code) (see Listing 5 for the function veriglue()).

The final step is to convert the LLVM IR back into C, with llc
-march=c, because the HLS tool we are using does not read
LLVM IR. We also need to perform some modifications (using
awk) to the C code, due to some bugs and limitations in the HLS
tool. Eventually, we have a veriglue.c which we can then use
as a source file for the HLS tool (see Listing 6). The
veriglue() and its enclosing function are used together the top
level module in the synthesis.
Looking into the details of final veriglue(), we can see that
there are three function arguments: %memory, %pi and
%pkt_dropped. The first argument is bound to the BRAM
memory in our hand-written Verilog wrapper, the second one is
the packet index, which tells where the incoming packet is stored
in the BRAM memory, and the third one is used to signal if any of
the Click elements decided to drop the packet.
In this first example, the actual operation of the function is very
simple. As the Click element SimpleIdle simply drops each
packet by calling the standard Click method Packet::kill(),
the resulting code is ultimately optimized into simply storing a
“killed” flag into the status word of the packet and setting

%pkt_dropped to 1. Storing the flag seems unnecessary in this
case, but the compiler cannot infer that storing the flag is actually
unnecessary. This can potentially be optimised away in the future.
The next step is to compile this C source into Verilog with the
HLS tool, together with the hand written process_packet.c
file, which interfaces with the NetFPGA user data path. The result
is a single Verilog module that is finally used as a part of the Net-
FPGA user data path, and the operation can be verified with the
existing test scripts of the NetFPGA project and simulating in e.g.
ModelSim. Finally, the NetFPGA card can be flashed with the
synthesized hardware image and used with real network traffic.

5.2 Minimally modifying packets
In the previous example we saw how the tool chain works. In this
example, we now focus on actually doing something (almost)
useful.

Listing 7. Click configuration to minimally modify packets

The Click configuration file for this example is shown in Listing
7. The Minimal element adds a one to the first word of each
packet passing by; the relevant simple_action method is
illustrated in Listing 8.

Listing 8. The simple_action method for Minimal

We run exactly the same tool chain as in the first example. The
resulting code is slightly longer, and the resulting veriglue()
is illustrated in Listing 9. The bolded lines contains the code that
increments the first word of the packet data by one.

FromFPGA -> Minimal -> ToFPGA;

Packet *
Minimal::simple_action(Packet *p) const {
 unsigned long long *data
 = p->uniqueify()->data();
 data[0]++;
 return p;
}

unsigned char veriglue(unsigned long long llvm_cbe_memory[16][256],
 unsigned char llvm_cbe_pi, unsigned char *llvm_cbe_pkt_dropped) {
 unsigned long long *llvm_cbe_tmp__1;
 unsigned long long llvm_cbe_tmp__2;
 llvm_cbe_tmp__1
 = (&llvm_cbe_memory[((signed long long)((((unsigned long long)llvm_cbe_pi)) << 8ull))]);
 llvm_cbe_tmp__2 = *llvm_cbe_tmp__1;
 *llvm_cbe_tmp__1 = (llvm_cbe_tmp__2 | 0x800000000000000ull);
 *llvm_cbe_pkt_dropped = ((unsigned char)1);
 return ((unsigned char)0);
}

Listing 6. The final veriglue() function, corresponding to the configuration in Listing 4, in C

unsigned char veriglue(unsigned long long llvm_cbe_memory[16][256],
 unsigned char llvm_cbe_pi, unsigned char *llvm_cbe_pkt_dropped) {
 ...
 llvm_cbe_tmp__1 = (((unsigned long long)(unsigned char)llvm_cbe_pi)) << 8ull;
 llvm_cbe_tmp__2 = (&llvm_cbe_memory[((signed long long)llvm_cbe_tmp__1)]);
 llvm_cbe_tmp__3 = *llvm_cbe_tmp__2;
 *llvm_cbe_tmp__2 = (llvm_cbe_tmp__3 & 0xF7FFFFFFFFFFFFFFull);
 llvm_cbe_tmp__4 = (&llvm_cbe_memory[((signed long long)(llvm_cbe_tmp__1 | 1ull))]);
 llvm_cbe_tmp__5 = *llvm_cbe_tmp__4;
 *llvm_cbe_tmp__4 = (((unsigned long long)(((unsigned long long)llvm_cbe_tmp__5)
 + ((unsigned long long)1ull))));
 *llvm_cbe_pkt_dropped = ((unsigned char)0);
 return llvm_cbe_pi;
}

Listing 9. The resulting C code for the Click configuration in Listing 7 (local variable declarations removed)

5.3 Limitations in commercial HLS tools
So far we have real experience of only one commercial HLS tool,
denoted as “HLS A” in this paper. In addition to that, we have had
the possibility to briefly test our system with another commercial
tool (“HLS B”) and with the few years old, prototype level xPi-
lot [16] tool from UCLA. Hence, what we describe here reflects
almost solely our experience with the tool that we have had most
experience with, HLS A; however, as of now we have little reason
to believe that there are really substantial differences between the
available commercial tools. Of course, in the light of our results
outlined below, we hope that our further testing would prove the
situation to be otherwise.
In HLS A, the number of bugs and limitations has been quite high,
considering that the tool has been available for a number of years
already. Apparently we are using the tool in a very different way
than what most people do, e.g., as we feed the tool with machine
generated C code, which sometimes is quite convoluted.
However, not all bugs or limitations are explained by this; instead,
the vendor of HLS A has clearly simply decided not to support
some C / C++ constructions. For example, the tool explicitly does
not support unions, goto, or pointers to pointers. It disallows con-
version of certain data types to void pointers, and this makes void
pointers almost useless in practise. Even in the case of explicitly
mapping arrays to memory, it has difficulties in accessing the
arrays through pointers, sometimes silently failing to generate
RTL for certain constructions at all. Furthermore, it has problems
in handling dynamically bounded loop exit conditions; in many of
our cases, it simply has not been able to generate RTL at all.
With both HLS A and xPilot, the number of C / C++ constructions
that simply failed to compile was quite high. In many cases, try-
ing to feed them with Click source code, as such, caused either
assertion failures, silent crashes (core dumps), or explicit error
messages about unsupported C or C++ features. Even with the
commercial tool HLS A, the number of assertion failures and
silent crashes was surprisingly high in our initial testing.

5.4 Lessons learned
Hardware acceleration of software applications is still more an art
than an engineering discipline. While the marketing material for
the commercial HLS tools lead one to think that they are able to
produces synthesisable RTL out of most C / C++ programs, the
reality seems to be that they only support programs that have been
written with the hardware in mind. They are, understandably, still
quite far from allowing one to take any existing software-oriented
C or C++ code and to generate hardware out of that with only
minimal or no modifications.
Conversely, when starting from an existing legacy code base (like
the Click code base in our case), one has to understand the appli-
cation semantics of the software, be imaginative in figuring out
how to map those semantics into hardware, and build at least
some custom tools that embed this domain-specific knowledge.
In our case, and we imagine this to be fairly common, the features
of the software can be divided into start-up time operations and
actual “run-time” operations. The former are performed when a
software process is started, and are often guided by a number of
configuration files, settings, command line flags, and other such
external pieces of information. In essence, the software parses
those external data and adjusts its run-time operation accordingly.
During the actual “run-time” processing, the software performs a
relatively repetitive task on some data set. In our case, the packet
handling operations are applied on the incoming packets. In some
other case, the software may process data coming out of a file or a

set of sensors. In the typical case, the same piece of software is
able to perform a large and often essentially unbounded set of
operations on the input data, depending on the configuration. For
hardware synthesis, what is typically wanted is less flexibility and
higher performance. Hence, instead of supporting all the options
the legacy software permits, the desired hardware configuration
typically would just perform a relatively fixed set of operations on
the input data.
An old trick is to “freeze” a software process immediately after it
has performed the start-up time configurations but but before it
starts the “run-time” processing. This allows the specific configu-
ration of the software to start up much faster, enhancing user ex-
perience. This has been used at least since the 70's, for example, in
the GNU Emacs editor to precompile and dump lisp code during
the startup phase [17], and also in modern operating systems to
improve boot-up times.
For hardware synthesis, such “configuration freezing” is essential
in order to reduce flexibility and produce more efficient, more
fixed hardware. While the “freezing” process itself could be es-
sentially automated, domain-specific knowledge is needed for
knowing when to freeze and how to interpret the frozen memory
configuration. For hardware synthesis, especially the latter is
tricky, since the memory dump itself does not contain any infor-
mation of which parts of the memory will remain unchanged and
which will change during the “run-time” processing.
In our work, we have tried to apply the high-level hints in the C++
source code (const fields in classes, const instances, etc.) to
figure out the relevant data. Unfortunately, both the LLVM GCC
and LLVM clang compilers are buggy in this respect; they do not
always faithfully represent the const information in the gener-
ated IR but sometimes simply drop it, especially in the case of
constant instances of more complex C++ classes. For now, we
have fixed this mostly with simple scripts that modify the textual
IR based on our domain-specific knowledge. Our plan is to move
most of these “hacks” into clang proper as we proceed further.
Another related problem is that even the modern compilers, such
as GCC and clang, do not try hard enough with constant propaga-
tion when facing complex control flow. For typical software, they
have little incentive, as such transformations would considerably
increase the code size. However, for hardware generation, such
aggressive constant propagation is absolutely essential, since each
variable-turned-into-a-constant means less hardware, and thereby
higher speed and less energy consumption. For now, we simply
manually force LLVM to run its optimisation phases multiple
times, interspersed with our domain-specific transformations, in
order to force it to do all constant propagation.
A final problem we have faced is that LLVM does not try to opti-
mise loops at the IR level very hard. Hence, we have used manual
loop-unrolling options and repeated iterations to make LLVM to
try harder, and to peel or unroll the loops as far as is possible.

6. Future work
As of now, we have only started our journey. However, by now it
has become apparent that the current HLS tool we use (HLS A)
starts to be more a nuisance than genuine help. Hence, we are
trying to move away from it, testing some other commercial HLS
tools and university research results, such as AHIR [18]. We hope
to get rid of many of the present hacks with such (hopefully) bet-
ter back-end tools, allowing us to focus on enhancing the Click
compiler, our domain-specific LLVM transformations, and the
Click hardware-friendly “run-time” library. With this approach we

hope to be able to support maybe half of the existing Click ele-
ments.
However, we expect that some of the existing Click elements do
things that are simply not possible to implement in hardware, at
least not with the current HLS tools. For example, some elements
communicate with user-level manement entities through sockets,
and some other elements communicate with other elements by ad
hoc C++-level mechanisms that rely on dynamic memory man-
agement and packet-processing-time usage of Click metadata. In
such cases, we plan to punt part of the code into a built-in co-
processor. (Dual PowerPC in the case of current NetFPGA.)
While we do not expect any real progress in this space for some
time, so far we have been able to push packets to the NetFPGA
PPC for processing, and make the PPC to perform minimal ma-
nipulation on the packets2.

7. Conclusions
In this paper, we have described our early efforts in generating
NetFPGA RTL out of the Click Modular Router software configu-
rations. Our approach is based on using the LLVM Compiler
Toolkit to build a new compiler front end that reads in a Click
configuration file and produces a corresponding static configura-
tion in LLVM IR, representing the Click elements as constant C++
class instances. In addition to that, we have written an early ver-
sion of a Click hardware “run-time” library, consisting of modi-
fied version of the Click library classes, and a few LLVM trans-
formations, applying domain-knowledge-embedding optimisa-
tions to the LLVM IR. With this approach, we are able to produce
synthesisable C code, and using a commercial HLS tool, Verilog
out of that C code.
Perhaps the most important step in our approach is the “freezing”
of a Click configuration, once it has been instantiated, configured,
and initialised. This approach allows us to use the out-of-the-box
Click code for the lexer and parser of our Click compiler. We then
implement our own logic to construct a C++ Abstract Syntax Tree
(AST) out of the “frozen” Click configuration, letting the LLVM
clang libraries to produce LLVM IR out of that.
Our efforts so far indicate that the currently available commercial
HLS tools are quite restricted and even buggy. They currently
don't support high-level C++ constructions, such as virtual method
calls, pointers to pointers, or dynamic memory management.
Hence, an essential part of our tool chain is to use domain-specific
knowledge to transform the quite dynamic and flexible Click C++
code into configuration-specific, fixed C code, which then can be
fed to a HLS tool.

8. References
[1] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kasshoek,

F., “The Click Modular Router”, Operating Systems Review,
34(5), pp 217{231, December, 1999.

[2] Lookwood, J., McKeown, N., Watson, G., Gibb, G., Hartke,
P., Naous, J., Raghuraman, R., and Luo, J., “NetFPGA - An
Open Platform for Gigabit-rate Network Switching and
Routing”, IEEE International Conference on Microelectron-
ics Education, June 3-4, 2007, San Diego, CA.

[3] Michael Attig and Gordon Brebner, “High-level program-
ming of the FPGA on NetFPGA”, NetFPGA Developers
Workshop 2009, Palo Alto, CA.

[4] Mentor Graphics Catapult C:
http://www.mentor.com/products/esl/
high_level_synthesis/catapult_synthesis/

[5] Cadence C-to-Silicon:
http://www.cadence.com/products/sd/silicon_compiler

[6] AutoESL AutoPilot:
http://www.autoesl.com/autopilot_fpga.html.

[7] Lattner, C., and Adve, V., “The LLVM Compiler Framework
and Infrastructure Tutorial”, LCPC'04 Mini Workshop on
Compiler Research Infrastructures, West Lafayette, Indiana,
Sep. 2004.

[8] Kohler, E., “The Click Modular Router”, Ph.D. dissertation,
MIT, November, 2000.

[9] Morris, R., and Chen, B., “Flexible Control of Parallelism in
a Multiprocessor PC Router”, Proceedings of the USENIX
2001 Annual Technical Conference, June 2001.

[10] Kim, C., Caeser, M., Rexford, J., “Floodless in Seattle: A
Scalable Ethernet Architecture for Large Enterprises” Pro-
ceedings of SIGCOMM, Seattle Washington, August, 2008.

[11] W.M.W. Hwu, S.A. Mahlke, W.Y. Chen, P.P. Chang, N.J.
Warter, R.A. Bringmann, R.G. Ouellette, R.E. Hank, T. Ki-
yohara, G.E. Haab, J.G. Holm, and D.M. Lavery, “The su-
perblock: an effective technique for VLIW and super-scalar
compilation,” Journal of Supercomputing, Vol. 7, pp 229–
248, 1993.

[12] Jeannette Ferrante, Karl J Ottenstein, Joe D Warren, “The
Program Dependence Graph and Its Use in Optimization,”
rogramming Languages and Systems, Vol. 9 (3), pp. 319-349,
1987.

[13] Justin L. Tripp, Maya B. Gokhale, and Kristopher D. Peter-
son, "Trident: From High-Level Language to Hardware Cir-
cuitry", IEEE Computer, Mar. 2007.

[14] Jiyu Zhang, Zhiru Zhang, Sheng Zhou, Mingxing Tan, Xian-
hua Liu, Xu Cheng, Jason Cong, "Bit-Level Optimization for
High-Level Synthesis and FPGA-Based Acceleration", Proc.
of the 18th Annual ACM/SIGDA International Symposium
on Field Programmable Gate Arrays , Monterey, CA, Febru-
ary 2010.

[15] P. Jääskeläinen, V. Guzma, A. Cilio and J. Takala, "Codesign
Toolset for Application-Specific Instruction-Set Processors",
in Multimedia on Mobile Devices, San Jose, California,
USA, Jan 2007, Proc. SPIE Vol. 6507, 65070X.
See also http://tce.cs.tut.fi/.

[16] D. Chen, J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang,
"xPilot: A Platform-Based Behavioral Synthesis System"
SRC TechCon'05, Portland, OR, Nov, 2005.

[17] Jonathan M. Smith and Gerald Q. Maguire, Jr., “Effects of
copy-on-write memory management on the response time of
UNIX fork operations”, Computing Systems, Vol. 1, Num-
ber 3, pp 255–278, Summer 1988, Usenix Association.

[18] Sameer D. Sahasrabuddhe, Hakim Raja, Kavi Arya and
Madhav P. Desai, “AHIR: A Hardware Intermediate Repre-
sentation for Hardware Generation from High-level Lan-
guages", 20th International Conference on VLSI Design,
January 2007.

2 The kudos for our ability to use the NetFPGA PPCs goes mostly to Erik Rubow, who first figured out how to do that in practice.

http://www.autoesl.com/autopilot_fpga.html
http://www.autoesl.com/autopilot_fpga.html
http://www.autoesl.com/autopilot_fpga.html
http://www.autoesl.com/autopilot_fpga.html
http://llvm.org/pubs/2007-03-Computer-Trident.html
http://llvm.org/pubs/2007-03-Computer-Trident.html
http://llvm.org/pubs/2007-03-Computer-Trident.html
http://llvm.org/pubs/2007-03-Computer-Trident.html
http://tce.cs.tut.fi
http://tce.cs.tut.fi
http://cadlab.cs.ucla.edu/soc/docs/fan-TechCon2005.pdf
http://cadlab.cs.ucla.edu/soc/docs/fan-TechCon2005.pdf
http://www.cse.iitb.ac.in/~sameerds/ahir-vlsi2007.pdf
http://www.cse.iitb.ac.in/~sameerds/ahir-vlsi2007.pdf

