An Open-Source Hardware Module for High-Speed
Network Monitoring on NetFPGA

Gianni Antichi David J. Miller Stefano Giordano
Dept. Information Engineering Computer Laboratory Dept. Information Engineering
University of Pisa University of Cambridge University of Pisa

gianni.antichi@iet.unipi.it david.miller@cl.cam.ac.uk stefano.giordano@iet.unipi.it

ABSTRACT

We present a passive network measurement solution based
on the low-cost NetFPGA — suitable for network research,
security applications, and traffic engineering and manage-
ment. Key features include accurate timestamping, and the
ability to filter traffic based on flow. In this paper, we de-
scribe our implementation.

Keywords

High Performance, FPGA, Low-cost, Monitoring, Time-
stamping

1. INTRODUCTION

Network measurement and monitoring has been an
active area of research for at least the past 15 years.
Applications include academic research, security, and
traffic engineering and management.

An ideal measurement and monitoring solution would
be accurate, guarantee no loss of information, and be
inexpensive. To be cheap, a solution must use off-the-
shelf components such as common PCs with their built-
in network adaptors. Software running on the host
timestamps each packet as it arrives, and stores it for
later analysis. Applications such as tcpdump [11], Wire-
shark [5], nTop [3] et al. demonstrate how effective and
flexible this approach can be for a large variety of mon-
itoring tasks.

Many of the first solutions were like this, and some
still are. This approach works well enough for low speed
networks, or when timestamp accuracy is not too im-
portant, but it doesn’t scale to high speed networks.

High speed network adaptors must employ a variety
of techniques to manage the load imposed upon the
host processor. One such technique — interrupt miti-
gation — notifies the host only about groups of packets,
rather than when each individual packet arrives. Since
the software (usually, an OS kernel) can’t timestamp
packets until notified of their arrival, interrupt miti-
gation and interrupt latency both contribute to poor
time-stamp quality.

If traffic load exceeds a host’s capacity to process and
store it, data are lost — usually with no record of it ever

having existed. Even when the host can keep up, time
taken to process packets that are of no interest is time
not spent on analysis of the traffic of interest [6, 7].

Host load can be relieved if the network interface card
relays only traffic of interest, but most typical network
interfaces aren’t capable of filtering traffic based on flow
(or class) — only on whether the packet is addressed to
the host or not, which is never the case for a monitor.

As described later, a variety of specialised hardware-
based solutions exist — but they come at a cost. The
NetFPGA platform, which is open and low-cost, of-
fers a new opportunity to achieve the performance of
hardware-based measurement solutions, but at costs closer
to that of software-only solutions.

Our monitoring solution addresses the criterion of
cost by using the NetFPGA. Achieving high quality
timestamp data is easy in hardware, and the degree
to which an FPGA-based solution can be customised
makes it possible to provide filtration such that only
traffic of interest is sent to the host.

We describe a flexible monitoring solution offering
high quality timestamps and flow-based filtration at
line-rate Gigabit Ethernet based on NetFPGA.

2. RELATED WORK

Passive measurement systems have been an active
area of research since at least the mid 1990s. The
work done by Tan Graham, Stephen Donnelly [9], Jorg
Micheel, their colleagues in the WAND Group at Waikato
University, and then later Endace [1], produced the ex-
cellent, but expensive DAG card.

A similar FPGA-based monitoring and filtering solu-
tion was employed by the SCAMPI project [4] using the
COMBOG6 card from CESNET. Filtration is performed
by the FPGA, and only matching packets are forwarded
to the host.

Ficara et al. [10] present an Intel IXP2400-based traf-
fic monitoring device for Gigabit Ethernet capable of
analysing up to 50,000 filtering rules at line rate.

Luca Deri’s nCap [8] and related works provide software-
based measurement techniques that work well, but are
at the mercy of kernel-based timestamping.

Wolf et al. [13] propose Distributed On-line Measure-
ment Environment (DOME), a distributed network of
passive measurement nodes based on an Intel IXP2400
Network Processor. DOME includes header anonymiza-
tion, and performance is comparable with that of En-
dace DAG 4.3 cards. Both the previous systems are able
to analyse up to 500 MB/s of minimum-sized packets
(64 bytes).

These software solutions are both inexpensive and
flexible, but traffic load and timestamp quality are both
limited by NIC hardware and kernel performance. Hard-
ware solutions typically provide very good timestamp
quality, but hardware is typically expensive and offer
limited flexibility (especially in the case of proprietary
offerings).

A NetFPGA-based solution offers the accuracy of
hardware timestamping on inexpensive hardware (thanks
to support from Xilinx) with the flexibility of open
firmware, together with a rapidly growing community
of developers and academics.

3. THE NETFPGA NETWORK MONITOR

This section describes the design and implementation
of our NetFPGA-based time-stamping network moni-
tor.

3.1 Deployment

A network monitor may either be installed in-series
with the link to be monitored, or connected by means of
a network tap. Optical network links make the choice
is easy: passive optical splitters are inexpensive, and
other than during initial installation, offer no possibility
of interruption of the link.

Copper network links, on the other hand, are more
challenging. Some protocols, such as 10/100 Ethernet
can be tapped using a passive resistive network — but
others (including Gigabit Ethernet) require an expen-
sive active tap, such as the NetOptics TP-CU3, or in-
stallation of the monitor in-line.

In-line monitoring is cheap, and offers the possibility
of building an Intrusion Prevention System) system, but
comes at the cost of significant extra latency and the
risk of interruption of the link, should the monitor lose
power, be misconfigured, or otherwise fail.

Since the NetFPGA has four ports, but supports only
copper Ethernet, our monitoring solution integrates the
function of an active copper tap by internally coupling
two ports of the card. Traffic received on one port is
retransmitted out of the other, and visa versa.

Where a deployment is especially cost-sensitive, a sin-
gle NetFPGA-based monitor is sufficient for a single
full-duplex link. (Our solution could be modified to
monitor two full-duplex links with ease.) Where up-
time is more critical, our monitor may also be used with
a conventional active copper Gigabit Ethernet tap.

3.2 NetFPGA data path

Our monitor adds two new modules (shown in Fig-
ure 2) to the standard NetFPGA pipeline (Figure 1)
described as follows, as well as making minor modifica-
tions to the input arbiter, and nf2 mac_grp.v.

Figure 1: The NetFPGA reference pipeline

Time Stmp User Data Path
MAC Input Core Output
ElEERG RxQs Arbiter Monitoring Queues
CPU TxQs

Figure 2: Data path with timestamp modules

3.2.1 Timestamping module

The time stamping module attaches to the RGMII
(Reduced Gigabit Media Independent Interface), as near
as possible to the MAC (Media Access Controller) so
that timestamps are recorded as soon as packets are
received, in order to minimise timestamp error and jit-
ter. The RGMII asserts its ”data valid” signal when the
SFD (Start of Frame Delimiter) of a frame is received at
a physical interface. We sample the free-running time-
stamp counter on the low-to-high transition of this sig-
nal.

Timestamps are sampled from a 64-bit, free-running
counter driven by the 125 MHz system clock, which
increments by 8 once every 8 ns. By using the system
clock, the time stamp module can be made synchronous
with receive logic, and thereby avoid additional error
associated with crossing clock domains.

At start-of-day, the timestamp counter can be ini-
tialised with current time derived from the PC real-time
clock (which may optionally be maintained using NTP)
yielding absolute timestamps.

This timestamp counter is easy to implement, but
provides no means of correcting for oscillator drift and

yields data in units of whole nanoseconds. Since stan-
dard formats record time in units of seconds, conversion
by a floating-point division is required. Both of these
drawbacks can be addressed by means of using Direct
Digital Synthesis [12], a technique of producing arbi-
trarily variable frequencies using FPGA-friendly, purely
synchronous, digital logic.

By means of an external time reference, such as ei-
ther NTP, or GPS, the rate of the DDS clock can both
be corrected in real-time as well as yield a fixed-point
representation in seconds. We plan to add such a sys-
tem, similar to that described by Stephen Donnelly [9]
in a future revision of our measurement solution.

3.2.2 Selective, flow-based monitoring

Because the NetFPGA PCI interface lacks the band-
width to record all traffic, we provide a 5-tuple (IP ad-
dress pair, protocol and port pair) filter. As described
in Section 3.1, all packets received are retransmitted.
Packets that match one of up to 32 filter rules are also
copied verbatim, with their timestamp prepended (as
shown in Figure 3), to the host. The timestamp is con-
verted to Intel (little-endian) byte order in the card to
save the host most commonly used in these applications
from having to do so.

Timestamp Low [little endian]

Timestamp High [little endian]
Destination MAC High
Destination MAC Low Source MAC High

CRC 32 (End of Frame)

Figure 3: Format of packets sent to host

The timestamps of packets that match no rule are
made available to the host via registers. In future ver-
sions, we plan to pass unmatched timestamps — per-
haps along with minimal information about the packet
— to the host, in-band with those packets that did pass
the filter.

Our initial implementation uses the TCAM (Ternary
Content Addressable Memory) modules available in Xil-
inx CoreGen. Although these TCAMs are fast (one
search every clock cycle), and permit on-the-fly rule up-
dates, they are low density. Owing to problems with
timing closure, we found it necessary to implement the
filter using two 16-entry TCAMs, rather than one 32-
entry TCAM.

In addition, our initial implementation doesn’t auto-

matically try both combinations of source and destina-
tion port and address, requiring two rule slots to spec-
ify a complete flow. Rather than try to address this
limitation, we feel that a Bloom filter would provide
considerably greater density, while also providing the
flexibility of specifying only one half of a flow, should
that be desirable.

Since the object of the filter is to manage PCI inter-
face throughput by limiting irrelevant traffic, any false
positive matches from the bloom filters are harmless,
and the host can simply throw them away.

3.2.3 Pipeline changes

Timestamps

j]:l:D__, MAC [Input Core L Output
]]:I:D_,—’ RxQs [~# Arbiter Monitoring Queues

Incoming Packets

Figure 4: Packet data and side-band timestamps

Our initial implementation passes timestamps in a
side-channel, parallel with the main packet data path,
as shown in Figure 4. This required minor modifications
to parts of the standard data path. Future versions of
this code will probably pass timestamp information in-
band by means of a new module header.

3.3 Software

libpcap is the de facto standard capture API but, for
now, libpcap applications cannot yet directly be used
with our monitoring solution. Simple packet recorders
should work, but the 8-byte timestamp prepended to
each packet will confound protocol analysis.

Instead, we include a libpcap-based capture pro-
gramme which converts and removes the hardware time-
stamp, overwrites the PCAP timestamp, and records
a standard PCAP trace. It is our ambition to sup-
port a live PCAPng-style capture interface, as well as
libtrace [2] (and thereby Endace [1] ERF format).

We also provide auxiliary command-line tools for TCAM

rule management, and the initialisation of the hardware
timestamp.

4. PRELIMINARY RESULTS

We characterised the latency through the NetFPGA
with an Endace DAG 4.3ge SX, as shown in Figure 5.
Being optical, we were obliged to use a pair of media
converters (Allied-Telesyn AT-MC-1004), and we didn’t
have the means at our disposal to calibrate out the la-
tency contributed by these devices.

We measured latency through the two converters and
the NetFPGA card at a constant 2.4 us, irrespective of
whether the test packets matched a filter rule, or how
many rules were programmed into the filter.

fiber =5 copper
X mfc
Software Traffic - 1 NetFPGA
Generator [
T m/c

Figure 5: Latency measurement apparatus

At the time of writing, we are setting up an exper-
iment in which we will test the quality of timestamps
returned to the host against the DAG card.

S. CONCLUSION AND FUTURE WORK

We present a flexible and cheap passive NetFPGA-
based monitoring system. Our proof-of-concept imple-
mentation so far shows promising results.

Further development and rigorous quality evaluation
against the respected industry standard Endace DAG
card are on-going. We identify a number of extensions
and enhancements, many of which the implementation
is underway:

e Use of Direct Digital Synthesis, together with an
external time-base to provide error-corrected times-
tamps in a convenient format;

e Re-implementation of the flow filter using Bloom
filters in order to support substantially more than
32 flows;

e Optional in-band markers for packets belonging to
unmatched flows;

e Refactor to include timestamp in a module-header;

e Live libpcap support with extended precision times-

tamps; and
e Findace ERF format and libtrace support.

The NetFPGA is a promising platform on which to
develop exciting new, low-cost instrumented devices.
For example, whereas by conventional techniques, only
link-level behaviour can be instrumented, the NetFPGA
monitoring platform offers the possibility of instrumen-
tation of router behaviour right at the routing plane.

6. REFERENCES

[1] Endace. http://www.endace. com.
[2] libtrace. http://research.wand.net.nz/
software/libtrace.php.

[3] nTop network traffic probe.
http://www.ntop.org.

[4] Scampi project. http://www.ist-scampi.org.

[5] Wireshark protocol analyzer (was ethereal).
http://www.wireshark.org.

[6] L. Deri. Improving passive packet capture:
Beyond device polling. In SANE 2004.

[7] L. Deri. Passively monitoring networks at gigabit
speeds using commodity hardware and open
source software. In PAM 2003.

[8] L. Deri. nCap: Wire-speed packet capture and
transmission. In End-to-End Monitoring, May
2005.

[9] S. F. Donnelly. High precision timing in passive
measurements of data networks. PhD thesis,
University of Waikato, 2002.

[10] D. Ficara, S. Giordano, F. Oppedisano,
G. Procissi, and F. Vitucci. A cooperative
pc/network-processor architecture for multi
gigabit traffic analysis. In QoS-IP 2008.

[11] N. R. G. Lawrence Berkeley National Labs.
tcpdump, libpcap. http://www.tcpdump. org.

[12] P. Saul. Direct digital synthesis. Circuits and
systems tutorials, page 393, 1996.

[13] T. Wolf, R. Ramaswamy, S. Bunga, and N. Yang.
An architecture for distribuited real-time passive
network measurement. In MASCOTS 2006.

