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Abstract—The measurement and the analysis of the temporal
patterns arising in human networks is of fundamental importance
to many application domains including targeted advertising,
opportunistic routing, resource provisioning (e.g., bandwidth
allocation in infrastructured wireless networks) and, more in
general, modeling of human social behavior.

In this paper we present a novel and exhaustive study of the
temporal dynamics of human networks and apply it to different
sets of wireless network traces. We consider networks of contacts
among users (i.e., peer-to-peer opportunistic networks). We show
that we are able to quantify how the amount of information
associated to the process evolves over time by using techniques
based on time series analysis. We also demonstrate how regular
patterns appear only at certain time scales: network dynamics
appears nonstationary, in the sense that its statistical description
is different at various time scales. These results provide a new
methodology to accurately and quantitatively investigate the
temporal properties of any type of human interactions and open
new directions towards a better understanding of the regular
nature of human social behavior.

I. INTRODUCTION

The accurate measurement and analysis of real-world con-
tact and mobility patterns provide fascinating insights into
the rhythms of people both as individuals and collective
entities. These studies have many practical applications that
include targeted advertising and recommendation [1], efficient
opportunistic networking [13] and content sharing [26], epi-
demiological modeling [17], intelligent resource provisioning
and balancing [34], and urban planning [29].

In the recent years, researchers have conducted large-scale
measurements in Wi-Fi, cellular and ad hoc (in particular
Bluetooth) environments; their efforts have led to the avail-
ability of several sets of traces for performance evaluation of
wireless systems [18]. The characterization of the distribution
of the contact durations (i.e., the durations of the contact
times between the pairs of nodes of a network) and the
inter-contact times (i.e., the average duration of the intervals
between subsequent disconnections and connections of each
pair of nodes) has been extensively studied [5], [15], [12].
These works, however, fail to measure or quantify the periodic
aspects of human behavior. Some high-level temporal aspects
of the dynamics of traces (in particular, patterns of people in
campus and conference environments) have been studied by
Kim et al. [16], Clauset and Eagle [7] and Scherrer et al. [32].
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The main limitation of these approaches is that they are based
on qualitative observations and are unable to help the forecast
of the future dynamics of the emerging human networks.

In this paper, we present a rigorous analysis of the temporal
patterns of human networks based on a novel methodology
founded on results from complex network theory [4] and
linear and nonlinear time series analysis [14]. We consider
networks emerging from contacts among users (e.g., networks
representing peer-to-peer interactions without the mediation of
a central infrastructure). In these networks, the nodes are the
users and an edge exists if two users are colocated (e.g., if the
users are in Bluetooth transmission range or under the same
access point).

In the context of this work, nonstationarity accounts for the
fact that the temporal properties of human contact networks
appear homogeneous at a given time scale, but, instead, they
are heterogeneous across different time scales. Thus, our
approach aims to unveil key aspects of these human networks,
namely the regular nature of their temporal dynamics and the
temporal heterogeneity of their statistical properties, such as
their average number of contacts and the efficiency of the
network itself. More specifically, we exploit diffusion entropy
analysis [30] to investigate the amount of randomness in their
temporal evolution and wavelet transform [23] to study their
stationarity and uncover the presence of regular patterns at
various time scales.

As a main contribution of this paper, we show that the
presence of temporal structures embedded in human network
dynamics can be accurately quantified and evaluated by ana-
lyzing the temporal evolution of their metrics. We describe a
novel quantitative approach based on the concept of diffusion
entropy to estimate how the amount of information in the
dynamics of the network under consideration evolves over
time. We show that statistical properties of human networks
are non-homogeneous over time and are characterized instead
by distinct patterns which can be isolated and unveiled with
wavelet decomposition.

Most of the proposed socially-aware systems based on the
evolution of social network dynamics such as opportunistic
and delay-tolerant communication protocols [22], [34], [8],
[5] are designed on the assumption of the stationary nature of
human contacts. Our result shows instead that the assumption
of stationarity for human behavior does not map to reality and,
furthermore, we describe how to evaluate and identify nonsta-
tionary structures in the temporal dynamics. This quantitave
analysis of nonstationarity can greatly improve the design of



such systems. In the following section we outline the key steps
of our investigation mapping it to the structure of the paper.

II. THE APPROACH AT A GLANCE

Human networks can be temporally characterized by con-
sidering the sequence of contacts among people, in particular,
by measuring the contact duration and the time passed between
two consecutive contacts. Various studies have been conducted
using wireless devices to gather data of this kind over real net-
works. From the analysis of these data our aim is to understand
and quantify the properties of the underlying process that rules
human dynamics. Our analysis proceeds through these steps:

1) Human networks are modeled by means of a time-
varying graph, which is periodically sampled in order
to obtain a sequence of static graph snapshots: a set of
fundamental network metrics (such as degree, clustering
coefficient, global efficiency, size of the giant component)
are evaluated on the sampled graphs; for each metric, we
extract a time series of values describing the evolution of
that particular metric over time (Section IV).

2) These time series are analyzed to understand if their
statistical evolution exhibits deviation from random be-
havior: diffusion entropy analysis [30] quantifies the
degree of complexity of the network dynamics (Section
V).

3) Finally, we show how deviation from pure randomness
may be due to recurrent regular structures that are em-
bedded in the time series: we describe how wavelet
analysis [23] can be used to uncover these nonstationary
patterns and to identify the appropriate time scale at
which they appear (Section V).

III. DATASETS

This paper relies on the following datasets to show the
performance of our analysis:

1) Dartmouth Wi-Fi This dataset was extracted from the
SNMP logs of the Wi-Fi LAN of the Dartmouth College
campus. Data about traffic in the access points were col-
lected between 2001 and 2004 through three techniques:
syslog events, SNMP polls, and network sniffers [12],
[19].

2) Ile Sans Fils Ile Sans Fils [21] is a non-profit organiza-
tion which operates a network of free WiFi hotspots in
Montreal, Canada. It now counts over 45,000 users more
than 180 hotspots located in publicly accessible spaces.
These hotspots are deployed mostly in cafes, restaurants,
bars and libraries, but also outdoor to cover parks and
sections of popular commercial streets.

3) Reality Mining The Reality Mining experiment was held
in 2004 at MIT [7]: 100 smartphones equipped with a
sensing application were distributed to staff and students
of the Media Lab and the Sloan Business School; data
about their usage were collected for a period of 9 months.
Collected information includes call logs, Bluetooth de-
vices in proximity and cell tower IDs among the others.

Network N 〈k〉 〈C〉 EG

Dartmouth 5338 164.0 0.44 0.44
Ile Sans Fils 5297 11.8 0.53 0.21

Reality Mining 94 28.7 0.63 0.64

TABLE I
NETWORK METRICS COMPUTED ON THE GRAPH CONTAINING ALL THE
CONTACTS AMONG USERS FOR THE NETWORKS EXTRACTED FROM THE
DATASETS UNDER ANALYSIS: NUMBER OF USERS N , AVERAGE DEGREE
〈k〉, AVERAGE CLUSTERING COEFFICIENT 〈C〉, GLOBAL EFFICIENCY

EG [20].

Our analysis is based on the concept of contacts between
individuals and between individuals and access points. Dart-
mouth and the Ile Sans Fils datasets contain associations
between wireless devices and access points: for these datasets
we have analyzed both contacts between people and one access
point and inferred contacts between individuals by assuming
that two people are in contact when they are connected to
the same access point. The Reality Mining dataset contains
person-to-person contacts. For each dataset, we consider a time
window of 4 weeks and we analyze all the contacts within this
period. In Table I we report some network properties computed
on the graphs containing all the contacts within each dataset.

IV. EXTRACTING TIME SERIES FROM HUMAN NETWORKS

In this section, we describe the extraction of time series from
human networks. First we model the traces with a time-varying
network which can be suitably sampled to obtain a sequence
of static graphs. Then, we calculate the network metrics for
each graph of the sequence obtaining a time series of scalar
values.

A. Sampling Temporal Graphs

Contact traces are represented as sets of entries in the form
(i, j, tk, tk+1), with the meaning that entities i and j are in
reach between time tk and time tk+1.

Every set of contact traces may be modeled as a temporal
network G(t), where edges between two nodes may appear
and disappear as time passes, while the number of nodes N is
kept constant in order to only capture the dynamics and not the
network growth. This embedding graph can then be sampled
with a suitable sampling interval ∆ to obtain a sequence of
static graph snapshots G1, G2, . . . , GN : two nodes i and j are
connected in the graph Gk if they are connected at any time
and for any duration within the time interval [k∆, (k + 1)∆]
with k = [0...N − 1] and N equals the number of slots in the
time interval.

This sequence of graphs can be analyzed with the tools of
network analysis to obtain scalar series of data or global statis-
tics about the entire sequence. We present this methodology
in detail in the next section.

B. Network Metrics

We analyze contact traces from a global point of view,
focusing on some properties of the time-varying network built
among all the nodes.



Network 〈k〉 〈C〉 EG NGC

Dartmouth 1.05 0.99 1.08 1.01
Ile Sans Fils 0.86 0.70 0.85 0.72

Reality Mining 0.88 0.83 0.90 0.86

TABLE II
DIFFUSION EXPONENTS δ FOR THE TIME SERIES EXTRACTED FROM THE

THREE CONTACT NETWORKS DARTMOUTH, ILE SANS FILS AND REALITY
MINING. A DIFFUSION EXPONENT δ = 0.5 REPRESENTS THE DIFFUSING

BEHAVIOR OF A PURELY RANDOM UNCORRELATED PROCESS, WHILE
LARGER EXPONENT DENOTE CORRELATED FLUCTUATIONS.

We are interested in the following properties of each graph
in the sequence:
• node properties: average node degree 〈k〉 and average

node clustering 〈C〉 [4].
• network properties: the size of the giant component NGC

and the global efficiency EG, which is the harmonic mean
of all the shortest path lengths in the graph [25]. Such a
quantity is a good indicator of the traffic capacity of a
network.

After extracting the sequence of graphs from the contact
traces (as explained above), we calculate the metrics for each
snapshot graph and we obtain the time series for the properties
of network under analysis.

We choose a sampling interval equal to ∆ = 3600 seconds
(1 hour), since this represents a reasonable trade-off which
allows us to capture the dynamical evolution of the different
human networks without obtaining a large amount of redun-
dant data due to oversampling. Contact traces with different
time spans may be analyzed at larger or smaller sampling rates.

V. NONSTATIONARITY AND TEMPORAL PATTERNS

In this section we investigate how the statistical properties
of the time series extracted from a human network evolve
over time. We are interested in nonstationary behavior on time
scales which are comparable to the time scales of typical
human activities. As a consequence, we want to prove that
the evolution of human contacts is not simply ruled by a
stationary stochastic process but, instead, it can be better
described and interpreted by means of structured and recurrent
temporal patterns that are at the basis of people behavior. More
specifically, we answer to the following set of questions:
• How is the information embedded in the time series

evolving over time? We use the concept of diffusion
entropy [30] to uncover scaling behavior in the fluctu-
ations of a time series. Diffusion entropy quantifies the
amount of information over time of a time series and
gives an estimation of how much the underlying process
is different than a purely Gaussian random process.

• Are the properties of the time series changing with
time? How is the temporal information divided across
different time scales? In order to investigate whether time
series evolution exhibits nonstationarity, we make use of
wavelet analysis [23] to uncover recurrent patterns em-
bedded in the time series at different temporal scales and

to understand how various time scales convey different
information about human network dynamics.

A. Diffusion Entropy Analysis

After discovering that many natural phenomena follow cer-
tain scaling laws [24], Diffusion Entropy Analysis (DEA) has
been put forward as a technique for measuring the correlated
variations in time series. DEA is based on the diffusion
process generated by the time series itself; it measures the time
evolution of the Shannon entropy of the probability density
function of this process [30].

As in a Brownian-like trajectory, we interpret the values of
a time series (s0, . . . , sN ) as the steps of a diffusion process.
We define the trajectories of this process by the cumulative
sum of these steps, obtaining a different trajectory xk(t) for
each different value of k:

xk(t) =
t∑

i=0

sk+i, 0 ≤ k < N − t+ 1 (1)

where t is the length of the diffusion process. Then, we
compute the probability distribution function p(x, t), which
describes the probability that a given trajectory has a displace-
ment of x after t steps.

For any particular t, we compute the temporal Shannon
entropy of the probability distribution at time t as S(t) =
−

∑
x p(x, t) log p(x, t). For diffusive processes the temporal

Shannon entropy S(t) of the probability distribution p(x, t) is
evolving according to the equation [30]:

S(t) = δ log t+A (2)

where A is a constant and δ is the diffusion exponent, which
can be numerically evaluated. For a random uncorrelated
process with finite variance, the diffusion distribution p(x, t)
will converge, according to the central limit theorem, to a
Gaussian distribution which exhibits δ = 0.5. When dealing
with discrete time series, the function p(x, t) can be estimated
through discrete histograms px,t, where the bin size should
be equal to the standard deviation of the obtained diffusion
process in order to normalize the results. As a consequence,
the diffusion entropy can be computed as:

S(t) = −
∑

x

px,t log px,t (3)

The estimated diffusion exponent delta can be computed
through a first-order least-squares fit in a linear-log scale. Even
though time series extracted from human networks may not
show a pure scaling behavior as in Equation (2) but, instead,
patterns with oscillations due to periodicities, we can still
observe how entropy grows linearly with time and we can
estimate the diffusion exponent with reasonable accuracy.

As an example, in Figure 1 we show diffusion entropy as a
function of time for two different time series. We have found
similar linear trends in the other time series of all networks.
We report the estimated diffusion exponents in Table II. All
values are larger than δ = 0.5, which is the diffusion exponent
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Fig. 1. Diffusion entropy as a function of time for 〈k〉 (a) and 〈C〉 (b) time
series for the Ile Sans Fils contact network (sampling rate ∆ = 3600s). Data
are fitted with Equation (2) which gives, respectively, δ = 0.86 for (a) and
δ = 0.70 for (b), thus revealing more correlated evolution in the first case.

of a pure Brownian motion, thus the temporal evolution of
the time series exhibits diffusive fluctuations that cannot be
modeled or explained by a random Gaussian diffusion process.
This denotes statistical properties of a time series which might
require different models than purely Gaussian fluctuations.
As a consequence, we know that there is a valuable amount
of information to be exploited in these time series, both for
modeling and prediction purposes.

Furthermore, we can quantify how much information is
embedded in the temporal structures of the time series: from a
general point of view, the Dartmouth contact network appears
as the more regular and less random, while the Ile Sans Fils
one results in lower exponents and, hence, in less regularity.

As an example, the time series of the average clustering
coefficients extracted from the Ile Sans Fils contact network
shows a diffusion exponent which is close to the value that
indicates pure Gaussian fluctuations, probably because public
access points are more likely to register lonely individuals
rather than entire groups of people which meet regularly at
the same place. Therefore, it is more difficult to identify clear
patterns in the temporal evolution of this metric, typical of
strong social structures.

On the other hand, even though the Dartmouth contact
network is also generated from contacts with public access
points, its temporal evolution appears more regular, with larger
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Fig. 2. Origianl time series (below) and DWT wavelet components at
different time scales (above) for 〈k〉 for the Reality Mining network (sampling
rate ∆ = 3600s). For each wavelet components coefficients are rendered in
grayscale with bilinear interpolation: time is shown on the x-axis and different
time scales are reported on the y-axis.

exponents. This may be due to the fact that students and
people working at the Dartmouth campus are more likely to
exhibit uniform time schedules than strangers meeting around
the city. Through the calculation of the diffusion exponent
we can quantitatively understand how temporal evolution of
network metrics deviates from uncorrelated randomness, thus
revealing correlations that can be identified and exploited.

B. Discrete Wavelet Transform Analysis

Discrete Wavelet Transform (DWT) is a mathematical tech-
nique for the analysis of scalar time series which divides the
original signal into components according to both frequency
and time. Wavelet analysis provides a multi-scale analysis of
the time series, extracting information at different time scales
and at different time instants. With respect to the Discrete
Fourier Transform, which transforms a time series from the
time domain to the frequency domain, DWT is still in the
time domain but it results in different components at multiple
time scales. Therefore, by applying this technique, we can
understand not only how the information contained in the
time series is divided across different time scales, i.e., at
which frequency the time series contains more variability, but
also precisely at what time instant the time series contains
meaningful information.

The output of the wavelet decomposition of a time series is
a set of smaller numerical sequences, each one half the size
of the previous but with doubled time scale: hence, longer
sequences represent shorter time scales (i.e., higher frequen-
cies), while shorter sequences capture patterns emerging at
larger time scales (i.e., lower frequencies). As an example, for
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Fig. 3. Wavelet spectra for (a) 〈k〉, (b) 〈C〉, (c) EG and (d) NGC for the three contact networks. Each point represents the statistical variance contained
in the corresponding time scale.

a time series of 128 values a wavelet decomposition of order
3 generates the first wavelet component (time scale 1) with
64 values, the second one (time scale 2) with 32 values and
the third one (time scale 4) with 16 values. Since we adopt a
sampling rate ∆ = 3600s for all the time series, wavelet time
scales can be directly expressed in hours. More details about
this technique can be found in the appendix and in [23], [10].

In Figure 2 we show how the wavelet decomposition of a
time series highlights patterns emerging only at certain time
scales: in this example regular structures can be identified
both at daily and weekly granularities. In this wavelet map all
the wavelet components are vertically represented in grayscale
next to each other, with their values aligned to the point in time
they are referred to: this allows the graphical representation
of regular structures at different wavelet scales. In particular,
daily patterns for the time series of the average degree 〈k〉 are
visible at time scales of 4 and 8 hours, while weekly patterns
emerge only at higher time scales of 32 and 64 hours.

Given such a wavelet decomposition, we can also compute
a wavelet power spectrum, which describes how the variance
of the original series is divided across different time scales.
Thus, we can investigate which time scales hold more in-
formation within the time series. For a stationary random
uncorrelated time series, the wavelet spectrum exhibits a
monotonic decreasing trend. In fact, stationarity implies that,

on large time scales, the statistical description is constant and,
therefore, fluctuations are more evident on shorter periods of
time. Local maxima in the wavelet spectrum indicate that the
characteristics of the time series significantly change over time
when observed at some particular time scale with respect to the
adjacent scales. Hence, we can understand how and when the
time series shows nonstationarity and whether we can identify
temporal patterns. However, we see that this is not the case
for human networks. In Figure 3 we show the wavelet power
spectra of the six time series for the three contact networks.
The time series have wavelet spectra which do not simply
decrease with the time scale, but which instead present local
maxima (or, at least, a non-decreasing trend) at the time scales
4 and 8 hours and then another one around the 64-hour time
scale: this is due to the fact that these metrics exhibit a strong
variation when the time series is aggregated at intervals of 8
hours. This is also in agreement with the anecdotal evidence
of the division of human daily activities in segments of 8
hours [15]. Moreover, the maximum at 64 hours represents a
time scale of roughly 3 days and this can be interpreted as the
weekly variation of human behavior in weekdays and weekend
days, since consecutive groups of three days are likely to show
different properties.

Thus, by using wavelet decomposition we are able to see
how regular patterns results in nonstationary characteristics



over time. The appearance of these patterns is crucial to
understand and appropriately model human behavior.

VI. RELATED WORK

Analytical techniques such as wavelet transform and diffu-
sion entropy analysis have been often applied to the analysis
of time series arising from demographic data [28], phys-
ical processes [6] and biological series [31]. Investigation
of nonstationarity has also been extensively done on time
series of econometrics data [9] to uncover hidden trends and
seasonalities.

A number of pioneering works [2], [3], [12] have focussed
on contact traces and registration patterns in order to gain
insight about human movement and the emerging social net-
work. A key study in this area is the work on connectivity
patterns presented by Chaintreau et al. in [5]. The main finding
of this work is that contacts duration and inter-contacts time
between individuals can be represented by means of power-law
distributions and that these patterns may be used to develop
more efficient opportunistic protocols. The work confirms
the results of other studies conducted at Dartmouth [12],
UCSD [27] and University of Toronto [35]. At the same
time, it is interesting to note that these observed connectivity
patterns are at odds with those that can be extracted from
random mobility models that show an exponential decay of
inter-contacts time intervals [33]. In a previous work [13],
similar connectivity patterns have also been observed among
the participants of INFOCOM’05.

Karagiannis et al. in [15] offered a novel perspective to
the problem of the approximation of these distributions. The
authors first verify the power-law decay of inter-contacts time
CCDF between mobile devices. Then, they demonstrate that
beyond a characteristic time of about 12 hours the CCDF
exhibits exponential decay.

More recently, Scherrer et al. [32] present an analysis of
the dynamical properties of two datasets characterizing contact
graphs over time. A visual analysis of temporal features of the
Reality Mining traces [11] is presented in [7]. However, the
authors of this work focus only on a standard statistical char-
acterization of the properties of human networks. Instead, we
have investigated the nonstationarity (including distribution of
information content at different time scales) and the presence
of regular temporal patterns in these time series.

With respect to the state of the art, as a novel contribution,
we have shown how temporal properties of human networks
are heterogeneous over time and how patterns can be identified
only at certain time scales. We have demonstrated how these
temporal properties can be quantitatively studied and evaluated
in order to better understand the dynamics of human networks.

VII. CONCLUSIONS AND FUTURE WORK

The key contributions of this work lie in three different
areas. First, we have proposed a framework for the analysis
of the evolution of human networks considering the dynamical
properties of time series of network metrics. Then, we have
proven the complex nonstationary nature of human networks

by identifying regular temporal patterns with sub-daily, daily
and weekly periodicities. Finally, we have shown how these
patterns can be exploited to predict future evolution of network
metrics with better accuracy, also unveiling their nonlinear
properties at different time scales.

These results give several insights on the dynamics of
human contacts. They show how the assumption of stationarity
for human behavior that is usually at the basis of most systems
and models often does not map reality. Nonstationary charac-
teristics should be instead considered in the design of systems
and performance evaluation tools for mobile networking and
systems. We have shown how wavelet decomposition is a
powerful technique which allows for the isolation and the
identification of recurrent patterns in the dynamics of the hu-
man networks at the basis of opportunistic and infrastructured
wireless systems.

The applications of these results to the design of novel
socially-aware and social network founded models and sys-
tems are indeed promising. Ultimately, these findings can be
successfully exploited to automatic identify human temporal
patterns, to model time-varying human dynamics and to en-
hance the design of systems based on human contacts such
as online social networks and other social information plat-
forms (e.g. blog networks, user-generated media publishers,
collaborative frameworks).
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APPENDIX

Given a time series X = (x0, x1, . . . , xN−1), the Discrete
Wavelet Transform (DWT) is formally a decomposition W =
DX, where W = (w0, w1, . . . , wN−1) is a vector containing
the wavelet coefficients and D is a N × N real-valued
orthonormal matrix which defines the DWT and satisfies the
orthogonality condition DT D = IN.

If N = 2J then the elements in W can be arranged such
that the first N/2 elements are associated to the unit time
scale changes, the next N/4 elements with changes on a
doubled scale and so forth. There are thus exactly N/(2τj)
coefficients in the subvector Wj associated to changes on
scale τj , where τj = 2j−1 for j = 1, . . . , J . It is worth noting
that τj is an adimensional unit, but, in practical applications,
we only need to consider the sampling interval ∆t between
consecutive values in X to obtain a proper temporal scale.
As a consequence, each τj corresponds to a physical scale of
τj∆t with appropriate measure units.

The orthogonality implies that X = DT W and ||W||2 =
||X||2, so ||Wj ||2 represents the contribution to the energy
associated to the j-th DWT subvector. This decomposition
provides a description of how the energy of the original signal
is divided into various contributions for the different time
scales. Thus, we can define a discrete empirical wavelet power
spectrum PW (τj) = 1

N ||Wj ||2 such that
∑J

j=i PW (τj) =
σ2

X , where σ2
X is the variance of the original series X.

A computationally efficient algorithm which runs in O(N)
is based on filter banks [23]. This is the algorithm we adopt
in our work, using the wavelet D4 (Daubechies 4) [10]. The
signal is processed separately with a high-pass and a low-pass
filter, related to each other so that they form a quadrature
mirror filter, to yield a smooth version and a detailed version
of the signal. Then the outputs are downsampled by a factor of
2 so that only half of the detailed version is kept as a portion
of the wavelet coefficients and half of the smooth version
is used as the input for a new level. This decomposition is
further repeated with the high and low pass filters and then
the result is downsampled again and so forth, until all the
wavelet coefficients have been determined.

Similarly, stationary wavelet components can be obtained
with the same algorithm if the downsampling step is avoided,
so that each component will have the same size. However,
avoiding the downsampling requires to extend the values of the
time series in the future. While the typical boundary treatment
includes periodic or reflecting boundaries, we adopt a different
approach and we extend the original signal with a nonlinear
predictor [14] before computing the smooth versions at the
different scales.


