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Abstract—We present a per-flow packet sampling method that factor of ten in bytes) to just that traffic required to permit
enables the real-time classification of high-speed network traffic. practical implementations at one Gigabit/s, and, usingtdich
Our method, based upon the partial sampling of each flow (i.e., hardware assistance, ten Gigabit/s.

performing sampling at only early stages in each flow’s lifetime), . - .
provides a sufficient reduction in total traffic (e.g., a factor of There already exists a prodigious quantity of work on the

five in packets, a factor of ten in bytes) as to allow practical sampling of streams of packets; for example, Duffield [7]
implementations at one Gigabit/s, and, using limited hardware provides an excellent review of the field. This researchedsff

assistance, ten Gigabit/s. from most sampling techniques in that we specifically wish
l. INTRODUCTION to ta_lrget the flrstJ. packets of each flow within a traffic-

o o . multiplex. By focusing upon only a fixed number of packets

Accurate real-time identification of network-based tralic o4y \yithin each flow we can discard all remaining packets of

an important factor for solving difficult network managerher, o\, Our approach provides the compliment to a number
problems including network-security, accounting, traligi- ¢ eyisting network (application) classification schemes —

neering, and new class-of-service offerings. permitting their realization at high speed.

. Trgditionally, traffi_c classi.fica'tion was r.ealised by simpl" \nve consider that our approach to flow-sampling permits
inferring the controlling application’s identity from these of ¢ iy plementation of such traffic schemes for the future of
TCP or UDP port numbers under the assumption that Mg} 4nced network monitoring, network resource management

applications consistently use ‘well-known’ ports. HOWEVe 5, ma)y detection, application-specific strategies araark
this technique is no longer effective because many apitst auditing activities

are increasingly using ephemeral port numbers [1].
Recent research on Internet traffic classification has liroug II. METHODOLOGY

many interesting ideas and methods that do not rely on ‘well-his section gives an overview of the design of the per-

known’ port numbers. Most of these newer schemes classify,, packet sampling scheme. This scheme is shown dia-

traffic by recognizing statistical patterns in externallyserv- grammatically in Figures 1 and 2. The scheme operates by

able characteristics. Particularly, alongside Intrudietection defining a time window of lengthV and identifying the

Schemes (IDS) such as Snort [2], there have been a nUMBes 7 nackets from each flow that occur within that window
of flow-classification mechanisms discussed in the I'temtu(typically several seconds long). As can be seen the scheme i
(e.g., Li et al. [3], Bernaille et al. [4] and Crotti et al. J5] gyryctured into two levels. The first is the sampling meckani
t_ha_t are able to provide high accuracy with access to only,aich operates at the per-packet level (Figure 1) and the
limited numb_er of packets from each flow. _second is the memory allocation algorithm (Figure 2) which
However, in order to collect flow features and classi perates on a per-window level (and thus the time scale is

several hundreds of thousands of concurrent flows (WhigRyera| orders of magnitude higher) and sets the parameters
is typical of high-speed links), these schemes are asmc'%quired in the first level (specifically the;, j = 1,...,.J).

with significant consumption of memory and computational | this work, we define a flow as a bi-directional stream

resources. There are in fact definite trade-offs to be mage jackets identified by the usual IP five-tuple: source and

between the classification performance and the resource cg@stination addresses. 1P protocol, and source and déstina
sumption of the actual implementation [6]. ’ '

_ o _ports.
In this paper we present a new method of inline, real-time, A the per-packet level every packet initially has its flow

classification for high-speed networks. Our method, basgflntifier extracted (i.e., the IP tuple). This identifiertien
upon _the .part|al sam_pllng of each flow, permns sufﬂmerused to query the first Bloom filter to determine if it has been
reduction in total traffic (e.g., a factor of five in packets, 8een before (a Bloom filter may be considered a lossy memory
This work was done while Marco Canini was visiting the Computedev'Ce as will be explained in detail later in Sec’qon I.IIDJtI )
Laboratory, University of Cambridge. has been seen before then the second Bloom filter is queried



et P = current packet
|<_>| let f flowidentifier of P
for i :=1 .. J
b :=BloonFilter[i]

| | sample if query(b, f) = true
| ifio=J

di scard(P)
m m; ms | - | my br eak
FL TG Log o
discard add(b, f)
sanpl e( P)
Fig. 1. Per-packet level of the sampling scheme. br eak
FT="""——""7"7AR Fig. 3. Algorithm for updating the Bloom filters within thente window.
n,(t-1)
=z | g% inSto[0,...,m—1], and supports two basic operatioastd
(BD andquery.
o The index functions are traditionally assumed to be hash
i < functions with the standard assumptions that they are rando
L % uniform, and independent, though these assumptions can be
ny(t-1) » AR model No(t) > 8 N replaced with universal hashing arguments [8].
o Given an elementzr € U, a Bloom filter supports the
5 operationadd( «) which uses the hash functions to generate
ﬁJ(t) m k indices into the array and sets the corresponding bits to 1.
n(t-1) — AR model > - The operatiomuer y(y) tests if an elemenj € U belongs

to the setS by computing thek indices fory and checking

whether all referenced bits are 1. A negative query clearly
indicates that the element is not in the Bloom filter, but a
positive query may be due to a false positive; the case in

and so on until either a negative response is returned dnall tvhich the queried element was not added to the Bloom filter,
Bloom filters return a positive response. A negative responRut all & queried bits are one (due to other additions).

in the jth filter indicates that this is thgth packet from this ~We now introduce the theory required for selecting the
flow (in an ideal case) and it is thus selected for sampling. fPPropriate dimensions of the bloom filters. First a thecaét
addition, this IP tuple is added to the Bloom filter, so that thexpression will be constructed and then progressivelyeela
next packet from this flow will obtain a positive answer froni© allow easy online implementation. The theory behind Bioo
this filter. In the case that all the Bloom filters return a giesi filters is well known but is repeated here as this particular
answer then (ideally) this is not one of the fisspackets in the application has several deviations from the usual sitnatio
flow and is discarded. Figure 3 shows the pseudo-code for thduring an insertion, the probability that a certain bit i no
described algorithm. As will be explained later, the amanfnt Set by a certain hash function 1s— 1/m. Considering allk

IP tuples that theith Bloom filter can hold is directly related hash functions, the probability that a certain bit is notiset

to the amount of memoryp;, assigned to this filter. The aim 1\*

of the per-window level is to optimally divide a central bkoc P(bit not sej = <1 - ) (D)

of memory, M, into J different portions. At the per-window m

level an estimate of the optimal memory allocation for the If ¢ (distinct) elements have already been added then the
next window is required. As this is based on the number dfrobability that a particular bit is still O is:

IP tuples that will be stored in each Bloom filter;, at the 1\ ¥

end of thenextwindow a prediction of these values is needed. P(bit not seti) = (1 - ) (2)
This is discussed in detail in Section IV. m

Fig. 2. Per-window level of the sampling scheme.

And so, when the filter containselements, the probability

[1l. PER-PACKET LEVEL SAMPLING of a false positive (i.e., alk bits have been set) is:
A Bloom filter is a simple space-efficient probabilistic data . 1\~ k
structure for representing a subset= {z1,zs,...,z,} of n P(fp\i)=(1- (1 - m) 3)

elements of some univergé in order to support membership
gueries. A Bloom filter is implemented as an arraynoits, It can be shown [9] that if a Bloom filter is designed to
initially all set to 0, usesk hash functions mapping elementsold at most» (distinct) elements then the optimal valuefof



is In 2(m/n). This value minimizes the probability of a false In our application, we are clearly interested to find a con-
positive after alln elements have been added to the filtefiguration of the filter parameters that minimizes the number
However, in this application we are interested in the numbef false positives (i.e., Equation 5). In Section IV we ofter
of false positives that occur as the Bloom filter is being dille detailed description of an algorithm that computes an egém
Consider the start of a new flow. Querying the first filter witlof n; and from that derives the optimal allocation of memory
the identifier from that flonshould obtain a negative answerfor each filter {»;). Here we just anticipate one result from that
(if there is no false positive), thus the flow identifier wile b section: the ratien; /n; is constant for any filtey (thereforek
included in the Bloom filter. Subsequent packets from this flois the same across the filters); and we focus on the parameter
will definitelyobtain a positive answer and so will be shuntedhich constitutes a complicated factor for accuracy: tomyna
onto the next Bloom filter for consideration (multiple fiker or too few hash functions lead to suboptimal performance.
will be considered later in this section). Thus, for anakgzi  One approach to minimizing the expected false positives is
the number of false positives, with respect to this Bloonefjlt to differentiate Equation 5 with respect toand set it equal
only the first packet from a new flow need to be considered. ta 0 to find the global minimum. This method gives us the
fact, each first packet can cause exactly one false posiitbe wnon-discrete optimal choice @f, but it should be noted that
probability given by Equation 3. Therefore, we can formellathas to be an integer value. Rounding to the nearest integer is
the expected number of false positives for the first fillgif;], a reasonable fix but does not always result in the best déscret
by summing over the total number of flows which gives: k. However, Dillinger et al. [10] in their work on probabilist

N verification of finite-state transition systems, have régmbthat

a 1\" the value ofk that minimizes Equation 5 for a givem, /n;
ElR] = Zl (1 N (1 N m) ) ) (independent ofj) can be estimated using a fitted curve:

m44.2)
We now consider the case for multiple Bloom filters. Kom/n = [3-8("+ ) glnz] (6)

Suppose there ard Bloom filters arranged such that any yote that we now use this formula to compute in

flow |dent|f|er_ that obtains a match in the f!rst _f||ter is teSte%quation 5 because we assume the ratig/n; is constant
for a match in the second and so on until either no mat will be shown in Section IV.

is found (and so this flow identifier is recorded in that filter

and the current packet gets sampled) or all the filters repért Alternatives to Bloom filters

a match (and so the current packet is discarded). Assumingne alternative to Bloom filter is the Counting Bloom
a flow with a number of packets greater than the number fifer [11], where each entry in the filter is not a single bit
filters, ideally thejth packet from this flow should cause &ut rather a small counter. This modification to the standard
match in all the filters between the first up to the 1th, while Bloom filter supports a enpve operation which allows the
the jth filter should return a negative answer. However, thereimber of stored elements to change over time. Even though
is the possibility that a false positive has previously soedi this would appear ideal in the current application as floves ar
in one of the firstj — 1 filters, in which case thgth packet constantly starting and finishing, it is not appropriatesuese

will be considered by thej + 1th filter (or discarded if it another storage mechanism would be required to maintain
exhausts all the filters). In this case there will be fewelkpé& a state for each flow along with its identifier. In fact, such
sampled in this flow than desired. In general, for a given floimformation is needed to remove the flows from the counting
f, the number of sampled packets is bounded by the minimBfoom filter after a time out has been reached. This additiona
betweenf’s packet count and/ minus the number of false mechanism would add complexity, while we desire to design
positives that affectg. Thus a false positive is equivalent toa simple one and easily implementable in hardware. More
a sampling error and the expected number of false positiviegportantly, it would contrast with the principles behindro
E[F] over all the Bloom filters is the appropriate measure tscheme where the main idea is to avoid maintaining per-flow

use in evaluating the system: information by exploiting the space efficiency of Bloom fike
N in combination with a time window that excludes the necgssit
J  nj ki . .
1 of removing elements from the filters (except at the end ofieac
E[F]) = § 1—(1-—— B) . ! i
et m; interval when the filters are emptied).
J=1i=

Bloom filters are not the only probabilistic data structure
wheren; is the recordednumber of flows with (at leastj that can be used to realize the packet sampling scheme. We
packets andn; is the memory assigned to thgh Bloom briefly comment on the use of Multistage filter [12] akdry

filter. It should be noted that; will differ from the actual sketch [13] (although an in depth comparison of these meathod
number of flows with (at least) packets due to two factors;is beyond the scope of this paper).

the first is that false positives in the- 1th filter will effectively A different approach to using a bank of Bloom filters is
be treated as flows of length (thus increasing:;) and the the Multistage filter (a variation of Counting Bloom filte#.
second is that false positives may occur in jiie filter (thus Multistage filter is composed af hash stages that operate in
reducingn;). The effect of these factors will be examined irparallel. A stage is a table @fcounters which is indexed by
Section V. a hash function computed on the flow identifier. Each stage



uses an independent hash function. When a packet comesomponents of the flow identifier can be picked out of the
a hash function is computed on its IP tuple for each stage apakcket at line rate. This is a low cost operation in an FPGA.
the indexed counters are incremented by one. If a packet m&pge the complete flow identifier has been collected,jthe:
to counters of/ or more atall d stages then this indicates thatash functions compute their values in parallel.
J packets or more have already been seen for this flow andt is a feature of some hash functions, such as CRC,
so this packet is discarded. that a result is available in as few as 1 cycle and since
In the Multistage filter, there is the possibility that thestatic memories have similarly low access latencies, inyman
counters are incremented by more than one flow (i.e.,cases the overall result will be ready even before the whole
collision). When a new flow starts, its first packet might mapacket has been received. Computationally, the most eikfgens
to d counters that are shared with other flows. This conditicmomponent of this process is the calculation of the hash,
leads to sample fewer packets for this flow than desired. The system speed (i.e., clock speed) is limited only by the
main problem for using this data structure in our applicat® complexity of the hash functions chosen. For example, a 10
that it is possible that not even a single packet from a agertdbigabit/s link can be readily accommodated by a pair of 64
flow is sampled (i.e., when alf counters are/ or more). bit datapaths clocked at 200 MHz. Such clock frequency is
However, when using a chain of Bloom filters, the event a&adily feasible in modern FPGA architectures, and thege ar
a false positive in one of the Bloom filter is not likely toplenty of hash algorithms that can be made to run at this speed
cause a false positive on a later filter of the chain becauseDharmapurikar et al. demonstrated in [14] the feasibility
the hash functions are chosen independently at random &6rimplementing Bloom filters based packet classification
each filter; this makes the method more robust to the errorsafjorithms at OC-192 link rates. The algorithm publishezt¢h
the underlying data structure. Even though the overall mmbvas capable of handling 38 Mpkts/s in hardware using externa
of collisions in the Multistage filter has been found to bstatic RAM. Similarly, the algorithm presented here could
lower [12], the chain of Bloom filters is preferable in thisnake use of external static RAM.
application due tq thg nature of thosel false p_ositives. . IV. PER-WINDOW LEVEL MEMORY ALLOCATION
A k-ary sketch is similar to the Multistage filter. It consists , ) . ) .
of H hash tables of size.. The hash functions for each hash This section considers the segmentation of the available
table are assumed to be chosen independently at random ffgmory for allocation to each Bloom filter (i.e., the; in

a class of 2-universal hash functions. The sketch is stsetha Equation 5_)' Th_ere a_\re two issues to be_ dealt With_ here;
H x m table of registerd[i][j], € [H], ] € [m]. Denote the first, Equation 5 is quite cumbersome and is computationally

hash function for the'" table byh;. Given a flow identifier EXPeNsive to calculate. Second, the quantitiggre unknown
z, a k-ary sketch supports the operationsert (z) which because they correspond to the number of flows with at least

increments the count of buckét(x) by one for each hash J packets thaWiII be seen in the next window, and so these
table. LetD = Y., T[0][j] be the sum of all updates to theh@s to be predicted. _ _ .
sketch (we arbitrarily use hash table 0 as all hash tables sunThe optl_mum_ value for then; is subject tq the constraint
to the same value). If annser t () operation is performed that there is a fixed amount of memory available:

for each flow identifier in a packet stream, then for any given J

flow identifier in a packet stream, for each hash table theevalu > omj=M (7)

Ul = W constitutes an unbiased estimator for i=1

the packet count, of the flow identified byxz. A sketch where M is the total amount of memory available. As far
can then provide a highly accurate estiméig’ for any flow as the authors know a closed form solution for Equation 5
identifier z, by taking the median of thé/ table estimates. subject to the constraint in Equation 7 is not possible (even
In our situation, we would not perform an insert operationsing the simplifications known in the literature for the &ho

for every flow identifier, because we are only interested fiter theory). Thus the MATLAB constrained minimization
count up toJ packets for each flow. Therefore, given a flovalgorithmfminconwas applied to find the optimal allocation of
identifierz, before updating the sketch we could compiifé’  them; in order to minimize the number of false positives. The
and compare its value witli: if less then the array is updatedoptimumm; are very close to those achieved when/n; =

and the packet is sampled, otherwise the packet is discardeq/n; with i £ j. This simplification facilitates easy online
For the current application, tHeary sketch presents the samestimation. Specifically, given that the (near) optimaleabf
kind of problem as the Multistage filter doesLif*' is in error m; is achieved whemn;/n; = m;/n; with i # j implies:

at the beginning of a new flow then all the packets belonging .
to this flow will be discarded. my —an; =0forj=1,....J ®)
whereq is the required ratio ofn; /n;. Equations 7 and 8 are
linear inm; and may be easily and quickly solved.

The abundance of flipflops and ease with which pipelines The second problem, predicting is now discussed. There
can be constructed within FPGAs make FPGAs well suited fare many time-series forecasting algorithms which can all
the implementation of the algorithm we present in this papdre applied to this situation (see for example [15]). How-
As packet data pass through a series of pipeline stages, ¢kier, considering the need for online implementation of¢he

B. Per-packet level implementation



algorithms, we regard the Auto Regressive (AR) model as
appropriate for this situation. An AR model consists of &irlg
regressing on the time-series of interest using the model:

250

P 200 14
g (k) = > Ok — i) + € (k) © L Mm
i=1 § 150 Hf‘ ; ‘*‘«LM“L 1
where 7, (k) is the predicted value ofi;(k) at time (ie., = iy 4 Al
. J . B T . 2 % Jic M\
window) k, 6; is the ith parameter associated witth re- & 100 %;@ I
ressorn;(k — 1), €;(k) is a residual, ang is the order of & i I Tt
g n;( i), €;(k) o @ Ss@; e %ﬁw

the model. The order of the model may be estimated using -, Ve
the standard Box Jenkins approach by examining the auto-
correlation function and the partial-autocorrelationdtion of

i - 1 i I < Q O, [2 o. Q o, [@) 12 @) O < < <
the time-series (see [15] for full details). Given the qrd[a'lhe. % o, %0, %o, %o, %4, Ca, B, “a, C, o, P, 4, %0,
model, the parameters may then be estimated using ordinary Time [s]

least squares or in the presence of outliers some form oktobu
least squares (although this would increase the compIeXity_Fig- 4. TCP bandwidth of our reference trace measured usir@pes time
the implementation). interval.

One complication is that the value of (k—1) is itself only
available at the very instant it is required (at the very ehd o
the last window and start of the current window). Thus, no
sampling can take place during the time required to compute 4o
the estimate for the memory allocation. In order to avoid thi 35
situation from arising, either the previous estimateng{k)
may used in place:

45
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Packet rate [Kpkt/s]

fj(k) = 0viy(k = 1)+ Y Ok —i)+e;(k)  (10)
=2

or an estimate based on a partial count:9fk — 1) may be 1

used (e.g., if we are half way through the previous window

we could simply double the count as an unbiased estimate of ©

n j(k - 1)) Tz9‘00 0000 %00 oe'oo 0%0 0%0 0%0 o%o 0)’00 0(?00 0900 \;0‘00 J{Oo \;ebo
Finally, consider the value of’. We can assume that; Time (<]

depen.ds linearly OW’ and so Equation 5 becomes a fun.c.tloaig. 5. TCP packet rate of our reference trace measured usl2§ & time

of W in n;(W). Given an acceptable level of false positivesiterval.

(subjectively selected) the appropriate value 16T can be

easily estimated by use of a search algorithm (as the number

of false positives is a function of the window size). flow for our trace. Note that a “linear” relationship in sucig!
log scaled plot indicates consistency of the tail with a Rare
V. RESULTS distribution. The plot reveals insight about how efficigntl

sampling up to the/** (with J small) can serve in terms

of reducing the volume of data that a flow classification
In order to evaluate the sampling scheme, we use traffigplication has to deal with. Further, taking equal to 10

traces collected from the edge of a research institute @ede results in less than 4% of the flows not being sampled

to the Internet via a full-duplex 1 Gigabit Ethernet link.tms  completely.

paper, we present the results obtained by using a 12 hour longrigure 7 shows the number of active TCP flows measured

trace. In addition, results from other sites where testedl agsing a 120 s time interval. The spikes shown in this figure

found to give similar results (but are not reported for bisgvi are very likely port and/or address scans.

We only consider TCP traffic, as it constitutes the majority

of the traffic volume for our trace. Figures 4 and 5 shofR model

the link utilization and packet rate respectively of TCHfica ~ We now describe how we obtained the AR model for our

measured using a 120 s time interval. The actual maximurace and present the related results. First, we measueed th

link utilization is at around 360 Mbit/s while the maximumactual value ofn,(k) for eachk, for every 120 s interval

packet rate is above 56 Kpkts/s. of the trace, by substituting an accurate set implememiatio
Figure 6 plots the (empirical) complementary cumulativio the Bloom filters in our scheme. Figure 8 shows the partial

distribution function (CCDF) of the number of packets peauto-correlation function (PACF) for; (k) andns(k) together

Dataset overview



Packet per flow distribution
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Fig. 7. Number of active TCP flows of our reference trace medsusing

a 120 s time interval.

with the 95% confidence intervals. As can be seen, there

appear to be significant lags at several values /@(k).

However, once the outliers are removed from the data the

PACF resembles that ais(k) which shows significant lags
only at 1, 2 and 3 implying that an AR model of order 3
AR(3), may be applicable to this time-series. Further, iswe
found that an AR(3) model appears applicable in all cas
(this is not surprising considering the high degree of cros
correlation between the;). The forecast and actual values o
n1(k) andns(k) are shown in Figure 9 and 10 respectively.

Table I, summarize the parameter estimates and statis!
for the AR(3) models trained for 10 Bloom filters. In orde
to estimate the parameters, ordinary least squares was L
and the dataset was split randomly into a training set (2
of the data) and a test set (1/3), uniformly distributed ssro
the data. As can be seen there is good agreement betw
the Mean Squared Errors (MSE) obtained in the training a
test sets showing that the models have generalized well. 1

Mean Absolute Percentage Errors (MAPE) are given for ea_,
interpretation of the results, and these show that on aeerag

the forecast is within 4% of the actual.
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n; 01 D 03 Training set PMSE| Test set PMSE
ny 0.65| 0.19 | 0.16 10014 16618 40000 : —— : :
ny | 1.07 | -0.17 | 0.10 3459 4907 i lo sol.
ns 0.79 | 0.04 | 0.16 1600 2075 35000 expected fp —+—
ng 0.85 | -0.07 | 0.22 1682 1607
ns 0.79 | -0.01 | 0.23 1601 1759 30000
ng 0.75| 0.01 | 0.24 1682 1553 _
nr 0.81| -0.11 | 0.30 1442 1580 % 25000
ns 0.88 | -0.10 | 0.22 1398 1615 g ﬁ
ng 0.80 | -0.13 | 0.33 1405 1418 '§ 20000 ]
nio | 0.75 | -0.04 | 0.29 1230 1374 : #Wﬁ
TABLE | § 15000 i
ESTIMATED AR MODEL PARAMETERS ANDPREDICTION MEAN SQUARED ﬁﬂ%}w
ERRORS 10000 i
5000 Jiﬁ
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To evaluate our method we have run several experiments us-
ing a software implementation of the packet sampling scheme  Fig. 11. Number of false positives, measured and theoretical.
By having a software implementation, we are able to add the
capability of detecting false positives using hash setsitoom

the set represented by each Bloom filter. 160000 e e
K . . 'recorded nl —— estimated ny fAnas acttal n1 —et
Choosing k& independent hash functions for each Bloom 140000 recorded g sstimated ny actualng - |
filter constitutes a practical problem. In our implemermtafi b 10 ’ﬁ
we used two different hashing techniquég: universal hash- 120000 ? »

ing [8], and (ii) enhanced double hashing [10]. Theoretically,
universal hashing has the property of behaving as a random 100000
function of the input set which ensures uniformity of thepuit % 80000
values. The reason for choosing enhanced double hashing o‘gue
universal hashing is that it only requires the evaluatiohaaf
hash functions to generateindependent indices, making the 40000
execution faster [16]. Our implementation of enhanced toub
hashing uses Jenkins’ hash function [17] with two randomly

60000

20000

chosen initial values to hash a flow identifier iktindices. We 0 g )
found that the results (omitted for brevity) given by usihe t % % % 9, % %9 C% 20 % % %% Yo, %, o
universal hashing technique are very similar to those nbthi Time [s]

with enhanced double hashing, in accordance with [16]. , , ,
Figure 11 shows the number of false positives, theoretlcé’%?d Me 5121Kgor 7 € [1,3,10], estimate and recorded with=10, V=120

according to Equation 5 (shown as “expected fp”) and mea-

sured for two experiments. For these experiments we used

J =10, W = 120 andM = 512KB. Shown as “ratio sol.” 7000 , -

is the the simulation in which we have used the memory 2 —

allocation obtained by computing the Equations 7 and 8 far. o000

every interval, using the actual; previously measured to

derive the AR model. This represents the best possible casg, sooo

i.e., when the forecast of AR model is exactly the actualealu

Finally, “ratio ad sol.” refers to the simulation of our meth

using the adaptive memory allocation algorithm. In thise¢as

the estimate of; is based on theecordedn; for the past three

intervals. As can be seen there is good agreement between

expected number of false positives in all cases. The foligwi

figures refer to the “ratio ad sol.” experiment.
Unfortunately, the estimate ofi; is not always correct. 1000

Figure 12 shows the estimate of; over time compared

to the recorded value at the end of every interval. These Time [s]

estimation errors yield to sub-optimal memory allocati@ss

it is the case for the traffic spike at about 11:30 in Figure 1 |g_13 Number of false positives per Bloom filter, measureth wi = 10,

120 andM = 512KB.
There the measured number of false positives is above the

Iter [#
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e
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Falsgpositives per Bloo
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TABLE Il 60000 - 1536KB —*— |
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& 50000 {
§ |
ZE 40000 \“ %
expected one by about 60%. However, when we consider the 30000 | faun
individual number of false positives per Bloom filter, aswho & 450, \ . ’\\ o W
in Figure 13, it appears that only the first few filters of the e e
chain experience a steep increase of false positives. linasin 10000
the other filters (which compensate the false positives ity ea R
: H H N N N < < < < < < < < < <
fllterg by storing more elements), record an evolution ostefgl % s, Py Vg, Yo Yo, s Yo, Yo Y, Y Y Y
positives which is in good agreement with the theoretical Time [s]

results.

Figure 14a shows the percentage of sampled packets for ?’E‘f
“ratio ad sol.” experiment compared to the ideal situatién o
not having false positives. The analogous plot of the pdfcen
age of sampled bytes is represented in Figure 14b. It canthe payload of the few initial packets of each flow. First we ru
seen that, for both metrics the sampling scheme performancewithout sampling on the last hour of our trace. It recogsiz
is close to the ideal case, despite the high numbers of falsgotal of 2,642,841 flows. Then we feed into L7 the packets
positives shown before. In both figures the “ratio sol.” @irvsampled by using our method with/=512KB, J=10 and
is actually below the ideal case. This is because for a sm#lf=120. In this case the total number of flows is 2,636,549.
number of flows fewer packets than desired are samplethe difference is 6,292 (0.0024%) flows. These are esshntial
Finally, note that this scheme achieves reduction in toédfi¢  single or two packets flows that are not sampled because of
in the order of a factor of five in packets, and a factor of tegrrors due to the false positives in some of the filters. Aeioth
in bytes. 6,021 (0.0023%) flows are instead present among the sampled

Table Il reports the average ratio of; /m,. These deter- ones but are not classified by L7, which means that not alf thei
mine the memory allocation and reflect the characteristic pckets could have been sampled, still due to false posiiive
Internet traffic in which the majority of the flows are mice busome of the filters. In total the difference is 12,313 (0.0047
a small number of large flows account for the quasi majorifjows, which causes a negligible loss in the accuracy of L7.
of the packets. However, using this sampling method, L7 experiences adraffi

We now illustrate how the parametkf changes the numbervolume which is reduced of an order of magnitude.
of sampled packets and bytes, how many false positives we _
get and how many flows are affected by false positives afé@ffic spikes
how many packets and bytes which were supposed to benterestingly, the scheme is robust to spikes in the number
sampled don’t get sampled. For the following experiments veg active flows caused by attacks or scans (both IP or port
only test for 1 hour of the trace, the last hour. Figures 1%gans, as they are regarded as an individual flow each). tin fac
and 15b represent the percentage of sampled packets arsd byiging these kinds of attacks there are many more flows having
respectively forA/=512KB and multiples. Figure 16 reportsa small packet count, typically 1 to 3 packets. Potentiatig
the total number of false positives for every interval. is going to create a high number of false positives in the first

Table Il lists the number of flows that are affected byhree Bloom filters, however, it is likely that these flows lwil
false positives and the amount of packets and bytes that arel up in later Bloom filters, assuminigs above 6. Therefore,
not sampled. Note that, for our trace, 512KB of memornhe scheme is sampling all the first packets of each attack or
already provide a good performance, but doubling the memayan flow with high probability.
improves it of an order of magnitude. However, past 1024KB,
the benefit given by using more memory quickly decreases. V1. RELATED WORK

Bloom filters have found application in numerous areas
of Computer Science, most notably in database applications
Finally we tested our method with one flow classificatioand more recently in networking. In [9], Broder et al. have

application and looked at the results obtained by runnirty wisurveyed the network applications of Bloom filters.

and without sampling. We chose to use the layer-7 traffic Related to our work is the traffic accounting scheme de-
classifier (L7) described in [18]. This application uses tiga scribed by Estan and Varghese [12]. They proposed a novel
matching based technique to classify each flow according ligte-counting algorithm based upon a Multistage filter, a
the generating application. L7 uses the information cdriie structure derived from Counting Bloom filter [11], which

16. Number of false positives fav/=512, 1024, 1576, 2048KB with
0 andW=120.

Testing with a flow classification application
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Fig. 15. Sampling metrics foy=10, W=120 andM =512, 1024, 1576, 2048KB.

M Affected flows | Unsampled packets Unsampled bytes
512KB | 5529 (0.0021%)| 517173 (0.0221%)| 199167936 (0.0323%
1024KB | 4863 (0.0018%)| 58007 (0.0024%) | 22907748 (0.0037%)
1576KB | 4274 (0.0016%)| 15830 (0.0006%) | 6535918 (0.0010%)
2048KB | 4237 (0.0016%)| 6086 (0.0003%) 2475934 (0.0004%)

TABLE Ill
FLOWS, PACKETS AND BYTES THAT ARE AFFECTED BECAUSE OF FALSE POSITES.




focuses upon the identification and monitoring of a small
number of elephant flows and leads to an implementatiom
optimized for that specific metric. Our work, focusing upon

packet-counting, results in a different physical struetur

(2]

Kumar et al. [19] introduced a novel data structure, Space-
Code Bloom filter (SPBF), which enables approximate pers]
flow traffic measurements by using multiple Bloom filter
with increasing resolutions and extends the Multistagerfilt 4
approach which addresses the problem of monitoring just a
few large flows. In contrast with that work, we use a chain of°!

J standard Bloom filters wherd is expected to be a small

number (e.g., in the range of 5 to 10). With such few filters if6]
is not efficient to use a multi-resolution SPBF, which is most

suited to account for flow sizes.

In [20], the authors propose the Time Machine, a systernT]
that uses dynamic packet filtering and buffering to enablk bu
recording of large traffic streams. This system implements a

filtering scheme that realizes a flogutoff for every flow, it
only keeps up to the firsK' bytes. Such mechanism is very

El

similar to our sampling scheme, although we use packet coui
as the unit for flow cutoff. However, our approach is based on
probabilistic data structures which can be dimensionedsto gl
just a fraction of the memory occupied by the deterministic

data structure implemented in Time Machine.

Finally, an FPGA-based accelerator for Network Intrusio

tracting some packets for each active flow.

VIl. CONCLUSION

(12]
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