
Packet Classification Through Regular Expression
Matching on NetFPGA

Gianni Antichi
Dept. of Information

Engineering
University of Pisa

Pisa, Italy
gianni.antichi@iet.unipi.it

Andrea Di Pietro
Dept. of Information

Engineering
University of Pisa

Pisa, Italy
andrea.dipietro@iet.unipi.it

Domenico Ficara
Cisco System International

Rolle, Switzerland
dficara@cisco.com

Stefano Giordano
Dept. of Information

Engineering
University of Pisa

Pisa, Italy
s.giordano@iet.unipi.it

Gregorio Procissi
Dept. of Information

Engineering
University of Pisa

Pisa, Italy
g.procissi@iet.unipi.it

Fabio Vitucci
Dept. of Information

Engineering
University of Pisa

Pisa, Italy
fabio.vitucci@iet.unipi.it

ABSTRACT
The process of classifying packets according to a set of gen-
eral rules is crucial to many network functions, from QoS en-
forcement and network monitoring to security and firewalls.
Although classification is a well studied subject, most of the
literature is concerned with matching prefix based rules over
the canonical 5-tuple of packet meta-data. However, we be-
lieve that future applications (e.g. layer 7 monitoring) would
benefit from an increased flexibility in the definition of clas-
sification rules. Indeed, the main contribution of this paper
is a novel classification method that applies pattern match-
ing techniques (which are already widely used in the field of
deep packet inspection due to their high expressiveness), to
traffic classification, by specifying a rule as a pattern overa
stream composed by the packet meta-data. We implemented
a high performance prototype of our scheme designed for
NetFPGA boards. As these devices provide a limited amount
of memory, we take advantage of a very compressed version
of Deterministic Finite Automata (DFA), that combines ex-
cellent compression and high speed.

Keywords
High Performance, Packet Classification, DFA, FPGA

1. INTRODUCTION
The rapid growth of Internet and the fast emergence

of new network applications have brought great chal-
lenges and complex issues in deploying high-speed and
QoS guaranteed IP network. For this reason packet
classification has assumed a key role in modern commu-
nication networks in order to provide security and QoS.
As packet classification represents one of the most im-
portant and critical function in the process of IP packet

forwarding, over the years there have been many con-
tributions in this area of research. However, classifica-
tion rules have been generally defined as prefixes over
the canonical 5-tuple. Indeed, the industry standard in
rule specification is Cisco ACL, which essentially deals
with addresses, masks and ports (although a more ex-
pressive extension has been proposed). However, mod-
ern applications might need additional flexibility in the
definition of classification rules. As an example, con-
sider a network security application that detects TCP
Syn flooding attacks: such software would be inter-
ested in being forwarded by a classifier only the tcp
segments carrying a given combination of flags: this
could be done by specifying a rule that takes also the
TCP flags into account. A standard 5-tuple based clas-
sifier, on the other hand, would pass it all of the TCP
traffic matching the rules, thus forcing the application
to process a much higher amount of packets, most of
them of no interest for its purpose. In order to extend
the expressiveness of standard classification rules, we
chose to address the packet classification problem as a
more general pattern matching problem. To this end,
we leveraged the existing work on finite state automata
(henceforth DFAs). DFAs are systems derived from the
theory of formal languages, capable of scanning an or-
derly string of symbols in search of specific patterns.
They are currently widely used for deep packet inspec-
tion because they guarantee by far greater expressive-
ness than traditional techniques. As classification is
often performed by either hardware or embedded pro-
cessors, where memory footprint is an important issue,
we have chosen for our scheme a new type of automa-
ton, called δFA (δ Finite Automata), which presents in-
teresting performance characteristics. In particular, in

1

addition to maintaining a data structure which is much
more compact than the standard automation, it needs
a lower number of memory accesses than most com-
pressed automata. These properties motivate its use for
classification as high-capacity networks, where memory
latency is the main factor of performance degradation.
In order to implement a prototypal classifier, the hard-
ware platform used is NetFPGA. A NetFPGA card is
a PCI card consisting of a fully programmable FPGA
(Field Programmable Gate Array), four Gigabit Eth-
ernet ports and a set of memory banks with different
densities and latencies (internal cache, SRAM, DRAM).
This device is employed by students and researchers to
experiment new networking features at line speed. This
board has been designed by Stanford University as part
of a project called Clean Slate, an ambitious research
program that aims at producing solutions to overcome
the current limitations of the Internet. The FPGA is
programmed by means of a hardware description lan-
guage (HDL) which, in our case, is Verilog.

2. RELATED WORKS
Packet classification is an extensively studied topic

and several different approaches have been proposed in
the literature.

Hardware classifiers traditionally used CAM based
techniques. Given an input key, a Content Addressable
Memory (CAM) compares it against all of the mem-
ory words in parallel; hence, a lookup effectively re-
quires one clock cycle. While binary CAMs perform
well for exact match operations, the widespread use of
CIDR requires storing and searching entries with arbi-
trary prefix lengths. Hence, Ternary CAMs were devel-
oped with the ability to store an additional Don’t Care
state thereby enabling them to retain single clock cycle
lookups for arbitrary prefix lengths. This high degree of
parallelism comes at the cost of storage density, access
time, and power consumption.

A few solutions tried to leverage longest-prefix match-
ing trie-based algorithms (which were conceived for lookup
applications) to bi-dimensional matching involving sev-
eral fields. Such solutions [4] are typically adopted when
rules are specified only over destination and source IP
addresses. The set-pruning algorithm provides good
lookup speed but its memory footprint explodes with
the number of rules. A variation of this technique lever-
ages a backtracking primitive [12] to improve memory
scalability, at the cost of a significant slow-down, while
Grid of Tries [14] fairly balances speed and memory con-
sumption, by speeding up backtracking through the use
of switch pointers.

Other solutions leveraged a geometric formalization
of the classification problem [1]: as each classification
rule can be thought as a range in the multi-dimensional
space, classifying a packet means finding out which ranges

the corresponding point belongs to. To this end, well-
known results from the field of computational geometry
can be used.

Another approach is to split a multi-dimensional match-
ing into a set of separate one-dimensional searches over
separate fields and to correlate those result to find the
best matching rule. Bitvector linear search [13] per-
forms such correlation by processing bitmaps issued by
each separate single-field matching. Cross-product schemes
[19], instead, correlate the result of mono-dimensional
matching by building a cross product hash table where
all the combination of mono-dimensional ranges are pre-
computed. Such a table, however, can grow up to con-
siderable sizes, thus requiring an excessive amount of
memory. Recursive flow classification [9] allows to com-
press such a table by merging the cross-products into
equivalent classes.

Another class of algorithms leverage decision trees:
although, formally, the algorithm model is analogous to
the trie-based approaches, it allows for larger flexibility,
as,instead of having all of the relevant fields inspected
in a sequential manner, at each node of the tree an
arbitrary check can be performed. In particular, Hi-
cuts [8], performs a range check on a particular field
while [20] tests single bits. Hypercuts [6] further im-
probe performance by checking multiple fields at each
step. [3] proposed to optimize decision tree by intro-
ducing the common branches optimization: rules that,
due to wildcards, are assigned to both sons of a decision
node, are handled separately, thus reducing worst-case
size. [5] Proposes to speed up classification by using a
small cache using a set of evolving rules which preserve
classification semantics. [17] Partitions the rules into
sets which are close to one another in the tuple space,
and leverages information from single-field lookups to
discard subsets and limit the search space.

3. NETFPGA BOARD
NetFPGA is a low-cost platform, developed by the

High Performance Networking Group at Stanford Uni-
versity, primarily designed as a tool for teaching net-
working hardware and router design. It is a standard
PCI card that plugs into a standard PC. The card con-
tains a Field Programmable Gate Array (FPGA) by
Xilinx (Virtex-II pro) which is programmed with user-
defined logic and has a clock of 125 MHz. The PCI in-
terface connecting the host PC to the NetFPGA is man-
aged by a small Xilinx Spartan II FPGA. Four 1GigE
ports, 4.5MB of Static Ram (2 banks) and 64MB of
DDR2 Dynamic RAM are also on board in the card.
A reference package containing verilog source code for
the FPGA, C code for the host PC and java code for
the graphical interface can be downloaded from the
NetFPGA website in order to run NetFPGA with ba-
sic networking functions such as Network Interface Card

2

(NIC), PW-OSPF IPv4 Router and Layer 2 switch. The
basic target for this board is the adoption of a FPGA as
a networking accelerator in order to take advantage of
the host PC flexibility to implement the control plane
of the project. In this scenario, for example, the user
could implement the forwarding plane of an IPv4 router
in FPGA and the control plane (with its routing algo-
rithm) in the host PC connected to the card via PCI.
Thanks to its modularity, NetFPGA is a very useful
system to test new ideas for next generation networks.

4. PACKET CLASSIFICATION AND PATTERN
MATCHING

The operation of classifying IP packets depending
on arbitrary metadata contained in the packets them-
selves is logically (and practically) equivalent to per-
form pattern matching. Typically, classification rules
are expressed in terms of the values of the canonical
5-tuple SrcIP , DestIP , SrcPort, DestPort, and L4−
Protocol: the output of classification can therefore be
obtained by simply applying pattern matching algo-
rithms upon the associated fields of the IP packets.
However, our scheme supports classification rules de-
fined over arbitrary metadata (TCP flags are a simple
example). As pattern matching is a widely addressed
topic in literature, the above observation opens a wide
horizon of theoretical and practical solutions to address
the problem of packet classification. In recent years,
due to the increasing interest focused on deep packet
inspection, the use of regular expressions (regexes) has
become more and more popular because of their high
expressiveness in describing sets of strings [16]. Typi-
cally, finite automata are employed to implement reg-
ular expression matching. Deterministic FAs (DFAs),
in particular, have gained significant credits as they re-
quire one state traversal per character only, although
they need an excessive amount of memory as the num-
ber of regexes increases. For these reasons, many works
have been recently presented with the goal of memory
reduction for DFAs, by exploiting the intrinsic redun-
dancy in regular expression sets [11, 10, 2, 15].

In this section we briefly present the structure of a
DFA along with the principles at the basis of its space
compression. In particular, we present δFA [7], a tech-
nique inspired by Kumar’s work [11] that we recently
developed to effectively reduce the memory footprint
of large DFAs. As it will be elaborated upon in the
following, δFAwill be the basis for the packet classifier
implemented on top of the NetFPGA platform.

4.1 From DFA to δFA
We introduce the principles of DFA and δFA [7] by

analyzing the same example brought by Kumar et al.
in [11]: figure 1(a) represents a standard DFA on the al-
phabet {a, b, c, d} that recognizes the regexes (a+),(b+c)

and (c∗d+).
Figure 1(b) shows the D2FA for the same set of reg-

ular expressions [11], where the memory footprint of
states is reduced by storing only a limited number of
transitions for each state and taking a default transition
for all input char for which a transition is not defined.
The total number of transitions was reduced to 9 (less
than half of the equivalent DFA which has 20 edges),
thus achieving a remarkable compression.

However, by observing the graph in figure 1(a), it is
evident that most transitions for a given input lead to
the same state, regardless of the starting state; in par-
ticular, adjacent states share the majority of the next-
states associated with the same input chars. Then if we
jump from state 1 to state 2 and we “remember” (in
a local memory) the entire transition set of 1, we will
already know all the transitions defined in 2 (because
for each character they lead to the same set of states
as 1). This means that state 2 can be described with a
very small amount of bits.

The result of what we have just described is depicted
in fig. 1(c) (except for the local transition set), which is
the δFA equivalent to the DFA in fig. 1(a). We have 8
edges in the graph (as opposed to the 20 of a full DFA)
and every input char requires a single state traversal
(unlike D2FA).

4.2 The main idea of δFA
The idea of δFA comes from the following observa-

tions: 1) a state is defined by its transition set and by
a small value signalling if it is an accepting state; 2)
in a DFA, most transitions for a given input char are
directed to the same state.

By elaborating on the last observation, it becomes
evident that most adjacent states share a large part of
the same transitions. Therefore we can store only the
differences between adjacent states.

This requires, however, the addition of a supplemen-
tary structure that locally stores the transition set of
the current state. The idea is to let this local transi-
tion set evolve as a new state is reached: if there is no
difference with the previous state for a given character,
then the corresponding transition defined in the local
memory is taken. Otherwise, the transition stored in
the state is chosen. In all cases, as a new state is read,
the local transition set is updated with all the stored
transitions of the state.

The δFA shown in figure 1(c) only stores the transi-
tions that must be defined for each state in the original
DFA. In order to improve memory reduction (at the
expenses of a negligible increase in the lookup time),
δFA can also be efficiently combined with an encoding
scheme for transitions (named Char-State compression
[7]), which exploits the association of many states with
a few input characters.

3

1

2

5

3

4

a

b

d

c

a

b

c

d
b

a

c

d

d

b

a

c

c

a

b

d

(a) The DFA

1

2

5

3

4

a

b

d

c

c

(b) The D2FA

1

2

5

3

4

a

b

d

c

c

c

c

c

(c) The δFA

Figure 1: Automata recognizing (a+),(b+c) and (c∗d+)

4.3 Lookup
In the first step of the lookup process, the current

state must be read with its whole transition set. Then
it is used to update the local transition set: for each
transition defined in the set read from the state, we up-
date the corresponding entry in the local storage. Fi-
nally the next state is computed by simply observing
the proper entry in the local storage. The lookup algo-
rithm requires a maximum of C elementary operations
(such as shifts and logic AND or popcounts), one for
each entry to update. However, in our experiments, the
number of updates per state is around 10. Even if the
actual processing delay strictly depends on many fac-
tors (such as clock speed and instruction set), in most
cases, the computational delay is negligible with respect
to the memory access latency.

In fig. 2(a) we show the transitions taken by the δFA
in fig. 1(c) on the input string abc: a circle represents
a state and its internals include a bitmap (as in [18] to
indicate which transitions are specified) and the transi-
tion set. The bitmap and the transition set have been
defined during construction. We start (t = 0) in state 1
that has a fully-specified transition set. This is copied
into the local transition set (below). Then we read the
input char a and move (t = 1) to state 2, that specifies
a single transition toward state 1 on input char c. This
is also an accepting state (underlined in figure). Then
we read b and move to state 3. Note that the transition
to be taken now is not specified within state 2 but it is
in our local transition set. Again state 3 has a single
transition specified, that this time changes the corre-
sponding one in the local transition set. As we read c

we move to state 5 which is again accepting.

Local
transition set

δFA

1

d
c
b
a

1
1
1
1

4
1
3
2

4
1
3
2

t = 0

a

2

0
1
0
0

1

4
1
3
2

t = 1

b

3

0
1
0
0

5

4
5
3
2

t = 2

c

5

0
1
0
0

1

4
1
3
2

t = 3

(a) δFA internals

Local
transition set

δNFA

1

d
c
b
a

1
1
1
1

4
1
3
2

4
1
3
2

t = 0

a

2

0
0
0
0

4
1
3
2

t = 1

b

3

0
1
0
0

5

4
1
3
2

t = 2

c

5

0
0
0
0

4
1
3
2

t = 3

(b) δ
NFA internals

Figure 2: Automata internals: a lookup exam-
ple.

4

5. δFA BASED PACKET CLASSIFIER

5.1 Software
The software level of the Classifier takes care of cre-

ating and managing the DFA data structures as well
as of storing them into the NetFPGA SRAM. The user
has to write a simple text file to specify the rules and
the associated flowIDs. A bash script then is in charge
of calling all the software in order set up the Classifier.
First of all it creates the standard (uncompressed) DFA
associated to the rules specified by the user. After that
it converts the DFA into the δFA structure.

In general, a δFA state consists of a bitmap of 256
bits, which indicate which transition are stored, fol-
lowed by a list of pointers for such transitions. If the
number of transitions in the state is small enough, the
bitmap is not an optimal solution, because it would be
composed almost entirely of bits to “0”. In this case
it is more efficient (in terms of memory occupancy) to
replace the bitmap with a simple flat list of character-
pointer pairs. In figures 3 and 4 the data structures of
the states of type 1 (we refer to the states with bitmap
as type 1 states) and type 2 are shown. Each line corre-
sponds to a 72 bits entry. If the state data do not cover
the whole row, the entry is padded with 0s and the new
state starts at the beginning of the next line.

S1 represents the memory occupancy (in bit) of a
type 1 state, while S2 indicates the memory occupancy
of a type 2 state where parameter “n” is the number
of specified transitions for a given state. As it is evdi-
dent, in a δFA the size of a state is not constant because
an arbitrary number of transitions may be stored, de-
pending on the characters whose transitions have to be
updated in the local table.

S1 = 360 + 72 ∗ ⌈
n

3
⌉ (1)

S2 = 72 + 72 ∗ ⌈
n

2
⌉ (2)

If n ≤ 24, then S1 ≥ S2 and a simple char-transition
list is more efficient than a bitmap. For this reason
during the creation of the δFA structure, the number of
transitions for each state is estimated. If it is than 24
a type 1 state is created, otherwise a character-pointer
list (states of type 2) is used.

The state descriptor is a field whose bits have the
following meaning:

• Bit 71: if set to 0 it indicates a state of type 1,
otherwise type 2;

• Bit 70: if set to 1 it indicates that the state is
accepting;

• Bits 69-64: In the type 2 state, they indicate the
number of transitions specified. This information

Figure 3: Structure of the classifier.

Figure 4: Structure of the classifier.

is essential to understand where the state ends. 6
bits are sufficient because for this kind of states
there are at most 30 transitions. In type 1 states
these bits are set to 0.

Type 1 states present also a second byte of infor-
mation indicating the total number of specified state
transitions. This information, wihch is not strictly nec-
essary because it could be derived by counting the total
number of bits set in the bitmap, is used to retrieve
the data structure through a series of consecutive ac-
cesses without having to scan the bitmap. Such bitmap
is distributed evenly over 4 rows of 64 bits and an entry
contains exactly three pointers.

In type 2 states an entry specifies two transitions,
each of them associated with a byte that indicates the
corresponding character. The size of type 2 states is
from 9 to 144 bytes, while that of type 1 states is from
144 to 819 bytes.

5.2 Hardware
The general structure of the classifier is shown in fig-

ure 5. An optimized version will be discussed in 5.2.1
The first operation performed on the incoming packet is
parsing the header fields of the packet in order to com-
pose the string which will be fed into the DFA state ma-
chine. The “Datapath Control” block extracts the right
fields (i.e.: in the implemented prototype the canoni-
cal 5-tuple composed of source and destination IP ad-
dresses, layer 4 source and destination port and proto-

5

Figure 5: Structure of the classifier.

col) and feeds them, one character per time, into the
control module of δFA. The “δFA Control Automaton”
block contains the FPGA hardware modules that actu-
ally implement the automaton logic (i.e.: extract from
the SRAM memory the data structure describing the
current state, lookup and update the local transition
table). This block communicates with the SRAM via
a module that masks the access protocol to the mem-
ory and requires as inputs only the address of the first
entry to be accessed and the number of consecutive en-
tries to be read. “Sram Ctrl” deals with making the
appropriate number of SRAM read/write requests to
the “SRAM driver”.

The “δFA Control Automaton” module first performs
a single access to SRAM in order to determine which
kind of states (i.e.: type 1 or 2) it has to read. The
local table maintains the current state transitions that
are not stored in SRAM, as they are the same as those
of the parent state. In its simplest form is a 256 ∗ 24
matrix where the i-th row contains the transition (a
24− bit pointer) associated with character i. The table
is implemented by using Block RAM (BRAM), a type
of memory for quick access, integrated on the FPGA
chip. In particular, we use a “dual-port” BRAM in
“read-first” mode, which allows to write two entries in
the table within a single clock cycle. Notice that, for
type 2 states, a dual port configuration is enough to
avoid buffering transitions, as at most two pointers are
extracted simultaneously form the SRAM. As for type 1
states, since three transitions may be read, one of them
would have to be buffered and served in the following
clock cycle. For this reason, we chose to deploy two
dual port “128x24” BRAMs, each of them containing
half the original table. The “BRAM 1” stores the ad-
dresses for the even characters while the BRAM 2 those
associated with the odd characters. In the worst case all
of the pointers may still be stored in the same BRAM
block and an intermediate buffer would still be neces-
sary, but in the average case the transitions are divided
equally between the tables and therefore can be written

in parallel during the same clock cycle, thus speeding
up the process of updating the local table.

5.2.1 Optimized Classifier

An ordinary way to speed up a classifier is caching
flows. Packets of the same flow are likely to exhibit
good temporal locality, and the classification result is-
sued for the opening packet can be cached and used for
the following ones. Therefore it is useful to introduce a
flow-cache, where a new entry is added when the first
packet of a new flow enters the system. In this case,
the classifier performs a lookup in the classifier table
and stores the result in the flow cache. Otherwise, for
each packet belonging to a known flow, the classification
result is already in the cached data and the amount of
memory accesses is reduced. Since the number of flows
can be very high, a hash table is an efficient way to im-
plement such a cache. In our current implementation,
such a table is kept in BRAM memory.

6. EXPERIMENTAL RESULTS
In order to assess the performance of our architec-

ture and its capability to filter traffic at line rate, we
carried out several tests by using a Spirent AX 4000
hardware based traffic generator; such a device is able
to completely saturate a Gigabit link with minimum
sized packets, thus recreating the worst case scenario
for a netwrok device performing packet-by-packet pro-
cessing; actually we always performed our tests with
minimum sized packets. As the performance of the clas-
sifier is strictly dependent not only on the packet rate,
but on the number of flows, which, in turn, reflects on
the speed-up introduced by the cache, we used the gen-
erator API in order to produce a high number of flows.
In particular, the AX 4000 generator can inject packets
whose addresses are randomly selected within user de-
fined ranges, thus producing traffic where different flows
are randomly interleaved. We point out that this sce-
nario is probably more challenging than real traffic, as in
the latter packets from the same flows are close to each
othe and a cache can provide a significant speed up. In
a first experiment, we used the classifier to extract from
the traffic a set of 65536 flows matching properly writ-
ten regexes. The background traffic (which is simply
dropped by the classifier after regex matching) is made
up of packets whose addresses are chosen within a very
large set (thousands of possible source addresses and as
many destination addresses) thus potentially providing
milions of different flows. We kept the rate of the traf-
fic of interest constant, while gradually increasing that
of the background traffic and we measured the rate of
the NetFPGA output by using the capturing facilities
provided by the Spirent AX. The results are shown in
figure 6 and apparently the classifier manages to filter
in all of the traffic of interest with negligible losses. Be-

6

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

T
ra

ffi
c

ra
te

 (
pa

ck
et

s
pe

r
se

c.
)

Overall link rho

actual rate
troughput

Figure 6: Throughtput of the classifier with
constant-rate traffic of interest and different
rates of the background traffic (ρ stands for link
utilization).

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 1.2e+06

 1.3e+06

 300000 400000 500000 600000 700000 800000 900000 1e+06 1.1e+06 1.2e+06 1.3e+06

T
hr

ou
gh

pu
t (

pa
ck

et
s

pe
r

se
c.

)

Offered traffic rate (packets per sec.)

elephant.dat

Figure 7: Throughtput of the classifier with
growing rates of the traffic of interest.

sides, the performance is almost constant whatever the
rate of the background traffic.In a second experiment we
assumed all of the incoming traffic to match the classi-
fication ruleset, and we increased its rate until the link
was completely saturated. Again, as illustrated in fig-
ure 7 our classifier is able to process all of the packets
with negligible losses.

7. CONCLUSIONS
In this work we described a novel solution for packet

classification which leverages the expressiveness of reg-
ular expressions in order to specify arbitrary patterns
over a set of fields of a packet. Such approach provides
additional flexibility with respect to traditional prefix
based rule specification. In order to reduce the state
required by pattern matching algorithms, we leverage
the δFA technique, that provides an excellent trade-off
between memory footprint and lookup speed. We built
a hardware-based protoypal implementation of our clas-

sifier over a NetFPGA board and we assessed its per-
formance by carrying out experiments with high speed
traffic belonging to a large set of flows. The results are
very promising, as the classifier is able to process all of
the packets even in the case of a Gigabit link saturated
with minimum-sized packets.

8. ADDITIONAL AUTHORS

9. REFERENCES

[1] H. Adisheshu. Services for next-generation
routers. Ph.D. dissertation, Washington
University Computer Science Department, 1998.

[2] M. Becchi and P. Crowley. A hybrid finite
automaton for practical deep packet inspection.
In Proc. of CoNEXT ’07, pages 1–12. ACM, 2007.

[3] E. Cohen and C. Lund. Packet classification in
large isps: design and evaluation of decision tree
classifiers. In SIGMETRICS, pages 73–84, 2005.

[4] D. Decasper, Z. Dittia, G. Parulkar, and
B. Plattner. Router plugins: A software
architecture for next generation routers. In
IEEE/ACM transactions on Networking, pages
229–240, 1998.

[5] Q. Dong, S. Banerjee, J. Wang, and D. Agrawal.
Wire speed packet classification without tcams: a
few more registers (and a bit of logic) are enough.
SIGMETRICS Perform. Eval. Rev.,
35(1):253–264, 2007.

[6] S. S. F. Baboescu and G. Varghese. Packet
classification for core routers: Is there an
alternative to cams? Proceedings IEEE
INFOCOM, 2003.

[7] D. Ficara, S. Giordano, G. Procissi, F. Vitucci,
G. Antichi, and A. DiPietro. An improved dfa for
fast regular expression matching. SIGCOMM
Comput. Commun. Rev., 38(5), 2008.

[8] P. Gupta and N. Mckeown. Design and
implementation of a fast crossbar scheduler. IEEE
Micro, 19:20–28, 1998.

[9] P. Gupta and N. McKeown. Packet classification
on multiple fields. Proceedings ACM SIGCOMM,
1999.

[10] S. Kumar, B. Chandrasekaran, J. Turner, and
G. Varghese. Curing regular expressions matching
algorithms from insomnia, amnesia, and acalculia.
In Proc. of ANCS ’07, pages 155–164. ACM.

[11] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley,
and J. Turner. Algorithms to accelerate multiple
regular expressions matching for deep packet
inspection. In Proc. of SIGCOMM ’06, pages
339–350. ACM.

[12] G. V. L. Qiu and S. Suri. Fast firewall
implementations for software- and hardware-based

7

routers. Proceedings of the 9th International
Conference on Network Protocols (ICNP), 2001.

[13] G. Malan and F. Jahanian. An extensible probe
architecture for network protocol measurement.
Proceedings ACM SIGCOMM, 1998.

[14] S. S. P. Warkhede and G. Varghese. Fast packet
classification for two-dimensional conflict-free
filters. Proceedings IEEE INFOCOM, 2001.

[15] R. Smith, C. Estan, and S. Jha. Xfas: Fast and
compact signature matching. Technical report,
University of Wisconsin, Madison, August 2007.

[16] R. Sommer and V. Paxson. Enhancing byte-level
network intrusion detection signatures with
context. In Proc. of CCS ’03, pages 262–271.
ACM.

[17] H. Song, J. Turner, and S. Dharmapurikar. Packet
classification using coarse-grained tuple spaces. In
ANCS ’06: Proceedings of the 2006 ACM/IEEE
symposium on Architecture for networking and
communications systems, pages 41–50, New York,
NY, USA, 2006. ACM.

[18] N. Tuck, T. Sherwood, B. Calder, and
G. Varghese. Deterministic memory-efficient
string matching algorithms for intrusion detection.
In Proc. of INFOCOM 2004, pages 333–340.

[19] S. S. V. Srinivasan, G. Varghese and
M. Waldvogel. Fast scalable level-four switching.
In Proceedings of SIGCOMM, 1998.

[20] T. Woo. A modular approach to packet
classification: Algorithms and results. Proceedings
IEEE INFOCOM, 2000.

8

