
Technical Report
Number 650

Computer Laboratory

UCAM-CL-TR-650
ISSN 1476-2986

Parallel iterative solution method for
large sparse linear equation systems

Rashid Mehmood, Jon Crowcroft

October 2005

15 JJ Thomson Avenue
Cambridge CB3 0FD
United Kingdom
phone +44 1223 763500

http://www.cl.cam.ac.uk/

c© 2005 Rashid Mehmood, Jon Crowcroft

Technical reports published by the University of Cambridge
Computer Laboratory are freely available via the Internet:

http://www.cl.cam.ac.uk/TechReports/

ISSN 1476-2986

Parallel iterative solution method for large sparse linear

equation systems

Rashid Mehmood and Jon Crowcroft
University of Cambridge Computer Laboratory, Cambridge, UK.

Email: {rashid.mehmood, jon.crowcroft}@cl.cam.ac.uk

Abstract

Solving sparse systems of linear equations is at the
heart of scientific computing. Large sparse systems
often arise in science and engineering problems. One
such problem we consider in this paper is the steady-
state analysis of Continuous Time Markov Chains
(CTMCs). CTMCs are a widely used formalism for
the performance analysis of computer and communi-
cation systems. A large variety of useful performance
measures can be derived from a CTMC via the compu-
tation of its steady-state probabilities. A CTMC may
be represented by a set of states and a transition rate
matrix containing state transition rates as coefficients,
and can be analysed using probabilistic model check-
ing. However, CTMC models for realistic systems are
very large. We address this largeness problem in this
paper, by considering parallelisation of symbolic meth-
ods. In particular, we consider Multi-Terminal Bi-
nary Decision Diagrams (MTBDDs) to store CTMCs,
and, using Jacobi iterative method, present a parallel
method for the CTMC steady-state solution. Employ-
ing a 24-node processor bank, we report results of the
sparse systems with over a billion equations and eigh-
teen billion nonzeros.

1 Motivation

Solving systems of linear equations is at the heart of
scientific computing. Many problems in science and
engineering give rise to linear equation systems, such
as, forecasting, estimation, approximating non-linear
problems in numerical analysis and integer factorisa-
tion: another example is the steady-state analysis of
Continuous Time Markov Chains (CTMCs), a prob-
lem which we will focus on in this document.

Discrete-state models are widely employed for mod-
elling and analysis of communication networks and
computer systems. It is often convenient to model such
systems as continuous time Markov chains, provided
probability distributions are assumed to be exponen-
tial. A CTMC may be represented by a set of states
and a transition rate matrix containing state transition
rates as coefficients, and can be analysed using proba-

bilistic model checking. Such an analysis proceeds by
specifying desired performance properties as some tem-
poral logic formulae, and by automatically verifying
these properties using the appropriate model checking
algorithms. A core component of these algorithms is
the computation of the steady-state probabilities of the
CTMC. This is reducible to the classical problem of
solving a sparse system of linear equations, of the form
Ax = b, of size equal to the number of states in the
CTMC.

A limitation of the Markovian modelling approach is
that the CTMC models tend to grow extremely large
due to the state space explosion problem. This is
caused by the fact that a system is usually composed
of a number of concurrent sub-systems, and that the
size of the state space of the overall system is generally
exponential in the number of sub-systems. Hence, real-
istic systems can give rise to much larger state spaces,
typically over 106. As a consequence, much research
is focused on the development of techniques, that is,
methods and data structures, which minimise the com-
putational (space and time) requirements for analysing
large and complex systems.

A standard approach for steady-state solution of
CTMCs is to use explicit methods – the methods which
store the state space and associated data structures us-
ing sparse storage techniques inherited from the linear
algebra community. Standard numerical algorithms
can thus be used for CTMC analysis. These explicit
approaches typically provide faster solutions due to the
fast, array-based data structures used. However, these
can only solve models which can be accommodated
by the RAM available in contemporary workstations.
The so-called (explicit) out-of-core approaches [16, 39]
have used disk memory to overcome the RAM limita-
tions of a single workstation, and have made significant
progress in extending the size of the solvable models on
a single workstation. A survey of the out-of-core solu-
tions can be found in [45].

Another approach for CTMC analysis comprises im-
plicit methods. The so-called implicit methods can be
traced back to Binary Decision Diagrams (BDDs) [6]
and the Kronecker approach [56]. These rely on ex-

3

ploiting the regularity and structure in models, and
hence provide an implicit, usually compact, represen-
tation for large models. Among these implicit tech-
niques, the methods which are based on binary deci-
sion diagrams and extensions thereof are usually known
as symbolic methods. Further details on Kronecker-
based approaches and symbolic methods can be found
in the surveys, [9] and [53], respectively. A limitation
of the pure implicit approach is that it requires ex-
plicit storage of the solution vector(s). Consequently,
the implicit methods have been combined with out-of-
core techniques to address the vector storage limita-
tions [40]. A detailed discussion and analysis of both
the implicit and explicit out-of-core approaches can be
found in [49].

Shared memory multiprocessors, distributed mem-
ory computers, workstation clusters and Grids provide
a natural way of dealing with the memory and com-
puting power problems. The task can be effectively
partitioned and distributed to a number of parallel
processing elements with shared or distributed mem-
ories. Much work is available on parallel numerical
iterative solution of general systems of linear equa-
tions, see [4, 19, 58], for instance. Parallel solutions for
Markov chains have also been considered: for explicit
methods which have only used the primary memories
of parallel computers, see e.g. [44, 1, 51, 10]; and, for
a combination of explicit parallel and out-of-core solu-
tions; see [37,36,5]. Parallelisation techniques have also
been applied to the implicit methods. These include
the Kronecker-based parallel approaches [8,21,35]; and
the parallel approaches [43, 64], which are based on a
modified form [49] of Multi-Terminal Binary Decision
Diagrams (MTBDDs). MTBDDs [14, 3] are a simple
extension of binary decision diagrams; these will be
discussed in a later section of this paper.

In this paper, we consider parallelisation of the sym-
bolic methods for the steady-state solution of CTMCs.
In particular, for our parallel solution, we use the mod-
ified form of MTBDDs which was introduced in [49,47].
We chose this modified MTBDD because it provides
an extremely compact representation for CTMCs while
delivering solution speeds almost as fast as the sparse
methods. Secondly, because (although it is symbolic)
it exhibits a high degree of parallelism, it is highly con-
figurable, and allows effective decomposition and ma-
nipulation of the symbolic storage for CTMC matrices.
Third, because the time, memory, and decomposition
properties for these MTBDDs have already been stud-
ied for very large models, with over a billion states;
see [49].

The earlier work ([43,64]) on parallelising MTBDDs
have focused on keeping the whole matrix (as a single
MTBDD) on each computational node. We address
the limitations of the earlier work by presenting a par-
allel solution method which is able to effectively par-

tition, distribute, and manipulate the MTBDD-based
symbolic storage. Our method, therefore, is scalable to
address larger models.

We present a parallel implementation of the
MTBDD-based steady-state solution of CTMCs using
the Jacobi iterative method, and report solutions of
models with over 1.2 billion states and 16 billion tran-
sitions (off-diagonal nonzeros in the matrix) on a pro-
cessor bank. The processor bank which simply is a
collection of loosely coupled machines, consists of 24
dual-processor nodes. Using three widely used CTMC
benchmark models, we give a fairly detailed analysis of
the implementation of our parallel algorithm employ-
ing up to 48 processors. Note that the experiments are
performed without an exclusive access to the processor
bank.

The rest of the paper is organised as follows. In
Section 2, we give the background material which is
related to this paper. In Section 3, we present and dis-
cuss a serial block Jacobi algorithm. In Section 4, in
the context of our method we discuss some of the main
issues in parallel computing, and describe our paral-
lel algorithm and its implementation. The experimen-
tal results from the implementation, and its analysis is
given in Section 5. In Section 6, the contribution of
our work is discussed in relation to the other work on
parallel CTMC solutions in the literature. Section 6
also gives a classification of the parallel solution ap-
proaches. Section 7 concludes and summarises future
work.

2 Background Material

This section gives the background material. In Sec-
tions 2.1 to 2.4, and Section 2.6, we briefly discuss it-
erative solution methods for linear equation systems.
In Section 2.5, we explain how the problem of com-
puting steady-state probabilities for CTMCs is related
to the solution of linear equation systems. Section 2.7
reviews the relevant sparse storage schemes. We have
used MTBDDs to store CTMCs; Section 2.8 gives a
short description of the data structure. Finally, in Sec-
tion 2.9, we briefly introduce the case studies which
we have used in this paper to benchmark our solution
method. Here, using these case studies, we also give
a comparison of the storage requirements for the main
storage schemes.

2.1 Solving Systems of Linear Equations

Large sparse systems of linear equations of the form
Ax = b often arise in science and engineering problems.
An example is the mathematical modelling of physical
systems, such as climate modelling, over discretized do-
mains. The numerical solution methods for linear sys-
tems of equations, Ax = b, are broadly classified into
two categories: direct methods, such as Gaussian elim-

4

ination, LU factorisation etc; and iterative methods.
Direct methods obtain the exact solution in finitely
many operations and are often preferred to iterative
methods in real applications because of their robust-
ness and predictable behaviour. However, as the size
of the systems to be solved increases, they often become
almost impractical due to the phenomenon known as
fill-in. The fill-in of a sparse matrix is a result of those
entries which change from an initial value of zero to a
nonzero value during the factorisation phase, e.g. when
a row of a sparse matrix is subtracted from another
row, some of the zero entries in the latter row may be-
come nonzero. Such modifications to the matrix mean
that the data structure employed to store the sparse
matrix must be updated during the execution of the
algorithm.

Iterative methods, on the other hand, do not mod-
ify matrix A; rather, they involve the matrix only in
the context of matrix-vector product (MVP) opera-
tions. The term “iterative methods” refers to a wide
range of techniques that use successive approximations
to obtain more accurate solutions to a linear system
at each step [4]. Beginning with a given approximate
solution, these methods modify the components of the
approximation, until convergence is achieved. They do
not guarantee a solution for all systems of equations.
However, when they do yield a solution, they are usu-
ally less expensive than direct methods. They can be
further classified into stationary methods like Jacobi
and Gauss-Seidel (GS), and non-stationary methods
such as Conjugate Gradient, Lanczos, etc. The vol-
ume of literature available on iterative methods is huge,
see [4,2,24,25,58,38]. In [59], Saad and Vorst present a
survey of the iterative methods; [61] describes iterative
methods in the context of solving Markov chains. A
fine discussion of the parallelisation issues for iterative
methods can be found in [58,4].

2.2 Jacobi and JOR Methods

Jacobi method belongs to the category of so-called sta-
tionary iterative methods. These methods can be ex-
pressed in the simple form x(k) = Fx(k−1) + c, where
x(k) is the approximation to the solution vector at the
k-th iteration and neither F nor c depend on k.

To solve a system Ax = b, where A ∈ Rn×n, and
x, b ∈ Rn, the Jacobi method performs the following
computations in its k-th iteration:

x
(k)
i = a−1

ii (bi −
∑
j 6=i

aijx
(k−1)
j), (1)

for all i, 0 ≤ i < n. In the equation, aij denotes the el-
ement in row i and column j of matrix A and, x

(k)
i and

x
(k−1)
i indicate the i-th element of the iteration vector

for the iterations numbered k and k − 1, respectively.
The Jacobi equation given above can also be written

in matrix notation as:

x(k) = D−1(L + U) x(k−1) + D−1b, (2)

where A = D − (L + U) is a partitioning of A
into its diagonal, lower-triangular and upper-triangular
parts, respectively. Note the similarities between
x(k) = Fx(k−1) + c and Equation (2).

The Jacobi method does not converge for all linear
equation systems. In such cases, Jacobi may be made
to converge by introducing an under-relaxation param-
eter in the standard Jacobi. Furthermore, it may also
be possible to accelerate the convergence of the stan-
dard Jacobi method by using an over-relaxation param-
eter. The resulting method is known as Jacobi overre-
laxation (JOR) method. A JOR iteration is given by

x
(k)
i = αx̂

(k)
i + (1− α)x(k−1)

i , (3)

for 0 ≤ i < n, where x̂ denotes a Jacobi iteration as
given by Equation (1), and α ∈ (0, 2) is the relaxation
parameter. The method is under-relaxed for 0 < α <
1, and is over-relaxed for α > 1; the choice α = 1
reduces JOR to Jacobi.

Note in Equations (1) and (3), that the order in
which the equations are updated is irrelevant, since
the Jacobi and the JOR methods treat them indepen-
dently. It can also be seen in the Jacobi and the JOR
equations that the new approximation of the iteration
vector (x(k)) is calculated using only the old approxi-
mation of the vector (x(k−1)). These methods, there-
fore, possess high degree of natural parallelism. How-
ever, Jacobi and JOR methods exhibit relatively slow
convergence.

2.3 Gauss-Seidel and SOR

The Gauss-Seidel method typically converges faster
than the Jacobi method by using the most recently
available approximations of the elements of the itera-
tion vector. The other advantage of the Gauss-Seidel
algorithm is that it can be implemented using only one
iteration vector, which is important for large linear
equation systems where storage of a single iteration
vector alone may require 10GB or more. However, a
consequence of using the most recently available so-
lution approximation is that the method is inherently
sequential – it does not possess natural parallelism (for
further discussion, see Section 4, Note 4.1). The Gauss-
Seidel method has been used for parallel solutions of
Markov chains, see [43,64].

The successive over-relaxation (SOR) method ex-
tends the Gauss-Seidel method using a relaxation fac-
tor ω ∈ (0, 2), analogous to the JOR method discussed
above. For a good choice of ω, SOR can have consider-
ably better convergence behaviour than GS. However,
a priori computation of an optimal value for ω is not
feasible.

5

2.4 Krylov Subspace Methods

The Krylov subspace methods belong to the category of
non-stationary iterative methods. These methods offer
faster convergence than the methods discussed in the
previous sections and do not require a priori estima-
tion of parameters depending on the inner properties
of the matrix. Furthermore, they are based on matrix-
vector product computations and independent vector
updates, which makes them particularly attractive for
parallel implementations. Krylov subspace methods
for arbitrary matrices, however, require multiple iter-
ation vectors which makes it difficult to apply them
to the solution of large systems of linear equations.
For example, the conjugate gradient squared (CGS)
method [60] performs 2 MVPs, 6 vector updates and
two vector inner products during each iteration, and
requires 7 iteration vectors.

The CGS method has been used for parallel solution
of Markov chains, see [37,5].

2.5 CTMCs and the Steady-State Solution

A CTMC is a continuous time, discrete-state stochastic
process. More precisely, a CTMC is a stochastic process
{X(t), t ≥ 0} which satisfies the Markov property:

P [X(tk) = xk|X(tk−1) = xk−1, · · · , X(t0) = x0]
= P [X(tk) = xk|X(tk−1) = xk−1], (4)

for all positive integers k, any sequence of time in-
stances t0 < t1 < · · · < tk and states x0, · · · , xk. The
only continuous probability distribution which satisfies
the Markov property is the exponential distribution.

A CTMC may be represented by a set of states S,
and the transition rate matrix R : S × S → R≥0. A
transition from state i to state j is only possible if the
matrix entry rij > 0. The matrix coefficients deter-
mine transition probabilities and state sojourn times
(or holding times). Given the exit rate of state i,
E(i) =

∑
j∈S, j 6=i rij , the mean sojourn time for state i

is 1/E(i), and the probability of making transition out
of state i within t time units is 1 − e−E(i)·t. When a
transition does occur from state i, the probability that
it goes to state j is rij/E(i). An infinitesimal genera-
tor matrix Q may be associated to a CTMC by setting
the off-diagonal entries of the matrix Q with qij = rij ,
and the diagonal entries with qii = −E(i). The matrix
Q (or R) is usually sparse; further details about the
properties of these matrices can be found in [61].

Consider Q ∈ Rn×n is the infinitesimal generator
matrix of a continuous time Markov chain with n
states, and π(t) = [π0(t), π1(t), . . . , πn−1(t)] is the tran-
sient state probability row vector, where πi(t) denotes
the probability of the CTMC being in state i at time
t. The transient behaviour of the CTMC is described

by the following differential equation:

dπ(t)
dt

= π(t)Q. (5)

The initial probability distribution of the CTMC, π(0),
is also required to compute Equation (5). In this pa-
per, we have focused on computing the steady-state
behaviour of a CTMC. This is obtained by solving the
following system of linear equations:

πQ = 0,
n−1∑
i=0

πi = 1. (6)

The vector π = limt→∞ π(t) in Equation (6) is the
steady-state probability vector. A sufficient condition
for the unique solution of the Equation (6) is that
the CTMC is finite and irreducible. A CTMC is irre-
ducible if every state can be reached from every other
state. In this paper, we consider solving only irre-
ducible CTMCs; for details on the solution in the gen-
eral case, see [61], for example. The Equation (6) can
be reformulated as QT πT = 0, and well-known meth-
ods for the solution of systems of linear equations of
the form Ax = b can be used (see Section 2.1).

2.6 Test of Convergence for Iterative Methods

The residual vector of a system of linear equations,
Ax = b, is defined by ξ = b − Ax. For an iterative
method, the initial value for the residual vector, ξ(0),
can be computed by ξ(0) ← b−Ax(0), using some initial
approximation of the solution vector, x(0). Through
successive approximations, the goal is to obtain ξ = 0,
which gives the desired solution x for the linear equa-
tion system.

An iterative algorithm is said to have converged af-
ter k iterations if the magnitude of the residual vec-
tor becomes zero or desirably small. Usually, some
computations are performed in each iteration to test
for convergence. A frequent choice for the convergence
test is to compare, in the k-th iteration, the Euclidean
norm of the residual vector, ξ(k), against some prede-
termined threshold, usually ε× ‖ξ(0)‖2 for 0 < ε� 1.
The Euclidean norm (also known as the l2-norm) of
the residual vector in the k-th iteration, ξ(k), is given
by:

‖ξ(k)‖2 =
√

ξ(k)T ξ(k). (7)

For further details on convergence tests, see e.g. [4,
58]. In the context of the steady-state solution of a
CTMC, a widely used convergence criterion is the so-
called relative error criterion (l∞-norm):

max
i
{ | x(k)

i − x
(k−1)
i | ÷ | x(k)

i | } < ε � 1. (8)

6

2.7 Explicit Storage Methods for Sparse Matrices

An n × n dense matrix is usually stored in a two-
dimensional n×n array. For sparse matrices, in which
most of the entries are zero, storage schemes are sought
which can minimise the storage while keeping the com-
putational costs to a minimum. A number of sparse
storage schemes exist which exploit various matrix
properties, e.g., the sparsity pattern of a matrix. We
briefly survey the notable sparse schemes in this sec-
tion, with no intention of being exhaustive; for more
schemes see, for instance, [4, 38]. A relatively detailed
version of the review of the sparse storage schemes
given here can also be found in [49].

2.7.1 The Coordinate and CSR Formats

The coordinate format [57,32] is the simplest of sparse
schemes. It makes no assumption about the matrix.
The scheme uses three arrays to store an n× n sparse
matrix. The first array Val stores the nonzero entries
of the matrix in an arbitrary order. The nonzero en-
tries include “a” off-diagonal matrix entries, and n en-
tries in the diagonal. Therefore, the first array is of
size a+n doubles. The other two arrays, Col and Row,
both of size a + n ints, store the column and row in-
dices for these nonzero entries, respectively. Given an
8-byte floating point number representation (double)
and a 4-byte integer representation (int), the coordi-
nate format requires 16(a+n) bytes to store the whole
sparse matrix.

The compressed sparse row (CSR) [57] format stores
the a + n nonzero matrix entries in the row by row
order, in the array Val, and keeps the column indices
of these entries in the array Col; the elements within a
row are stored in an arbitrary order. The i-th element
of the array Starts (of size n ints) contains the index
in Val (and Col) of the beginning of the i-th row. The
CSR format requires 12a+16n bytes to store the whole
sparse matrix.

2.7.2 Modified Sparse Row

Since many iterative algorithms treat the principal di-
agonal entries of a matrix differently, it is usually ef-
ficient to store the diagonal separately in an array of
n doubles. Storage of column indices of diagonal en-
tries in this case is not required, offering a saving of
4n bytes over the CSR format. The resulting stor-
age scheme is known as the modified sparse row (MSR)
format [57] (a modification of CSR). The MSR scheme
essentially is the same as the CSR format except that
the diagonal elements are stored separately. It requires
12(a + n) bytes to store the whole sparse matrix. For
iterative methods, some computational advantage may
be gained by storing the diagonal entries as 1/aii in-
stead of aii, i.e. by replacing n division operations
with n multiplications.

2.7.3 Avoiding the Diagonal Storage
For the steady-state solution of a Markov chain, it is
possible to avoid the in-core storage of the diagonal
entries during the iterative solution phase. This is
accomplished as follows. We define the matrix D as
the diagonal matrix with dii = qii, for 0 ≤ i < n.
Given R = QT D−1, the system QT πT = 0 can be
equivalently written as QT D−1DπT = Ry = 0, with
y = DπT . Consequently, the equivalent system Ry = 0
can be solved with all the diagonal entries of the matrix
R being 1. The original diagonal entries can be stored
on disk for computing π from y. This saves 8n bytes of
the in-core storage, along with computational savings
of n divisions for each step in an iterative method such
as Jacobi.

2.7.4 Indexed MSR
The indexed MSR scheme exploits properties in CTMC
matrices to obtain further space optimisations for
CTMC storage. This is explained as follows. The
number of distinct values in a generator matrix de-
pends on the model. This characteristic can lead to
significant memory savings if one considers indexing
the nonzero entries in the above mentioned formats.
Consider the MSR format. Let MaxD be the number
of distinct values among the off-diagonal entries of a
matrix, with MaxD ≤ 216; then MaxD distinct values
can be stored as an array, double Val[MaxD]. The
indices to this array of distinct values cannot exceed
216, and, in this case, the array double Val[a] in MSR
format can be replaced with short Val−i[a]. In the
context of CTMCs, in general, the maximum number
of entries per row of a generator matrix is also small,
and is limited by the maximum number of transitions
leaving a state. If this number does not exceed 28, the
array int Starts[n] in MSR format can be replaced
by the array char row−entries[n].

The indexed variation of the MSR scheme (indexed
MSR) uses three arrays: the array Val−i[a] of length
2a bytes for the storage of a short (2-byte integer
representation) indices to the MaxD distinct entries,
an array of length 4a bytes to store a column in-
dices as int (as in MSR), and the n-byte long array
row−entries[n] to store the number of entries in each
row. In addition, the indexed MSR scheme requires
an array to store the actual (distinct) matrix values,
double Val[MaxD]. The total memory requirement for
this scheme (to store an off-diagonal matrix) is 6a + n
bytes plus the storage for the actual distinct values in
the matrix. Since the storage for the actual distinct
values is relatively small for large models, we do not
consider it in future discussions. Note also that the
indexed MSR scheme can be used to store matrix R,
rather than Q, and therefore the diagonal storage dur-
ing the iterative computation phase can be avoided.
The indexed MSR scheme has been used in the litera-

7

ture with some variations, see [17,37,5].

2.7.5 Compact MSR
We note that the indexed MSR format stores the col-
umn index of a nonzero entry in a matrix as an int.
An int usually uses 32 bits, which can store a column
index as large as 232. The size of the matrices which
can be stored within the RAM of a modern worksta-
tion are usually much smaller than 232. Therefore, the
largest column index for a matrix requires fewer than
32 bits, leaving some spare bits. Even more spare bits
can be made available for parallel solutions because it is
a common practice (or, at least it is possible) to use per
process local numbering for a column index. The com-
pact MSR format [39,49] exploits these facts and stores
the column index of a matrix entry along with the index
to the actual value of this entry in a single int. The
storage and retrieval of these indices into, and from,
an int is carried out efficiently using bit operations.
The scheme uses three arrays: the array Col−i[a] of
length 4a bytes which stores the column positions of
matrix entries as well as the indices to these entries, the
n-byte sized array row−entries[n] to store the num-
ber of entries in each row, and the 2n-byte sized array
Diag−i[n] of short indices to the original values in the
diagonal. The total memory requirements for the com-
pact MSR format is thus 4a + 3n bytes, around 30%
more compact than the indexed MSR format.

2.8 Multi-Terminal Binary Decision Diagrams

We know from Section 1 that implicit methods are
another well-known approach to the CTMC storage.
These do not require data structures of size propor-
tional to the number of states, and can be traced back
to Binary Decision Diagrams (BDDs) [6] and the Kro-
necker approach [56]. Among these methods are multi-
terminal binary decision diagrams (MTBDDs), Matrix
Diagrams (MD) [11, 52] and the Kronecker methods
(see e.g. [56, 20, 62, 7], and the survey [9]); on-the-fly
method [18] can also be considered implicit because it
does not require explicit storage of whole CTMC. We
now will focus on MTBDDs.

Multi-Terminal Binary Decision Diagrams (MTB-
DDs) [14, 3] are a simple extension of binary decision
diagrams (BDDs). An MTBDD is a rooted, directed
acyclic graph (DAG), which represents a function map-
ping Boolean variables to real numbers. MTBDDs can
be used to encode real-valued vectors and matrices by
encoding their indices as Boolean variables. Since a
CTMC is described by a square, real-valued matrix,
it can also be represented as an MTBDD. The advan-
tage of using MTBDDs (and other implicit data struc-
tures) to store CTMCs is that they can often provide
extremely compact storage, provided that the CTMCs
exhibit a certain degree of structure and regularity. In
practice, this is very often the case since they will have

been specified in some, inherently structured, high-
level description formalism.

Numerical solution of CTMCs can be performed
purely using conventional MTBDDs; see for exam-
ple [29, 31, 30]. This is done by representing both
the matrix and the vector as MTBDDs and using an
MTBDD-based matrix-vector multiplication algorithm
(see [14, 3], for instance). However, this approach is
often very inefficient because, during the numerical so-
lution phase, the solution vector becomes more and
more irregular and so its MTBDD representation grows
quickly. A second disadvantage of the purely MTBDD-
based approach is that it is not well suited for an
efficient implementation of the Gauss-Seidel iterative
method1. An implementation of Gauss-Seidel is desir-
able because it typically converges faster than Jacobi
and it requires only one iteration vector instead of two.

The limitations of the purely MTBDD-based ap-
proach mentioned above were addressed by offset-
labelled MTBDDs [42, 55]. An explicit, array-based
storage for the solution vector was combined with an
MTBDD-based storage of the matrix, by adding offsets
to the MTBDD nodes. This removed the vector irreg-
ularity problem. Nodes near the bottom of MTBDD
were replaced by array-based (explicit) storage, which
yielded significant improvements for the numerical so-
lution speed. Finally, the offset-labelled MTBDDs
allowed the use of the pseudo Gauss-Seidel iterative
method, which typically converges faster than the Ja-
cobi iterative method and requires storage of only one
iteration vector.

Further improvements for (offset-labelled) MTBDDs
have been introduced in [49, 47]. We have used this
version of MTBDDs to store CTMCs for the parallel
solution presented in this paper. The data structure
in fact comprises a two-layered storage, made up en-
tirely of sparse matrix storage schemes. It is, however,
considered a symbolic data structure because it is con-
structed directly from the MTBDD representation and
is reliant on the exploitation of regularity that this pro-
vides. This version of the MTBDDs is a significant im-
provement over its predecessors. First, it has relatively
better time and memory characteristics. Second, the
execution speeds for the (in-core) solutions based on
this version are equal for different types of models (at
least for the case studies considered). Conversely, the
solution times for other MTBDD versions are depen-
dent on the amount of structure in a model, typically
resulting in much worse performance for the models
which have less structure. Third, the data structure
exhibits a higher degree of parallelism compared to

1In fact, an MTBDD version of the Gauss-Seidel method,
using matrix-vector multiplication, has been presented in the
literature [31]. However, this relies on computing and represent-
ing matrix inverses using MTBDDs. This will be inefficient in
general, because converting a matrix to its inverse will usually
result in a loss of structure and possibly fill-in.

8

0 0

01.3

1.4

0

0 0

00

0 0

0 01.3

1.4

00

0

00

01.3

1.4

0

0

0

0

0

01.1 0 0

00

0 0

1.1

0 00
0

0 0

0

1.1 0

00

0 0

01.6

00

0

0 0

0

1.6

1.5

1.5

1.21.2

1.2

1.5

1.5

1.5

1.3

1.31.3

1.7

1.7

0
0 0

0

1.5

1.6

1.7 0

0

(a) A CTMC matrix

Col

Val

Starts

1.5

2

0 1 2

0 1

1.3 1.4 1.1

0 1 2

2 2

1.3 1.2 1.6

1

0 1 2

2 1

1.5 1.7

0

Starts

Col

Val

0 2 1 0 1 2 2 3

0 3 4 7

3

(b) Modified MTBDD representation

Figure 1: A CTMC matrix and its representation as a
modified MTBDD

its predecessors. It is highly configurable, and is en-
tirely based on a fast, array-based storage, which al-
lows effective decomposition, distribution, and manip-
ulation of the data structure. Finally, the Gauss-Seidel
method can be efficiently implemented using the mod-
ified MTBDDs, which is not true for its predecessors;
see [47,49], for serial Gauss-Seidel, and [43,64], for par-
allel Gauss-Seidel implementations.

Figure 1 depicts a 12 × 12 CTMC matrix and its
representation as a (modified) MTBDD. Note the two-
layered storage. MTBDDs store the diagonal elements
of a CTMC matrix separately as an array, in order
to preserve structure in the symbolic representation of
the CTMC. Hence, the diagonal entries of the matrix
in Figure 1(a) are all zero. The matrix is divided into
42 blocks, where some of the blocks are zero (shown
as shaded in pink). Each block in the matrix is of size
3×3. The blocks in the matrix are shown of equal size.
However, usually, an MTBDD yields matrix blocks of
unequal and varying sizes.

The information for the nonzero blocks in the ma-
trix is stored in the MSR format, using the three arrays

Starts, Col, and Val (see the top part of Figure 1(b)).
The array Col stores the column indices of the matrix
blocks in a row-wise order, and the i-th element of the
array Starts contains the index in Col of the beginning
of the i-th row. The array Val keeps track of the actual
block storage in the bottom layer of the data structure.
Each distinct matrix block is stored only once, using
the MSR format; see bottom of Figure 1(b). The mod-
ified MTBDDs actually use the compact MSR format
for both the top and the bottom layers of the storage.
For simplicity, we used the (standard) MSR scheme in
the figure.

The modified MTBDD can be configured to tailor
the time and memory properties of the data structure
according to the needs of the solution methods. This
is explained as follows. An MTBDD is a rooted, di-
rected acyclic graph, comprising two types of nodes:
terminal , and non-terminal . Terminal nodes store the
actual matrix entries, while non-terminal nodes store
integers, called offsets. These offsets are used to com-
pute the indices for the matrix entries stored in the
terminal nodes. The nodes which are used to compute
the row indices are called row nodes, and those used to
compute the column indices are called column nodes.
A level of an MTBDD is defined as an adjacent pair
of rank of nodes, one for row nodes and the other for
column nodes. Each rank of nodes in MTBDD corre-
sponds to a distinct boolean variable. The total num-
ber of levels is denoted by ltotal. Descending each level
of an MTBDD splits the matrix into 4 submatrices.
Therefore, descending lb levels, for some lb < ltotal,
gives a decomposition of a matrix into P 2 blocks, where
P = 2lb . The decomposition of the matrix shown in
Figure 1(a) into 16 blocks is obtained by descending 2
levels in the MTBDD, i.e. by using lb = 2. The number
of block levels lb can be computed using lb = k× ltotal,
for some k, with 0 ≤ k < 1. A larger value for k (with
some threshold value below 1) typically reduces the
memory requirements to store a CTMC matrix, how-
ever, it yields larger number of blocks for the matrix.
A larger number of blocks usually can worsen perfor-
mance for out-of-core and parallel solutions.

In [49], the author used lb = 0.6 × ltotal for the in-
core solutions, and lb = 0.4 × ltotal for the out-of-core
solution. A detailed discussion of the affects of the pa-
rameter lb on the properties of the data structure, a
comprehensive description of the modified MTBDDs,
and the analyses of its in-core and out-of-core imple-
mentations can be found in [49].

2.9 Case Studies

We have used three widely used CTMC case studies
to benchmark our parallel algorithm. The case stud-
ies have been generated using the tool PRISM [41].
First among these is the flexible manufacturing system

9

Table 1: Comparison of Storage Methods

k States Off-diagonal a/n Memory for Matrix (MB) Vector
(n) nonzeros (a) MSR format Indexed MSR Compact MSR MTBDDs (MB)

FMS models

6 537,768 4,205,670 7.82 50 24 17 4 4
7 1,639,440 13,552,968 8.27 161 79 53 12 12
8 4,459,455 38,533,968 8.64 457 225 151 29 34
9 11,058,190 99,075,405 8.96 1,176 577 388 67 84

10 25,397,658 234,523,289 9.23 2,780 1,366 918 137 194
11 54,682,992 518,030,370 9.47 6,136 3,016 2,028 273 417
12 111,414,940 1,078,917,632 9.68 12,772 6,279 4,220 507 850
13 216,427,680 2,136,215,172 9.87 25,272 12,429 8,354 921 1,651
14 403,259,040 4,980,958,020 12.35 58,540 28,882 19,382 1,579 3,077
15 724,284,864 9,134,355,680 12.61 107,297 52,952 35,531 2,676 5,526

Kanban models

4 454,475 3,979,850 8.76 47 23 16 1 3.5
5 2,546,432 24,460,016 9.60 289 142 95 2 19
6 11,261,376 115,708,992 10.27 1,367 674 452 6 86
7 41,644,800 450,455,040 10.82 5,313 2,613 1,757 16 318
8 133,865,325 1,507,898,700 11.26 17,767 8,783 5,878 46 1,021
9 384,392,800 4,474,555,800 11.64 52,673 25,881 17,435 99 2,933

10 1,005,927,208 12,032,229,352 11.96 141,535 69,858 46,854 199 7,675

Polling System

15 737,280 6,144,000 8.3 73 35 24 1 6
16 1,572,864 13,893,632 8.8 165 81 54 3 12
17 3,342,336 31,195,136 9.3 370 181 122 6 26
18 7,077,888 69,599,232 9.8 823 404 271 13 54
19 14,942,208 154,402,816 10.3 1,824 895 601 13 114
20 31,457,280 340,787,200 10.8 4,020 1,974 1,326 30 240
21 66,060,288 748,683,264 11.3 8,820 4,334 2,910 66 504
22 138,412,032 1,637,875,712 11.8 19,272 9,478 6,362 66 1,056
23 289,406,976 3,569,352,704 12.3 41,952 20,645 13,855 144 1,081
24 603,979,776 7,751,073,792 12.8 91,008 44,813 30,067 144 1,136
25 1,258,291,200 16,777,216,000 13.3 196,800 96,960 65,040 317 1,190

(FMS) of Ciardo and Tilgner [13], who used this model
to benchmark their decomposition approach for the so-
lution of large stochastic reward nets (SRNs), a class of
Markovian stochastic Petri nets [54]. The FMS model
comprises three machines which process different types
of parts. One of the machines may also be used to as-
semble two parts into a new type of part. The total
number of parts in the system is kept constant. The
model parameter k denotes the maximum number of
parts which each machine can handle. Second CTMC
model is the Kanban manufacturing system [12], again
due to Ciardo and Tilgner. The authors used the Kan-
ban model to benchmark their Kronecker-based solu-
tion of CTMCs. The Kanban model comprises four
machines. The model parameter k represents the max-
imum number of jobs that may be in a machine at one
time. Finally, third CTMC model is the cyclic server
polling system of Ibe and Trivedi [33]. The Polling
system consists of k stations or queues and a server.
The server polls the stations in a cycle to determine if
there are any jobs in the station for processing. We will
abbreviate the names of these case studies to “FMS”,
“Kanban” and “Polling” respectively.

Table 1 gives statistics for the three CTMC models,
and compares storage requirements for MSR, indexed
MSR, compact MSR and (modified) MTBDDs. The
first column in the table gives the model parameter k;

the second and third columns list the resulting num-
ber of reachable states and the number of transitions
respectively. The number of states and the number of
transitions increase with an increase in the parameter
k. The fourth column (a/n) gives the average number
of the off-diagonal nonzero entries per row, an indica-
tion of the matrix sparsity. The largest model reported
in the table is Polling (k = 25) with over 12.58 billion
states and 16.77 billion transitions.

Columns 5 − 8 in Table 1 give the (RAM) storage
requirements for the CTMC matrices (excluding the
storage for the diagonal) in MB for the four data struc-
tures. The indexed MSR format does not require RAM
to store the diagonal for the iteration phase (see Sec-
tion 2.7.3). The (standard) MSR format stores the
diagonal as an array of 8n bytes. The compact MSR
scheme and the (modified) MTBDDs store the diago-
nal entries as short int (2 Bytes), and therefore require
an array of 2n bytes for the diagonal storage. The last
column lists the memory required to store a single iter-
ation vector of doubles (8 bytes) for the solution phase.

Note in Table 1 that the storage for the three ex-
plicit schemes is dominated by the memory required
to store the matrix, while the memory required to
store vector dominates the storage for the implicit
scheme (MTBDD). Note also that the memory require-
ments for the three explicit methods are independent

10

of the case studies used, while for MTBDDs (implicit
method), memory required to store CTMCs is heavily
influenced by the case studies used. Finally, we observe
that the memory required to store some of the Polling
CTMC matrices is the same (e.g., k = 23, 24). This
is possible in case of MTBDDs because these exploit
structure in models which can possibly lead to similar
amount of storage for different sizes of CTMCs.

The storage listed for the MTBDDs in Table 1 needs
further clarification. We have mentioned earlier in Sec-
tion 2.8 that the memory requirements for the MTB-
DDs can be configured using the parameter lb. The
memories for the MTBDD listed in the table are given
for lb = 0.4 × ltotal. For parallel solutions, we believe
that this heuristic gives an adequate compromise be-
tween the amount of memory required for matrix stor-
age and the number of blocks in the matrix. However,
this issue needs further analysis and will be considered
in our future work.

3 A Block Jacobi Algorithm

Iterative algorithms for the solution of linear equation
system Ax = b perform matrix computations in row-
wise or column-wise fashion. Block-based formulations
of the iterative methods which perform matrix compu-
tations on block by block basis usually turn out to be
more efficient.

We have described Jacobi iterative method in Sec-
tion 2.2. In this section, we present a block Jacobi
algorithm for the solution of the linear equation sys-
tem Ax = b. Using this algorithm, we will be able
to compute the steady-state probabilities of a CTMC,
with A = QT , x = πT , and b = 0. In the follow-
ing, we briefly explain the block iterative methods, and
subsequently go on to describe our block Jacobi algo-
rithm. For further details on block iterative methods,
see e.g. [61,15].

A block iterative method partitions a system of lin-
ear equations into a certain number of blocks or sub-
systems. We consider a decomposition of the state
space S of a CTMC into P contiguous partitions
S0, . . . , SP−1, of sizes n0, . . . , nP−1, such that n =∑P−1

i=0 ni. We additionally define nmax = max{ni | 0 ≤
i < P}, the size of the largest CTMC partition (or
equally, the largest block of the vector x). Using this
decomposition of the state space, matrix A can be di-
vided into P 2 blocks, {Aij | 0 ≤ i, j < P}, where
the rows and columns of block Aij correspond to the
states in Si and Sj , respectively, i.e. block Aij is of size
ni × nj . Therefore, for P = 4, the system of equations
Ax = b can be partitioned as follows.

A00 A01 A02 A03

A10 A11 A12 A13

A20 A21 A22 A23

A30 A31 A32 A33

X0

X1

X2

X3

 =

B0

B1

B2

B3

 (9)

Algorithm 1 A (Serial) Block Jacobi Algorithm

ser block Jac(A, b, x, P, n[], ε) {

1. var x̃, Y, k ← 0, error← 1.0, i, j
2. while(error > ε)
3. k ← k + 1
4. for(0 ≤ i < P)
5. Y ← Bi

6. for(0 ≤ j < P ; j 6= i)
7. Y ← Y −AijX

(k−1)
j

8. vec update Jac(X(k)
i , Aii, X

(k−1)
i , Y, n[i])

9. compute error

10. X
(k−1)
i ← X

(k)
i

}

Using a partitioning of the system Ax = b, as described
above, a block iterative method solves P sub-systems of
linear equations, of sizes n0, . . . , nP−1, within a global
iterative structure. If the Jacobi iterative method is
employed as the global structure, it is called the block
Jacobi method. From Equations (1) and (9), the block
Jacobi method for the solution of the system Ax = b
is given by:

Aii X
(k)
i = Bi −

∑
j 6=i

Aij X
(k−1)
j , (10)

for all i, 0 ≤ i < P , where X
(k)
i , X

(k−1)
i and Bi are the

i-th blocks of vectors x(k), x(k−1) and b respectively.
Consequently, in the i-th of the total P phases of the

k-th iteration of the block Jacobi iterative method, we
solve Equation (10) for X

(k)
i . These sub-systems can be

solved using either direct or iterative methods. It is not
necessary even to use the same method to solve each
sub-system. If iterative methods are used to solve these
sub-systems then we may have several inner iterative
methods, within a global or outer iterative method.
Moreover, each of the P sub-systems of equations can
receive either a fixed or varying number of inner iter-
ations. The block iterative methods which employ an
inner iterative method typically require fewer (outer)
iterations, provided multiple (inner) iterations are ap-
plied to the sub-systems. However, a consequence of
multiple inner iterations is that each outer iteration
will require more work. Note that applying one Jacobi
iteration on each sub-system in the global Jacobi it-
erative structure reduces the block Jacobi method to
the standard Jacobi method, i.e., gives a block-based
formulation of the (standard) Jacobi iterative method.

Algorithm 1 gives a block Jacobi algorithm for the
solution of the system Ax = b. The algorithm,
ser block Jac(·), accepts the following parameters as
input: the references to matrix A and the vector b;
the reference to the vector x, which contains an initial

11

approximation for the iteration vector; the number of
partitions P ; the vector n[]; and, a precision value for
the convergence test, ε. The vector n[] is of size P ,
and its i-th element contains the size of the i-th vector
block. According to the notation introduced earlier for
the block methods, n[i] equals ni.

The local vectors and variables for the algorithm are
declared, and initialised on line 1. The vectors x and x̃
are used for the two iteration vectors, x(k−1) and x(k),
respectively. The notation used for the block methods
applies to the algorithm: X

(k)
i , X

(k−1)
i and Bi are the

i-th blocks of vectors x(k), x(k−1) and b, respectively.
Each iteration of the algorithm consists of P phases

of computations (see the outer for loop given by
lines 4− 8). The i-th phase updates the elements from
the i-th block (Xi) of the iteration vector, using the
entries from the i-th row of blocks in A, i.e., Aij for all
j, 0 ≤ j < P . There are two main computations per-
formed in each of the P phases: the computations given
by lines 6 − 7, where matrix-vector products (MVPs)
are accumulated for all the matrix blocks of the i-th
block row, except the diagonal block (i.e., i 6= j); and
the computation given by line 8, which invokes the
function vec update Jac(·) to update the i-th vector
block.

The function vec update Jac(·) uses the Jacobi
method to update the iteration vector blocks, and is
defined by Algorithm 2. In the algorithm, Xi[p] de-
notes the p-th entry of the vector block Xi, and Aii[p,q]

denotes the (p, q)-th element of the diagonal block Aii.
Note that line 3 in Algorithm 2 updates p-th element of
X

(k)
i by accumulating the product of the vector X

(k−1)
i

and the p-th row of the block Aii.

Algorithm 2 A Jacobi (inner) Vector Update

vec update Jac(X
(k)
i , Aii, X

(k−1)
i , Y, n[i]){

1. var p, q
2. for(0 ≤ p < n[i])
3. X

(k)
i [p]← Aii[p,p]

−1(Y [p]−
∑
q 6=p

Aii[p,q]X
(k−1)
i [q])

}

3.1 Memory Requirements

Algorithm 1 requires storage for matrix A. To obtain
an efficient implementation, the matrix must be stored
in a format such that the matrix elements can be ac-
cessed in a block-row-wise fashion. Furthermore, the
storage format should allow row-wise access to each
block of the matrix. In addition to the matrix, the
block Jacobi algorithm requires two arrays to store the
iteration vectors, each of size n. Another array Y of
size nmax is required to accumulate the MVPs on line 7
of the algorithm.

4 Parallelisation

We begin this section with a brief introduction to some
of the issues in parallel computing in the context of iter-
ative methods. Subsequently, we describe our parallel
Jacobi algorithm and its implementation.

The design of parallel algorithms involves partition-
ing of the problem – the identification and the specifi-
cation of the overall problem as a set of tasks that can
be performed concurrently. A goal when partitioning
a problem into several tasks is to achieve loadbalanc-
ing, such that no process waits for another while car-
rying out individual tasks. The communication among
processes is usually expensive and hence it should be
minimised, wherever possible, and overlapped with the
computations. These goals may be at odds with one
another. Hence, one should aim to achieve a good com-
promise between these conflicting demands.

Some computational problems naturally possess high
degree of parallelism for concurrent scheduling, for ex-
ample, the Jacobi iterative method. We know from
Section 2.2, that in the Jacobi method, the order in
which the linear equations are updated is irrelevant,
since Jacobi treats them independently. The elements
of the iteration vector, therefore, can be updated con-
currently. Some problems, however, are inherently se-
quential. The Gauss-Seidel iterative method is a such
example. It uses the most recently available approx-
imation of the iteration vector (see Section 2.3). For
sparse matrices, however, it is possible to parallelise the
Gauss-Seidel method using wavefront or multicoloring
techniques.

Multicolor ordering and wavefront techniques have been in use
to extract and improve parallelism in iterative solution methods.
For sparse matrices, these techniques can be used to reorder the
iterative computations such that the computations of unrelated
vector elements can be carried out in parallel. The wavefront
technique partitions a linear equation system into wavefronts.
The unknown elements within a wavefront can be computed
asynchronously by assigning these to multiple processors. Mul-
ticolor ordering techniques can take this further if the aim is to
maximise parallelism. The ordering refers to a technique of col-
oring the nodes of a graph associated with a matrix in such a
way that no two adjacent nodes have the same color. The aim
herein is to minimise the number of colors, and finding such min-
imum colorings is a combinatorial problem of exponential com-
plexity. For iterative methods, however, simple heuristics can
provide acceptable colorings. A Gauss-Seidel iteration, precon-
ditioned with multicolor ordering, can proceed in phases equal
to the number of colors used in the ordering, while computation
of the unknown elements within a color can proceed in parallel.
Note that the solution of a permuted system with parallel Gauss-
Seidel does not always result in improved overall performance,
because it is possible that the Jacobi method delivers better per-
formance by exploiting the natural ordering of a particular sparse
system. Furthermore, as a result of multicolor ordering, the rate
of convergence for the permuted matrix is likely to decrease. For
further details, see e.g. [4, 58].

Note 4.1: Wavefronts, Multicoloring, and Gauss-
Seidel

12

Parallelising the iterative methods involves decom-
position of the matrix and the solution vector into
blocks, such that the individual partitions can be com-
puted concurrently. A number of schemes have been in
use to partition a system. The row-wise block-striped
partitioning scheme is one such example. The scheme
decomposes a matrix into blocks of complete rows, and
each process is allocated one such block. The vector is
also decomposed into blocks of corresponding sizes.

Figure 2 plots the off-diagonal nonzero entries for
three CTMC matrices, one from each of the three case
studies. The figure also depicts the row-wise block-
striped partitioning for the three matrices. The ma-
trices have been row-wise decomposed into four blocks
(see dashed lines), for distribution to a total of four
processes. Process p keeps all the (p, q)-th matrix
blocks, for all q. Using this matrix partitioning, the
iteration vector can also be divided into four blocks of
corresponding sizes. Process p will be allocated, and
made responsible to iteratively compute the p-th vec-
tor block. Note that, to compute the p-th vector block,
process p will require access to all the q-th blocks such
that Apq 6= 0. Hence, we say that the p-th block for
a process p is its local block, while all the q-th blocks,
q 6= p, are the remote blocks for the process.

Matrix sparsity usually leads to poor loadbalancing.
For example, balancing the computational load for par-
allel processes participating in the computations may
not be easy, and/or the processes may have different
communication needs. Sparsity in matrix also leads to
high communication to computation ratio. For these
reasons, parallelising sparse matrix computations com-
pared to dense matrices is usually considered hard.
However, it may be possible, sometimes, to exploit
sparsity pattern of a matrix. For example, banded and
block-tridiagonal matrices possess a fine degree of par-
allelism in their sparsity patterns. This is explained
further in the following paragraph, using the CTMC
matrices from the three case studies.

Consider again Figure 2, which also shows the spar-
sity pattern for three CTMC matrices. The sparsity
pattern for all the matrices of a particular CTMC
model is similar. Note in the figure that both FMS
and Kanban matrices have irregular sparsity patterns,
while the Polling matrix exhibits a regular pattern.
Most of the nonzero entries in the Polling matrix are
confined to a band on top of the principal diagonal,
except those relatively few nonzero entries which are
located within the lower left block of the matrix. If
the matrix is partitioned among 4 processes, as shown
in the figure, communication is only required in be-
tween two neighbouring processes. Furthermore, since
most of the nonzero entries are located within the di-
agonal blocks, relatively few elements of the remote
vector blocks are required. It has been shown in [48],
that a parallel algorithm tailored in particular for the

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

(0,0)

(0,1) (0,2) (0,3)

(1,0)

(1,1)

(1,2) (1,3)

(2,0) (2,1)

(2,2)

(2,3)

(3,0) (3,1)

(3,2)
(3,3)

(a) FMS (k = 2)

0 1000 2000 3000 4000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

(0,0)

(0,1)
(0,2) (0,3)

(1,0)

(1,1)

(1,2) (1,3)

(2,0)
(2,1)

(2,2) (2,3)

(3,0) (3,1) (3,2)
(3,3)

(b) Kanban (k = 2)

0 50 100 150 200

0

50

100

150

200

(0,0)
(0,1) (0,2) (0,3)

(1,0)

(1,1)

(1,2) (1,3)

(2,0) (2,1)
(2,2)

(2,3)

(3,0) (3,1) (3,2) (3,3)

(c) Polling (k = 5)

Figure 2: Sparsity pattern for three CTMC matrices
selected from the three case studies

sparsity pattern of the Polling matrices achieves signif-
icantly better performance than for arbitrary matrices.
The parallel algorithm presented in this paper does not
explicitly exploit sparsity patterns in matrices. How-
ever, we will see in Section 5 that the performance of
the parallel algorithm for the Polling matrices is better
than for the other two case studies.

4.1 The Parallel Algorithm

Algorithm 3 presents a high-level description of our
parallel Jacobi iterative algorithm. It is taken with
some modifications from our earlier work [48]. The
algorithm employs the Jacobi iterative method for the

13

Algorithm 3 A Parallel Jacobi for Process p

par block Jac(Ǎp, Dp, Bp, Xp, T, Np, ε) {

1. var X̃p, Z, k ← 0, error← 1.0, q, h, i
2. while(error > ε)
3. k ← k + 1
4. h = 0
5. for(0 ≤ q < T ; q 6= p)
6. if(Ǎpq 6= 0)
7. send(requestXq

, q)
8. h = h + 1
9. Z ← Bp − ǍppX

(k−1)
p

10. while(h > 0)
11. if(probe(message))
12. if(message = requestXp

)
13. send(Xp, q)
14. else
15. receive(Xq, q)
16. Z ← Z − ǍpqX

(k−1)
q

17. h = h− 1
18. serve(Xp, requestXp

)
19. for(0 ≤ i < Np)
20. X

(k)
p [i]← Dp[i]

−1Z [i]

21. compute error collectively
}

solution of the system of n linear equations, of the form
Ax = b. The steady-state probabilities can be calcu-
lated using this algorithm with A = QT , x = πT , and
b = 0. The algorithm uses the single program mul-
tiple data (SPMD) paradigm – all the nodes execute
the same binaries but operate on different sets of data.
Note that the design of Algorithm 3 is influenced by the
fact that MPI is thread-unsafe, otherwise concurrency
in the algorithm can easily be improved.

We store the off-diagonal CTMC matrix using the
(modified) MTBDDs [49,47] (see Section 2.8). The di-
agonal entries of the matrix are stored separately as an
array. For convenience in this discussion, we addition-
ally introduce: the matrix Ǎ, which contains the off-
diagonal elements of A, with ǎii = 0, for all 0 ≤ i < n;
and the diagonal vector d, with the entries di = aii.

Consider a total of T processes2. Algorithm 3 as-
sumes that the off-diagonal matrix Ǎ is row-wise block-
striped partitioned into T contiguous blocks of com-
plete rows, of sizes N0, . . . , NT−1, such that n =∑T−1

p=0 Np. A such partitioning is depicted in Figure 2.
Process p is allocated a matrix block of size Np×n, with
all the rows numbering from

∑p−1
q=0 Nq to

∑p
q=0 Nq−1.

Moreover, each row of blocks is further divided into T
blocks such that the p-th process keeps all the blocks,

2In this paper, we have used process, rather than processor
or node, because it has a more general meaning.

Ǎpq, 0 ≤ q < T . We will use Ǎp to denote the block
row containing all the blocks Ǎpq.

Using the same partitioning as for the matrix, the it-
eration vector x, and the diagonal vector d, are divided
into T blocks each, of the sizes, N0, . . .NT−1. Process
p keeps the p-th blocks, Xp and Dp, of the two vec-
tors and is responsible for updating the iteration vector
block Xp during each iteration. As mentioned earlier,
we will refer to the block Xp as the local block for pro-
cess p because it does not require communication while
computing the MVP ǍppX

(k−1)
p . Conversely, all the

blocks Xq, q 6= p, are the remote blocks for process p

because computing ǍpqX
(k−1)
q requires blocks X

(k−1)
q

which are owned by the other processes.
The algorithm, par block Jac(·), accepts the follow-

ing parameters as input: the reference to the p-th row
of the off-diagonal matrix blocks, Ǎp; the reference to
the p-th diagonal block, Dp; the reference to the block
Bp which is zero in our case; the reference to the vec-
tor block Xp which contains an initial approximation
for the iteration vector block; the total number of pro-
cesses T ; the constant Np, which gives the number of
entries in the vector block Xp; and a precision value
for the convergence test, ε.

The vectors and variables local to the algorithm are
declared, and initialised on line 1. The vectors Xp

and X̃p are used in the algorithm for the two iteration
vectors, X

(k−1)
p , X

(k)
p , respectively.

In each Jacobi iteration, given in Algorithm 3, the
main task of process p is to accumulate the MVPs,
ǍpqXq, for all q (see lines 9 and 16). These MVPs
are accumulated using the vector Z. Having accom-
plished this, the local block Xp for process p can be
computed using the vectors Z and Dp (lines 19− 20).
Since process p does not have access to all the blocks
Xq, except for q = p, it sends requests to all the pro-
cesses numbered q for the blocks Xq corresponding to
the nonzero matrix blocks Ǎpq (lines 4− 8). The pro-
cess computes the MVP for local block on line 9. Sub-
sequently, the process iteratively probes for the mes-
sages from other processes (lines 10 − 17). The block
Xp is sent to process q if a request from the process is
received (lines 12−13)). If process q has sent the block
Xq, the block is received and the MVP for this remote
block is computed (lines 15− 17). Once all the MVPs
have been accumulated, process p waits and serves for
any remaining requests for Xp from other processes
(line 18), and then goes on to update its local block
Xp for the k-th iteration (lines 19 − 20). Finally, on
line 21, all the processes collectively perform the test
for convergence – each process p computes error us-
ing the criteria given by Equation (8), for 0 ≤ i < Np,
and the maximum of all these errors is determined and
communicated to all the processes.

The CTMC matrices for the Kanban model do not

14

Table 2: Solution Results for Parallel Execution on 24 Nodes

k States a/n Memory/Node Time Total
(n) (MB) Iteration Total Iterations

(seconds) (hr:min:sec)

FMS Model

6 537,768 7.8 3 .04 39 1080
7 1,639,440 8.3 4 .13 2:44 1258
8 4,459,455 8.6 10 .23 5:31 1438
9 11,058,190 8.9 22 .60 16:12 1619

10 25,397,658 9.2 47 1.30 39:06 1804
11 54,682,992 9.5 92 2.77 1:31:58 1992
12 111,414,940 9.7 170 6.07 3:40:57 2184
13 216 427 680 9.9 306 13.50 8:55:17 2379
14 403,259,040 10.03 538 25.20 18:02:45 2578
15 724,284,864 10.18 1137 48.47 37:26:35 2781

Kanban System

4 454,475 8.8 2 .02 11 466
5 2,546,432 9.6 7 .16 1:46 663
6 11,261,376 10.3 17 .48 7:08 891
7 41,644,800 10.8 53 1.73 33:07 1148
8 133,865,325 11.3 266 5.27 2:02:06 1430
9 384,392,800 11.6 564 14.67 7:03:29 1732

10 1,005,927,208 11.97 1067 37.00 21:04:10 2050

Polling System

15 737,280 8.3 1 .02 11 657
16 1,572,864 8.8 7 .03 24 709
17 3,342,336 9.3 14 .08 58 761
18 7,077,888 9.8 28 .14 1:57 814
19 14,942,208 10.3 55 .37 5:21 866
20 31,457,280 10.8 106 .77 11:49 920
21 66,060,288 11.3 232 1.60 25:57 973
22 138,412,032 11.8 328 2.60 44:31 1027
23 289,406,976 12.3 667 5.33 1:36:02 1081
24 603,979,776 12.8 811 11.60 3:39:38 1136
25 1,258,291,200 13.3 1196 23.97 7:54:25 1190

converge with the Jacobi iterative method. For Kan-
ban matrices, hence, on line 20, we apply additional
(JOR) computations given by Equation (3).

4.1.1 Implementation Issues

For each process p, Algorithm 3 requires two arrays of
Np doubles to store its share of the vectors for the iter-
ations, k−1 and k. Another array of at most nmax (see
Section 3) doubles is required to store the blocks Xq

received from process q. Moreover, each process also
requires storage of its share of the off-diagonal matrix
Ǎ, and the diagonal vector Dp. The number of the
distinct values in the diagonal of the CTMC matrices
considered is relatively small. Therefore, storage of Np

short int indices to an array of the distinct values is
required, instead of Np doubles.

Note also that the modified MTBDD partitions a
CTMC matrix into P 2 blocks for some P , as explained
in Section 3. For the parallel algorithm, we make
the additional restrictions that T ≤ P , which implies
that each process is allocated with at least one row of
MTBDD blocks. In practice, however, the number P
is dependent on the model and is considerably larger
than the total number of processes T .

5 Experimental Results

In this section, we analyse performance for Algorithm 3
using its implementation on a processor bank. The pro-
cessor bank is a collection of loosely coupled machines.
It consists of 24 dual-processor nodes. Each node has
4GB of RAM. Each processor is an AMD Opteron(TM)
Processor 250 running at 2400MHz with 1MB cache.
The nodes in the processor bank are connected by a
pair of Cisco 3750G-24T switches at 1Gbps. Each node
has dual BCM5703X Gb NICs, of which only one is in
use. The parallel Jacobi algorithm is implemented in C
language using the MPICH implementation [27] of the
message passing interface (MPI) standard [22]. The
results reported in this section were collected without
an exclusive access to the processor bank.

We analyse our parallel implementation with the
help of the three benchmark CTMC case studies: FMS,
Kanban and Polling systems. These have been intro-
duced in Section 2.9. We use the PRISM tool [41]
to generate these models. For our current purposes,
we have modified version 1.3.1 of the PRISM tool.
The modified tool generates the underlying matrix of a
CTMC in the form of the modified MTBDD (see Sec-
tion 2.8). It decomposes the MTBDD into partitions,
and exports the partitions for parallel solutions.

The experimental results are given in Table 2. The

15

0 150 300 450 600 750 900 1050 1200 1400
0

5

10

15

20

25

30

35

40

45

50

States (millions)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
on

ds
)

FMS
Kanban
Polling

Figure 3: Comparison of the execution times per it-
eration for the three case studies (plotted against the
number of states)

time and space statistics reported in this table are col-
lected by executing the parallel program on 24 proces-
sors, where each processor pertains to a different node.
For each CTMC, the first three columns in the table
report the model statistics: column 1 gives the values
for the model parameter k, column 2 lists the resulting
number of reachable states (n) in the CTMC matrix,
and column 3 lists the average number of nonzero en-
tries per row (a/n). Column 4 reports the maximum
of the memories used by the individual processes. The
last three columns, 5 − 7, report the execution time
per iteration, the total execution time for the steady-
state solution, and the number of iterations, respec-
tively. All reported run times are wall clock times. For
FMS and Polling CTMCs, the reported iterations are
for the Jacobi iterative method, and for Kanban, the
column gives the number of JOR iterations (Kanban
matrices do not converge with Jacobi). The iterative
methods were tested for the convergence criterion given
by Equation (8) for ε = 10−6.

In Table 2, the largest CTMC model for which we
obtain the steady-state solution is the Polling system
(k = 25). It consists of over 1258 million reachable
states. The solution for this model used a maximum
of 1196MB RAM per process. It took 1190 Jacobi it-
erations, and 7 hours, 54 minutes, and 25 seconds, to
converge. Each iteration for the model took an av-
erage of 23.97 seconds. The largest Kanban model
(k = 10) which was solved contains more than 1005
million states. The model required 2050 JOR itera-
tions, and approximately 21 hours (less then a day) to
converge, using no more than 1.1GB per process. The
largest FMS model which consists of over 724 million
states, took 2781 Jacobi iterations and less than 38
hours (1.6 days) to converge, using at most 1137MB of
memory per process.

A comparison of the solution statistics for the three
models in Table 2 reveals that the Polling CTMCs of-
fer the fastest execution times per iteration, the FMS
matrices exhibit the slowest times, and the times per

1 4 8 12 16 20 24 32 40 48
0

5

10

15

20

25

30

35

40

45

50

55

60

Processes

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
on

ds
)

FMS(k=12)
FMS(k=15)

(a) FMS (times per iteration)

1 4 8 12 16 24 32 40 48
0

5

10

15

20

25

30

35

40

45

50

60

Processes

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
on

ds
)

Kanban(k=8)
Kanban(k=10)

(b) Kanban (times per iteration)

1 4 8 12 16 24 32 40 48
0
4
8

12
16
20
24
28
32
36

60

Processes

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
on

ds
)

Polling(k=22)
Polling(k=25)

(c) Polling (times per iteration)

Figure 4: Time per iteration against the number of
processes for six CTMCs, two from each case study

iteration for the Kanban CTMCs lie in between. Note
also that the convergence rate for the Polling CTMCs
is the highest (e.g. 1190 iterations) among the three
types of models, while for FMS, it is the lowest (2781
iterations). To further explore the relative performance
of our parallel solution for the three case studies, we
plot the run times per iteration for the three exam-
ple CTMCs against the number of states in Figure 3.
In the figure, the magnitudes of the individual slopes
for the three models expose their comparative speeds.
A potential cause for the differences in the perfor-
mance lies in that the three models possess different

16

amount of structure. The FMS system is the least
structured of the three models. Since an MTBDD ex-
ploits model structure to produce a compact storage
for CTMCs, models with less structure yield a larger
MTBDD (see [49], Chapter 5, for a detailed discussion
of the MTBDD). A larger MTBDD may require addi-
tional overhead for its parallelisation. However, a more
important and stronger cause for this behaviour is the
differences in the sparsity patterns of the three mod-
els; see Figure 2. Note in the figure that, among the
three case studies, the FMS model exhibits the most ir-
regular sparsity pattern. An irregular sparsity pattern
can lead to load imbalance for computations as well as
communications, and, as a consequence, can cause an
overall worse performance.

We now analyse performance for the parallel solution
with respect to the number of processes. In Figure 4,
for the three case studies, we plot the execution times
per iteration against the number of processes. We se-
lect two models from each case study. One of these is
the largest model solved for each case study; e.g., the
Kanban (K = 10) model with 1005 million states. The
execution times are collected for up to a maximum of
48 processes. For the larger models, however, run time
are only collected for 16 or more processes due to their
excessive RAM requirements. To explain the figure, we
consider the FMS plots given in Figure 4(a), in partic-
ular, the plot for the (smaller) FMS model (k = 12),
which contains over 111 million states. As expected,
the increase in the number of processes (from 1 to 24)
causes a decrease in the time per iteration (from 28.18
to 6.07 seconds). However, there is a somewhat contin-
ual drop in the value of the magnitude of the slope for
the plot as it approaches the 24 process mark. Simi-
larly, in Figure 4(a), the plot for the larger FMS model
(k = 15, 724 million states) also shows a decrease in
the execution times with an increase in the number of
processes: increasing the processes from 16 to 24 brings
the execution time from 55.63 seconds down to 48.47

Perhaps speedup is the most common measure in practice for
evaluating performance of parallel algorithms. It captures the
relative benefits of solving a problem in parallel. Speedup may
be defined as the ratio of the time taken to solve a problem using
a single process to the time required to solve the same problem
using a collection of T concurrent processes. For a fair com-
parison, each parallel process must be given resources (CPU,
RAM, I/O) identical to the resources given to the single pro-
cess. Suppose, Time1 and TimeT are the times taken by the
serial algorithm and the parallel algorithm on T processes, re-
spectively. The speedup SpeedT is given by Time1/TimeT . The
ideal speedup for T processes is T . Another measure to evaluate
performance of parallel algorithms is efficiency, which is defined
as the ratio of the speedup to the number of processes used, i.e.,
SpeedT /T . The ideal value for efficiency is 1, or 100%, although
superlinear speedup can cause even higher values for efficiency.

Note 5.1: Speedup and Efficiency

1 4 8 12 16 24 32 40 48
0
2
4
6
8

10
12
14
16
18
20
22
24

Processes

Sp
ee

du
p

FMS(k=12)
FMS(k=15)

(a) Speedups for the FMS model

1 4 8 12 16 24 32 40 48
0
2
4
6
8

10
12
14
16
18
20
22
24

Processes

Sp
ee

du
p

Kanban(k=8)
Kanban(k=10)

(b) Speedups for the Kanban system

1 4 8 12 16 24 32 40 48
0
2
4
6
8

10
12
14
16
18
20
22
24

Processes

Sp
ee

du
p

Polling(k=22)
Polling(k=25)

(c) Speedups for the Polling system

Figure 5: Speedup plotted against the number of pro-
cesses for six CTMCs

seconds. However, for the larger model, the magni-
tude of the slope is greater (at this point of the plot),
implying a steeper drop in the execution time.

To further investigate the parallel performance, in
Figure 5, we plot speedups for six CTMCs against the
number of up to 48 processes. We use the same six
CTMCs which were used in Figure 4. Consider in Fig-
ure 5(b), the plot for the smaller Kanban model (k = 8,
133 million states). The plot shows that increasing the
number of processes from 1 to 2 gives a speedup of 1.8,
which equates to an efficiency of 0.90 or 90%. The plot,
however, further reveals that a continual increase in

17

the number of processess will not be able to maintain
the speedup, and will actually result in a somewhat
steady decrease in the efficiency of the parallel solution.
For example, the efficiency for 24 processes is 25.75%,
which equates to Speed24 = 6.18. Similarly, using the
plots in Figure 5, the speedup on 24 processes for the
smaller FMS and Polling CTMCs, FMS(k = 12) and
Polling(k = 22), can be calculated as 4.62 and 13.12,
which equates to the efficiencies of 19.25% and 54.70%,
respectively.

We now examine the plots for the larger models in
Figure 5(b). Consider the plot for the Kanban model
(k = 10, 1 billion states). Note in the plot that
the (minimum) speedup3 for 16 processes is 16. Us-
ing 48.37 (see Figure 4(b) for the value of the time
per iteration) as the base time reference in the plot,
the speedup on 24 processes can be calculated as
Time16/Time24 = 48.37/37 = 1.3. The corresponding
efficiency for the parallel solution is 87%. The value
for the efficiency is calculated by dividing the speedup
by 24/16 = 1.5 – the relative increase in the number
of processes. In Figure 5, using the appropriate plots,
similar calculations can be made to compute the effi-
ciencies for the larger FMS and Polling CTMCs. Note
that these calculations are in conformance to the defi-
nitions of speedup and efficiency given in Note 5.1, ex-
cept that the reference for these calculations is Time16

(execution time on 16 processes) instead of Time1.
Up until now, the discussion of Figures 4 and 5 have

been deliberately restricted to a maximum of 24 pro-
cesses. We now consider the performance of our par-
allel algorithm for up to 48 processes. Our first obser-
vation in Figure 4 (and Figure 5) is that the solution
times for all the three case studies do not exhibit sig-
nificant improvements for an increase in the number of
processes between 24 and 48. Two likely causes for this
poor performance are given as follows. First, we have
mentioned earlier that the experiments reported in this
paper are carried out on a processor bank consisting of
a total of 24 dual-processor nodes, and that each node
in the processor bank uses a single BCM5703X NIC.
Essentially, both the processors within a single node
must share the same card, which reduces the average
communication bandwidth available to each processor
by a half. Since parallel iterative solutions are typi-
cally communication intensive, reduction of this scale
in the communication bandwidth must be the crucial
factor to have caused the performance loss. The second

3The largest models could only be solved using 16 or more
processes due to the excessive RAM requirements (consider also
that we did not have exclusive access to the nodes in the proces-
sor bank). We therefore used the execution times for 16 processes
as the base reference to compute the speedups for greater num-
ber of processes. Note that we do not make any solid claims
about speedups for these models; these minimum values in the
figures are used solely for the explanation and graph plotting
purposes.

reason behind the poor performance, to some extent,
is that we were sharing the computing resources with
other users. We do not have dedicated access to any
of the machines in the processor bank. A number of
processes owned by other users were being executed on
the nodes when these results were collected. Increas-
ing the number of processes to more than 24, further
increases the load on the individual nodes in the pro-
cessor bank. In this situation, even a single node can
become a bottleneck for the whole set of the parallel
processes.

6 Discussion

We now review the related work and give a comparison
of the solution methods. We also give a classification of
the parallel approaches which have been developed for
the solution of large Markov models. We have known
from the experimental results for the three case studies
in Section 5 that the performance of an algorithm can
possibly be influenced by the benchmark model used.
Therefore, we will also name the case studies which
were used to benchmark these solution approaches. We
choose to refer to these approaches as parallel, rather
than distributed, because all these approaches involve
tightly coupled computing environments.

Recall from Section 1 that the state space explosion
problem has led to the development of a number of so-
lution methods for CTMC analysis. These methods are
broadly classified into implicit and explicit methods.
Another classification of the solution techniques is into
in-core approaches, where data is stored in the main
memory of a computer, and out-of-core approaches,
where it is stored on disk. The large amount of mem-
ory and compute power available with shared and dis-
tributed memory computers provide a natural way to
address the state space explosion problem. Therefore,
the solution techniques are either developed comprising
a single thread or process (i.e., serial), or comprising
multiple concurrent processes (i.e., parallel). Note that
an out-of-core algorithm may be designed comprising
two processes or threads, one for computation and the
other for I/O (see e.g. [16,39]); however, since one pro-
cess alone is responsible for the main computations, we
consider it a serial algorithm. A parallel solution tech-
nique in itself is either standard (which store CTMCs in
a sparse format using only the primary memory of the
machine), parallel implicit (those based on the implicit
CTMC storage), or parallel out-of-core (which rely on
the out-of-core storage of CTMCs).

The primary memories available with the contempo-
rary parallel computers are usually insufficient to store
the ever-increasing large CTMC models. Therefore,
the size of models addressed by the parallel approaches
which store data structures explicitly and have only re-
lied on the primary memory of the parallel computers is

18

relatively small; for these approaches, see e.g. [44,1,51].
A 2001 survey of such parallel solutions for CTMC
analysis can be found in [10].

The parallel solution method for large CTMCs which
utilised both the primary and secondary memories of
parallel computer was introduced in [36, 37]. The so-
lution method was based on the parallelisation of the
(matrix) out-of-core approach of [16]. The author (in
[36]) employed Jacobi and conjugate gradient squared
(CGS) iterative methods for the CTMC solutions, and
benchmarked the solutions using two case studies; the
FMS, and the Courier Protocol model [63], with up to
54, and 94 million states, respectively. The solutions
were reported using a total of 16 nodes (each node:
300MHz UltraSPARC, 256MB RAM, and 4GB disk) of
a Fujitsu AP3000 server, connected by a dedicated high-
speed network, AP-Net. The parallel (matrix) out-of-
core solution of [5] further extended the size of the
solvable models. The authors used the CGS method
to solve FMS models with up to 54 million states, and
used the Jacobi iterative method to solve FMS mod-
els with over 724 million states. For these solutions,
they employed a cluster with 26 dual-processor nodes
(each node: Pentium III 500MHz × 2, 512MB RAM,
and 40GB disk) connected by switched fast Ethernet.

Parallelising the implicit methods for CTMC analy-
sis have also been considered. We first mention the par-
allel implicit methods which use CTMC storage based
on the Kronecker methods. A Kronecker-based paral-
lel solution method for CTMC steady-state analysis is
given in [8]. The authors use up to 7 nodes of a clus-
ter, and report solutions of two CTMCs, the largest
with over 8 million states. Another Kronecker-based
parallel approach was reported in [21], which used the
asynchronous two-stage iterative method of [23]. The
authors presented solution of the FMS model (k = 7,
1.6 million states, see Table 2) on a LAN comprising 4
workstations. In [35], the author employed the method
of randomisation4 for CTMC analysis, and reported re-
sults for models with over 26 million states, using up
to a total of 8 processors on shared memory machines.
The first two implementations ([8, 21]) were realised
using the parallel virtual machine (PVM) library; the
latter [35] used POSIX threads.

The other work on the parallel implicit (or sym-
bolic) methods is based on the MTBDDs (see Sec-
tion 2.8) which we have also used in this paper. These
are the parallel Gauss-Seidel solution of Markov chains
on a shared memory machine [43] and on a cluster of
workstations [64]. We discuss the latter. The authors
benchmarked their solution method using three CTMC
case studies – Polling, FMS, and Kanban systems, with

4The method of randomisation, also known as Jensen’s
method, or uniformisation, [34,26,28], is used for transient solu-
tions of Markov chains. The method is also based on computing
matrix-vector products.

up to 138, 216, and 1005 million states, respectively.
For the implementation, they employed a cluster com-
prising a total of 32 dual-processor nodes (each node:
Intel Xeon 3GHz × 2, 2GB RAM) connected by (2 + 2
Gbps) Myrinet.

A glance of the parallel solutions discussed above
reveals that the solution of relatively larger models is
attributed to the parallel out-of-core methods ([36,5])
and the parallel implicit methods ([64], and this pa-
per). It supports our earlier observation that the pri-
mary memories of a parallel computer cannot cope with
the ever-increasing size of the models for realistic sys-
tems. So, it becomes necessary to either store the un-
derlying matrix of a model using the secondary mem-
ories of a parallel computer; or, to find an implicit,
compact, representation for the model. In the follow-
ing, we further discuss these four parallel methods be-
cause these have provided solutions for considerably
large models.

The solutions presented in both [36] and [5] employ
the indexed MSR sparse scheme (see Section 2.7) to
store the matrices. The indexed MSR scheme was used
because it is more compact than the standard MSR
scheme; a compact representation requires less storage
as well as incurs less disk I/O. The performance for
these methods can be improved by using the compact
MSR scheme which is 30% compact than the indexed
MSR. These parallel out-of-core solutions have used
the CGS method which converges faster than the basic
iterative methods (e.g., Jacobi, Gauss-Seidel). How-
ever, the CGS method requires 7 iteration vectors and
hence causes storage problems for large models. The
iteration vectors can be kept on disk but it can affect
the solution speed due to increased disk I/O.

In contrast, the parallel approaches presented in [43],
[64], and in this paper, employ an implicit storage
for CTMC storage. The CTMCs can be compactly
stored using only the primary memories (this is equally
applicable to the Kronecker-based solutions presented
in [8, 21, 35]). A principal difference between the solu-
tion method of [64] and our approach is that the for-
mer takes the approach to store the whole matrix on
each node, while we effectively partition the MTBDD
and distribute the MTBDD partitions to the individual
nodes. Our method hence is scalable to larger models
compared to the approach of [64] (consider in Table 1
that the largest FMS model requires 2.6GB RAM to
store the off-diagonal matrix alone).

An advantage of the parallel solution given in [64]
over our solution method is that it uses the Gauss-
Seidel method, which typically converges faster than
Jacobi, and requires storage for only one iteration vec-
tor. However, we know from Section 4, Note 4.1,
that the convergence rate for the parallel Gauss-Seidel
method is likely to be worsened due to the multi-
color ordering technique. This is also supported by

19

the statistics reported in the paper ([64]) for Polling
CTMCs. The number of iterations for a Polling CTMC
(k = 20) are reported in the paper to have varied be-
tween 1869 and 1970. On the other hand, the num-
ber of iterations for the Jacobi solution of the same
CTMC is 920 (see Table 2) – less than a half of the
parallel Gauss-Seidel. Note also that the number of
Gauss-Seidel iterations for the Polling CTMC with the
natural matrix ordering is 36 (e.g., see [49], Page 114).
However, we must also observe here that the number
of parallel Gauss-Seidel iterations for the Kanban and
FMS models reported in [64] are better than for the
Jacobi method.

Unfortunately, a comparison of solution times and
speedups for parallel implementations is not straight
forward. The factors which can affect performance in-
clude: the type and speed of the processor used; the
size of primary memory per node; and, more impor-
tantly, the topology, bandwidth, and latency of the
communication network. For example, consider that
the communication networks used by the implementa-
tions discussed in this section vary between fast Eth-
ernet ([5]) to 2 + 2 Gbps Myrinet ([64]). Moreover,
we also find it important to consider whether the im-
plementations are realised for dedicated or shared en-
vironment. We believe that, in future, it will become
increasingly important to design parallel iterative algo-
rithms which can tolerate and adapt to the dynamics
of a shared computing environment.

A focus of this paper is to solve large models and
hence we find it interesting to mention here the (serial)
out-of-core approaches, which have been used to solve
large Markov models. During the last ten years or so,
out-of-core techniques for the analysis of large Markov
chains have emerged as an effective method of com-
bating the state space explosion problem. Deavours
and Sanders [16, 17] were first to consider an out-of-
core storage for CTMC matrices (1997). However, the
storage for iteration vector(s) remained a hindrance for
both implicit and explicit methods for CTMC analysis.
In 2002, an out-of-core algorithm was presented in [39],
which relaxed these vector storage limitations by using
out-of-core storage for both the CTMCs and the iter-
ation vector. Furthermore, to reduce the amount of
disk I/O for greater performance, an out-of-core solu-
tion based on MTBDDs was introduced in [40], and was
improved in [46], and [49]. The out-of-core approach
of [49] allowed the solution of CTMCs with over 1.2
billion states on a single workstation, although with
much higher solution times.

7 Conclusion

In this paper, we presented a parallel Jacobi itera-
tive algorithm for the steady-state solution of large
CTMCs. The algorithm can be used for the itera-

tive solution of an arbitrary system of linear equa-
tions, of the form Ax = b. We analysed in detail
the implementation of our parallel algorithm using
up to 48 processes on a processor bank comprising
24 dual-processor nodes. The parallel implementation
was benchmarked using three widely used CTMC case
studies. The steady-state solutions for large CTMCs
were obtained, and it was shown that the steady-state
probabilities for a Polling CTMC with approximately
1.25 billion states can be computed in less than 8 hours
using 24 processors. Note that the experiments were
performed without an exclusive access to the comput-
ing resources.

The symbolic CTMC storage is central to our work.
We used the two-layered, MTBDD-based, data struc-
ture to store large CTMCs. On the employed hard-
ware, using the explicit methods, storage of this scale
of CTMCs (in RAM) is simply not possible. Sec-
ond, the parallelisation properties of the symbolic data
structure permitted an efficient parallel solution for us.
Third, by effectively decomposing the MTBDD into
partitions, we were able to address solutions of even
larger models, which was not possible using the earlier
parallel MTBDD-based approaches.

In future, we intend to work on improving the per-
formance of our algorithm. Our aim is to increasingly
solve large systems and hence, to be able to use large-
scale shared resources, we will tailor our algorithms and
implementations for Grid environments, by increasing
the adaptability, dependability, and scalability of our
solution methods. Another hurdle for us in addressing
larger models is that the modelling tool which we have
used (PRISM) does not allow the parallel generation
of models. We will consider a parallel modelling tool
in future.

We also intend to work on an efficient parallelisation
of the Gauss-Seidel method by overcoming the limi-
tations of the earlier work in this context. We also
plan to apply our parallel approach to other types of
models, e.g., discrete time Markov chains (DTMCs),
and to the other numerical problems in the areas of
Markovian modelling and probabilistic model check-
ing (e.g., computing transient probabilities for Markov
chains). Moreover, we would like to consider modelling
and analysis of more interesting case studies.

Finally: we are developing a distributed tool for de-
bugging large-scale parallel and distributed systems;
see [50]. Another purpose of the parallel solution pre-
sented in this paper is to use it as a test application
for the debugging tool. Our intention is to develop and
collect test case libraries for different applications, and
to use these as templates with our distributed debug-
ging tool. We also expect more interesting outcomes
from a combination of our modelling and debugging
projects.

20

Acknowledgement

This work is supported by the EPSRC “Pervasive De-
bugging” Grant GR/S63113/01 and by an Eclipse In-
novation Grant from IBM. A part of the work presented
in this paper was carried out when the first author was
affiliated with the School of Computer Science, Uni-
versity of Birmingham; the author is grateful to the
institute for providing funding for the work. Finally,
we acknowledge PRISM developers team for providing
us access to the tool.

References

[1] S. Allmaier, M. Kowarschik, and G. Horton. State space
construction and steady-state solution of GSPNs on a
shared-memory multiprocessor. In Proc. PNPM’97, pages
112–121. IEEE Computer Society Press, 1997.

[2] O. Axelsson. Iterative Solution Methods. Cambridge Uni-
versity Press, 1996.

[3] I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E.Macii,
A. Pardo, and F. Somenzi. Algebraic Decision Diagrams
and their Applications. In Proc. ICCAD’93, pages 188–191,
Santa Clara, 1993.

[4] R. Barrett, M. Berry, T.F. Chan, J. Demmel, J.M. Do-
nato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and
H. van der Vorst. Templates for the Solution of Linear Sys-
tems: Building Blocks for Iterative Methods. Philadalphia:
Society for Industrial and Applied Mathematics, 1994.

[5] A. Bell and B. R. Haverkort. Serial and Parallel Out-of-
Core Solution of Linear Systems arising from Generalised
Stochastic Petri Nets. In Proc. High Performance Comput-
ing 2001, Seattle, USA, April 2001.

[6] R. Bryant. Graph-Based Algorithms for Boolean Func-
tion Manipulation. IEEE Transactions on Computers, C-
35(8):677–691, August 1986.

[7] P. Buchholz, G. Ciardo, Susanna Donatelli, and P. Kemper.
Complexity of memory-efficient kronecker operations with
applications to the solution of markov models. INFORMS
J. on Computing, 12(3):203–222, 2000.

[8] P. Buchholz, M. Fischer, and P. Kemper. Distributed
Steady State Analysis Using Kronecker Algebra. In Proc.
3rd International Workshop on the Numerical Solution of
Markov Chains (NSMC’99), pages 76–95, Zaragoza, Spain,
1999.

[9] P. Buchholz and P. Kemper. Kronecker based Matrix Rep-
resentations for Large Markov Models. In Validation of
Stochastic Systems: A Guide to Current Research, volume
2925 of Lecture Notes in Computer Science, pages 256–295.
Springer-Verlag, 2004.

[10] G. Ciardo. Distributed and structured analysis approaches
to study large and complex systems. In E. Brinksma,
H. Hermanns, and J.-P. Katoen, editors, Lectures on for-
mal methods and performance analysis, LNCS 2090, pages
344–374. Springer-Verlag New York, Inc., 2001.

[11] G. Ciardo and A.S. Miner. A Data Structure for the Ef-
ficient Kronecker Solution of GSPNs. In Proc. PNPM’99,
pages 22–31, Zaragoza, 1999.

[12] G. Ciardo and M. Tilgner. On the use of Kronecker Oper-
ators for the Solution of Generalized Stochastic Petri Nets.
ICASE Report 96-35, Institute for Computer Applications
in Science and Engineering, 1996.

[13] G. Ciardo and K.S. Trivedi. A Decomposition Approach for
Stochastic Reward Net Models. Performance Evaluation,
18(1):37–59, 1993.

[14] E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang, and
X. Zhao. Multi-Terminal Binary Decision Diagrams: An Ef-
fificient Data Structure for Matrix Representation. In Proc.
International Workshop on Logic Synthesis (IWLS’93),
May 1993.

[15] T. Dayar and W.J. Stewart. Comparison of Partitioning
Techniques for Two-Level Iterative Solvers on Large, Sparse
Markov Chains. SIAM Journal on Scientific Computing,
21(5):1691–1705, 2000.

[16] D.D. Deavours and W.H. Sanders. An Efficient Disk-based
Tool for Solving Very Large Markov Models. In Ray-
mond Marie et al., editor, Proc. TOOLS’97, volume 1245
of LNCS, pages 58–71. Springer-Verlag, 1997.

[17] D.D. Deavours and W.H. Sanders. An Efficient Disk-based
Tool for Solving Large Markov Models. Performance Eval-
uation, 33(1):67–84, 1998.

[18] D.D. Deavours and W.H. Sanders. “On-the-fly” Solu-
tion Techniques for Stochastic Petri Nets and Extensions.
IEEE Transactions on Software Engineering, 24(10):889–
902, 1998.

[19] I.S. Duff and H.A. van der Vorst. Developments and trends
in the parallel solution of linear systems. Parallel Comput-
ing, 25(13–14):1931–1970, 1999.

[20] P. Fernandes, B. Plateau, and W.J. Stewart. Efficient
Descriptor-Vector Multiplications in Stochastic Automata
Networks. Journal of the ACM, 45(3):381–414, 1998.

[21] M. Fischer and P. Kemper. Distributed numerical Markov
chain analysis. In Y. Cotronis and J. Dongarra, editors,
Proc. 8th Euro PVM/MPI 2001, volume 2131 of LNCS,
pages 272–279, Santorini (Thera) Island, Greece, September
2001.

[22] The Message Passing Interface Forum. Mpi: A message
passing interface standard. International Journal of Super-
computer Applications, 8(3/4), 1994.

[23] Andreas Frommer and Daniel B. Szyld. Asynchronous two-
stage iterative methods. Numer. Math., 69(2):141–153,
1994.

[24] G. H. Golub and C. F. Van Loan. Matrix Computations.
The Johns Hopkins University Press, 3rd edition, 1996.

[25] G.H. Golub and J.M. Ortega. Scientific Computing: an In-
troduction with Parallel Computing. Academic Press, 1993.

[26] W. Grassmann. Transient Solutions in Markovian Queue-
ing Systems. Computers and Operations Research, 4:47–53,
1977.

[27] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789–
828, September 1996.

[28] D. Gross and D.R. Miller. The Randomization Technique
as a Modelling Tool and Solution Procedure for Transient
Markov Processes. Operations Research, 32:343–361, 1984.

[29] G. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Markovian
Analysis of Large Finite State Machines. IEEE Transac-
tions on CAD, 15(12):1479–1493, 1996.

[30] H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, and
M. Siegle. On the use of MTBDDs for Performability Anal-
ysis and Verification of Stochastic Systems. Journal of Logic
and Algebraic Programming: Special Issue on Probabilistic
Techniques for the Design and Analysis of Systems, pages
23–67, 2003.

[31] H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi Ter-
minal Binary Decision Diagrams to Represent and Anal-
yse Continuous Time Markov Chains. In Proc. Numerical
Solutions of Markov Chains (NSMC’99), pages 188–207,
Zaragoza, 1999.

21

[32] M. Heroux. A proposal for a sparse BLAS Toolkit, Technical
Report TR/PA/92/90, Cray Research, Inc., USA, Decem-
ber 1992.

[33] O. Ibe and K. Trivedi. Stochastic Petri Net Models of
Polling Systems. IEEE Journal on Selected Areas in Com-
munications, 8(9):1649–1657, 1990.

[34] A. Jensen. Markoff chains as an aid in the study of Markoff
processes. Skand. Aktuarietiedskr., pages 36, 87–91, 1953.

[35] P. Kemper. Parallel randomization for large structured
Markov chains. In Proc. the 2002 International Confer-
ence on Dependable Systems and Networks (DSN/IPDS),
pages 657–666, Washington, DC, USA, June 2002. IEEE
CS Press.

[36] W.J. Knottenbelt. Parallel Performance Analysis of Large
Markov Models. PhD thesis, Imperial College of Sci-
ence, Technology and Medicine, University of London, UK,
February 1999.

[37] W.J. Knottenbelt and P.G. Harrison. Distributed Disk-
based Solution Techniques for Large Markov Models. In
Proc. Numerical Solution of Markov Chains (NSMC’99),
pages 58–75, Prensas Univerversitarias de Zaragoza, 1999.

[38] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduc-
tion to Parallel Computing: Design and Analysis of Algo-
rithms. Benjamin/Cumming Publishing Company, 1994.

[39] M. Kwiatkowska and R. Mehmood. Out-of-Core Solution of
Large Linear Systems of Equations arising from Stochastic
Modelling. In Proc. PAPM-PROBMIV’02, pages 135–151,
July 2002. Available as Volume 2399 of LNCS.

[40] M. Kwiatkowska, R. Mehmood, G. Norman, and D. Parker.
A Symbolic Out-of-Core Solution Method for Markov Mod-
els. In Proc. Parallel and Distributed Model Checking
(PDMC’02), August 2002. Appeared in Volume 68, issue 4
of ENTCS.

[41] M. Kwiatkowska, G. Norman, and D. Parker. Prism 2.0: A
tool for probabilistic model checking. In Proc. 1st Interna-
tional Conference on Quantitative Evaluation of Systems
(QEST’04), pages 322–323, 2004.

[42] M. Kwiatkowska, G. Norman, and D. Parker. Probabilis-
tic symbolic model checking with PRISM: A hybrid ap-
proach. International Journal on Software Tools for Tech-
nology Transfer (STTT), 6(2):128–142, 2004.

[43] M. Kwiatkowska, D. Parker, Y. Zhang, and R. Mehmood.
Dual-processor parallelisation of symbolic probabilistic
model checking. In Proc. 12th International Symposium
on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS’04), pages 123–
130, 2004.

[44] P. Marenzoni, S. Caselli, and G. Conte. Analysis of Large
GSPN Models: A Distributed Solution Tool. In Proc.
PNPM’97, pages 122–131, 1997.

[45] R. Mehmood. Serial Disk-based Analysis of Large Stochatic
Models. In Validation of Stochastic Systems: A Guide to
Current Research, volume 2925 of Lecture Notes in Com-
puter Science, pages 230–255. Springer-Verlag, 2004.

[46] R. Mehmood, D. Parker, and M. Kwiatkowska. An Efficient
Symbolic Out-of-Core Solution Method for Markov Models.
Technical Report CSR-03-8, School of Computer Science,
University of Birmingham, UK, August 2003.

[47] R. Mehmood, D. Parker, and M. Kwiatkowska. An Efficient
BDD-Based Implementation of Gauss-Seidel for CTMC
Analysis. Technical Report CSR-03-13, School of Computer
Science, University of Birmingham, UK, December 2003.

[48] Rashid Mehmood. Out-of-Core and Parallel Iterative So-
lutions for Large Markov Chains. Phd progress report 3,
School of Computer Science, University of Birmingham,
UK, October 2001.

[49] Rashid Mehmood. Disk-based techniques for efficient solu-
tion of large Markov chains. Ph.D. dissertation, Computer
Science, University of Birmingham, UK, October 2004.

[50] Rashid Mehmood, Jon Crowcroft, Steven Hand, and Steven
Smith. Grid-Level Computing Needs Pervasive Debug-
ging. In Proc. Grid 2005, 6th IEEE/ACM International
Workshop on Grid Computing, Seattle, Washington, USA,
November 2005. To appear.

[51] V. Migallon, J. Penades, and D. Szyld. Block two-stage
methods for singular systems and Markov chains. In Proc.
Numerical Solution of Markov Chains (NSMC’99), Prensas
Univerversitarias de Zaragoza, 1999.

[52] A.S. Miner. Efficient Solution of GSPNs using Canonical
Matrix Diagrams. In Reinhard German and Boudewijn
Haverkort, editors, Proceedings of the 9th International
Workshop on Petri Nets and Performance Models, pages
101–110, Aachen, Germany, September 2001.

[53] A.S. Miner and D. Parker. Symbolic Representations and
Analysis of Large Probabilistic Systems. In Validation of
Stochastic Systems: A Guide to Current Research, volume
2925 of Lecture Notes in Computer Science, pages 296–338.
Springer-Verlag, 2004.

[54] M.K. Molloy. Performance Analysis using Stochastic Petri
Nets. IEEE Trans. Comput., 31:913–917, September 1982.

[55] D. Parker. Implementation of Symbolic Model Checking for
Probabilistic Systems. PhD thesis, University of Birming-
ham, August 2002.

[56] B. Plateau. On the Stochastic Structure of Parallelism
and Synchronisation Models for Distributed Algorithms. In
Proc. 1985 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems, pages 147–153,
1985.

[57] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix com-
putations. Technical Report RIACS-90-20, NASA Ames
Research Center, Moffett Field, CA, 1990.

[58] Y. Saad. Iterative Methods for Sparse Linear Systems.
SIAM, Second edition, 2003.

[59] Y. Saad and H.A. van der Vorst. Iterative solution of linear
systems in the 20-th century. J. Comp. Appl. Math., 123:1–
33, 2000.

[60] P. Sonneveld. CGS, a Fast Lanczos-Type Solver for Non-
symmetric Linear Systems. SIAM Journal on Scientific and
Statistical Computing, 10(1):36–52, January 1989.

[61] W.J. Stewart. Introduction to the Numerical Solution of
Markov Chains. Princeton University Press, 1994.

[62] E. Uysal and T. Dayar. Iterative Methods Based on Split-
tings for Stochastic Automata Networks. Eur. J. Op. Res.,
110(1):166–186, 1998.

[63] C. M. Woodside and Y. Li. Performance Petri Net Analysis
of Communications Protocol Software by Delay-Equivalent
Aggregation. In Proc. PNPM’91, pages 64–73. IEEE Comp.
Soc. Press, December 1991.

[64] Y. Zhang, D. Parker, and M. Kwiatkowska. A wavefront
parallelisation of CTMC solution using MTBDDs. In Proc.
International Conference on Dependable Systems and Net-
works (DSN’05), pages 732–742. IEEE Computer Society
Press, 2005.

22

	650.pdf
	1 Motivation
	2 Background Material
	2.1 Solving Systems of Linear Equations
	2.2 Jacobi and JOR Methods
	2.3 Gauss-Seidel and SOR
	2.4 Krylov Subspace Methods
	2.5 CTMCs and the Steady-State Solution
	2.6 Test of Convergence for Iterative Methods
	2.7 Explicit Storage Methods for Sparse Matrices
	2.7.1 The Coordinate and CSR Formats
	2.7.2 Modified Sparse Row
	2.7.3 Avoiding the Diagonal Storage
	2.7.4 Indexed MSR
	2.7.5 Compact MSR

	2.8 Multi-Terminal Binary Decision Diagrams
	2.9 Case Studies

	3 A Block Jacobi Algorithm
	3.1 Memory Requirements

	4 Parallelisation
	4.1 The Parallel Algorithm
	4.1.1 Implementation Issues

	5 Experimental Results
	6 Discussion
	7 Conclusion

