
Grid-Level Computing Need
Rashid Mehmood, Jon Crowcroft, Stev

Computer Labora
University of Cambridge, C
Email: {firstname.lastname}

Abstract— Developing applications for parallel and distributed
systems is hard due to their nondeterministic nature; developing
debugging tools for such systems and applications is even harder.
A number of distributed debugging tools and techniques exist;
however, we believe that they lack the infrastructure to scale
to large-scale distributed systems, systems with hundreds and
thousands of nodes, such as Grids. In this paper, we introduce
PDB, our prototype debugger, which is based on a hierarchical,
scalable architecture. We explain the design of the PDB, highlight
its functionality, and demonstrate its usability with two case stud-
ies. Before concluding, we discuss portability and extensibility
issues for PDB, and discuss some solutions.

I. INTRODUCTION

Developing debuggers for parallel and distributed systems is
inherently difficult. The difficulty lies in the nondeterministic
nature of these systems, caused by their autonomous structure,
lack of a global clock, and communication delays. Distributed
systems are typically sensitive to timing and synchronisation
errors. Debugging them may even mask such errors due to a
phenomenon known as the probe effect [1] or Heisenberg’s
uncertainty principle [2]. The heterogeneous structure of Grid
and pervasive computing environments have exacerbated these
problems.

Today, there exist a number of tools and techniques for
debugging and profiling of distributed systems. With the
increasing availability of large-scale distributed resources such
as clusters and Grids, extensibility and scalability of these
tools is becoming even more important. Many of these tools
provide useful features, such as distributed system state and
data visualisation, and program replay. We argue, however,
that current distributed debugging tools lack an infrastruc-
ture which can be extended to the debugging of large-scale
distributed systems comprising thousands of processors. This
is due to the fact that most debugging tools are based on a
single, centralised, frontend which controls and coordinates a
number of backend debuggers or monitors. These conventional
architectures usually attach a backend server on a per-process
basis; a hundred processes need a hundred backends. Such
architectures, inherently, are not suitable for debugging and
profiling large-scale distributed systems; they can easily be
overwhelmed by the volume of events or data produced by
even a few tens of processes.

In [3], [4], the pervasive debugging approach for debugging
distributed systems was introduced. It is pervasive in that it
allows the complete state of the distributed system under test to
be inspected and controlled by virtualising all the resources of

a sing
provi

In
debu
tems,
be fo
hiera
to m
our P
speci
test.

Th
we b
for th
the p
tively
for P
case
the im
give

A
for d
Panc
debu
be cl
of the
are a
seque
to as
perm
unde
the e
seque
contr
tial d
categ
and
Total

An
the e
the g
event
acces
of di

10-7803-9493-3/05/$20.00  2005 IEEE
s Pervasive Debugging
en Hand and Steven Smith
tory,
ambridge, UK.
@cl.cam.ac.uk

le physical machine. It utilises the machine virtualisation
ded by the Xen VMM [5].
this paper, we consider how to generalise the pervasive

gging approach to support debugging of large-scale sys-
with hundreds and thousands of machines, as might

und in today’s clusters and Grids. Our approach is a
rchical one, which we believe allows the system to scale
uch larger number than traditional systems. Moreover,
DB incorporates an event-based approach to verify user-
fied high-level properties of the distributed system under

e rest of the paper is organised as follows. In Section II,
riefly survey the related work, establishing the motivation
is work. We describe the functionality and architecture of
ervasive debugger in Section III and Section IV respec-
. Section V discusses portability and extensibility issues
DB and presents some solutions. Section VI presents two
studies to demonstrate PDB usability. Section VI reports

plementation status for PDB. Finally, we conclude and
future directions in Section VIII.

II. BACKGROUND

number of tools and techniques have been designed
ebugging concurrent and distributed systems. In 1993,
ake and Netzer [6] compiled a bibliography of parallel
ggers which included 293 entries. These techniques can
assified into four distinct categories [7]. At the forefront
se is the traditional parallel debugging techniques which
natural extension of the cyclical approach to debugging
ntial programs. Debuggers of this kind are also referred
interactive or breakpoint debuggers. These debuggers

it users to repeatedly stop the execution of the program
r test, examine the program state, and to continue with
xecution. These are usually designed as a collection of
ntial debuggers (e.g. GDB) with a single console which
ols and coordinates the activities of independent sequen-
ebuggers. Many well-known debuggers fall into this

ory, for example, research prototypes such as p2d2 [8]
Net-Dbx [9], and commercial debuggers, for example,
View [10] and DDT [11].
other prominent approach to distributed debugging is
vent-based approach (e.g. [12]–[17]) which relies on
eneration and analysis of program events (also called
history). The definition of “event” varies, from memory

ses to MPI [18] send and receive functions. A number
rections within this category have been taken. Some

Grid Computing Workshop 2005

systems present the collected raw event data to the user for
direct inspection, and some [13] use graphical visualisation
techniques (such as space-time diagrams [19]). Some event-
based tools use event histories to guide re-execution of pro-
grams in the hope of reproducing program errors (e.g. [16]).
Another direction taken is to compare event histories with
a set of predicates in order to detect anomalous behaviour.
Examples are the program behaviour model approach of [15],
Event Based Behavioural Abstraction (EBBA) approach of
[14], [20], and the IDD debugger [17].

Both the traditional and the event-based techniques suffer
from the main problems associated with debugging of concur-
rent software: that is, the probe effect, nondeterminism, and
the lack of global state visibility. A distributed system may
not have a single notion of time, and hence precise ordering
of events in the individual, concurrently executing processes
may not be possible. Latencies and unpredictability in net-
works is a common cause of nondeterminism in distributed
programs; the distributed computation cannot always be ex-
actly reproduced for debugging. The autonomous behaviour
of concurrent processes may cause race condition even in the
absence of a network. Monitoring of a system may change the
behaviour of a system, this is common in distributed system
debugging due to the sensitivity of these systems to timing
and synchronisation errors.

By contrast, static analysis techniques do not require pro-
gram execution, do not suffer from the probe effect, and
can be used for data and control analysis of a program.
Model checking [21] is a formal static verification method to
algorithmically verify finite state systems. This is achieved by
verifying that a system model satisfies a logical specification,
often written as a set of temporal logic formula.

All these debugging techniques have been augmented with
graphical user interfaces and visualisation tools. An architec-
ture which represents many of these conventional tools is given
in Figure 1. Every process in the distributed system under test
is attached to a sequential debugger or monitor, usually called
the backend or server. These backends are controlled from a
single, centralised console, called the frontend or client. The
backends receive commands through the frontend to carry out
debugger functions. In event-based debuggers, these backends
may also deliver interesting events to the frontend.

A. The PDB Approach

In the previous section, we surveyed the main techniques
and tools for the debugging of distributed systems. We observe
that the current trend in parallel debugging tools is to combine
multiple debugging techniques. Since each debugging method
has its own deficiencies and advantages, it is only natural to
integrate these techniques into a single tool. The integration
of multiple techniques into a single distributed debugging tool
is a challenging task, however, designing such a tool which is
scalable to large-scale distributed systems debugging is even
more challenging.

Consider the TotalView debugger [10], for example. In
addition to the traditional debugging method, it provides a

facili
Furth
dition
mem
when
the d
(the
chang
note
debu
and r
millio
debu
expre
comp
distri

To
appli
asser
the 1
wher
Each
the c
other
This
distri
distri

Th
tion I
an a
interm
possi
forwa
an in
and
f1 · ·
if th
local
hence
tradit

Th
Xen
(inclu
proac
the e

2

Frontend

Backend 1 Backend 5

P1 P5

Fig. 1. A Conventional Distributed Debugger

ty for dynamic call graph visualisation of a program.
ermore, the user can set various actionpoints, e.g. con-
al watchpoints. A watchpoint is typically created on a

ory location to watch its contents. It generates an event
the contents of the memory location are changed. When

ebugger receives such an event, it evaluates an expression
condition) and reports to the user only if there is a
e in the value of the expression. It is interesting to

here that, before the actual condition becomes true, the
gger may have to stop the execution of the program,
e-evaluate the expression, potentially thousands or even
ns of times. This situation is very typical in a distributed

gging session. For a debugger which allows evaluation of
ssions global to the entire set of processes in a distributed
utation, this can create a huge traffic load within the
buted system.
illustrate this further, suppose that we have a distributed

cation running 100 processes, and that we set a distributed
tion G, a logical conjunction of some function f on all
00 distributed processes. That is, G = f0 ∧ f1 · · · ∧ f99,
e fn is an evaluation of the function f on the process n.
time the value of the function changes on any process,

entralised debugger may have to request that each of the
processes report the current evaluation of the function.
may result in interrupting the execution of the whole
buted computation, and create a huge traffic load on the
buted system.
e PDB described in this paper, as we will see in Sec-
V, avoids this scenario by decomposing and distributing

ssertion on distributed system to hierarchically placed
ediate or backend servers. To the maximum extent

ble, these servers evaluate assertions locally, and only
rd “interesting” events further up hierarchy. For instance,

termediate server i might be responsible for nodes 0 · · · 9,
so could evaluate the distributed assertion Gi = f0 ∧
· ∧ f9, forwarding the event to the main server only
e assertion Gi changes. Such a hierarchical approach
ises and reduces the overall traffic, affords efficiency, and

allows the system to scale to much larger number than
ional systems.
e pervasive debugging approach [3], [4] leverages the
VMM (see below) to virtualise the system resources
ding network and disk) of a single machine. This ap-
h can eliminate the probe effect, and can reproduce
xact behaviour of (i.e. can deterministically replay) a

distributed system. In Section VIII, we discuss how can the
PDB described in this paper accomplish the above-mentioned
pervasive debugging features for large-scale distributed sys-
tems.

1) The Xen Virtual Machine Monitor: We are developing
the PDB debugger prototype on a cluster of (physical) ma-
chines, each running the Xen virtual machine monitor (VMM)
[5]. Xen is a VMM, or hypervisor for the x86 processor
architecture. It permits execution of multiple virtual machines
on a single physical system, and live migration of virtual
machines between physical nodes of a cluster [22]. Xen is a
paravirtualised [23] VMM which allows high performance but
requires operating systems to be ported to execute on top of
Xen. Currently, Xen supports Linux 2.4, Linux 2.6, NetBSD,
FreeBSD, and Plan 9; a ReactOS port is in progress. A survey
of machine virtualisation can be found in [24].

III. FUNCTIONALITY

We present here an overview of the functionality offered by
the PDB. This will help us in explaining the PDB architecture
in the next section.

The overall process of debugging works as follows. The
user starts a debug session by starting the main PDB server,
subsequently connecting to the backend servers, and attach-
ing to processes of interest. Furthermore, the user, typically,
registers to be notified of certain events. Hopefully, some
interesting events happen and the user can examine the state
of the distributed application to further the debugging process.
The user may also specify assertions or high-level properties of
distributed computation, which are verified against the actual
execution of the computation; upon request, PDB notifies the
user or performs arbitrary actions in case the assertion is
violated. PDB supports the following:

A. Process View and Control

As in any standard debugger, the user can view or modify
the memory of any process which is part of the distributed
computation under test. Similarly, the user can stop, continue,
or move through the distributed application instruction by
instruction.

B. Primitive Events

PDB supports a set of primitive events:

• A breakpoint event is generated whenever the execution
attains a certain point in a program.

• A watchpoint event is generated whenever a read or write
access to a certain memory location in the process is
made. PDB also allows watchpoint events on program
registers such as the stack pointer.

• The user can also request blocking and unblocking events.
These events are generated whenever the operating sys-
tem (OS) kernel sets a process into a blocked or un-
blocked state. The kernel might put a process into a
blocked state because the process is waiting for I/O or
some event. These events can be used, for example,

•

•

Int
lish/s
sourc
Cons
event
its co
priate
emai
saved

C. D

PD
distri
itself
the a
event
PDB
durin
to de
desig
comp
in Se

Th
of co
Back
these

3

P2

Agent
PDB

Backend
Server

PDB
Agent

Main Server

P3

Backend
Server

P4 P5

Agent
PDB

P1

Fig. 2. Architecture of the PDB

to track deadlock states of a distributed system (see
Section VI-A).
We are currently working on introducing primitive send
and receive events. This will allow the user, for instance,
to get notifications whenever a send or receive operation
is initiated or completed. Events on Inter-Process Com-
munication (IPC) mechanisms such as semaphore and
shared memory are also planned.
We also intend to support timer events which can generate
events at a particular instance in time or after a specified
amount of time has passed. These events, for instance, can
be used to keep soft state of components or processes in
a system, in order to detect their liveness properties or
connection status.

ernally, PDB makes use of a reasonably generic pub-
ubscribe network. The user can request creation of event
es (i.e. publication), and can define arbitrary consumers.
umer can subscribe to event sources, or can act as an
source for other consumers. When an event is generated,
nsumers are notified, and they may then take any appro-

action, which may include generating further events,
ling the administrator or retrying the computation from a

snapshot.

istributed Assertions

B allows the user to specify logical assertion on a
buted system, e.g. “no more than one process believes
to be the leader”, and can verify the assertion against

ctual execution of the system. An assertion is a high-level
composed of primitive events. To verify an assertion,
creates primitive event sources which generate events

g the program execution. PDB processes these events
tect if the assertion is violated and informs the user-
nated consumers. We will illustrate the use of high-level
osite events to specify and verify distributed assertions
ction VI.

IV. PDB ARCHITECTURE

e pervasive debugger, PDB, consists of three main types
mponents; a Main Server, one or more Intermediate or
end Servers, and one or more PDB Agents. PDB places

components hierarchically in a distributed system. We

Database

Process Event
Publisher

Event Communications
Manager

Interface

Manager

Manager

User

Main Server

Event
Manager

Manager

Intermediate or Backend Server

Communications

Database

PDB Agent embeded in Linux Kernel

PDB Device Driver

Communications Manager

PDB Agent

Event Manager

Linux Kernel

Fig. 3. The main PDB components

consider hereon the Backend Servers alone, and talk about
Intermediate Servers in Section IV-B. Figure 2 depicts high-
level PDB architecture and Figure 3 illustrates each PDB
component.

The Main Server talks to the user and is responsible for
overall management of the distributed processes and events.
The Backend Servers process and manage events on a certain
lower-level of the distributed system hierarchy. The PDB agent
actually realises the user requests and enables creation of
events.

Both Main and Backend Servers run as user-level processes.
The Main Server can run anywhere, not necessarily on top
of the Xen VMM. However, the Backend Server runs in a
privileged virtual machine on top of the Xen hypervisor. The
PDB agent is the only component of the debugger which is
part of the OS kernel.

All the PDB components communicate asynchronously with
each other. The Main and the Backend Servers talk to each
other using TCP/IP sockets. The Backend Server and PDB
agent(s) communicate using the mechanisms provided by the
Xen VMM (see Section IV-B).

A. Main Server

The Main Server is a multi-threaded module written in
Python. As depicted in Figure 3, it consists of six sub-
components. The User Interface is responsible for accepting
commands from the user and passing these to the appropriate
sections. The Process Manager is responsible for initiating and
controlling the processes. The Event Publisher is responsible
for the creation of events, and for publishing them on request,

i.e. m
scrib
of re
to th
if ap
there
In ad

Ma
interf
if ne
carry
seque
event
nicat
Com
Serve
socke
Datab

B. In

Ea
plica
Serve
right,
Serve

It i
langu
of th
the P
doma
event
disju
Back
the M
Serve
more

•

•

•

Th
over
Back
medi
Desc
colle
comm
preve
detai
is sp
mana

4

aking them available to potential consumers or sub-
ers. The Event Manager is responsible for the processing
ceived events, i.e. evaluating if these are of any concern
e consumers, dispatching the events to the consumers
propriate, and informing the Process Manager in case
is an interesting change in the state of the processes.

dition, it controls subscription to events.
in Server accepts commands from the user through user
ace and routes them to appropriate Backend Server(s),
cessary. Backend Servers reply to the Main Server after
ing out the request. In addition to the request-reply
nce of messages, Main Server has to respond to the
s delivered by the Backend Servers. It delegates commu-
ions related tasks, not surprisingly, to a submodule called
munications Manager. As mentioned earlier, the Main
r and the Backend Servers communicate using TCP/IP
ts. All the global data structures are kept in the central
ase, access to which is via synchronised mechanisms.

termediate or Backend Server

ch physical machine participating in the distributed ap-
tion runs an instance of the Backend Server. A Backend
r is in many respects a distributed debugger in its own
except that it communicates primarily with the Main

r rather than directly with the user.
s a multi-threaded module written in the C programming
age which runs as a user-level process. Each instance
e Backend Server is responsible for keeping track of all
DB agents and processes which are attached within its
in. The information about processes, PDB agents, various
s on individual processes and possibly the relations (e.g.
nction) among these events is kept in the Database. The
end Server’s Event manager is analogous to the one in
ain Server. The Communications manager in a Backend
r has to converse with the Main Server and to one or
PDB agents. Its responsibilities include:

receiving requests from Main Server (e.g enable blocking
events on process p),
if necessary, forwarding requests to a PDB agent after
translating the request to a form suitable for the PDB
agent, and collecting replies from PDB agents and for-
warding back to the Main Server.
In addition, the Communications manager receives and
buffers events from PDB agents, and dispatches outstand-
ing events to the Main Server.
e Backend Server communicates to the Main Server
TCP/IP sockets. However, communication between the
end Server and the PDB agents is over a Xen-specific
um. Xen allows virtual machines to communicate via
riptor Rings and Event Channels. These two mechanisms
ctively provide fast and secure means for asynchronous

unication between virtual machines. Space constraints
nt us adequately discussing these here; see [25] for
ls. We note that the only part of the Backend Server which
ecific to the Xen architecture is the Communications
ger.

It would be possible to generalise the Backend Server design
to make Intermediate Servers, such that the Intermediate
Servers would be responsible to the Main Server, each coor-
dinating and controlling several Backend Servers. This would
allow a much deeper hierarchy to be constructed, potentially
providing better event aggregation and hence improving traffic
locality. In a Grid environment, for example, an Intermediate
Server can be placed on the head node of a cluster to
coordinate the debugging activities related to the processes
executing in that cluster. This is a focus for ongoing work.

C. The PDB Agents

Each virtual machine in Xen which is participating in the
debugging session runs an instance of the PDB agent. A PDB
agent runs as a module within the Linux kernel, and therefore
can provide enhanced visibility and fine-grained control of the
processes. It is responsible for:

• providing information about processes,
• instrumenting processes to enable event generation, and
• actually controlling the execution of processes.

The PDB device driver exports virtual machine specific in-
formation to the Backend Server upon request. The Event and
Communications managers within a PDB agent are analogous
to their counterparts in the higher levels of the hierarchy,
except that they have less work to do.

Note that a PDB agent is not the same as the backends (or
servers) found in conventional debuggers: most conventional
debuggers attach a backend to a single process, whereas a PDB
agent can manage multiple processes.

V. EXTENSIBILITY AND PORTABILITY

Portability and extensibility are important characteristics of
a distributed tool within large-scale resource sharing envi-
ronments such as Grids. In this section, we evaluate these
characteristics of the PDB.

A single, centralised main server is not sufficient if we wish
to debug and control a distributed computation comprising
hundreds and thousands of processes. We have introduced the
notion of Intermediate Servers in Section IV-B. These servers
can be placed between the Main Server and the Backend
Servers to provide a second layer of event decomposition and
aggregation. We plan to explore our PDB architecture based
on multiple layers of Intermediate Servers.

An issue with a design based on multiple layers of Backend
Servers is defining the namespace within the Main Server.
Currently, a process is located with a 3-tuple (A,B,C), where
A is the number given to the physical machine, B is the
virtual machine number on the physical machine A, and C
is the process running in virtual machine B of the physical
machine A.

We now consider the portability issues. We have observed
earlier in this paper that the only Xen-specific parts of the
PDB design are the Communications manager submodule
of the Backend Server and the PDB agent. The Backends
communicate with the PDB agents using descriptor rings
and event channels, provided by Xen as an efficient means

1. fo
2.
3.
4.
5.
6.
7.
8.
9.

for c
possi
exam
PDB
self c
existi

In
PDB
first
whic
probl
is a s
spars
oping
in su
mem
obvio
these
Usua
amon
proce
sends
not d
other
progr

A. T

A
is br
of ph
acces
philo
(see
right.
the c
it pu
soone

In
used
on th
progr
is vio

5

rever
sleep()
set waiting
pick left chopstick()
pick right chopstick()
reset waiting
eat()
put left chopstick()
put right chopstick()

Fig. 4. Algorithm: the dining philosophers

ommunication between virtual machines. It would be
ble to support multiple modes of communication, for
ple TCP/IP sockets, between a Backend Server and the
agents. Similarly, the PDB agent can be structured as a
ontained kernel module, allowing it to be introduced to
ng operating systems with minimal disruption.

VI. CASE STUDIES

this section, using two case studies, we demonstrate how
could be applied to debug concurrent programs. Our

case study is the classical Dining Philosophers problem,
h is often used to illustrate various concurrency related
ems such as starvation and deadlock. Our second example
ingle program multiple data (SPMD) solution for large
e linear equation systems. Our experiences with devel-

such applications suggest that many times the errors
ch programs are data related, for example, an invalid
ory access. Deadlock tends to be less common, but is
usly possible and needs to be handled. Another issue in
programs is the fairness in interprocess communication.

lly, in these programs, data is partitioned and distributed
g concurrent processes. In order to make progress, each
ss needs remote data from other processes, and hence
the local data to other processes. If the algorithm is

esigned carefully, some processes might wait longer than
s. This may cause performance penalty for the overall
am. Ability to resolve such problems is also important.

he Dining Philosophers

dining philosopher algorithm is given in Figure 4. It
iefly explained as follows. There are an equal number
ilosophers and chopsticks, where each philosopher has
s to two chopsticks, left and right. In order to eat, a
sopher needs access to both chopsticks. Each philosopher
the figure) first picks up the left chopstick and then the
It sets a variable waiting before attempting to pick up

hopsticks, and resets the variable afterwards. After eating,
ts the chopsticks back on the table. This algorithm will
r or later reach a deadlock state.

the following, we give example Python code which can be
to specify a distributed assertion “philosophers are alive”
ree philosophers. PDB can verify this assertion against the
am execution and can take arbitrary action if the assertion
lated.

def phil is blocked(phil):
return phil.blocked() and phil.waiting == 1

def deadlocked():
return phil is blocked(phil1)

and phil is blocked(phil2)
and phil is blocked(phil3)

def philosophers are alive():
return ¬ deadlocked()

Alive = Assertion(philosophers are alive)

At the core of the example code above is the primitive
Assertion. When a new assertion is created on a particular
function, it first evaluates the function, noting as it does which
aspects of the remote process state (e.g. memory locations)
are being accessed. We then create primitive event sources
(e.g. watchpoints) on each piece of state, and subscribe to
them. When one of these primitive events are generated,
we re-evaluate the condition. In this way, it is possible to
specify a completely arbitrary assertion in a powerful, high-
level language.

In this case, a blocking event source will be created for each
process, and a watchpoint will be created on each waiting
location. The assertion will be violated if at any point all
three processes are blocked and waiting to acquire a chopstick:
deadlock. Note that the above code assumes that the three
processes (phil1, phil2, phil3) are already attached to the PDB
with these symbolic names.

In the following, we give example code to cre-
ate a Consumer object “MyConsumer” on the function
“ring email consumer”. Then in the last line, we subscribe
“MyConsumer” to the Assertion “Alive” which was created
in the code above. Consequently, if the assertion is violated,
PDB will ring the bell and will email Alice.

def ring email consumer():
ring the bell, email Alice

MyConsumer = Consumer(ring email consumer)
MyConsumer.subscribe(Alive)

B. Solving Large Sparse Linear Equation Systems

The solution of large systems of linear equations is at
the heart of scientific computing. Many problems such as
forecasting, estimation, approximating non-linear problems in
numerical analysis and integer factorisation, give rise to linear
equation systems. Another example is automatic verification
of probabilistic systems against some temporal logic speci-
fications. We are actively involved in developing out-of-core
and distributed solution of large sparse linear equation systems
which arise from automatic verification problems, and we are
using these as one of the test cases for our prototype PDB.
We have reported steady state solutions of CTMC systems
containing over a billion states [26]–[28].

1. w
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.

In
the d
taken
same
this p
The fi
comm
and c
conve
preci
is an
its v
whic
the it
keeps
partit
proce

We
can b
comp
test c
sively
progr
conve
defin
the c
const
funct
In sh
to th
event
funct
incre
this c
the s
user

6

hile error > ε
for j = 1 to p

if Aij is not a zero block
send request for xj

accumulate sub-MVP Aiixi

while true
wait for incoming message
if message

if a request for xi from processor j
send xi to processor j

else
receive xj from processor j
accumulate sub-MVP Aijxj

if my computations finished, break
serve any remaining requests
update xi

collectively calculate error

Fig. 5. An SPMD algorithm for node i

Figure 5, we give an SPMD Jacobi iterative algorithm for
istributed solution of a linear equation system Ax = 0,
from [29]. In this paradigm, all parallel processes run the
program but operate on different data. We implemented
rogram using an implementation of the MPI standard.
gure gives pseudo code for node i. We use non-blocking
unication primitives to allow overlapped communication
omputation. Each process remains in a loop while the
rgence indicator error is larger than some predefined

sion value ε. Note that the calculation of this variable
expensive operation in a distributed system because

alue depends on the newly calculated iteration vector
h partially resides on each process. Given P processes,
eration vector x is partitioned into P blocks; process i
and updates block xi. The matrix A is row-wise striped

ioned into P 2 blocks and is also distributed among the
sses; process i keeps all Aij .

now set a simple test case to demonstrate how PDB
e used to trace unintended behaviour of the progressing
utation given in Figure 5. The Python code for the PDB
ase is given in Figure 6. The user considers that a succes-

increasing or constant value of error is an indication of
am malfunction. She creates a watchpoint (“WP”) on the
rgence variable error for a process p. Furthermore, She

es the function “count set” to count the number of times,
onvergence indicator successively increased or remained
ant. She creates the consumer “MyConsumer” on this
ion (“count set”) and subscribes to the watchpoint “WP”.
ort, the overall process works as follows. Each update
e convergence indicator error generates an event. This

invokes an execution of the function “count set”. This
ion emails Alice if the convergence variable successively
ased or remained constant for 100 times. Note that, in
ase, error is only updated once per iteration, and has

ame value on every process. This knowledge allowed the
to set a single watchpoint on a single process.

global.error t = 10
global.count = 0
def count set():

if p.error ≥ global.error t:
global.count + = 1
global.error t = p.error

else:
global.count = 0

if global.count == 100:
Email Alice

WP = WatchPoint(p.error)
MyConsumer = Consumer(count set)
MyConsumer.subscribe(WP)

Fig. 6. A test case to trace malfunction in the SPMD program

VII. IMPLEMENTATION STATUS

We have experimented with debugging distributed applica-
tions comprising a couple of dozen processes on a number
of virtual machines. There are two main directions we are
pursuing to advance the state of our PDB.

Firstly, work is being carried out to improve various func-
tional and non-functional aspects of the PDB. The prime
among these is our work on formalising and realising a
scalable framework for specifying and evaluating distributed
assertions. The work involves identifying a formal semantics
for distributed assertions and formalising a consistent model
for time and order. The notion of time and order is a major
concern in distributed systems, and it is a nontrivial task. In
the current implementation, an assertion in PDB is modelled
as a tree where leaves represent events, primitive or composite,
and nodes represent relations between the events. The Main
Server decomposes an assertion into subtrees and distributes
these to the relevant Backend Servers. The backends evaluate
their individual subtrees and forward interesting events to the
Main Server, which on receiving these events, evaluates its
own (high-level) tree. We are investigating other computational
models for this purpose, and the work is in progress. We are
also working on the syntax and semantics of the specification
language presented in Section VI, and it is likely to change in
future.

The other direction of our research is to increase the size
and variety of distributed applications, in order to make real
progress in debugging large-scale distributed system. We are
working with the CamGrid project [30]. The aim of the
CamGrid project is to build a university-wide Grid across
the University of Cambridge, UK. From this collaboration,
we expect to develop PDB on large-scale CamGrid resources,
and expect to find diverse distributed applications which can
be tested on our PDB.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we introduced PDB, our prototype debugger,
which provides a hierarchical, scalable architecture by dele-

gatin
serve
to th
these
“inte
calise
and s

We
demo
tensib
techn
event
the u
again
two
PDB
to bu
and
this w
the t
asser
are n
the i
the fu

A
these
their
as a
syste
state
of a
Anot
it ver
subst
appro
as de
on th
comb

A
in its
of th
such
loadb
exam
syste
an ar
debu
attain
Given
be ex
and r
state.
also
given
trans
This

7

g tasks to hierarchically placed intermediate or backend
rs. Distributed assertions are decomposed and distributed
e backend servers, and to the maximum extent possible,

servers evaluate assertions locally, and only forward
resting” events further up hierarchy. This approach lo-
s and reduces the overall traffic, and affords efficiency
calability.

discussed the functionality and architecture of PDB,
nstrated its usability and discussed portability and ex-
ility issues. We also surveyed a number of debugging
iques. The most promising approach we believe is the
-based assertion checking technique. In this technique,
ser specifies an assertion and the debugger verifies it
st the program behaviour. In this context, we presented

example test cases in Section VI. In order to make the
tool attractive to a casual user, it will be necessary for us
ild a library of commonly used test cases, i.e. consumers
distributed assertions. It is anticipated, however, that

ill occur naturally as we continue to develop and test
ool using varied distributed applications. Currently, our
tion language and the underlying computational model
ot powerful enough for the user to completely specify
ntended program behaviour. This will be considered in
ture.

problem with the traditional debugging approaches is that
can only be used to detect the presence of errors but not
absence. In recent years, model checking has emerged
promising approach for automatically verifying that a

m meets its specification. However, it suffers from the
space explosion problem, i.e. the size of the state space
system can be exponential in the size of the system.

her disadvantage of the model checking approach is that
ifies a model, not the actual system, and that it requires
antial efforts to construct a model of a system. The
ach of building and verifying program behaviour models
monstrated in this paper has the advantage that it works
e actual program. In future, we intend to investigate a
ination of the two approaches.
pervasive debugger for large-scale distributed systems
elf is a complex distributed system overlayed on top
e host distributed platform. It requires usual services
as communication, concurrency, time, synchronisation,
alancing, reliability and quality of service (QoS). For
ple, the ability to deterministically replay a distributed
m and to capture a consistent global state of the system at
bitrary point in time are desirable features of a distributed
gger. These features, however, are extremely difficult to
, if not impossible, for a large-scale distributed system.

a time model of a distributed system, the system can
ecuted in virtual time, and if necessary, checkpointing
eplay can be used to globally synchronise its distributed

This can also eliminate the probe effect. If QoS is
available, the core debugger (control) messages can be

a higher priority, and possibly an upper bound on
mission delay for these messages can be determined.
can minimise the amount of computation to be rewound,

and/or the states to be logged. Similarly, a distributed debugger
should be able to automatically instantiate and administer its
components and adapt to the dynamics of the host distributed
system (in the current implementation, PDB components are
statically instantiated and managed).

The pervasive debugging approach advocates that such
services and functions, along with the core PDB software,
should be embedded within a single debugging and verification
framework. Essentially, this involves building a virtual dis-
tributed system overlayed on top of a distributed host platform.
We appreciate the scale of such work, and therefore intend
to leverage existing tools and services to build our PDB for
large-scale systems. In this respect, some interesting ideas and
work on network overlays and distributed virtualisation can
be found in [31]–[33], being realised into PlanetLab [34].
The PlanetLab – a virtual testbed as well as a deployment
platform – provides a promising approach towards developing
and deploying global-scale tools, services, and infrastructures.
PDB can also take advantage of the PlanetLab and its existing
services, making it possible to develop, test, and deploy a
large-scale distributed pervasive debugger. Similarly, PDB can
also utilise tools and services generated from Grid computing
research.

ACKNOWLEDGEMENT

This work is supported by the EPSRC ”Pervasive Debug-
ging” Grant GR/S63113/01 and by an Eclipse Innovation
Grant from IBM.

REFERENCES

[1] J. Gait, “A probe effect in concurrent programs,” Softw. Pract. Exper.,
vol. 16, no. 3, pp. 225–233, 1986.

[2] C. H. LeDoux and J. D. Stott Parker, “Saving traces for ada debugging,”
in SIGAda ’85: Proceedings of the 1985 annual ACM SIGAda interna-
tional conference on Ada. New York, NY, USA: Cambridge University
Press, 1985, pp. 97–108.

[3] T. Harris, “Dependable Computing needs Pervasive Debugging,” in
Proceedings of the 2002 ACM SIGOPS European Workshop, 2002.

[4] A. Ho, S. Hand, and T. Harris, “PDB: Pervasive Debugging With Xen,”
in Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing (Grid 2004), 2004.

[5] P. Barham, B. Dragovic, K. Fraser, S. H. T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” in
Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP), October 2003.

[6] C. M. Pancake and R. H. B. Netzer, “A bibliography of parallel debug-
gers, 1993 edition,” in PADD ’93: Proceedings of the 1993 ACM/ONR
workshop on Parallel and distributed debugging. New York, NY, USA:
ACM Press, 1993, pp. 169–186.

[7] C. E. McDowell and D. P. Helmbold, “Debugging concurrent programs,”
ACM Comput. Surv., vol. 21, no. 4, pp. 593–622, 1989.

[8] R. Hood and G. Jost, “A debugger for computational grid applications,”
in HCW ’00: Proceedings of the 9th Heterogeneous Computing Work-
shop. Washington, DC, USA: IEEE Computer Society, 2000, p. 262.

[9] P. Neophytou, N. Neophytou, and P. Evripidou, “Debugging mpi grid
applications using net-dbx.” in European Across Grids Conference, ser.
Lecture Notes in Computer Science, M. D. Dikaiakos, Ed., vol. 3165.
Springer, 2004, pp. 139–148.

[10] “TotalView. Product Brochure, Natick MA, 2003.”
[11] “DDT, The Distributed Debugging Tool. Product Brochure, Allinea

Software Ltd, Warwick, UK.”
[12] D. Kranzlmuller, “Dewiz - event-based debugging on the grid,” in

Proceedings of the 10th Euromicro Workshop on Parallel, Distributed
and Network-based Processing (EUROMICRO-PDP 2002), 2002.

[13] C
g
W
2

[14] P
s
S

[15] M
t
o
p

[16] T
w
1

[17] P
d
p

[18] “
u

[19] B
p
P

[20] P
b
p

[21] E
o
A

[22] C
I
P
I

[23] A
m
W

[24] J
t

[25] K
M
M
a
O

[26] R
i
L
p

[27] —
c
h

[28] M
p
i
A
(

[29] R
M
h

[30] M
M
C
t

[31] L
I
H

[32] L
a
R

[33] L
T
H

[34] “
p

8

. Schaubschlager, D. Kranzlmuller, and J. Volkert, “Event-based pro-
ram analysis with dewiz,” in Proceedings of the Fifth International
orkshop on Automated Debugging (AADEBUG 2003), September
003.
. C. Bates and J. C. Wileden, “High-level debugging of distributed
ystems: The behavioral abstraction approach,” Journal of Systems and
oftware, vol. 3, no. 4, pp. 255–264, 1983.
.Auguston, “Building program behavior models,” in Proceedings of

he European Conference on Artificial Intelligence ECAI-98, Workshop
n Spatial and Temporal Reasoning, Brighton, England, August 1998,
p. 19–26.
. J. LeBlanc and J. M. Mellor-Crummey, “Debugging parallel programs
ith instant replay,” IEEE Trans. Comput., vol. 36, no. 4, pp. 471–482,
987.
. Harter, D. Heimbigner, and R. King, “Idd: an interactive distributed
ebugger,” in Proc 5th International Conference on Distributed Com-
uting Systems, Denver, CO, May 1985, pp. 498–506.
The Message Passing Interface (MPI) standard,” http://www-
nix.mcs.anl.gov/mpi/index.htm.
. P. Miller, J. K. Hollingsworth, and M. D. Callaghan, “The paradyn
arallel performance tools and pvm,” in Environments and Tools for
arallel Scientific Computing. SIAM Press, 1994.
. C. Bates, “Debugging heterogeneous distributed systems using event-
ased models of behavior,” ACM Trans. Comput. Syst., vol. 13, no. 1,
p. 1–31, 1995.
. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
f finite-state concurrent systems using temporal logic specifications,”
CM Trans. Program. Lang. Syst., vol. 8, no. 2, pp. 244–263, 1986.
. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,

. Pratt, and A. Warfield, “Live Migration of Virtual Machines,” in
roceedings of the 2nd Symposium on Networked Systems Design and

mplementation (NSDI ’05), May 2005, boston, MA.
. Whitaker, M. Shaw, and S. Gribble, “Denali: Lightweight virtual
achines for distributed and networked applications,” University of
ashington, Tech. Rep. 02-02-01, 2002.

. E. Smith and R. Nair, “An overview of Virtual Machine Architec-
ures,” 2003.
. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and
. Williams, “Safe Hardware Access with the Xen Virtual Machine
onitor,” in Proceedings of the 1st Workshop on Operating System

nd Architectural Support for the on demand IT InfraStructure (OASIS),
ctober 2004, boston, MA.
. Mehmood, “Serial Disk-based Analysis of Large Stochatic Models,”

n Validation of Stochastic Systems: A Guide to Current Research, ser.
ecture Notes in Computer Science, vol. 2925. Springer-Verlag, 2004,
p. 230–255.

—, “Disk-based techniques for efficient solution of large markov
hains,” Ph.D. dissertation, Computer Science, University of Birming-
am, UK, October 2004.
. Kwiatkowska, D. Parker, Y. Zhang, and R. Mehmood, “Dual-

rocessor parallelisation of symbolic probabilistic model checking,”
n Proceedings of the 12th International Symposium on Modeling,
nalysis, and Simulation of Computer and Telecommunication Systems

MASCOTS’04), 2004.
. Mehmood, “Out-of-Core and Parallel Iterative Solutions for Large
arkov Chains,” School of Computer Science, University of Birming-

am, UK,” PhD Progress Report 3, October 2001.
. Calleja, B. Beckles, M. Keegan, M. A. Hayes, A. Parker, and
. T. Dove, “CamGrid: Experiences in constructing a university-wide,
ondor-based, grid at the University of Cambridge ,” in Proceedings of

he 2004 UK e-Science All Hands Meeting, 2004.
. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A Blueprint for

ntroducing Disruptive Technology into the Internet,” in Proceedings of
otNets–I, Princeton, New Jersey, October 2002.
. Peterson, A. Bavier, M. Fiuczynski, S. Muir, and T. Roscoe, “Towards
Comprehensive PlanetLab Architecture,” PlanetLab Consortium, Tech.
ep. PDN–05–030, June 2005.
. Peterson, S. Shenker, and J. Turner, “Overcoming the Internet Impasse
hrough Virtualization,” in Proceedings of the 3rd ACM Workshop on
ot Topics in Networks (HotNets-III), November 2004.

Planetlab: An open platform for development, deploying and accessing
lanetary-scale services,” http://www.planet-lab.org/.

	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	Detailed Author Index

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	No Other Manuscripts by the Author
