
Secure in-packet Bloom Filter forwarding on the NetFPGA

Adnan Hassan Ghani
Ericsson Research, NomadicLab

02420 Jorvas, Finland
adnan.ghani@ericsson.com

Pekka Nikander
Ericsson Research, NomadicLab

02420 Jorvas, Finland
pekka.nikander@ericsson.com

ABSTRACT
In-packet Bloom filters allow one to forward source-routed
packets with minimal forwarding tables, the Bloom filter en-
coding the identities of the links the packet needs to be for-
warded over. If the link identities are made content depen-
dent, e.g. by computing the next-hop candidate link iden-
tifiers by applying a cryptographic function over some in-
formation carried in the packet header, the Bloom filters
differ pseudo-randomly from packet-to-packet, making the
forwarding fabric resistant towards unauthorised traffic.

In this paper, we describe our early implementation and
testing of an in-packet Bloom filters forwarding node that
implements cryptographically computed link identifiers. We
have tested two different cryptographic techniques for the
link-identity computation and thereby for making the for-
warding decision. The algorithms have been implemented
and tested on the Stanford NetFPGA. The performance and
eifficiency of the algorithms is also briefly discussed.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.2.6 [Computer-Communica-
tion Networks]: Internetworking

General Terms
Design

Keywords
Bloom filters, forwarding, multicast, security, denial-of-service
resistance, NetFPGA

1. INTRODUCTION
While Bloom filters [2] are commonly used in several roles

in networking applications [3], in-packet Bloom filters have
only recently gained more attention [6, 11]. The basic idea in
these works is to encode the packet path (or a multicast tree)
into a small Bloom filter, carried in the packet header. In the
approach by Jokela etal. [6], each network link was expected
to have been assigned a statistically unique, unidirectional
link identifier. A set of these link identifiers, forming the
path or the tree, was then encoded into the in-packet Bloom
filter. This basic method was implemented on the NetFPGA
by Keinanen etal. [7]

In a followup paper, Esteve, Jokela, etal. [10] introduced
an idea where the link identifiers computed dynamically.
That is, instead of storing the names (or Bloom masks)

of the outgoing links at a forwarding table, the forwarding
node would dynamically compute the outgoing link iden-
tifiers. If the computation uses some information from the
packet, the link identifiers, and thereby the in-packet Bloom
filters, may be made flow or packet contents dependent. As a
consequence, only authorised users, which have the required
input parameters for sending packets along a specific path,
are able to compute the appropriate in-packet Bloom filters
for any given path. Hence, the method very effectively block
unauthorised traffic, at the cost of parameter distribution.
Gathering the input parameters for a source route and fast
rerouting are out of scope for this paper.

From the security point of view, the in-packet Bloom fil-
ters act simultaneously as forwarding identifiers and for-
warding capabilities [10]; introducing a DoS resistant for-
warding service. Capabilities enable secure statements at-
tached to packets, allowing forwarding nodes to easily check
if a packet has been approved by the receiver. Any sender
that has the approriate input parameters is able to compute
the in-packet Bloom filter, encoding a number of dynami-
cally computed link identifiers. When such a packet then
arrives at a forwarding node, the node computes a num-
ber of candidate Bloom masks (i.e. link identifiers), using a
loosely synchonized time-based shared secret and additional
in-packet per-flow or per-packet information. The forward-
ing capabilities are thus expirable and packet or flow de-
pendent. They do not require any per-flow network state
or memory look-ups, at the cost the additional per-packet
computation.

While expected to be secure, the performance of the dy-
namic-link-identifiers-based forwarding method needs to be
checked in real hardware. The delay and the resource usage
in the forwarding node needs to be examined. In this paper,
we present our early results from implementing the dynamic-
link-identifiers-based forwarding method on the NetFPGA,
and report our early results on its applicability and perfor-
mance.

The rest of this paper is organized as follows. First, in
Section 2, we discuss the background and the problem. In
Section 3, the design and architecture is discussed with two
different possibilities. Section 4 describes the implementa-
tion details. Section 5 explains the evaluation and perfor-
mance of our design. In Section 6, we briefly discuss the
related work and Section 7 concludes the paper.

2. BACKGROUND
Our ultimate goal is to provide a generic forwarding mech-

anism where the forwarding identifiers are secure [10]. We

Figure 1: Example of link identifiers assigned for
links, as well as a sending data with a zFilter from
the Publisher to the Subscriber [6] (copied with per-
mission)

presume that, in general, such a mechanism could be used for
any source-routed system, including source-routed IP pack-
ets; however, the system we describe is more tailored for
Denial-of-Service (DoS) resistant information-centric networks [13].

We build upon the forwarding mechanism described by
Jokela etal. [6]. The basic idea is to do forwarding based on
identifying links instead of nodes. As a simple case, consider
a point to point case, where two nodes are connected with
a single bi-directional link. This link will have two separate
identifiers, each identifying the specific direction of packet
flow. When the same case is mapped to multi-point scenario,
statistically unique identifiers are assigned to all of the links.

When the link identifiers are encoded into a Bloom filters,
they first need to be converted into a Bloom mask. The
standard way for that is to compute k distinct hash functions
over the identifier, defining k bit positions that are then set
to 1 in the Bloom mask. However, for the simplicity of
handling, for the most part we ignore this step and consider
the link identifiers to be in the Bloom mask form already
from the beginning.

Hence, for a (k,m) Bloom filter scheme, the length of each
link identifier (Bloom mask) is m-bit, in which k bits are set
to 1, with k ≪ m. For example, if m = 256 and k = 5, the
number of unique link identifiers ≈ m!/(m− k)!k! ≈ 1010.

As in [13], we further assume a topology system which
keeps track of forwarding nodes in the network and the iden-
tifiers of the links interconnecting the nodes. The system
also keeps track of the potential senders and receivers in the
network. Using this information, the topology system may
create a graph representation of the network, with the edges
annotated with the the link identifiers. This can then be
used when packets need to be forwarded from a sender to a
receiver (or group of receivers).

In [6], the topology system encodes the link identifiers
along a path (or a tree) into a Bloom filter, and then gives
the Bloom filter to the source node, which then places it into
the packets; see Figure 1. In their work, Jokela et al denote
the in-packet Bloom filter as a zFilter, a convention that
we adopt below. It is good to notice that zFilters provide
build-in DoS resistant capabilities.

When a packet reaches a forwarding node along the path,
each candidate outgoing link identifier (Bloom mask) is AND-
ed with the zFilter carried in the packet, and the result is

Algorithm 1: Forwarding method of LIPSIN

Input: Link IDs of the outgoing links; zFilter in the
packet header

foreach Link ID of outgoing interface do
if (zFilter & Link ID) ≡ Link ID then

Forward packet on the link
end

end

compared with the link identifier. If there is a match, the
packet is forwarded along the path; conversely, if there is
no match, the packet is not forwarded along the link associ-
ated with that particular candidate outgoing link identifier.
Furthermore, if there are matches with multiple candidate
identifiers, the packet is by default forwarded along all of
the matching links, thereby providing support for multicast;
see Algorithm 1.

As usually with bloom filters, with the increase in the
number of links encoded into a zFilter, there arises a possi-
bility of false positives. While the Link ID Tag mechanism,
introduced in [6], may be used to squeeze in some more
link identifiers without causing too many or too bad false
positives, the number of links within a zFilter has always
a practical upper bound that depends on m, the length of
the zFilter. They also describe a (perhaps somewhat hacky)
method for overcoming this limitation, and also discuss a
number of other practical considerations, such as loop pre-
vention.

From security point of view, this basic mechanism is sus-
ceptible to a number of attacks. For example, an attacker
may try to collect zFilters and guess a forwarding identifier
based upon such collected information. That is, by analysis
of zFilter bit patterns, an attacker may determine the prob-
abilities of what bits are set to one on which partial graph.
With having a large number of zFilters, source and sinks’
information, an attacker may have success in constructing a
valid zFilter.

In this paper, we explore some solutions to this security
problem, and evaluate their performance penalty.

3. ARCHITECTURE
In this section, we present the details of the secure and

dynamic link-identity-based forwarding approach. In par-
ticular, we briefly describe the two different cryptographic
functions that we have used, one based on a self-synchronis-
ing stream cipher and the other on the standard AES block
cipher. Our initial assumption was that using a self-syn-
chronising stream cipher could allow use to perform more
parallelised and thereby faster forwarding decisions. That
assumption turned out to be false, for a number of reasons.

3.1 Secure In-Packet Bloom Filters
In essense, we have implemented the central ideas of the

Esteve at paper [10]. Our solution dynamically computes
the link identifiers on the basis of packet contents, the path
the packet takes, and the node keys. In the following, we
will use the term zFormation to designate our design, i.e.
basically the dynamic computation of the link identifiers on
per-packet packet-basis. The idea is that there is a function
Z, essentially evaluated for each packet and for each poten-

tial outgoing interface, that gives out the indices of the k bits
set to one in the m-bits long link identifier (Bloom mask).

The function Z can be defined as

O = Z(K,M, I) (1)

wher the input parameters of Z are defined as follows:

1. K is a secret key that is changed periodically, e.g. once
every few minutes, hours, or days.

2. M is a medium dynamic term that includes the incom-
ing and outgoing interface indices.

3. I denotes some in-packet information that varies per
packet, e.g. a counter that increases per packet basis.

For performance purposes, the key K is divided into three
cryptographically separated parts, K1, K2 andK3 which are
created using a standard key derivation function:

Ki = KDF (K,Li) (2)

where the term Li is a literal identifying the particular
key.

The Key Derivation Function (KDF) is used to compute
the three keys. These keys are used in the construction of
zFormation in the following manner:

O1 = F1(K1, S) (3)

where S denotes any (semi-)static inputs to the function.

O2 = F2(K2, O1||M) (4)

where || denotes concatenation. Furthermore, if there are
multiple potential actively valid values for M , it may be
necessary to precompute and cache a set of corresponding
O2 values. We call such a set of O2 values as O2 value set.

O = O3 = F3(K3, O2 ⊗ I) (5)

where ⊗ denotes exclusive OR.
The functions F1 and F2 can be computed off-line, before

packet processing, using a strong algorithm, e.g. HMAC-
SHA-256. The function F3 needs to be performed on a per-
packet bases, and thereby represents a compromise between
security and performance. We use per-packet information,
as an input value to the hash function, to make it infeasible
to send other packets using an eavesdropped Bloom filter.
That is, an active attacker may capture some packet and
replay them a number of times, until one of the node keys
is changed, but the attacker cannot send modified packets.
When combined with per-packet caching or fingerprints, this
prevents replay-based DoS attacks.

In this paper, we consider two constructions, using a self
synchronising stream cipher and a block cipher function.
The in-packet information I can be formed, for example,
by using a packet a counter that is incremented once per
packet, and then taking a cryptographic hash overc counter,
using HMAC-SHA-256.

3.1.1 Self Synchronising Stream Cipher
A self-synchronising stream cipher consists of three main

components, an initialising function, an output generating

Figure 2: The Moustique stream cipher

function Fc and a state update function. First, a state is
initialised, typically So = 00...0 or some other fixed value
is used. The decryption of some stream of bits C0, C1,
proceed as follows

Algorithm 2: The algorithm

foreach i do
Pi = Ci XOR Fc (K, Si)
Si+1 = Ci || (Si →1)

end

where →i denotes right shift by i bits and || concatena-
tion. Here, our F3 corresponds to the function fc and K3

corresponds to the key K, etc. The idea behind using a self-
synchronising stream cipher is that if the synchronisation
is lost, the state Si will eventually recover as it is filled up
again by received bits Cj . However, in our case we don’t
really need this property.

For us, the important property is to get fast and securely
the number of bits that we need to determine the k bits
needed for forming the outgoing link identifier. Self-syn-
chronising stream ciphers have the nice property that they
output bits on just a couple clock cycles after having been
fed in the input. Since they usually work on a single-bit
bases, they are fine for line-speed processing.

Unfortunately, the NetFPGA reference router pipeline pro-
cesses bits in 64-bits words, thereby foiling at the NetFPGA
some of the nice properties. To alleviate this, we plan to un-
roll the stream cipher in the future, aiming towards getting
more than one bits out in a cycle. However, in this paper we
only report the basic implementation, using the Moustique
self synchronising stream cipher.

3.1.2 Moustique
Moustique is a single-bit self-synchronising stream cipher [5].

The Moustique cipher function is implemented in the form of
stages. A conditional complementing shift register (CCSR)
is followed by seven pipelined stages, as illustrated in Fig-
ure 2. The left half shows encryption and the right half
shows decryption1.

3.1.3 AES Block Cipher
A block cipher operates on fixed length bits called blocks.

The reason behind choosing block cipher is as we have data
coming in the form of 64-bits blocks in the NetFPGA. AES

1It must be noted that historically it has been hard to design
fully secure self synchronising stream ciphers; therefore, the
security of Moustique is perhaps not fully understood yet.
On the other hand, for this particular application, we don’t
need the full power of typical cipher functions, but only a
function that generates fast pseudo-random indices out of
in-packet input data.

Figure 3: Flow diagram for sender’s operation

was chosen as a cipher function. It has a fixed block size of
128 bits with key sizes of 128, 196 and 256. The minimum
acceptable key size is 128 and can then be multiples of 64
bits. Further detail on AES can be found in [1].

3.2 Overall Flow of the design
The overall flow of the design is depicted in figures 3 and

4. Figure 3 shows the flow at the sender side and Figure 4
shows the flow at the forwarding node side.

At the sender side when sender has data to send, it gen-
erates keys K1, K2 and K3. The route between sender and
the receiver is find out and represented in a form of in/out
pairs. O1 and O2 are computed using the corresponding
keys K1 and K2, respectively. K3 and the O2 value set are
distributed among the forwarding nodes on the path. For
each O2 value in the set, sender generates a nonce I and
computes F3. Inserts the result O, in the form of a Bloom
mask, into the Bloom filter carried in the packet.

At the forwarding node side, it already receives O2 value
set and K3. When it receives packet, it retrieves the nonce I
from the packet and performs F3 for each outgoing interface
in parallel, giving out the candiate outgoing Bloom mask
for each outgoing link. Using these Bloom masks as link
identifiers, the node then implements the “usual” in-packet
Bloom filters based forwarding (as described in [7]), to check
whether the Bloom mask is present in the Bloom filter or
not. If present, the packet is forwarded along the path;
otherwise it is dropped.

4. IMPLEMENTATION
In this work, we have taken the previous implementation

of in-packet Bloom Filter (iBF) based forwarding node [7]
on a NetFPGA and optimized it to our needs, as explained
below. The basic forwarding method remains unmodified.

Figure 4: Flow diagram for forwarding operation

Figure 5: The reference switch and modified datap-
aths

The difference here is instead of having fixed Link IDs (or
Link ID Tags - LITs) we have dynamically computed iden-
tifiers of the links, on a per-packet basis.

The dynamic Link IDs are computed using zFormation.
We have two implementations for the computation. One is
using the Moustique stream cipher and the other one is using
AES block cipher. In each case, the Link IDs are computed
using i) In-packet information (I), ii) a periodically changing
key (K3) and iii) the outgoing interface index (O2). The
forwarding decision is simple binary AND and comparison
operations, for the in-packet Bloom filter and the computed
Link ID.

4.1 Forwarding Node
The adopted implementation utilizes only a limited set of

modules from the Stanford reference switch, without modi-
fying the rest as shown in figure 5

The main functionality is implemented in module called
output_port_selector, where the forwarding decision takes
place and the packet is placed on the correct output queue.
For computing the dynamic Link IDs, a separate module
moustique is implemented for the stream cipher, and aes_ci-

pher_top for the block cipher. For each link, these modules
are instantiated, in parallel with the output_port_selector
module. The basic structure of output_port_selector is

Figure 6: output port selector module structure

depicted in Figure 6.

4.2 Packet Forwarding Operations
Prior to sending packets, the computed key K3 and the

O2 value set are written into the NetFPGA registers from
the user space. In our current implementation, the key K3

and the O2 values in the value set are both 256 bits each,
as a result of HMAC-SHA-256 computed at the software
side. In our current design, O2 consists of four values, each
representing one port of NetFPGA. One 32-bit port is used
for writing these values into the registers.

Packets arrive in 64-bit pieces at each clock cycle. From
the input_arbiter module, packets are sent into the SRAM
and to the output_port_selector module, for computing
the dynamic link IDs and then taking the forwarding deci-
sion. Along-with the forwarding decision that takes place
in the do_zfiltering logic block, the three parallelized op-
erations take place for the packet goodness verification, i.e.
bit_counter, ethertype, and TTL checks; see [7] for the de-
tails.

For computing the dynamic Link IDs using F3, two sep-
arate implementations were made, one for the Moustique
stream cipher and the other for AES block cipher. Dynamic
Link ID for each port is calculated separately using Mous-
tique and AES. Both of them are explained as follows:

Moustique. As the 96 bits of K3 register gets value
from the user space, a control signal start_initialization
is set to 1 and the initialization vector bits are applied at
the cipher input for 105 clock cycles. The implementation
then goes to a hold state, until a packet arrives. In the
packet header, there comes the in-packet information (I). I
is XORed with each value in the O2 value set (currently one
for each port) and then applied to the cipher input of the
Moustique module, with a control signal start_mostique
set to 1. Moustique is instantiated four times, oncefor each
outgoing port, for the NetFPGA in a parallel manner.

Our current Moustique implementation performs the ci-
phering in a single-bit fashion. Hence, the number of clock
cycles to perform whole ciphering depends upon k (cf. sec-
tion 2). In our case, when k = 5 and m = 256, we need
to perform only 40-bits of decryption, and hence it will take
40 clock cycles with the current implementation. With un-
rolling, we expect to get this down to maybe 5 cycles, de-

pending on the details of the propagation delays.
As soon as the decrypted data is ready, decrypted_data-

_ready is set to 1 by mostique for one clock cycle, so that
decrypted data can be read by output_port_selector.

AES. AES block cipher, with the key and block sizes of
128, is used for the computation of F3. We used the Open-
Cores AES implementation2. As the in-packet information
I arrives, it is XORed with the values in the O2 value set
(one for each port). The data and the key K3 are loaded
into the input of the cipher function, and start_AES is set
to 1. AES is also instantiated four times for each outgoing
port of the NetFPGA in aparallel manner.

The AES block cipher performs complete encryption se-
quence in 12 clock cycles, where the initial key expansion
takes 1 clock cycle, 10 rounds take 10 clock cycles, and the
output stage takes 1 clock cycle.

As the encryption is finished, decrypted_data_ready is
set to 1 and the output_port_selector reads the encrypted
data.

The Bloom mask is then computed for each outgoing link.
As in our case m = 256, each 8-bits of the decrypted data,
from Moustique or AES, gives an index in Bloom mask
where a 1 should be written.

In do-zfiltering, the actual matching is done for each
outgoing link. For each interface, we have a single bit form-
ing a bit-vector. These bits are set to 1 initially. Matching is
done for each Bloom mask and in-packet Bloom filter (iBF)
using AND and comparison operations. If there is a mis-
match for a particular link, the corresponding bit gets zero.
At the end, when the matching is finished for each Bloom
mask, the bit vector shows the interfaces to forward the
packet. Wherever we have one in the bit vector, the packet
is forwarded on that interface. But still we have some other
checks from the three verification functions.

The bit_counter module counts number of ones in the
iBF. This is done to avoid attacks of setting all bits to one
in iBF. The maximum allowed number of ones in a iBF
is a constant value. If the iBF contains more number of
ones than the constant value, the packet gets dropped. This
module is implemented using only wires and logic elements.
It takes 64 bits input and returns number of ones. It means
for 256 bits iBF it takes 4 clock cycles to count the number
of ones.

Currently, our iBF-based packets are identified using 0xacdc
as the ethertype. This is checked upon the arrival of the
packet. TTL is also checked to avoid loops in the network.

If any of the three verification checks or the iBF matching
itself fails, the packet is dropped. All the operations are
shown in reference to clock cycles in 7 and 8, for Moustique
and AES respectively.

4.3 Management Software
From the user space, the management software computes

keys K1, K2 and K3 using HMAC-SHA-256. Similarly,
defining outgoing interfaces and then computing O1 and the
O2 value sets using HMAC-SHA-256. It writes key K3 and
O2 value set into the registers in NetFPGA card. At the soft-
ware side it also computes F3 by using K3, O2 and generates
nonce I for each packet. This is done for each interface and
then iBF is computed and packed into the packet.

2http://opencores.org/project,aes core

Figure 7: Flow Diagram for Moustique

Figure 8: Flow Diagram for AES

The software can send customizable packets to the NetF-
PGA card. It controls the delay between the transmitting
packets, packets size, Time-to-live (TTL) in packet header,
computing nonce I , defining iBF and ethernet protocol field.

5. EVALUATION
We now study some of the performance results. For test-

ing the functionality, the two interfaces of a test host were
connected to the NetFPGA. One interface was used to send
and the other was used to receive packets. Several scripts
were run to test forwarding mechanism, verifying set bits
in the zFilter, TTL verificaton and ethertype checking. All
these were working as expected.

5.1 Performance
The packet traversal times were measured in our test envi-

ronment. Packets were sent at the rate of 25 packets/second.
Sending and receiving operations were implemented in the
FreeBSD kernel. Table 1 shows the measurement results
with plain wire and one NetFGPA. The measurements were
taken with Moustique, AES and then for LIPSIN separately
on the NetFPGA. The packet format ”new” and ”old” refer
to packet header with in-packet information and without it.
These formats can also be noticed from the flow diagrams
for Moustique, AES, and LIPSIN in Figures 7, 8 and 9. The
readings were taken for 10 000 samples.

The delay caused by Moustique is 320ns (40 clock cycles
for 40 bits) with k set to 5 and m set to 256. The delay
caused by AES is 96ns (12 clock cycles). After this, matching
is performed only in a single clock cycle. These delays are
quite small compared to the measured 3µs overall delay of
the whole NetFPGA.The numbers presented in Table 1, the
average delay for Moustique and AES measured agrees the
expected results. As can be seen Moustique has average
delay of 15,272ns and AES has 15,057ns. The measured

difference between the two techniques is quite close to the
expected results.

Comparing Moustique and AES, with the increase in k
and m set to 256, the bits to compute increase with a mul-
tiple of 8 in Moustique. Each bit requires 1 clock cycle and
hence the clock cycles also increase in multiples of 8. For
AES, upto 128 bits the clock cycles remain same that is 12.
128 bits means that with AES k can be set to 16 without any
additional performance penalty. Hence, it became clear that
the need for having the k bit indices before performing the
zFilter comparison and the 64-bits nature of the NetFPGA
data path make AES a faster choice.

Table 1: Latency measurement results

Path and Packet Average Standard
format Latency Deviation

Wire (new) 12,784ns 4,448.96ns
NetFPGA with Mostique (new) 15,272ns 4,991.28ns

NetFPGA with AES (new) 15,057ns 3,756.86ns
Wire (old) 12,549ns 4,867.34ns

NetFPGA with LIPSIN (old) 14,627ns 4,204.58ns

6. RELATED WORK
The first implementation of the zFilters on a NetFPGA

was presented in [7]. It used the static forwarding tables
containing Link identifiers (or LITs). In this paper, we have
have repeated the performance measurements of [7] using
NetFPGA 2.0, making the numbers comparable with ours.

What comes to other related work, we only highlight some
of the most important ones. In SANE [4], authentication
to use communication paths can only be achieved from a
central controller in the form of capabilities. The main dif-
ference is that we compress the source route by utilizing

Figure 9: Flow Diagram for LIPSIN

in-packet Bloom filters.
In [8], Ju and Lockwood described their FPGA-based IPsec

implementation. It discusses implementation of various cryp-
tographic algorithms, like AES, HMAC-MD5 and HMAC-
SHA-1, in an FPGA, and for packet processing purposes.
From our work point of view, it gives some cryptographic
background.

Path pinning in SNAPP [9] decouples routing and for-
warding. When setting up the connections, the routers add
their decision into the packet header: a next hop and a
Message-Integrity Code over it using its secret key. Finally,
the sender will get a source routing-like path towards the
receiver. When forwarding, routers can see their decision
and verify that it has not been tampered. Similar to our
work, forwarding is stateless; the biggest difference is that
our scheme uses just a single fixed-sized data structure, the
Bloom filter, to encode both the packet path and the autho-
risation information.

A recent work by Seehray et al, ICING [12], has similar
goals to ours: only allowing packets to be sent with the
forwarders’ and the destinations’ consent. Similarly to us,
they explore the feasibility and performance of the protocol
with a NetFPGA implementation. Their conclusion is that
the verification algorithm while forwarding can still maintain
line-speed.

7. CONCLUSIONS
In this paper, we have described our early implementation

for a source-routing-based forwarding mechanism that is re-
sistant to forwarding-identifier-guessing attacks. In a for-
warding fabric based on such a mechanism only authorised
nodes are able to send packets; packets sent with guessed
forwarding identifiers will be dropped with high probability.

We have briefly described two different implementations,
one using the Mostique self-synchronising stream cipher, and
the other the AES block cipher function. Contrary to our
inital assumption that a stream cipher might be faster as it
can efficiently produce a partial result, it turned out that
the block-cipher-based implementation is faster in practise.
While unrolling the stream cipher might help to give more
bits out on each cycle, also the block cipher can be unrolled.
In any case, the results show the time taken by the cryp-
tographic operations is negligible compared to the overall
NetFPGA forwarding delay.

Acknowledgements
We want to express our gratitude to Mats Näslund, Karl
Norrman, and Jukka Ylitalo, who greatly contributed to

some of the ideas that this work is based upon.

8. REFERENCES
[1] Advanced Encryption Standard (AES). In FIPS PUB

197, 2001.

[2] B. H. Bloom. Space/Time Trade-offs in Hash Coding
with Allowable Errors. Commun. ACM, 1970.

[3] A. Z. Broder and M. Mitzenmacher. Survey: Network
Applications of Bloom Filters. Internet Mathematics,
2004.

[4] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman,
D. Boneh, N. McKeown, , and S. Shenker. SANE: A
Protection Architecture for Enterprise Networks. In
USENIX Security Symposium, 2006.

[5] J. Daemen and P. Kitsos. The Self-synchronizing
Stream Cipher Moustique. In Springer-Verlag, 2008.

[6] P. Jokela, A. Zahemszky, C. Esteve, S. Arianfar, and
P. Nikander. LIPSIN: Line speed Publish/Subscribe
Inter-Networking. In SIGCOMM, 2009.

[7] J. Keinanen, P. Jokela, and K. Slavov. zFilter Sprouter
- Implementing zFilter based Forwarding Node on a
NetFPGA. In NetFPGA Developers Workshop, 2009.

[8] J. Lu and J. Lockwood. IPSec Implementation on
Xilinx Virtex-II Pro FPGA and Its Application. In
19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05) - Workshop 37,
2005.

[9] B. Parno, A. Perrig, and D. Andersen. SNAPP:
Stateless Network-authenticated Path Pinning. In
ACM ASIACCS ’08, 2008.

[10] C. E. Rothenberg, P. Jokela, P. Nikander, M. Sarela,
and J. Ylitalo. Self-routing Denial-of-Service Resistant
Capabilities using In-packet Bloom Filters. In the 5th
European Conference on Computer Network Defense
(EC2ND), 2009.

[11] C. E. Rothenberg, C. Macapuna, F. Verdi,

M. MagalhÃčes, and A. Zahemszky. Data Center
Networking with In-packet Bloom Filters. In SBRC
2010, May 2010.

[12] A. Seehray, J. Naousz, M. Walfishy, D. Mazi‘eresz,
A. Nicolosix, and S. Shenker. A policy framework for
the future Internet. In HOTNETS, 2009.

[13] A. Zahemszky, A. Csaszar, P. Nikander, and
C. Esteve. Exploring The PubSub
Routing/Forwarding Space. In International
Workshop on the Network of the Future, 2009.

