
Hardware
(SMP x86, physical memory, ethernet, SCSI/IDE disk)

Hypervisor

hypervisor
debug

interface
virtual

x86 CPU
virtual

phys mem
virtual

network
virtual

block dev

Domain 0
(XenoLinux)

GuestOS
(XenoLinux)

GuestOS
(XenoBSD)

GuestOS
(XenoXP)

Xeno-aware
device drivers

Xeno-aware
device drivers

Xeno-aware
device drivers

Xeno-aware
device drivers

User SoftwareUser SoftwareUser SoftwareControl Plane
Software

distributed
application

distributed
application

distributed
application

debugger
user interface

network
simulator

debugger

A Fresh Approach to Understanding Distributed Applications

Distributed Event Detection
�User breakpoints and software exception 

trigger dataflow primitive events. Event 
triggers include processes’ state (stack, 
registers, etc) and inter-process
communication.

�Primitive events can be arbitrarily combined 
to form high-level events that represent
application actions.

�A language for recognizing 
complex event patterns that
supports “near miss” 
matches and not just simple 
pattern matching is used.

�Active event processing 
extends passive event 
recognition with the ability 
to change the state of the system.

Fault Injection
�Hardware faults such as memory bit errors; 

node, disk, and network failures can be 
simulated.

�Software faults can be introduced at various 
levels: from random memory page writes to 
process failure to programmer errors.

References
�T. Harris, "Dependable Computing Needs Pervasive 

Debugging",Proceedings of the 2002 ACM SIGOPS 
European Workshop, September 2002.

�P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, 
"Xen and the Art of Virtualization", Proceedings of the 
19th ACM Symposium on Operating Systems Principles, 
October 2003.

System Design
The system leverages the Xen hypervisor (virtual 
machine monitor) from the XenoServers project. 
Multiple operating systems execute concurrently, 
each in a protected domain. User applications run 
unmodified within each guest operating system.

�Debug functionality is embedded within 
the hypervisor.

�A user-space debugger communicates 
via a hypervisor debug interface.

Benefits
�It is possible to view the entire computation in 

a consistent state. There is no need for a 
distributed snapshot algorithm.

�The pervasive debugger controls the entire 
execution environment. User processes, the 
operating system, application libraries, system 
resources (disk or network), and their 
interactions can be debugged.

Alex Ho
alex.ho@cl.cam.ac.uk

The Problem
Understanding and correcting the behavior of 
distributed applications is hard. It is difficult to 
control processes spread out over multiple 
nodes.

Existing solutions can be
characterized as peer 
debugging and utilize a 
conventional architecture:
“just a bunch of debuggers”.

�An invasive debugger,
monitor, or additional
thread runs on each node.

�A central coordinator messages each node
over the network. Unpredictable 
communication delays make synchronous 
operations impossible.

�It is impossible to stop the computation 
atomically on each node.

Our Approach
Pervasive debugging maps 
the entire distributed 
computation onto a single
virtual machine monitor.
�Each node runs in a 

separate virtual machine.
�No changes are required 

to the application, and 
no custom libraries are 
needed.

�Any network topology
between the nodes can be
enabled with a network 
simulator in the virtual machine monitor.ht

tp
:/

/w
ww

.c
l.

ca
m.

ac
.u

k/
ne

to
s/

pd
b/

Operating
System

Operating
System

Operating
System

Operating
System

De
bu

gg
er

Pr
oc

es
s 

1

De
bu

gg
er

Pr
oc

es
s 

2

IPC

Process 1

Virtual Machine Monitor
and Debugger

Process 2

network

peer
debugging

pervasive
debugging

HTTPD RDBMS

F=f1(A,C) G=f2(B,D)

AAAA BBBB

CCCC DDDD

H=f3(F,G)

user
interface
debugger
controller

local
debugger

target

...

central
console

remote nodes

“Just a Bunch of Debuggers”

local
debugger

target


