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ABSTRACT

This paper presents an FPGA-friendly approach to track-

ing elephant flows in network traffic. Our approach, Single

Step Segmented Least Recently Used (S3-LRU) policy, is a

network traffic-friendly replacement policy for maintaining

flow states in a Naı̈ve Hash Table (NHT). We demonstrate

that our S3-LRU approach preserves elephant flows: con-

servatively promoting potential elephants and evicting low-

rate flows in LRU manner. Our approach keeps flow-state

of any elephant since start-of-day and provides a significant

improvement over filtering approaches proposed in previous

work. Our FPGA-based implementation of the S3-LRU in

combination with an NHT suites well the parallel access to

block memories while capitalising on the retuning of param-

eters through dynamic-reprogramming.

1. INTRODUCTION

Conventionally, flow analysis tools such as Cisco NetFlow1

form an important component in the administration of an

operator’s network. Amongst other things, they are used for

traffic engineering, making forecasts of future provisioning

requirements, and dealing with network anomalies.

High speed links carry far more traffic than can be han-

dled by the computing resources available within a router, so

tools like NetFlow restrict themselves to simple statistics of

active flows based on a sample (typically 1:1000) of all traf-

fic. As volumes grow, either resources must grow to match,

or sampling rates must decrease. Since volumes are growing

faster than, for example, memory speed and density, sam-

pling rates must decrease, which in turn reduces the quality

— and therefore usefulness — of data collected [1].

The ability to identify which applications generate the

traffic carried is immensely desirable, but that ability is lim-

ited by the information lost due to statistical sampling meth-

ods. Sampling can even distort data to the point that incor-

rect conclusions are reached [2].

1http://www.cisco.com/go/netflow

The parallelism inherent within an FPGA [3], along with

low delay and wire speed processing [4] makes the FPGA a

promising platform in which to implement a more robust

flows analysis solution.

In common with the observation that a small number

of destinations can account for a large amount of network

traffic [5], measurement studies, e.g. [6] have showed that a

small percentage of “heavy-hitters” account for a large share

of the traffic and this has become critical in the design and

engineering of current and future networks [7]. By using the

algorithms introduced by Estan and Varghese [8] for iden-

tifying elephant flows, only packets which belong to these

flows are recorded in a flow state memory. Estan [8] also

define a term elephant flow which we adopt in our work.

Typically, a hash-based filter is used to select for ele-

phant flows. Each flow owns a list of counters in the hash

table, and each counter may be shared between many flows.

With such a scalable approach, it becomes feasible to per-

form flow measurements, even for backbone links. More-

over, with the filter being so selective, the flow table and the

filter are small enough to reside within internal FPGA RAM

resources.

The disadvantage of this approach is that a flow will only

be accounted for once its volume has passed the threshold,

and no state can be assigned to the flow until that time.

We present a novel approach to elephant flows detection

which allows for preserving the entire flow state from the

first packet — thus making the early packets available for

specific flow analysis, such as [9].

We achieve this by means of a flow record cache and a

novel cache replacement scheme. Conventional LRU (Least

Recently Used) makes the assumption that the probability

of an item access decreases with time since its last access.

This has the unfortunate consequence that a burst of new

items may cause the eviction of frequently used items.

The rest of this paper shows how S3-LRU addresses this

shortcoming by combining historic access frequency with

conventional LRU and the distinctive patterns of Internet

traffic workloads, and how S3-LRU is apt to be implemented

within FPGA technology.



2. BUILDING AN ELEPHANT FLOW CACHE

The goal is to design a flow cache that is able to main-

tain flow state for elephant flows since their very beginning.

Our design takes advantage of FPGA technology to keep the

pace with the increasing speed of backbone links.

2.1. Addressing scheme

While there exists many types of high-performance address-

ing schemes (e.g. Fast Hash Table [10], Cuckoo Hashing [11],

and Tree Bitmap [12]), we adopt the basic Naı̈ve Hash Ta-

ble (NHT) [13] because NHT supports parallelisable fast

lookups in multiple memories without additional memory

overhead, and new replacement policies can be added with

minimal effort.

The concept of the Naı̈ve Hash Table is based on using

a hash to divide a search space into disjunctive buckets with

approximately the same number of entries in each bucket.

Searches are made by computing a hash over a request de-

scriptor to locate a bucket, which is then searched sequen-

tially until the target entry is identified.

Since internal FPGA memory is limited, we trade the

false-positive rate for a greater number of table entries. In-

stead of the full flow descriptor, each entry contains only a

small fingerprint of the original IP 5-tuple. The increased

probability of two different flows colliding with the same

hash value can be mitigated by properly dimensioning the

bit-length b of the fingerprint.

The probability of false positives pf can be estimated by

the solution to the birthday problem [14]. For 2h buckets,

the bit-length of the hash and the fingerprint is h + b, there-

fore we have:

pf = 1 −
m!

mn(m − n)!
= 1 −

2(h+b)!

2(h+b)n
(2(h+b) − n)!

≈ 1 − e
−

(n−1)n

2×2(h+b)

where m is total number of distinct hashes and n is the

number of entries in use. Table 1 gives the false positive rate

for several configurations of NHT.

Number of Bit-length of hash (h + b)
entries 40 44 48

4K 1.9 · 10−6 1.2 · 10−7 7.5 · 10−9

8K 4.1 · 10−5 3.2 · 10−7 2.4 · 10−8

16K 1.2 · 10−4 7.6 · 10−6 4.8 · 10−7

32K 4.9 · 10−4 3.1 · 10−5 1.9 · 10−6

Table 1. Probability of false positives (pf )
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Fig. 1. Bucket of NHT maintained by S3-LRU policy.

2.2. S3-LRU

LRU caches are susceptible to the eviction of wanted entries

during a flood of new activity. Flows consisting of only a

few packets are very common, colloquially known as Inter-

net background radiation [15]. S3-LRU includes a mecha-

nism for dealing with this phenomenon using a variation of

Segmented LRU (SLRU). SLRU was introduced in [16] and

it is a variation on LRU.

Similarly to SLRU, an S3-LRU policy divides cache into

two segments: a probationary segment and a protected seg-

ment, as shown in Fig. 1. When a cache miss occurs, the

new flow is added to the front of the probationary segment

in the S3-LRU list and the least recently used flow of this

segment is removed (Fig. 1 (1)). Hits (accessed flows) are

advanced in the list of a single step toward the front of the

protected segment by swapping their position with that of

the adjacent flow (Fig. 1 (2)). If the flow is already at the

front, it maintains its position. The migration of a flow from

the probationary segment to the protected segment forces

the migration of the last flow in the protected segment back

in the probationary segment (Fig. 1 (3)). The S3-LRU pol-

icy protects the cache against traffic patterns that can flood

an LRU cache with flows that will not be reused because

these flows will not enter the protected segment. The size of

the protected segment is a tunable parameter which depends

on the workload. We leave as future work how to select the

proper value, and how to adapt it to changes in the workload.

Together, recency and frequency determine the order of

flows in the two segments — and ultimately which flow shall

be evicted when a new one arrives. Moving each hit by a sin-

gle position means that it is more likely that only the large

flows will compete for the protected segment. This is un-

like SLRU, which moves hits to the front of the protected

segment and thereby keeps both segments ordered from the

most to the least recently accessed flow. Promoting a flow to

the front of the protected segment as soon as it is accessed

weights ordering in favour of recency over frequency, and

that penalizes elephant flows.



3

1

0

1

0

1

0

Optional pipeline

we we we

bram

we

do

di

dododo

di di di dododo

RU

MX

CMP

brambrambram

di

PU

2 2 2
2

Forwarding path

mx & we busS LRU

Fig. 2. Implementation of Naı̈ve Hash Table with S3-LRU

replacement policy in FPGA.

2.3. Naı̈ve Hash Table with S3-LRU in FPGA

We consider that an internal on-chip memory is composed

of many, equally-sized independently addressable blocks, in

case of Xilinx Virtex technology called BlockRAMS. The

lay-out of NHT is a row of dual-port BlockRAMs where

a bucket is composed of words with the same address, an

implementation is displayed on Fig. 2.

Due to the parallel access to all BlockRAMS, all finger-

prints in a bucket are available at once and so the lookup is

performed in a single clock cycle by comparing each finger-

print with the requested fingerprint (CMP).

Once the position of a corresponding flow state is found

it is delivered to the processing unit (PU) via the multiplexor

(MX). The PU updates the flow state and stores it back to a

new position given by S3-LRU policy. If the bucket contains

more than 4 entries it is convenient to pipeline the design in

order to break a potentially critical path caused by a com-

parator, multiplexor and PU in a chain.

The S3-LRU can be implemented on site with no addi-

tional memory overhead by moving entries within the bucket

(as depicted on Fig. 1) or with an additional vector attached

to each bucket which keeps the ordering of flow states while

the entries stay at the same location.

The on-site implementation, on Fig. 2, needs additional

multiplexors in front of memory blocks in comparison to

plain NHT. On the other hand, the vector implementation

requires additional memory with n⌈log l⌉ bits (l – number

of entries allocated per one bucket, n – number of all entries

in NHT). Despite the memory overhead, vector implemen-

tation might prove useful when a flow state is large and is

kept apart from the fingerprint in an external memory. In

such case, the NHT and the vector memory in FPGA are

utilized to lookup a flow state and to maintain the replace-

ment policy as the swapping or shifting data in an external

memory is not an option. For example, consider tracking of

inter-packet arrival times for the first several packets of each

flow. The last packet timestamp and the packet counter can

be kept in NHT inside the FPGA while the inter-packet ar-

rival times would be stored in an external memory word by

word.

The additional logic consumed by S3-LRU is negligible.

An exemplary output of the S3-LRU unit for an on-site im-

plementation is given in Table 2. The unit must drive control

signals of multiplexors (mx bus) and write enable signals of

BlockRAMs (we bus).

Reqests mx bus we bus

insert c (0,0,1,0) (0,0,1,1)

update b (0,0,1,0) (0,0,1,1)

update b (0,1,0,0) (1,1,0,0)

insert d (0,0,1,0) (0,0,1,1)

Table 2. An output of an on-site S3-LRU unit. The setup

and sequence of requests corresponds to Fig. 1 with its initial

content of a bucket (x,y,b,a).

Either implementations are scalable in size and speed.

Both parameters may be improved by allocating additional

parallel modules of NHT. Part of a flow fingerprint would

determine not only a bucket but also a module to hash in.

The analysis of pipelined NHT reveals two scenarios

when additional steps must be taken to maintain stable per-

formance. The three level pipeline would have to be flushed

when 2 requests target the same entry in an interval shorter

than 5 clock cycles otherwise changes made by the first re-

quest would not be accounted for later on.

An examplatory case is presented for maintaining flow

states of 100 Gbps traffic. A clock cycle of 7 ns allows to

update a flow information for every packet even if the traf-

fic is composed of the shortest possible IP packets but at the

same time the throughput of any flow in the traffic cannot

be higher than 20% of the link capacity (20 Gbps). Oth-

erwise the distance between two packets belonging to the

same flow would be less than 5 clock cycles (35 ns), and the

flow state would not be stored back in the memory before its

next retrieval.

This could be overcome by forwarding the PU results

back to its input (Fig. 2 (Forwarding path)) and notifying

the S3-LRU unit to update information driving the control

signals in the next clock cycle. Subsequently, a Reservation

Unit (RU) at the input of NHT can control the distance be-

tween requests for the same flow state and may reorder these

by inserting other requests in between to make the distance

larger than 5 clock cycles or by joining the same requests

next to each other so the forwarding path may be utilized.

Another issue arises from requests that target the same

bucket but are of two different flows. We solve it by stalling

such requests until previous request has not been processed.

Such situations are rare since most of the requests are dis-

tributed uniformly among all buckets.



3. EVALUATION

We prototype the system on NetFPGA platform [4]. There-

fore, the elephant flow cache (the on-site solution) was writ-

ten in Verilog and synthesized (XST 10.1) along side with

other components for Virtex-II-Pro-50 (speedgrade -7). The

NetFPGA on-chip infrastructure (MAC cores, DMA engine,

etc.) already consumes over a half of the memory and logic

resources. In order to save on-chip resources, the extensions

to overcome conflicts in the cache were omitted without any

consequence since the incoming packet rate is anyway lim-

ited by the bandwidth of available network interfaces.

Configuration # BRAMs # Slices Frequency

512 × 32 × 32 33 2394 154 MHz

512 × 32 × 40 65 2560 143 MHz

1024 × 16 × 32 33 1117 154 MHz

1024 × 16 × 40 65 1708 154 MHz

Table 3. FPGA resource consumption by the elephant flow

cache. Configuration: # of buckets × # of entries per bucket

× fingerprint bit-length.

The achiavable frequency and the resource consumption

of several configurations were observed as summarized in

Table 3. These results were acquired using a separate round

of the synthesis process when the cache was synthesized

without other components that might influence the reported

frequency.

Clearly, the parameters reported by the synthesis pro-

cess are only estimates since physical placement on the chip

is not yet known as the interactions with other components

have not been accounted for.

Therefore, we place the flow cache in the design that

already accounts for 131 (56%) BRAMs and 16789 (71%)

Slices. The design itself can placed and routed while meet-

ing the constraint given by 8 ns clock cycle (125 MHz). We

gradually increase the size of each bucket and the bit-length

of a fingerprint while maintaining a constant number of to-

tal entries. We are interested in a situation when a critical

path is caused by the elephant flow cache rather than by any

other component (Table 4). Note please that the entries con-

tain only a fingerprint so the limiting points might be re-

vealed. If the additional data are added into an entry the

overall number of entries decreases proportionally which is

the case presented during our experiments with S3-LRU .

The results show that the size of a bucket is limited to

a maximum of 32 entries with 32-bit fingerprint. The crit-

ical path is then caused by the comparator of a requested

fingerprint with multiple fingerprints from a bucket. For a

high end system that processes 10 Gbps links and above, we

expect faster and larger FPGA such as Virtex 5 with more

available memory capacity and better timing performance.

Bucket size Bit-length of fingerprint b

[entries] 24 32 40

16 125 (3) 125 (5) 125 (11)

32 125 (39) 125 (96) 116

Table 4. Achieved frequency of elephant flow cache with

16K entries in fully routed design. Value in brackets gives

the time (in minutes) that the router took to route the design.

We use two 30 min traces of Internet traffic: one (HALL)

from the 1 Gbps edge link of a large university campus and

an anonymized, unidirectional trace (CENIC) from NLANR

(collected at the 10 Gbps CENIC HPR backbone). Table 5

summarizes the working dimensions of our traces.

Trace Duration Packets Bytes Avg. Flows

HALL 30 min 57 M 35 G 14.9 K

CENIC 30 min 58 M 54 G 4.4 K

Table 5. Working dimensions of our traces.

In our experiments we define flows in the same manner

as NetFlow: by the 5-tuple of source and destination IP ad-

dress and port and the protocol number. As in [8], we chose

to use a measurement interval of 5 s in all our experiments.

We assume our implementation can use about half Mbit of

memory (1024 entries2).

Our goal is to measure the percentage of large flows

tracked by the flow cache with different replacement algo-

rithms. We adopt the definition of large flows from [8]. We

look separately at how well the algorithms perform for three

reference groups: very large flows (above one thousandth of

the link capacity), large flows (between one thousandth and

a tenth of a thousandth) and medium flows (between a tenth

of a thousandth and a hundredth of a thousandth).

Algorithm
Group (flow size)

> 0.1% 0.1. . . 0.01% 0.01. . . 0.001%

S3-LRU 0.14 0.24 0.88

SLRU 17.10 10.20 35.50

LRU 23.53 12.60 41.72

Table 6. Unidentified flows [%] for S3-LRU vs. SLRU and

plain LRU using 32 buckets each of 32 entries.

Table 6 presents the results averaged over all runs and

measurement intervals. By several experiments we have es-

timated the proper size of protected and probationary seg-

ment being 30% and 70% respectively. Our replacement al-

gorithm is able to obtain lower values of unidentified flows

for all the tested conditions.

2As in NetFlow, we use 64 bytes per entry.



4. RELATED WORK

Our work is inspired by the traffic accounting scheme of Es-

tan and Varghese [8]. They proposed a novel byte-counting

algorithm based upon a Multistage filter, a structure derived

from counting Bloom filter, which focuses upon the identifi-

cation and monitoring of a small number of elephants. How-

ever, the filter method is not suitable for assigning a state to

a flow until it has reached the threshold.

The efficient storage of a flow information has been a

research interest for many years. Many indexing schemes

were suggested (e.g., [12]) but the most popular ones are

variations of hash tables [10, 11].

The LRU replacement is widely used for management

of virtual memory, file buffer caches, and data buffers in

database systems. Many efforts have been made to address

its inability to cope with access patterns with weak locality.

For example, Jiang and Zhang [17] have proposed a novel

replacement algorithm called Low Inter-reference Recency

Set (LIRS) which uses the number of other distinct blocks

accessed between two consecutive references to a block to

predict the next reference time. However, to the best of

our knowledge, this is the first work to propose a variant

of LRU that specifically considers the problem of elephant

flows identification for network flows.

5. CONCLUSION

Most of the network traffic processing requires maintaining

a state information on a per-flow basis which leads to a us-

age of external memories to store all the concurrent flows.

Inevitably, the time to access data in external memories is

longer than the time to access the on-chip block memory,

which poses a bottleneck in current usage of FPGA for high

speed monitoring.

We approach our solutions by presuming that for many

network applications it is sufficient to maintain flow-state

for the , large flows only. This paper presented a Single Step

Segmented Least Recently Used (S3-LRU) policy, which is

a network traffic-friendly replacement policy for maintain-

ing flow states in a NHT.

Our concept of the S3-LRU preserves information of ele-

phant flows while conservatively promoting potential ele-

phants and evicting low-rate flows in an LRU manner. Us-

ing S3-LRU for identification of elephants allows our ap-

proach to maintain the flow state since the system-start and

is our key difference to the filtering approach proposed in

previous work. We offered two possible implementations

of S3-LRU in FPGA and showed that S3-LRU in combina-

tion with NHT mapped very well onto FPGA architecture

where it benefits from parallel access to block memories

and the possibility of tuning parameters through dynamic-

reprogramming the chip.
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