
Role-Based Resource Management
Evangelos Kotsovinos and Tim Harris

University of Cambridge Computer Laboratory
15 JJ Thomson Avenue, Cambridge, UK, CB3 0FD

{firstname.lastname}@cl.cam.ac.uk

Abstract— In this paper, we propose a flexible resource
management system suitable for expressing and applying
policies to apportion resources in diverse and heteroge-
neous global-scale public computing systems. We do this
by devising a role-based system, which allows expressing
complex role membership and resource allocation policies.

I. Introduction

Expressing and applying resource allocation policies in
federated distributed systems is a hard task; resources
are controlled by a large number of individual physical
and administrative entities. There is a need to express
policies defined by the administrators of each resource as
well as by central “authorities”, and combine the policies
in a reliable and well-defined manner.

This need is becoming increasingly pressing in settings
such as utility and public computing infrastructures [6],
overlay testbeds [1] and computational grids [8]. The
problem of resource management in federated systems is
becoming an important one.

To allow representing, applying, and combining com-
plex resource usage policies originating from a large va-
riety of sources, we propose a role-based resource man-
agement scheme. The owner of the resources and other
stakeholders can specify the desired constraints and poli-
cies, expressing which users or groups of users can be al-
lowed access to which parts of the resources.

Our approach can be seen as a development of Role-
Based Access Control (RBAC), which has received sig-
nificant research focus in the past. In RBAC, “access
control decisions are determined by the roles individual
users take on as part of an organization”. The basis of
RBAC is the concept of a role, which is essentialy a user
grouping mechanism. RBAC allows the administrator to
specify which users should enter which role, as well as
which roles should be granted access to which resources.
The nature of RBAC decisions is binary; one can either
be granted access or not. Thus, when role entry condi-
tions are conflicting, the most common approach is that
if there is one that denies access then it simply overrides
the others, in accordance to the “least privilege” principle
[13].

When considering applying the same concepts on dis-
tributed resource management, a key technical difference
that emerges is that, in contrast to access control, which
is binary, resource management is quantitative; the ques-
tion then becomes how much access to grant a user to

a resource, rather than simply whether to grant access
or not. Moreover, in global-scale systems there is usually
no notion of a central authority controlling the distributed
resources. Therefore, one can expect that – possibly over-
lapping or conflicting – policies and roles will need to be
defined by a number of heterogeneous entities, that co-
exist under separate administrations.

A problem that emerges as a result of these challenges is
conflict resolution. Imagine, for exposition, a case where
Bob, the resource owner, allocates 10% of its resources
to Computer Science students and 8% to IEEE members,
and user Alice belongs to both roles. Then, would Alice
be given 10%, 8% or 18%? Is it Alice that Bob wanted to
allocate 8% to, or is it all IEEE members on aggregate?
And what happens if all 8% is already allocated to IEEE
members when Alice’s request appears?

It is easy to see that there is a need for a flexible, ex-
pressive and comprehensible system, able to combine role
entry and resource allocation constraints, to allow efficient
resource management in global-scale public computing in-
frastructures. For the required resource management sys-
tem to be able to operate successfully in a distributed,
global-scale setting, we need to make sure it is designed
and implemented in a decentralized fashion. There is no
notion of a central authority responsible for the way re-
sources can be managed, and to make our system efficient
it is necessary to avoid bottlenecks and single points of
failure. The scalability of our system can clearly only be
served well by distribution of computation.

The rest of this paper is structured as follows. In Sec-
tion 2 we describe the Role Description Language that is
used. In Section 3 we analyze the proposed architecture,
and in Section 4 we conclude.

II. Policy Description

The main elements of our Role-Based Resource Manage-
ment architecture are the following. There is a number of
users, who request resources from a number of entities.
Those entities can declare roles that define the groups
that users can enter as well as the conditions of entry. To
define how resources are to be apportioned between roles,
entities can specify constraints.

Below, we explain how roles and constraints can be de-
fined and combined to express complex resource allocation
policies in a flexible, efficient and comprehensible manner.



A. Roles

A role is essentially a grouping mechanism for users.
There are a number of actions to be taken to define the
roles in which users may participate, specify which users
are eligible to enter which roles, and associate these roles
with resource management policies.

Roles have to be declared, in the same sense that vari-
ables would be declared in a programming language, along
with the parameters that may apply. A role declaration
includes the name of the entity that declares the role, the
name of the role and its parameters. There is a different
name space for each entity that declares roles.

The entry conditions for each role need to be defined.
Entry conditions specify what conditions a user has to
meet to be allowed to enter the role, and how roles inter-
act. When a client enters a role, he remains a member
of the role until membership is explicitly or implicitly re-
voked.

The format and usage of role declarations and role entry
conditions are described in more detail in the following
sections.

Role naming. In an open, large-scale system, it would
be difficult to enforce a single system-wide name space
for roles. Instead, the approach that we take is to name
roles hierarchically, so that each entity that defines roles
can have its own role name space. Role names are of the
form:

Declarer:Name

where the Declarer is the entity, according to which the
role is defined.

Role declarations. To define a role and its parameters,
a role declaration has to be performed. Roles can have
parameters, in order to avoid having to declare different
roles for slightly different occurrences of the same role.
Role declaration commands are of the form:

Role(Parameter1, Parameter2, ...);

For example, if Sam wishes to define a role for users that
reside in the UK, one for those who live in a particular
city in the UK, and one for engineers,

Sam:InUK();

Sam:InUKCity(City);

Sam:Engineer();

Also, suppose Alice defines a role for engineers that live in
Cambridge, UK, and another one for engineers of Oxford
and Cambridge:

Alice:CamEngineers();

Alice:OxbridgeEngineers();

Role entry conditions. To specify which users can enter
a role, one or more role entry conditions can be defined.
Again, for flexibility and openness, role membership is
designed to be subjective. A user is not a member of
a role globally, but a member of a role according to an
Elector.

Criteria for entering a role can be either physical prop-
erties or membership of other roles. Role entry conditions
can be of the form:

roleEntry(Elector→Role(Parameters),
Attribute1, Range1,
Attribute2, Range2,
...);

in which case users whose property indicated by Attribute1

has a value within Range1, and property indicated by
Attribute2 has a value within Range2, and so on, can enter
the Role, according to the Elector. For example,

roleEntry(Bob→Sam:InUK(), "Country", "UK");

roleEntry(Bob→Sam:InUKCity("Cambridge"),
"City", "Cambridge",
"Country", "UK");

roleEntry(Bob→Sam:InUKCity("Oxford"),
"City", "Oxford",
"Country", "UK");

roleEntry(Jerry→Sam:Engineer(), "Occupation", "Engineer");

roleEntry(Bob→Sam:Engineer(), "Occupation", "Engineer,CompSci");

Alternatively, to allow clients to enter Role based on prior
role membership of Role1, Role2, ..., RoleN according to
the electors Elector1, ..., ElectorN respectively,

roleEntry(Elector→Role(Parameters),
Elector1→Role1(Parameters),
Elector2→Role2(Parameters),
...,
ElectorN→RoleN(Parameters));

The following example shows how entry to the
CamEngineers role, according to and as defined by Alice,
can be determined. There are two conditions; the user
needs to be a member of the InUKCity("Cambridge") role
as defined by Sam and according to Bob. Also, the user
needs to participate in the Engineer role as defined by Sam
and according to Jerry.

roleEntry(Alice→Alice:CamEngineers,
Bob→Sam:InUKCity("Cambridge"),
Jerry→Sam:Engineer)

To allow entry to the OxbridgeEngineers role, according to
Alice and as defined by Alice, the following conditions
are specified. Users need to be engineers according to
Jerry and as defined by Sam, and reside in Cambridge or
Oxford according to Bob and as defined by Sam. These
entry conditions can be used to make OxbridgeEngineers

contain the union of the two roles:

roleEntry(Alice→Alice:OxbridgeEngineers,
Bob→Sam:InUKCity("Cambridge"),
Jerry→Sam:Engineer)

roleEntry(Alice→Alice:OxbridgeEngineers,
Bob→Sam:InUKCity("Oxford"),
Jerry→Sam:Engineer)



B. Constraints

To express a reservation or usage limitation on a resource,
constraint definitions are used. A constraint definition is
associated with a role. Thus, the constraint is applicable
to all members of the role.

As constraints can be defined by different entities and
can conflict with other constraints, for instance in cases
where a user is a member of two roles for which there are
two different constraint definitions for the same resource,
we need an explicit way to prioritize constraints and re-
solve conflicts. This can be done by defining constraint
relationships.

Below, we describe the format and usage of constraint
definitions and constraint relationships.

Constraint definitions. A constraint definition limits
or guarantees the amount of a resource that members of
a role can get. Constraint definitions are of the form:

Elector→Role(Parameters)
Constrainer:ConstraintKind(Resource, Parameters);

where Constrainer is the entity that is imposing the con-
straint, and Role is the role whose members – according to
the Elector – are subject to the constraint. ConstraintKind

is an identifier that describes what kind of limita-
tion or reservation the constraint is meant to indicate,
such as limitEach, limitGroup, reserveEach or reserveGroup.
Resource is the kind of resource that the constraint applies
to, and Parameters indicate the extent of the limitation or
reservation. For example:

Alice→Alice:CamEngineers() LocalServer:limitGroup(CPU, 8%);

would limit the aggregate CPU usage on the local server
by cambridge engineers – according to and as defined by
Alice – to 8%.

Constraint relationships. In order to allow defining
how conflicting constraints are resolved, we introduce con-
straint relationships. Each relationship gives a series of
pattern-matches for existing constraints, and then a re-
placement constraint to be generated in their place. The
format of constraint relationships is:

ConstraintRelationship(Constraint1,
Constraint2,
... ,
Expression1,
Expression2,
... ,
Replacement);

For example, to express that where different entities give
constraints about maximum CPU usage, the minimum
ought be taken, one can use:

ConstraintRelationship(
"*→R1 X:limitEach(CPU, A)",
"*→R2 Y:limitEach(CPU, B)",
"X != Y",
"*→R1 LocalServer:limitEach(CPU, min(A,B))");

Notice that, as the two conflicting constraints are replaced
by the new one, which of the two roles the new one refers
to does not make any difference, as for the conflict to exist
the user must be a member of both roles. To express that,
when a role is a sub-role of another one, constraints im-
posed by the more specific role override the ones imposed
by the less specific role,

ConstraintRelationship(
"*→R1 *:limitEach(CPU, A)",
"*→R2 *:limitEach(CPU, B)",
"R1 < R2",
"Alice→R1 LocalServer:limitEach(CPU, A)");

ConstraintRelationship(
"*→R1 *:limitEach(CPU, A)",
"*→R2 *:limitEach(CPU, B)",
"R2 < R1",
"Alice→R2 LocalServer:limitEach(CPU, B)");

III. Resource allocation

In the previous sections we have described the Role De-
scription Language used in our system, and explained how
roles and constraints can be defined and managed. This
section examines how our system uses the set of roles
and constraints defined, in order to determine whether
to grant or deny a resource allocation request.

A. Role entry

The first step to reach an admission control decision is
to decide which roles a user is a member of. This process
requires as input the credentials and properties of the user
as well as the role declarations and entry conditins.

Entry conditions have to be examined and checked
against the user’s properties and credentials for the
role memberships to be determined. For instance, the
"Country" property of the user will determine if he should
be allowed to enter the "inUK" role.

Membership of roles that have more complex entry con-
ditions, such as prior multiple role membership, can be
decided by starting checking membership from the sim-
plest roles and going up to the more complex ones. If the
user is found not to be a member of one of the roles, the
process stops and the user does not enter the complex role.
While the administrator has to make sure that no loops
exist in role entry conditions, the development of an algo-
rithm that produces a consistent set of role memberships
is straightforward, as there are no role entry conditions
that allow membership in a role on the condition that
there is no membership to another one.

The output of this process is the set of role memberships
in which the user participates.

B. Constraint processing

One of the purposes of the proposed Role-Based Resource
Management system is to allow the server administrator
to express policies like “Allow Cambridge Engineers ac-
cess to at most 10% of the CPU, and guarantee Oxford
Engineers access to 5% of the network bandwidth”. To



Credentials
and properties

Role Declarations

Role Entry
Conditions

Constraint
Definitions

Role
Memberships

R
ol

e 
en

try

C
on

st
ra

in
t p

ro
ce

ss
in

g

C
on

fli
ct

 re
so

lu
tio

n

Constraint
relationships

Active
Constraints

Resource
Request

Availability
information

Unambiguous
Constraints

Admission control

Grant/Deny/Negotiate decision

1

2
3

4

Fig. 1. Role-Based Resource Management architecture

express such policies, we use constraint definitions, as de-
scribed in II-B.

Once the role memberships have been determined, they
are associated with the constraints that apply to them.
The set of constraints is reduced as constraints that are
not associated with any roles are ignored further on, since
they are unable to affect the admission control decision.

This process results to a set of potentially conflicting
active constraints. It consists of the constraints that have
been associated with at least one of the roles, which the
user is a member of.

C. Conflict resolution

The outcome of the first two stages can result in a set of
constraints that can possibly overlap or conflict when two
or more constraints apply to the same resource. Then,
there is a need for a mechanism to resolve such conflicts
in a flexible and effective way.

To understand the difficulty of resolving conflicting re-
source allocation policies, one can consider the following
scenarios. The resource owner specifies a policy suggest-
ing that each customer paying by VISA card should be
guaranteed 5% of the network bandwidth. The owner
defines two more policies: the first one specifies that do-
mestic customers should be guaranteed 8% of the network
bandwidth as a means of attracting local users. The sec-
ond one limits the use of the network bandwidth to 2%
for users that do not pay their bills regularly.

For user Alice, who pays by VISA card and does not
pay her bills regularly, the system would work fine if it
made sure that, when constraints are conflicting, the most
restrictive constraint replaces the rest. Alice would get 2%
of the network bandwidth. However, for user Bob, who
pays by VISA and is a domestic customer, applying the

most restrictive constraint is not helpful; Bob would get
5%, while he should be getting at least 8% as any other
domestic customer. It is clear that the question is not
one of a trivial, technical nature, and that no global or
hard-coded conflict resolution policies can be enforced.

A simple solution could be a first-match one; when a
number of constraints apply to a resource, the one that
was defined first overrides all others. However, this would
be too inflexible, and the decision would rely on the order
in which constraint definitions would be declared. An-
other easy fix could be to prioritize constraint definitions
in a static manner, for instance by including a priority
number along with each constraint definition. The prob-
lem with this approach is that it puts a very large adminis-
trative burden on the server owner, as resolving conflicts
manually can become extremely difficult for large num-
bers of constraints.

The approach that we take is to allow the administra-
tor to define how conflicts should be resolved explicitly,
by declaring constraint relationships, as described in II-B.
The set of active constraints is checked against the con-
straint relationships, and sets of conflicting constraints
are replaced by single constraints and resolved.

When this stage is finished, a set of unambiguous con-
straints is produced.

D. Admission control

The resource allocation request is checked along with the
current resource availability as well as the set of unam-
biguous constraints, in order to reach a grant/deny deci-
sion.

In order to specify the general default behaviour of the
system, a simple parameter can be set to specify either
that access to resources can be allowed if not explicitly



prohibited by a constraint, or prohibited if not explicitly
permitted by a constraint.

Then if the request does not exceed availability or any
of the constraints in the unambiguous constraints set, and
if the default policy is to allow access unless a constraint
prohibits it, the request is granted. If the policy is to
prohibit access unless a constraint permits it, then there
will have to be an explicit reservation constraint for the
resource to be granted.

IV. Related work

Access control is an area that has received extensive re-
search focus over the last three decades [10]. One of the
first works establishing role-based access control as we
know it today was [4], outlining the ideas of RBAC and
providing a concrete formal description of role definition
and membership, as well as recognizing the importance of
the separation of duty problem — a refinement of those
ideas, as well as an implementation, are provided in [5]. In
[14], a family of well-defined RBAC models is introduced.

Several role-based systems have been devised over the
last ten years, providing frameworks for the administra-
tion of roles and access rights [12], and recognising the
need for defining meta-policies to resolve conflicts [11], [3].
Other researchers understand the need to combine roles
and policies applied by a diverse set of sources, escaping
from the “central authority” model and understanding
the challenges imposed by applying RBAC to open, large-
scale systems [9], [7]. A generalized version of RBAC is
proposed in [2], going beyond the common subject-centric
approach to role management, by allowing object-centric
or environment-centric policies to be defined.

Our work uses some of the techniques invented in role-
based access control, but is fundamentally different in that
we use roles in a different, soft, quantitative setting, to
express and apply complex resource allocation policies.
In the resource management setting, roles and policies
need to be combined instead of overriden in accordance
to the “least privilege” rule, which is the solution that
most RBAC systems take.

V. Conclusions

In this paper, we have proposed an architecture that uses
roles to allow expressing and applying complex resource
allocation policies in diverse and heterogeneous global-
scale federated systems. In particular, we have seen how
roles and role membership conditions can be defined, and
how these can be associated with constraints in resource
allocation. Also, we have devised constraint relationships
as a means to resolve constraint conflicts.

References

[1] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: An overlay
testbed for broad-coverage services, Jan. 2003. PlanetLab De-
sign Note PDN-03-009.

[2] M. Covington, M. Moyer, and M. Ahamad. Generalized role-
based access control for securing future applications, 2000.

[3] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The pon-
der policy specification language. Lecture Notes in Computer
Science, 1995, 2001.

[4] D. Ferraiolo and R. Kuhn. Role-based access controls. In
Proc. 15th NIST-NCSC National Computer Security Confer-
ence, pages 554–563, 1992.

[5] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A role-based
access control model and reference implementation within a
corporate intranet. j-TISSEC, 2(1):34–64, Feb. 1999.

[6] S. Hand, T. Harris, E. Kotsovinos, and I. Pratt. Controlling the
XenoServer Open Platform, November 2002. Under submission
to OpenArch’03.

[7] R. J. Hayton, J. M. Bacon, and K. Moody. Access control in
an open distributed environment. pages 3–14, 1998.

[8] W. E. Johnston, D. Gannon, B. Nitzberg, L. A. Tanner,
B. Thigpen, and A. Woo. Computing and data grids for sci-
ence and engineering. In Proceedings of the 2000 conference
on Supercomputing, page 52. IEEE Computer Society Press,
2000.

[9] D. Jonscher and K. R. Dittrich. Argos – A configurable access
control system for interoperable environments. In T. C. Ting
and D. Spooner, editors, Database Security, IX: Status and
Prospects, pages 43–60. Chapman & Hall, 1996.

[10] B. Lampson. Protection. In Proceedings of the 5th Annual
Princeton Conference on Information Sciences and Systems,
pages 437–443, Princeton University, 1971.

[11] E. C. Lupu, D. A. Marriott, M. S. Sloman, and N. Yialelis.
A policy based role framework for access control. In Proceed-
ings of the first ACM Workshop on Role-based access control,
page 11. ACM Press, 1996.

[12] M. Nyanchama and S. Osborn. Access rights administration
in role-based security systems. In J. Biskup, M. Morgern-
stern, and C. Landwehr, editors, Proc. 8th IFIP WG 11.3
Working Conference on Database Security (Database Security
VIII: Status and Prospects) (Bad Salzdetfurth, Germany, Aug.
23–26, volume A-60 of IFIP Transactions, Amsterdam, The
Netherlands, 1995. North-Holland (Elsevier).

[13] J. H. Saltzer and M. D. Schroeder. The protection of in-
formation in computer systems. Proceedings of the IEEE,
63(9):1278–1308, Sept. 1975.

[14] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman.
Role-based access control models. IEEE Computer, 29(2):38–
47, 1996.


